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THE CLASSICAL OBSTACLE PROBLEM WITH HÖLDER CONTINUOUS

COEFFICIENTS

GIOVANNA ANDREUCCI AND MATTEO FOCARDI

This paper is dedicated to Prof. Emmanuele Di Benedetto
for having taught us, with his body of work, the taste for hard analysis problems.

Abstract. Weiss’ and Monneau’s type quasi-monotonicity formulas are established for qua-
dratic energies having matrix of coefficients which are Dini, double-Dini continuous, respec-
tively. Free boundary regularity for the corresponding classical obstacle problems under
Hölder continuity assumptions is then deduced.

1. Introduction

In the last years several contributions have been devoted to the extension of the regularity
theory for obstacle type problems to the case in which the involved linear elliptic operator in
divergence form has coefficients with low regularity [1, 17, 2, 3, 12, 22, 23, 30, 18, 14, 20]. The
aim of this note is to make another step in that direction for the classical obstacle problem by
establishing Weiss’ and Monneau’s quasi-monotonicity formulas for quadratic forms having
matrix of coefficients which are Dini, double-Dini continuous, respectively (for the sake of
simplicity the lower order terms have the same regularity). Such results are instrumental
to pursue the variational approach to establish the smoothness of the corresponding free
boundaries. To keep the presentation as simple as possible the related free boundary analysis
is performed only in the Hölder continuous case.

More precisely, in what follows we consider the functional E : W 1,2(Ω)→ R given by

E(v) :=

ˆ
Ω

(
〈A(x)∇v(x),∇v(x)〉+ 2h(x)v(x)

)
dx, (1.1)

and study regularity issues related to its unique minimizer w on the set

Kψ,g :=
{
v ∈W 1,2(Ω) : v ≥ ψ Ln-a.e. on Ω, Tr(v) = g on ∂Ω

}
.

Existence and uniqueness of the minimizer is a standard issue for the problem under the
ensuing hypotheses. For a bounded open set Ω ⊂ Rn, n ≥ 2, we consider in what follows
functions ψ ∈ C1,1

loc (Ω) and g ∈ H1/2(∂Ω), such that ψ ≤ g Hn−1-a.e on ∂Ω, a matrix-valued
field A : Ω→ Rn×n and a function f : Ω→ R satisfying:

(H1) A(x) = (aij(x))i,j=1,...,n ∈ L
∞(Ω,Rn×n) is symmetric and coercive, that is aij = aji

Ln-a.e. in Ω for all i, j ∈ {1, . . . , n}, and for some Λ ≥ 1

Λ−1|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ Λ|ξ|2 (1.2)
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2 G. ANDREUCCI AND M. FOCARDI

for Ln-a.e. x ∈ Ω, and for all ξ ∈ Rn;
(H2) f ∈ L∞(Ω), f := h− div (A∇ψ) > c0 Ln-a.e. on Ω, for some c0 > 0;
(H3) A and f are α-Hölder continuous, for some α ∈ (0, 1],

(cf. Section 2 for the notation). Under assumptions (H1)-(H3) we establish a stratification
result for the free boundary of solutions (see also Remark 4.1 for further possible extensions).

Theorem 1.1. Assume (H1)-(H3), and let w be the (unique) minimizer of E in (1.1) on
Kψ,g.

Then, w is C1,α
loc (Ω), and the free boundary decomposes as ∂{w = ψ}∩Ω = Reg(w)∪Sing(w),

where Reg(w) and Sing(w) are called its regular and singular part, respectively. Moreover,
Reg(w) ∩ Sing(w) = ∅ and

(i) Reg(w) is relatively open in ∂{w = ψ} and, for every point x0 ∈ Reg(w), there exist
r = r(x0) > 0 such that ∂{w = ψ} ∩ Br(x) is a C1,β (n − 1)-dimensional manifold,
for some exponent β ∈ (0, 1).

(ii) Sing(w) = ∪n−1
k=0Sk, with Sk contained in the union of at most countably many sub-

manifolds of dimension k and class C1.

In the case of smooth matrix fields, Theorem 1.1 collects the fundamental contributions of
Caffarelli to the classical obstacle problem (cf. for instance [4, 5, 7, 6] and the books [21, 8, 29]
for more details and references also on related issues).

In the last years Theorem 1.1 has been extended to the case in which A either is Lipschitz
continuous in [12] or belongs to a fractional Sobolev space W 1+s,p in [18], with sp > 1 and

p ≥ n ∧ n2

n(1+s)−1 , or belongs to the Sobolev space W 1,p with p > n in [14]. We point out

that in all those cases the involved matrix fields A turns out to be Hölder continuous in
view of Sobolev type embeddings. Applications of the results in [12, 14] to the study of the
obstacle problem for a large class of nonlinear energies were then given in [13]. In addition,
counterexamples to smoothness of the free boundary are shown in case of the Laplacian if f
is not Dini continuous in [1], and in case f is constant and A is VMO in [3, Remark 4.2]. In
this respect, if both the coefficients A and f are assumed to be in VMO, Reifenberg vanishing
flatness of Reg(u) has been established in [3].

The papers [12, 18, 14] follow the variational approach to free boundary analysis remark-
ably developed by Weiss [31] and by Monneau [27]. Central to this method are quasi-
monotonicity formulas for suitable quantities, named in literature as Weiss’ and Monneau’s
quasi-monotonicity formulas. The original papers by Weiss and Monneau are based on some
key integral identities that hold true in the case of the Laplacian. The search for gener-
alizations need several new insights and technical tools. Let us briefly recall the key ideas
introduced in [12, 18, 14]. An extension of the Rellich and Nečas’ inequality due to Payne
and Weinberger (cf. [24]) is employed in the papers [12, 18]. On a technical side, the matrix
field A is differentiated, therefore enough smoothness of A is needed. Instead, a different
approach, leading to a weakening of the regularity assumptions on A, has been pursued in
[14] following an observation in [12, Remark 4.9]. The main difference in [14] with respect to
[12, 18] concerns the monotone quantity itself: rather than considering the natural quadratic
energy associated to the obstacle problem under study, a related constant coefficient quadratic
form has been used. Higher order regularity of solutions, namely W 2,p

loc , in combination with
their well-known quadratic growth from free boundary points then allow to conclude. In this
note we push forward the ideas in [14] and extend the conclusions there to Hölder continuous

matrix fields A for which the above mentioned W 2,p
loc regularity of solutions is not guaranteed.
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More precisely, we prove Weiss’ formula for Dini continuous matrix fields A and Monneau’s
formula for double-Dini continuous ones. For simplicity we do not distinguish the degrees of
regularity of A and that of f . Let us stress that in the case of the Laplacian, low regularity
assumptions on f have already been considered: Dini continuity has been deeply investigated
in [1], and Dini continuity in Lp sense, p suitable, in [28] (cf. also [3] for both A and f in
VMO; [14] for Theorem 1.1 if A is W 1,p, p > n, and f double-Dini continuous). A poten-
tial extension of the related free boundary analysis contained in Theorem 1.1 is discussed in
Remark 4.1 (cf. also Remark 3.5). Note that if α = 1 we recover the results in [12] with,
partially, a different proof.

We close this introduction briefly resuming the structure of the paper: standard preliminar-
ies for the classical obstacle problem are collected in Section 2. The mentioned generalizations
of Weiss’ and Monneau’s quasi-monotonicity formulas are dealt with in Section 3, finally Sec-
tion 4 contains the applications to the free boundary stratification problem.

2. Preliminaries

2.1. Notation. Throughout the whole paper, the inner product in Rn is denoted by 〈·, ·〉,
and the induced norm by | · |. To distinguish it from the norm in Rn×n we use the symbol ‖ · ‖
for the latter. We use standard notations for Lebesgue, Sobolev and Hölder spaces, quoting
the necessary results when needed.

2.2. Reduction to the zero obstacle case. We first reduce ourselves to the zero obstacle
problem. Let w be the unique minimizer of E over Kψ,g, and define u := w − ψ. Then, u is
the unique minimizer of

E (v) :=

ˆ
Ω

(
〈A(x)∇v(x),∇v(x)〉+ 2f(x)v(x)

)
dx, (2.1)

over Kψ,g := K0,ψ−g, where f = h − div (A∇ψ). Clearly, ∂{w = ψ} ∩ Ω = ∂{u = 0} ∩ Ω,
therefore we shall establish all the results in Theorem 1.1 for u. Notice that assumption (H2)
is formulated exactly in terms of f , and that, for the zero obstacle problem, i.e. ψ = 0 the
positivity assumption on f in (H2) involves only the lower order term h in the integrand and
not the matrix field A. It is also clear that given (H3), the L∞ assumptions in (H1) and (H2)
are redundant and the inequalities there hold in a pointwise sense. Despite this, we state
(H1) and (H2) as in the Introduction because for some of the ensuing results we shall not
need (H3) and we will sometimes substitute it with a weaker version (cf. (H4) and (H5) in
what follows).

The first step is to prove that u satisfies a PDE both in the distributional sense and Ln-
a.e. on Ω. The next result has been established in [13, Proposition 3.2] more generally for
variational inequalities inspired by some arguments in [31] (see also [15, 16]). The leading

vector field in [13, Proposition 3.2] is assumed to be C1,1
loc in the full set of variables for the

sake of existence of solutions in that general setting. On the contrary, such a regularity in
the space variable is never used to deduce the conclusion of [13, Proposition 3.2]. We provide
below the proof for the readers’ convenience.

Proposition 2.1. Assume (H1) and (H2). Let u be the minimizer of E on Kψ,g. Then, there
exists a function ζ ∈ L∞(Ω) such that

div(A∇u) = f − ζ (2.2)
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Ln-a.e. on Ω and in D′(Ω), with

0 ≤ ζ ≤ fχ{u=0} . (2.3)

In particular, u ∈ C0,β
loc (Ω) for some β ∈ (0, 1).

Proof. Let ϕ ∈ C∞c (Ω), and for all ε > 0 define vε := (u + εϕ) ∨ 0. Note that vε belongs to
the set Kψ,g. If ϕ ≥ 0 then vε = u+ εϕ and, since u is the minimizer we have

−ε
2

ˆ
Ω
〈A(x)∇ϕ,∇ϕ〉 dx ≤

ˆ
Ω
〈A(x)∇u,∇ϕ〉 dx+

ˆ
Ω
f(x)ϕdx .

In turn, for ε→ 0 this implies that

0 ≤
ˆ

Ω
〈A(x)∇u,∇ϕ)〉dx+

ˆ
Ω
f(x)ϕdx ∀ϕ ∈ C∞c (Ω), ϕ ≥ 0.

The last inequality yields that the distribution µ := −div
(
A(·)∇u

)
+ f(·)LnxΩ is a non-

negative Radon measure on Ω.
Let now ϕ and vε be as above without any assumption on the sign of ϕ, and set

Ωε := {x ∈ Ω : u+ εϕ < 0} .

It is clear that vε = 0 and ϕ < 0 on Ωε, and that vε = u+ εϕ on Ω \ Ωε. Using again that u
is minimizing, that f ≥ c0 > 0 on Ω by (H2), and that vε ∈ Kψ,g we obtain

0 ≤ E (vε)− E (u) = −
ˆ

Ωε

〈A∇u,∇u〉 dx+ 2ε

ˆ
Ω\Ωε
〈A∇u,∇ϕ〉 dx

+ ε2

ˆ
Ω\Ωε
〈A∇ϕ,∇ϕ〉dx+ 2

ˆ
Ω\Ωε

f(u+ εϕ) dx− 2

ˆ
Ω
fudx

≤ 2ε

ˆ
Ω
〈A∇u,∇ϕ〉 dx+ 2ε

ˆ
Ω
fϕdx− 2ε

ˆ
Ωε

〈A∇u,∇ϕ〉 dx

+ ε2

ˆ
Ω\Ωε
〈A∇ϕ,∇ϕ〉dx−

ˆ
Ωε

2f(u+ εϕ) dx .

In the last inequality we have dropped the first term on the first line as it is negative (cf.
(H1)). Thus, on account of the definition of µ, the last formula rewrites asˆ

Ω
ϕdµ ≥ I1(ε) + I2(ε) + I3(ε) (2.4)

where

I1(ε) =

ˆ
Ωε

〈A(x)∇u,∇ϕ〉dx , I2(ε) = −ε
2

ˆ
Ω\Ωε
〈A∇ϕ,∇ϕ〉 dx , I3(ε) =

1

ε

ˆ
Ωε

f(u+ εϕ) dx .

First, we note that the very definition of Ωε yields that

Ln
((
{u = 0} ∩ {ϕ < 0}

)
\ Ωε

)
= Ln

(
Ωε \

(
{0 ≤ u ≤ ε‖ϕ‖L∞(Ω)} ∩ {ϕ < 0}

))
= 0,

and thus we may conclude that χΩε → χ{u=0}∩{ϕ<0} in L1(Ω). Hence, the dominated conver-
gence theorem yields

lim
ε→0+

I1(ε) =

ˆ
{u=0}∩{ϕ<0}

〈A∇u,∇ϕ〉 dx = 0 , (2.5)

by locality of the weak gradient.



THE CLASSICAL OBSTACLE PROBLEM WITH HÖLDER CONTINUOUS COEFFICIENTS 5

Instead, to estimate I2(ε), we use (H1) as follows

|I2(ε)| = ε

2

ˆ
Ω\Ωε
〈A∇ϕ,∇ϕ〉dx ≤ ε

2
Λ

ˆ
Ω
|∇ϕ|2 dx ,

so that

lim
ε→0+

I2(ε) = 0 . (2.6)

Lastly, we deal with I3(ε): note that u ≥ 0 and f ≥ c0 > 0 on Ω by (H2), thus we haveˆ
Ωε

f(u+ εϕ) dx ≥ ε
ˆ

Ωε

fϕdx .

Hence, it is true that

lim inf
ε→0+

I3(ε) ≥
ˆ
{u=0}∩{ϕ<0}

fϕdx . (2.7)

Therefore, (2.4)-(2.7) yield thatˆ
Ω
ϕdµ ≥

ˆ
{u=0}∩{ϕ<0}

fϕdx.

By repeating the same argument with −ϕ we obtain the inequalityˆ
Ω
ϕdµ ≤

ˆ
{u=0}∩{ϕ>0}

fϕdx .

Hence, by approximation for every ϕ ∈ C0
0 (Ω) it holdsˆ

{u=0}∩{ϕ<0}
fϕdx ≤

ˆ
Ω
ϕdµ ≤

ˆ
{u=0}∩{ϕ>0}

fϕdx . (2.8)

From this we infer that µ � LnxΩ, and thus µ = ζLnxΩ with ζ ∈ L1(Ω). In conclusion,
plugging this piece of information in (2.8) we conclude that 0 ≤ ζ ≤ fχ{u=0} Ln-a.e. on Ω.

The Hölder continuity of u follows from nowadays standard elliptic regularity [19, Theo-
rem 8.22]. �

Remark 2.2. In case A is more regular, namely W 1,p(Ω;Rn×n) for p > n, the minimizer u

turns out to be W 2,p
loc (Ω) (cf. [14, Proposition 3.1]). In turn, from this one can easily prove

that (2.2) rewrites as

div(A∇u) = fχ{u>0} (2.9)

Ln-a.e. on Ω and in D′(Ω) (cf. [13, Corollary 3.5], [14, Proposition 3.1]).
Here we limit ourselves to notice that, standing assumptions (H1) and (H2), by uniqueness

of u and (2.2), ζ coincides with f on the interior {u = 0}◦ of {u = 0}, so that we may conclude
the refined inequalities

fχ{u=0}◦ ≤ ζ ≤ fχ{u=0} .

This remark will be crucial in what follows in order to apply [2, Theorems 3.9]. In particular,
we infer from this the quadratic non-degeneracy of the solution from free boundary points.
Instead, a parabolic bound from above from free boundary points follows directly from (2.2)
thanks to [2, Theorems 3.1]. We apply these properties to the blow up analysis of Section 3
(cf. Proposition 2.5).

Furthermore, observe that Ln(Γu) = 0 in view of [2, Corollary 3.10], so that equation (2.9)
is actually true Ln-a.e. on Ω and in D′(Ω). Despite this, we stress that we do not need such
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a piece of information to establish the quasi-monotonicity formulas in Section 3: equation
(2.2), but not (2.9), will be used in the proofs of Theorems 3.7 and 3.8.

We establish next two useful corollaries of Proposition 2.1. The first is simply a suitable
version of Caccioppoli’s inequality.

Corollary 2.3. Assume (H1) and (H2). Let u be the minimizer of E on Kψ,g. Then,
there exists a constant C = C(n,Λ) > 0 such that for every x0 ∈ Ω and for every r ∈
(0, 1

4dist(x0, ∂Ω))ˆ
Br(x0)

|∇u|2 dx ≤ C

r2

ˆ
B2r(x0)

u2 dx+ C‖f‖2L∞(B2r(x0))r
n+2 . (2.10)

Instead, the second corollary is an integration by parts formula which will be employed in
the proof of the Monneau’s quasi-monotonicity formula.

Corollary 2.4. Assume (H1) and (H2). Let u be the minimizer of E on Kψ,g. Then, for
every x0 ∈ Ω and for L1-a.e. r ∈ (0,dist(x0, ∂Ω))ˆ

Br(x0)
〈A∇u,∇ϕ〉 dx+

ˆ
Br(x0)

(f − ζ)ϕdx =

ˆ
∂Br(x0)

〈A∇u, ν〉ϕdHn−1 (2.11)

for every ϕ ∈W 1,2(Ω), where ν(x) := x−x0
|x−x0| .

Proof. For x0 ∈ Ω, ϕ ∈W 1,2(Ω), r ∈ (0,dist(x0, ∂Ω)), and s < r let

ψs(x) := 1 ∧ 1

r − s
dist(x, ∂Br(x0))

if x ∈ Br(x0) and ψs(x) := 0 otherwise in Ω. Then ψsϕ ∈ W 1,2
0 (Ω) so that using it as test

function in (2.2) we getˆ
Br(x0)

〈A∇u,∇ϕ〉ψs dx+

ˆ
Br(x0)

(f − ζ)ϕψs dx = −
ˆ
Br(x0)

〈A∇u,∇ψs〉ϕdx := Is .

It is clear that ψs → χBr(x0) in Lp(Ω) for every p ∈ [1,∞) as s ↑ r. Moreover, being
0 ≤ ψs ≤ 1, the Lebesgue dominated convergence theorem implies that the left hand side
converges to the left hand side in (2.11) as s ↑ r. Computing explicitly the gradient of ψs, we
evaluate Is as follows:

Is =
1

r − s

ˆ
Br(x0)\Bs(x0)

〈A∇u, x−x0|x−x0|〉ϕdx =
1

r − s

ˆ r

s
dt

ˆ
∂Bt(x0)

〈A∇u, ν〉ϕdHn−1 ,

where in the second equality we have used the coarea formula. The conclusion then follows
at once (cf. for instance [11, Sections 3.4.3 and 3.4.4]). �

We recall next the standard notations for the coincidence set and for the free boundary

Λu := {x ∈ Ω : u(x) = 0} , Γu := ∂Λu ∩ Ω. (2.12)

For any point x0 ∈ Γu, we introduce the family of rescaled functions

ux0,r(x) :=
u(x0 + rx)

r2
(2.13)

for x ∈ 1
r (Ω− x0). It is clear that changing variables in (2.1) implies that ux0,r minimizesˆ

1
r

(Ω−x0)

(
〈A(x0 + rx)∇v(x),∇v(x)〉+ 2f(x0 + rx)v(x)

)
dx, (2.14)
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among all functions v ≥ 0 on 1
r (Ω − x0), and with v − ux0,r ∈ W

1,2
0 (1

r (Ω − x0)). Note that
A(x0 +r·) and f(x0 +r·) satisfy (H1)-(H2) uniformly in x0 and r, i.e. the ellipticity constants
of A(x0 + r·) are the same of those of A, the L∞ bound and the lower bound for f(x0 + r·)
are the same of those of f . Therefore, similarly to (2.2), from (2.14) we infer that

div(A(x0 + rx)∇ux0,r) = f(x0 + rx)− ζ(x0 + rx) (2.15)

Ln-a.e. on 1
r (Ω−x0) and in D′(1

r (Ω−x0)), where ζ is the function in Proposition 2.1 (cf [19,
Section 8]).

The first properties we recall on the family (ux0,r)r follows from the fundamental quadratic
growth and quadratic detachment of the solution from free boundary points established in
[2, Theorems 3.1, 3.9] (cf. the discussion in Remark 2.2, see also [3, Theorems 2.3, 2.4]). We
summarize the needed properties in the ensuing statement which is key for our approach. We
remark that the estimates are uniform in x0 and r.

Proposition 2.5. Assume (H1) and (H2). Let u be the minimizer of E over Kψ,g. There
exists a constant ϑ = ϑ(n,Λ, c0, ‖f‖L∞) > 0, such that for every x0 ∈ Γu and for every
r ∈ (0, 1

2dist(x0, ∂Ω)), it holds

sup
∂B1

ux0,r ≥ ϑ . (2.16)

Moreover, for every R > 0 and for all compact sets K ⊂ Ω there exists a constant C =
C(n,Λ, c0, ‖f‖L∞ , R,K) > 0 such that

‖ux0,r‖L∞(BR) ≤ C , (2.17)

for all x0 ∈ Γu ∩K, and for all r ∈
(
0, 1

4Rdist(K, ∂Ω)
)
.

Remark 2.6. Notice that in view of the estimate in (2.10) in Corollary 2.3 and the estimate
in (2.17), we may infer that for all x0 ∈ Γu ∩K, and for all r ∈

(
0, 1

4Rdist(K, ∂Ω)
)

‖ux0,r‖L∞(BR) + ‖∇ux0,r‖L2(BR,Rn) ≤ C . (2.18)

In addition, if assumption (H3) holds, then the Hölder seminorms of A(x0+r·) have uniform
bounds with respect to x0 and r. Thus, uniform Schauder estimates are deduced thanks to
[19, Corollary 8.36]. Then the existence up to subsequences of C1,β-limits, β < α, as r ↓ 0 of
the family (ux0,r)r is standard.

Proposition 2.7. Assume (H1)-(H3). Let u be the minimizer of E over Kψ,g, and K ⊂ Ω
a compact set. Then for every x0 ∈ K ∩ Γu and for every R > 0 there exists a constant
C = C(n,Λ, ‖f‖L∞ , ‖A‖C0,α , R,K) > 0 such that, for every r ∈ (0, 1

4Rdist(K, ∂Ω))

‖ux0,r‖C1,α(BR) ≤ C. (2.19)

In particular, (ux0,r)r is relatively compact in C1,β
loc (A), for all β ∈ (0, α), and for every open

set A ⊂⊂ Rn.

The functions arising in this limit process are called blow up limits. In particular, the blow
up limits are non-trivial, i.e. not identically zero, in view of Proposition 2.5.

Corollary 2.8. Assume (H1)-(H3). Let u be the minimizer of E over Kψ,g, and let x0 ∈ Γu.
Then, for every sequence rk ↓ 0 there exists a subsequence (rkj )j ⊂ (rk)k such that the rescaled

functions (ux0,rkj )j converge to a non trivial C1,α(A) limit in C1,β
loc (A), for all β ∈ (0, α), and

for every open set A ⊂⊂ Rn.
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3. Quasi-monotonicity formulas

In this section we establish Weiss’ and Monneau’s type quasi-monotonicity formulas. The
monotone quantities we consider in Section 3.1 are modeled upon the classical Dirichlet energy
as in [14] under a pointwise normalization condition on the coefficients. We shall show in the
subsequent Section 3.2 how to reduce to that formulation in a pointwise way via a suitable
change of variables following [12]. The advantage of this approach is that the matrix field
A is not differentiated in deriving the quasi-monotonicity formulas contrary to [12, 18]. In
those papers, instead, the natural quadratic energy E associated to the obstacle problem
under study had been considered. The W 2,p

loc regularity of solutions and the quadratic growth
from the free boundary were key properties to establish the quasi-monotonicity formulas in
[14] for the Dirichlet based quantities. The new contribution of the current paper is to avoid
the use of the former piece of information, which is not guaranteed in our setting, thanks
to an elementary energy comparison argument to prove Weiss’ formula (cf. Proposition 3.3),
and in turn thanks to the latter and to Proposition 2.1 to prove Monneau’s formula (cf.
Proposition 3.6).

3.1. Weiss’ and Monneau’s quasi-monotonicity formulas under a normalization
condition. We establish Weiss’ and Monneau’s quasi-monotonicity formulas for the mini-
mizer u of E on Kψ,g under the normalization condition

x0 = 0 ∈ Γu, A(x0) = Id, f(x0) = 1 . (3.1)

We will show in the next Section 3.2 how to reduce to (3.1) in each free boundary point
thanks to a change of variables.

Moreover, for the sake of possible future generalizations of Theorem 1.1, we establish
Weiss’ and Monneau’s formulas under Dini, double-Dini continuity assumptions, respectively
(cf. Remark 3.5 for generalizations of Weiss’ formula). Thus, we introduce some terminology.
Given a uniformly continuous function ζ : Ω → Rm, m ≥ 1, we consider a modulus of
continuity of ζ namely an increasing function ωζ : (0,∞) → (0,∞) with limt→0 ωζ(t) = 0,
and such that for all t ∈ (0,diamΩ)

sup
x,y∈Ω: |x−y|≤t

‖ζ(x)− ζ(y)‖ ≤ ωζ(t) .

With a slight abuse of notation with respect to our conventions we have denoted by ‖ · ‖ the
norm in Rm even in case m = n. In particular, ζ is said to be Dini continuous if for some ωζ
as above ˆ diamΩ

0

ωζ(t)

t
dt <∞ , (3.2)

and double-Dini continuous if for some a ≥ 1
ˆ diamΩ

0

ωζ(t)

t
| log t|a dt <∞ . (3.3)

Therefore, we introduce the following weaker assumptions, each substituting (H3) in some of
the results contained in this section:

(H4) A and f are Dini continuous;
(H5) A and f are double-Dini continuous.
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We point out that under condition (H4), [25, Theorem 2.1 and Remark 2.2] imply that
u ∈ C1(Ω) (cf. also [26, 9, 10] for more on Schauder estimates for linear elliptic PDEs with
Dini type continuity conditions on the matrix field).

Given v ∈W 1,2(Ω) we consider the Weiss’ energy

Φv(r) :=
1

rn+2

ˆ
Br

(
|∇v|2 + 2 v

)
dx− 2

rn+3

ˆ
∂Br

v2 dHn−1 , (3.4)

and prove its quasi-monotonicity for v = u in case (3.1) is satisfied. Let us also introduce the
bulk energy

Ev(r) :=

ˆ
Br

(|∇v|2 + 2v) dx (3.5)

and the boundary energy

Hv(r) :=

ˆ
∂Br

v2 dHn−1 , (3.6)

so that

Φv(r) =
1

rn+2
Ev(r)−

2

rn+3
Hv(r) .

In the rest of the section to ease the notation we write ur in place of u0,r. Note then that

Eur(1) =
Eu(r)

rn+2
≤ C, Hur(1) =

Hu(r)

rn+3
≤ C , (3.7)

thanks to the bound (2.17) in Remark 2.6 (we stress that no continuity assumption on A or
f is needed).

We establish next two auxiliary results. The first is well-known, we prove it only for the
readers’ convenience being the fundamental identity from which Weiss’ quasi-monotonicity is
inferred.

Lemma 3.1. Assume (H1), (H2) and (H4). Let u be the minimizer of E over Kψ,g. If 0 ∈ Ω,
for every r ∈ (0, dist(0, ∂Ω)) consider

wr(x) := |x|2u
(
r x
|x|
)
. (3.8)

Then, it is true that

Φ′u(r) =
n+ 2

r
(Φwr(1)− Φur(1)) +

1

r

ˆ
∂B1

(〈∇ur, ν〉 − 2ur)
2 dHn−1 . (3.9)

Proof. By definition for every r ∈ (0,dist(0, ∂Ω)) we have

Φ′u(r) =
E ′u(r)

rn+2
− (n+ 2)

Eu(r)

rn+3
− 2

H ′
u(r)

rn+3
+ 2(n+ 3)

Hu(r)

rn+4
. (3.10)

A direct computation then gives

E ′u(r) =

ˆ
∂Br

(|∇u|2 + 2u ) dHn−1 = rn+1

ˆ
∂B1

(|∇ur|2 + 2ur ) dHn−1. (3.11)

By scaling it is easy to check that

H ′
u(r) =

d

dr

(ˆ
∂B1

u2(ry)rn−1 dHn−1

)
=
n− 1

r
Hu(r) + 2rn+2

ˆ
∂B1

ur〈∇ur, y〉 dHn−1 , (3.12)
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therefore

− 2

rn+3
H ′
u(r)+

2(n+ 3)

rn+4
Hu(r) =

8

rn+4
Hu(r)− 4

r

ˆ
∂B1

ur〈∇ur, y〉 dHn−1 . (3.13)

Plugging (3.13) and (3.11) in (3.9) we get

Φ′u(r) =
1

r

ˆ
∂B1

(|∇ur|2 + 2ur ) dHn−1 − (n+ 2)
Eu(r)

rn+3
+

8

rn+4
Hu(r)− 4

r

ˆ
∂B1

ur〈∇ur, y〉dHn−1

= −n+ 2

r
Φu(r)− 2(n− 2)

rn+4
Hu(r) +

1

r

ˆ
∂B1

(
|∇ur|2 + 2ur − 4ur〈∇ur, y〉

)
dHn−1

= −n+ 2

r
Φu(r) +

1

r

ˆ
∂B1

(
|∇ur|2 + 2ur − 2(n− 2)u2

r − 4ur〈∇ur, y〉
)

dHn−1

= −n+ 2

r
Φu(r) +

1

r

ˆ
∂B1

((
〈∇ur, y〉 − 2ur

)2
+ |∇τur|2 − 2nu2

r + 2ur

)
dHn−1

=
n+ 2

r
(Φwr(1)− Φur(1)) +

1

r

ˆ
∂B1

(〈∇ur, ν〉 − 2ur)
2 dHn−1 ,

where in the last equality we have used that

Φwr(1) =
1

n+ 2

ˆ
∂B1

(|∇τur|2 − 2nu2
r + 2ur) dHn−1 .

which follows from a direct computation of the energy of the 2-homogeneous extension wr. �

The second result is a simple consequence of the continuity assumptions on the coefficients.

Lemma 3.2. Assume (H4) and (3.1). For every v ∈ W 1,2(Br) with v ≥ 0 Ln-a.e. on Br
then ∣∣∣ˆ

B1

|∇vr|2 dx−
ˆ
B1

〈A(rx)∇vr,∇vr〉dx
∣∣∣ ≤ ωA(r)

ˆ
B1

|∇vr|2 dx (3.14)∣∣∣ ˆ
B1

(1− f(rx))vr dx
∣∣∣ ≤ ωf (r)

ˆ
B1

vr dx , (3.15)

Proof. It suffices to take in to account the normalization assumption (3.1) and the definition
of modulus of continuity. �

Let us first establish Weiss’ quasi-monotonicity under the normalization condition.

Proposition 3.3. Assume (H1), (H2), (H4) and (3.1). Let u be the minimizer of E over
Kψ,g. There is a dimensional constant C = C(n) > 0 such that if for some γ ≥ 1

‖ur‖L∞(B2) + ‖∇ur‖L2(B2;Rn) ≤ γ (3.16)

for every r ∈ (0, 1
2dist(0, ∂Ω)), then

d

dr

(
Φu(r) + Cγ2

ˆ r

0

ω(t)

t
dt

)
≥ 1

r

ˆ
∂B1

(〈∇ur, x〉 − 2ur)
2 dHn−1, (3.17)

for every r ∈ (0, 1
2dist(0, ∂Ω)), where ω(r) := ωA(r) + ωf (r).

In particular, Φu has a finite right limit in 0 denoted by Φu(0+).

Proof. For r ∈ (0,dist(0, ∂Ω)), we use formula (3.9) for Φ′u in combination with one of the
following alternatives
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(a) Φwr(1) ≥ Φur(1),
(b) Φwr(1) < Φur(1).

In case (a) we conclude that

Φ′u(r) ≥ 1

r

ˆ
∂B1

(〈∇ur, ν〉 − 2ur)
2 dHn−1 . (3.18)

Otherwise, being ur|∂B1 = wr|∂B1 , the inequality defining case (b) rewrites as

Ewr(1) < Eur(1) . (3.19)

Thus we may estimate Φwr(1) − Φur(1) from below by taking into account Lemma 3.2 and
that ur minimizes the functional in (2.14) with respect to its boundary values, to conclude
that

Φwr(1)− Φur(1) = Ewr(1)− Eur(1)

≥
ˆ
B1

(〈A(rx)∇wr,∇wr〉+ 2f(rx)wr) dx−
ˆ
B1

(〈A(rx)∇ur,∇ur〉+ 2f(rx)ur) dx

− ω(r)(Ewr(1) + Eur(1))
(3.19)

≥ −2ω(r)Eur(1)
(3.16)

≥ −Cγ2ω(r) ,

where we have set ω(r) = ωA(r) + ωf (r) and C = C(n) > 0. Hence, in case (b) we infer that

Φ′u(r) ≥ −Cγ2ω(r)

r
+

1

r

ˆ
∂B1

(〈∇ur, ν〉 − 2ur)
2 dHn−1 . (3.20)

Inequalities (3.18) and (3.20) provide (3.17) for every r ∈ (0, 1
2dist(0, ∂Ω)). �

Remark 3.4. Recalling that f and A are Dini continuous by (H4), the modulus of continuity
ω provided by Proposition 3.3 is in turn Dini continuous.

Remark 3.5. An inspection of the proof above shows that Weiss’ formula can be deduced
even for a weaker notion of Dini continuity, that is actually the one used in [25, Theorem 2.1
and Remark 2.2] to infer the mentioned C1 regularity of solutions. In this respect, we need a
different version of Lemma 3.2. To this aim, thanks to the mentioned Schauder estimates, in
place of (3.14) and (3.15) we may consider for r sufficiently small the inequalities∣∣∣ ˆ

B1

|∇ur|2 dx−
ˆ
B1

〈A(rx)∇ur,∇ur〉dx
∣∣∣ ≤ ω̃(r)‖∇ur‖2L∞(B1;Rn) , (3.21)∣∣∣ ˆ

B1

(1− f(rx))ur dx
∣∣∣ ≤ ω̃(r)‖ur‖L∞(B1) , (3.22)

where

ω̃(r) := Ln(B1)

(
sup
y∈B2

 
Br(y)

(
‖A(x)− A(y)‖2 + |f(x)− f(y)|2

)
dx

)1/2

.

Note that ω̃ is not a modulus of continuity according to the definition given above as it is not
increasing. Despite this, assume that it satisfies (3.2). Then, on one hand [25, Theorem 2.1
and Remark 2.2] provide C1 regularity with a uniform modulus of continuity for the gradient
of the solution; on the other hand (3.21) and (3.22) together with (3.27) below (rather than
(3.16)) yield Weiss’ quasi-monotonicity formula. As it will be discussed in Section 3.2 below,
it is not restrictive to assume (3.27) thanks exactly to [25, Theorem 2.1 and Remark 2.2].
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Finally, we note that even weaker notions of continuity are allowed to get C1 regularity
of solutions to divergence form elliptic equations (cf. [9, 10]). In this respect, Reifenberg
vanishing flatness of Reg(u) had already been proved in case of VMO coefficients in [3] by
means of PDEs arguments rather than using the variational approach (cf. the introduction
for the definition of Reg(u)).

For what Monneau’s formula is concerned, let v be any positive 2-homogeneous polynomial
solution of

∆v = 1 on Rn. (3.23)

Then by 2-homogeneity, elementary calculations lead to

Φv(r) = Φv(1) =

ˆ
B1

v dy, (3.24)

for all r > 0. It is easy to prove that the value above is a dimensional constant independent of
v, which we denote by θ. Then, being the space of polynomials of degree 2 finite dimensional,
and being v 2-homogeneous we infer that

‖∇v‖L2(B1) + ‖v‖L2(∂B1) ≤ C(n) . (3.25)

We prove next a quasi-monotonicity formula for solutions of the obstacle problem in case
x0 ∈ Γu is a singular point of the free boundary, namely it is such that

Φu(0+) = θ . (3.26)

To prove Monneau’s formula we need to strengthen condition (3.16) (cf. (3.27) below).

Proposition 3.6. Assume (H1), (H2), (H5) with a = 1, and (3.1). Let u be the minimizer
of E over Kψ,g. There exists a dimensional constant C = C(n) > 0 such that if for some
γ ≥ 1

‖ur‖L∞(B2) + ‖∇ur‖L∞(B2;Rn) ≤ γ (3.27)

for every r ∈ (0, 1
2dist(0, ∂Ω)), then the function

(0, 1
2dist(0, ∂Ω)) 3 r 7−→

ˆ
∂B1

(ur − vr)2 dx+ Cγ2

ˆ r

0

dt

t

ˆ t

0

ω(s)

s
ds (3.28)

is nondecreasing, where v is any positive 2-homogeneous polynomial solution of (3.23), and
ω is the modulus of continuity provided by Proposition 3.3.

Proof. Let wr := ur − v, then by scaling and by taking into account the 2-homogeneity of v
we get

d

dr

(
1

rn+3

ˆ
∂B1

(u− v)2 dHn−1

)
=

d

dr

(ˆ
∂B1

w2
r dHn−1

)
=

2

r

ˆ
∂B1

wr(〈∇ur, x〉 − 2ur) dHn−1

≥ 2

r

ˆ
∂B1

wr(〈A(rx)∇ur, x〉 − 2ur) dHn−1 − ωA(r)

r
‖wr‖L2(∂B1)‖∇ur‖L2(∂B1)

≥ 2

r

ˆ
∂B1

wr(〈A(rx)∇ur, x〉 − 2ur) dHn−1 − Cγ2ωA(r)

r
, (3.29)

for some C = C(n) > 0, where we have used (3.25) and (3.27) in the last inequality.
We use next the integration by parts formula (2.11) in Corollary 2.4 to getˆ

∂B1

wr〈A(rx)∇ur, x〉 dHn−1 =

ˆ
B1

〈A(rx)∇ur,∇wr〉 dx+

ˆ
B1

(f(rx)− ζ(rx))wr dx := I1 + I2 .
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We estimate the two addends above separately. We start off with I1:

I1 =

ˆ
B1

〈A(rx)∇ur,∇ur〉 dx−
ˆ
B1

〈A(rx)∇ur,∇v〉dx

≥ Φur(1)− ωA(r)

ˆ
B1

|∇ur|2 dx− 2

ˆ
B1

ur dx+ 2Hur(1)−
ˆ
B1

〈A(rx)∇ur,∇v〉dx .

(3.30)

By taking advantage of the 2-homogeneity of v and that 4v = 1 (cf. (3.23)) we get that

−
ˆ
B1

〈A(rx)∇ur,∇v〉 dx ≥ −
ˆ
B1

〈∇ur,∇v〉dx− ωA(r)‖∇ur‖L2(B1)‖∇v‖L2(B1)

=

ˆ
B1

ur dx− 2

ˆ
∂B1

urv dHn−1 − ωA(r)‖∇ur‖L2(B1)‖∇v‖L2(B1)

≥
ˆ
B1

ur dx− 2

ˆ
∂B1

urv dHn−1 − CγωA(r) ,

for some C = C(n) > 0, where we have used (3.25) and (3.27) in the last inequality. Plugging
the latter estimate in (3.30) we infer that

I1 ≥ Φur(1)−
ˆ
B1

ur dx+ 2

ˆ
∂B1

urwr dHn−1 − Cγ2ωA(r) . (3.31)

Next note that by (2.3) in Proposition 2.1

I2 =

ˆ
B1

(f(rx)− ζ(rx))ur dx−
ˆ
B1

(f(rx)− ζ(rx))v dx

≥
ˆ
B1

(f(rx)− f(rx)χ{ur=0})ur dx−
ˆ
B1

f(rx)v dx

=

ˆ
B1

f(rx)χ{ur>0}ur −
ˆ
B1

f(rx)v dx =

ˆ
B1

f(rx)(ur − v) dx . (3.32)

We now use (3.24), (3.31) and (3.32), to estimate (3.29)

d

dr

(
1

rn+3

ˆ
∂B1

(u− v)2 dHn−1

)
≥ 1

r
(Φur(1)− Φv(1))

+
1

r

ˆ
B1

(1− f(rx))(v − ur) dx− Cγ2ωA(r)

r

(3.25)

≥ 1

r
(Φur(1)− Φu(0+))− Cγ2ω(r)

r
, (3.33)

for some C = C(n) > 0. Therefore, we may finally use Proposition 3.3 to conclude that

d

dr

(
1

rn+3

ˆ
∂B1

(u− v)2 dHn−1

)
≥ 1

r

ˆ r

0

1

t

ˆ
∂B1

(〈∇ut, x〉 − 2ut)
2dHn−1 − C

r
γ2

ˆ r

0

ω(t)

t
dt− Cγ2ω(r)

r
.

The conclusion then follows at once. �
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3.2. Weiss’ and Monneau’s quasi-monotonicity: general case. To establish Weiss’
and Monneau’s monotonicity in general, we follow [12] and show that by means of a change
of variables one can always reduce to the normalized setting in (3.1) for every free boundary
point x0 ∈ Γu. Moreover, the new quantities appearing in the corresponding obstacle problems
under such a transformation satisfy assumptions (H1), (H2) and either (H3) or (H4) or (H5),
with uniform constants with respect to x0, according to the assumption imposed on A and f .

Indeed, let x0 ∈ Γu be any point of the free boundary, consider the affine change of variables

x 7−→ x0 + f−
1/2(x0)A1/2(x0)x =: x0 + L(x0)x

Changing variables leads to

E (u) = f1−n
2 (x0) det(A1/2(x0)) EL(x0)(uL(x0)), (3.34)

where we have set ΩL(x0) := L−1(x0) (Ω− x0), and

EL(x0)(v) :=

ˆ
ΩL(x0)

(
〈CL(x0)(x)∇v,∇v〉+ 2

fL(x0)

f(x0)
v

)
dx, (3.35)

with

uL(x0)(x) := u
(
x0 + L(x0)x

)
, (3.36)

fL(x0)(x) := f
(
x0 + L(x0)x

)
,

CL(x0)(x) := A−1/2(x0)A(x0 + L(x0)x)A−1/2(x0).

Note that fL(x0)(0) = f(x0) and CL(x0)(0) = Id. Moreover, the free boundary is transformed
under this map into

ΓuL(x0) = L−1(x0)(Γu − x0),

and the energy E in (1.1) is minimized by u on Kψ,g if and only if EL(x0) in (3.35) is mini-
mized by uL(x0) in (3.36) on Kψ(L−1(x0)(·−x0),g(L−1(x0)(·−x0)). In particular, the normalization
assumption (3.1) is satisfied.

Moreover, CL(x0) and
fL(x0)
f(x0) satisfy (H1)-(H5) with uniform constants. Indeed, for what

(H1) is concerned, it is clear that CL(x0)(·) is symmetric, bounded and coercive, with

Λ−2|ξ|2 ≤ 〈CL(x0)(x)ξ, ξ〉 ≤ Λ2|ξ|2 (3.37)

for Ln-a.e. x ∈ ΩL(x0), and for every ξ ∈ Rn. Note that

c0

‖f‖L∞(Ω)
<
fL(x0)

f(x0)
≤
‖f‖L∞(Ω)

c0
(3.38)

for Ln-a.e. x ∈ ΩL(x0), so that (H2) holds. Moreover, on setting ωA(t) := (nΛ)2ωA

(√
nΛ
c0
t
)

,

it is clear that for every x, y ∈ ΩL(x0)

‖CL(x0)(x)− CL(x0)(y)‖ ≤ ωA(|x− y|) . (3.39)

Analogously,
fL(x0)
f(x0) has modulus of continuity ωf (t) := c−1

0 ωf

(√
nΛ
c0
t
)

. Therefore, either (H3)

or (H4) or (H5) holds, according to the corresponding assumption on A and f .
Furthermore, we note that in view of (3.37) and (3.38) formula (3.16) is satisfied uniformly

in x0 and r. More precisely, Remark 2.6 yields that if R > 0, K ⊂ Ω is compact and x0 ∈ K,
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then for every r ∈
(
0, 1

4Rdist(K, ∂Ω)
)
, and for some constant C = C(n, c0,Λ, ‖f‖L∞ , R,K) >

0 it is true that

‖uL(x0),r‖L∞(BR) + ‖∇uL(x0),r‖L2(BR;Rn) ≤ C , (3.40)

where we have set uL(x0),r := (uL(x0))0,r (notice that ∇uL(x0),r(·) = Lt(x0)∇u(x0 + L(x0)·)).
We are now ready to establish Weiss’ quasi-monotonicity formula by applying Proposi-

tion 3.3 to uL(x0) thanks to the discussion above.

Theorem 3.7 (Weiss’ quasi-monotonicity formula). Assume (H1), (H2) and (H4). Let u
be the minimizer of E over Kψ,g. If K ⊂ Ω is a compact set, there is a constant C =
C(n, c0,Λ, ‖f‖L∞ ,K) > 0 such that for all x0 ∈ K ∩ Γu

d

dr

(
ΦuL(x0)

(r) + C

ˆ r

0

ω(t)

t
dt
)
≥ 1

r

ˆ
∂B1

(〈∇uL(x0),r, x〉 − 2uL(x0),r)
2 dHn−1, (3.41)

for every r ∈ (0, 1
4dist(K, ∂Ω)), where ω(r) := ωA(r) + ωf (r).

In particular, ΦuL(x0)
has finite right limit ΦuL(x0)

(0+) in zero, and for all r ∈ (0, 1
4dist(K, ∂Ω)),

ΦuL(x0)
(r)− ΦuL(x0)

(0+) ≥ −C
ˆ r

0

ω(t)

t
dt . (3.42)

For what concerns Monneau’s quasi-monotonicity formula we may apply Proposition 3.6
to uL(x0) on condition that (3.27) is satisfied. This follows from the discussion above, and
thanks to [25, Theorem 2.1 and Remark 2.2] which provide a modulus of continuity for∇uL(x0)

depending only on n, c0, Λ, ωA, and ‖f‖L∞(Ω) (cf. (3.37)-(3.39)).

Theorem 3.8 (Monneau’s quasi-monotonicity formula). Assume (H1), (H2) and (H5) with
a = 1. Let u be the minimizer of E over Kψ,g. If K ⊂ Ω is a compact set and (3.24) holds
for x0 ∈ K ∩ Γu, then there exists a constant C = C(n, c0,Λ, ‖f‖L∞ ,K) > 0 such that the
function(

0, 1
4dist(K, ∂Ω)

)
3 r 7−→

ˆ
∂B1

(uL(x0),r − v)2 dx+ Cγ2

ˆ r

0

dt

t

ˆ t

0

ω(s)

s
ds . (3.43)

is nondecreasing, where v is any 2-homogeneous polynomial solution of (3.23), and ω is the
modulus of continuity provided by Theorem 3.7.

4. Free boundary analysis

The regularity of the free boundary of the minimizer u of E on Kψ,g can be established
thanks to the Weiss’ and Monneau’s quasi-monotonicity formulas proved in Section 3 at least
if assumption (H3) is satisfied. In doing this we follow the approach introduced in [31, 27] for
the classical obstacle problem related to the Dirichlet energy, and developed in [12, 18, 13, 14]
both for linear elliptic operators in divergence form and in the nonlinear setting with suitable
smoothness assumptions (see also [29] for a systematic presentation).

In particular, in this section we improve upon [12, Theorems 4.12 and 4.14], [18, Theo-
rem 1.3] and [14, Theorem 2.1], since in all those cases the matrix field A turns out to be in
particular Hölder continuous due to Sobolev type embeddings.

In the ensuing proof we will highlight only the substantial changes since the arguments are
essentially those given in [12].
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Proof of Theorem 1.1. First recall that we may establish the conclusions for the function
u = w − ψ introduced in Section 2. Given this, the only minor change to be done to the
arguments in [12, Section 4] is related to the freezing of the energy where the regularity of
the coefficients plays a substantial role. More precisely, under assumption (3.1) we have in
view of Lemma 3.2∣∣∣∣ˆ

B1

(
A(rx)∇v,∇v〉+ 2f(rx)v

)
dx− Ev(1)

∣∣∣∣ ≤ ω(r)Ev(1)

for all v ∈W 1,2(B1).
We then describe shortly how to infer all the conclusions. We start off recalling that the

quasi-monotonicity formulas established in [12, Section 3] are to be substituted by those in
Section 3. Then the 2-homogeneity of blow up limits in [12, Proposition 4.2] now follows
from Theorem 3.7. Nondegeneracy of blow up limits is contained in Proposition 2.5 (see
[12, Lemma 4.3]). The classification of blow up limits is obtained exactly as in [12, Proposi-
tion 4.5]. Uniqueness of blow up limits at regular points, that follows from [12, Lemma 4.8],
can be obtained with essentially no difference. The proofs of [12, Propositions 4.10, 4.11,
Theorems 4.12, 4.14] remain unchanged. �

Remark 4.1. Thanks to the quasi-monotonicity formulas in Section 3 we expect to be possible
to deduce results analogous to Theorem 1.1 under assumption (H5) with a > 2 (cf. [14,
Theorem 2.1] for such a statement if A ∈ W 1,p(Ω;Rn×n), p > n, and f satisfies (H5) with
a > 2). Moreover, in view of Remark 3.5 it is likely that analogous results hold even in case
ω̃ there satisfies a double-Dini continuity condition. We do not insist on this issue here since
several arguments should be carefully checked along the proofs of [12].
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