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Abstract: Tendinopathies represent about 45% of musculoskeletal lesions and they are a big burden
in clinics characterized by activity-related pain, focal tendon tenderness and intra-tendinous imaging
changes. Many approaches have been proposed for tendinopathies’ management (e.g., nonsteroidal
anti-inflammatory drugs, corticosteroids, eccentric exercises, laser therapy), unfortunately with very
little support of efficacy or serious side effects, thus making the identification of new treatments
fundamental. The aim of the study was to test the protective and pain reliever effect of thymoquinone
(TQ)-loaded formulations in a rat model of tendinopathy induced by carrageenan intra-tendon
injection (20 µL of carrageenan 0.8% on day 1). Conventional (LP-TQ) and hyaluronic acid (HA)-
coated TQ liposomes (HA-LP-TQ) were characterized and subjected to in vitro release and stability
studies at 4 ◦C. Then, TQ and liposomes were peri-tendon injected (20 µL) on days 1, 3, 5, 7 and
10 to evaluate their antinociceptive profile using mechanical noxious and non-noxious stimuli (paw
pressure and von Frey tests), spontaneous pain (incapacitance test) and motor alterations (Rota
rod test). Liposomes containing 2 mg/mL of TQ and covered with HA (HA-LP-TQ2) reduced the
development of spontaneous nociception and hypersensitivity for a long-lasting effect more than the
other formulations. The anti-hypersensitivity effect matched with the histopathological evaluation.
In conclusion, the use of TQ encapsulated in HA-LP liposomes is suggested as a new treatment
for tendinopathies.
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1. Introduction

Tendon disorders are a class of pathologies that include traumatic injuries as well
as chronic diseases, such as tendinopathy. Pain, swelling and functional limitations of
the tendon and nearby anatomical structures are the main characteristics of tendinopa-
thy [1]. Different pharmacological molecules and metabolic diseases can also be related
to tendon pathologies. The pharmacological treatment of tendinopathies is difficult be-
cause tendons have a reduced vascularization with low drug availability in the target site.
Furthermore, the difficulty lies in the extremely heterogeneous nature of tendinopathies
and in their numerous symptoms [2]. Treatment options may include pharmacological
and non-pharmacological approaches such as physiotherapy, exercise, anti-inflammatory
drugs, corticosteroids, nitric oxide patches, growth factors and stem cells [3]. Despite the
fact that non-steroidal anti-inflammatory drugs are the most commonly used, they present
limitations due to gastrointestinal side effects, colitis and hepatic failure [3,4]. Furthermore,
corticosteroids are effective in relieving pain, but they cause the individual to overexert a
weakened tendon and they decrease the collagen synthesis [5,6]. Therefore, there is a need
for new and alternative treatments that enhance healing and decrease the side effects.
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In the present work, we highlighted the beneficial potential of thymoquinone (TQ),
a bioactive constituent of Nigella sativa L. [7] with antioxidant and anti-inflammatory ac-
tivities. Other therapeutic properties are hepatoprotective, cardioprotective, anticancer,
antidiabetic, anti-arthritic, neuroprotective and antimicrobial [8–10]. For these properties,
TQ could represent a valid option for tendinopathies’ management. Nevertheless, it is
hampered by pharmacokinetics characteristics such as short half-life, low biological sta-
bility, poor aqueous solubility and low bioavailability. Nanoformulations have gained
remarkable attention to improve pharmacokinetics parameters and enhance the pharma-
cological activities of TQ [8,11–13]. TQ nanocarriers were effective in the treatment of
arthritic inflammations: phospholipidic nanomatrix [14], topical ethosomes [15] and liposo-
mal chitosan gel [16]. They enhanced the therapeutic efficacy of TQ as investigated in a
carrageenan-induced paw inflammation model.

In this study, liposomal formulations were proposed as a biocompatible drug delivery
system to improve the solubility and bioactivity of TQ.

For the first time, in this study, TQ conventional and hyaluronic acid (HA)-coated lipo-
somes were evaluated in a model of tendinopathy. HA was considered for its physiological
role in the homeostasis of tendons [17]. It is a natural polymer with anti-inflammatory ef-
fects on cells and tissues and positive effects on cell proliferation and collagen synthesis [18].
HA reduces the apoptosis of tendon-derived cells’ collagen type I protein secretion [19].
It has a beneficial effect on both the repair site and the synovial sheath, decreasing the
peripheral inflammatory response and promoting contact healing [20]. The antioxidant
properties of HA are reported [21,22].

From all these considerations, the antinociceptive action of conventional and HA-
coated TQ liposomes was evaluated in the model of tendinopathy induced in rats by the
intra-tendon injection of carrageenan. The formulations were physically and chemically
characterized and subjected to in vitro release and stability studies.

2. Materials and Methods
2.1. Material

Egg phosphatidylcholine (Phospholipon 90G) was purchased from Lipoid AG, Cologne,
Germany. Thymoquinone, cholesterol ≥ 95%, phosphate buffered saline (PBS 0.01 M)
powder (29 mM NaCl, 2.5 mM KCl, 7.4 mM Na2HPO4·7H2O, 1.3 mM KH2PO4) pH 7.4
and Tween 80 were from Sigma Aldrich, Milan, Italy. Sodium hyaluronate (M.W. 1000 KDa,
HA) was obtained from Altergon, Avellino, Italy. All the solvents used were HPLC grade
from Sigma Aldrich, Milan, Italy. Water was purified by Millipore, Milford, MA, USA,
Milli-Qplus system. Phosphotungstic acid (PTA) was from Electron Microscopy Sciences,
Hatfield, PA, USA.

2.2. Preparation of Liposomal Formulations

TQ-loaded liposomes (LP-TQ) and HA-coated TQ liposomes (HA-LP-TQ) were pre-
pared using the thin layer evaporation method [22]. TQ, egg phosphatidylcholine and
cholesterol were dissolved in dichloromethane under sonication for 2 min. The solvent was
evaporated, and the dry lipid film was hydrated with deionized water under mechanical
stirring at 50 ◦C for 30 min. To reduce the size and improve the homogeneity of the sample,
an ultrasound probe was applied for 2 min, with sonication intervals of 2 s and an intensity
equal to 46%. The HA coating was achieved using the drop-wise method [23]. Two mL
of 0.1% w/v solution of HA in deionized water was added to 2 mL of LP-TQ dispersion.
The sample was subjected to magnetic stirring for 1 h at room temperature. Then, once the
coating was completed, a sonication was performed using the ultrasonic probe for 1 min,
with intervals of 0.5 s and an intensity of 46%. Two conventional liposomes containing
2 mg/mL (LP-TQ1) and 4 mg/mL (LP-TQ2) of TQ and two HA-coated liposomes contain-
ing 1 (HA-LP-TQ1) and 2 mg/mL (HA-LP-TQ2) of TQ were prepared.
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2.3. Characterization of Liposomes

Liposomes’ physical characterization was performed with light scattering (LS), using a
Zsizer Nano series ZS90 (Malvern Instruments, Malvern, UK) outfitted with a temperature
controller set at 25 ◦C. The encapsulation efficiency (EE%) was determined by the dialysis
bag method [24].

2.4. Storage Stability

The LP-TQ and LP-TQ-HA formulations were kept in the fridge at a temperature of
+4 ◦C for 5 weeks. Each week, the dimensions of the samples (Size), the polydispersion
index (PdI) and the Zeta potential (ZP) and encapsulation efficiency (EE%) were evaluated.

2.5. In Vitro Release

The release study of TQ from the liposome in comparison to a saturated aqueous
solution of TQ was carried out with the dialysis bag method using regenerated cellu-
lose dialysis membranes (Spectrum Laboratories, Inc., Breda, The Netherlands, MWCO
3–4 kDa) [25]. Two mL of the liposomal formulation or solution was placed into dialysis
membranes and immersed into 200 mL of Tween 80 (0.5% w/v) in PBS at 37 ◦C under
magnetic stirring. At predetermined intervals, 1 mL of each release medium was with-
drawn and replaced with an equal volume of the fresh solution. The TQ concentration
in the samples was determined by an HPLC analysis [26]. All studies were performed
in triplicate.

The Korsmeyer–Peppas model, Hixson Crowell model, Higuchi model, first order and
zero order mathematical models were applied to evaluate the mechanism of the TQ release
from the formulations. The best fitted model was selected considering a high regression
coefficient (R2) value for the release data.

2.6. Animals

For all the experiments described below, male Sprague-Dawley rats (Envigo, Varese,
Italy) weighing approximately 200–250 g at the beginning of the experimental procedure
were used. Animals were housed in CeSAL (Centro Stabulazione Animali da Laboratorio,
University of Florence) and used at least one week after their arrival. Four rats were housed
per cage (size 26 × 41 cm2), kept at 23 ± 1 ◦C with a 12 h light/dark cycle, light at 7 a.m.
and were fed a standard laboratory diet and tap water ad libitum. All efforts were made to
minimize animal suffering and to reduce the number of animals used.

2.7. Induction of Tendonitis and Treatments

The animals were anesthetized with isoflurane (4% for induction and 1.5% for mainte-
nance of anesthesia). Tendon damage was induced near the osteotendinous junction of the
rat’s right Achilles tendon by a single percutaneous injection of 20 µL of carrageenan
0.8%, after having flexed the paw to form a 45◦ angle, using a 30 G needle on day
1. Carrageenan was solubilized in a physiological solution. The control animals were
treated with saline solution [27,28]. Twenty µL of HA-LP-TQ1 (1 mg/mL) or HA-LP-TQ2
(2 mg/mL), HA-LP, LP-TQ1 (2 mg/mL) formulations and a saturated aqueous solution
of TQ (0.55 mg/mL) were peri-tendon injected on days 1, 3, 5, 7 and 10. Behavioral mea-
surements were performed on days 3, 5, 7, 10 and 13 before the new daily treatment with
the formulations.

2.8. Paw Pressure Test

The nociceptive threshold in the rat was determined with an analgesimeter (Ugo
Basile, Varese, Italy). Briefly, a constantly increasing pressure was applied to a small area
of the dorsal surface of the hind paw using a blunt conical mechanical probe. Mechanical
pressure was increased until vocalization or a withdrawal reflex occurred while rats were
lightly restrained. Vocalization or withdrawal reflex thresholds were expressed in grams.
These limits assured a more precise determination of the mechanical withdrawal threshold
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in experiments aimed to ascertain the effect of treatments. An arbitrary cut-off value
of 100 g was adopted. The data were collected by an observer who was blinded to the
protocol [29,30].

2.9. Von Frey Test

Mechanical allodynia was measured using an electronic von Frey apparatus as previ-
ously reported [31,32].

2.10. Incapacitance Test

Weight-bearing changes were measured using an incapacitance apparatus (Linton
Instrumentation, Norfolk, UK) to detect changes in the postural equilibrium after a hind
limb injury [33,34]. The method used was previously described by Di Cesare Mannelli and
colleagues [35]. Data were expressed as the difference between the weight applied to the
limb contralateral to the injury and the weight applied to the ipsilateral one (∆ weight).

2.11. Beam Balance Test

A balance beam test [36] consisted of the rats being placed on a narrow strip of wood
(30 cm × 1.3 cm) while balancing, and the scoring standards were as follows: 0 point, the
four limbs were all on the wood in a balance situation; 1 point, limbs of one side were able
to grasp the wood or shake on the wood; 2 points, one or two limbs slipped from the wood;
3 points, three limbs slipped from the wood; 4 points, suspended on the wood and fell over
after struggle [37].

2.12. Rota Rod Test

The Rota rod apparatus (Ugo Basile, Varese, Italy) consisted of a base platform and a
rotating rod with a diameter of 6 cm and a non-slippery surface and was used as a measure
of motor coordination. Full details were reported in a previous paper by Micheli and
colleagues [28].

2.13. Histological Evaluation

At the end of the behavioral evaluations, animals were sacrificed, and tendons col-
lected for the histological analysis. Briefly, tendon samples were fixed in buffered 4%
formalin, dehydrated and embedded in paraffin (Bio-Optica, Milan, Italy). Ten µm thick-
ness longitudinal sections were processed for Hematoxylin-Eosin (Bio-Optica, Milan, Italy),
as previously described [28].

Five slides for each tendon were randomly selected and examined by two blinded
investigators under an optical microscope. The slides were interpreted using a modified his-
tological grading score from Kihara and colleagues [38], composed of various parameters:
extracellular matrix organization (0–2), tissue homogeneity (0–2), presence of degenera-
tive changes (0–2), cell nucleus morphology (0–2), cell distribution (0–2) and alignment
(0–2), vascularization (0–1), inflammation (0–1) and Azan-Mallory red stain intensity (0–2).
The total score for each animal ranged between 0 (most severe tendon impairment) and
16 points (control, normal tendon). Demonstrative images were acquired at 10× and 40×
total magnification by a Nikon light microscope (Nikon Olympus BX40, Tokyo, Japan).

2.14. Statistical Analysis

All the pharmacological experimental procedures were performed by researchers
blinded to the treatments. Each value represented the mean ± S.E.M of eight rats per group,
performed in two different experimental sets. The analysis of variance was performed by
an analysis of variance (ANOVA). Bonferroni’s significant difference procedure was used
as a post hoc comparison. p values of less than 0.05 were considered significant. Data were
analyzed using the ‘Origin 9’ software (OriginLab, Northampton, MA, USA).
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3. Results and Discussion
3.1. Preparation and Characterization of Liposomes

Liposomes were selected as the drug delivery system to improve TQ solubility and
realize a biocompatible formulation to test in the in vivo model of tendinopathy. The
optimized formulation (LP-TQ) contained phosphatidylcholine and cholesterol in a 4:1
weight ratio, and it was able to load 2 and 4 mg/mL of TQ, improving until the eight-fold
solubility. The optimized systems had good physical and chemical parameters (Table 1).
Then, the formulations were coated with HA (0.1% w/v), obtaining two preparations with
a final TQ concentration of 1 mg/mL (LP-TQ-HA1) and 2 mg/mL (LP-TQ-HA2). Both
coated liposomes maintained good values of sizes, PdI, ZP and EE% (Table 1). The increase
in the particle sizes and the change of ZP confirmed the HA deposition [39].

Table 1. Physical and chemical characterization of conventional (LP-TQ) and HA-coated liposomes of
TQ, (mean ± SD, n = 3). PdI: polydispersion index; PZ: Zeta potential; EE%: encapsulation efficiency.

Sample TQ mg/mL Size (nm) PdI PZ (mV) EE%

LP-TQ1 2 82 ± 1 0.15 ± 0.01 −20 ± 1 73 ± 3
LP-TQ2 4 96 ± 1 0.16 ± 0.01 −30 ± 2 67 ± 4

HA-LP-TQ1 1 88 ± 2 0.25 ± 0.01 −38 ± 1 70 ± 2
HA-LP-TQ2 2 99 ± 5 0.23 ± 0.01 −44 ± 2 65 ± 5

3.2. Stability Studies

The liposomal formulations were kept for 5 weeks at +4 ◦C. The physicochemical
properties were checked by monitoring particle sizes, PdI, ZP and drug entrapment. All
dispersions showed a high level of physical stability (Figures 1 and 2), as evidenced by
small changes in sizes and PdI values. A little increase in ZP was observed. EE% ranged
from 73 ± 3 to 71 ± 3 for LP-TQ1 and from 67 ± 4 to 54 ± 1 for LP-TQ2, probably due to
the higher amount of TQ in the formulation that could destabilize the formulation after
5 weeks. Both liposomes showed good stability as dispersions for at least 4 weeks.

The HA coating kept the stability of the systems, improving the physical one, as
evidenced by the constant values of ZP. The EE% for LP-TQ-HA1 was from 70 ± 2 to 66 ± 2
and in the case of LP-TQ-HA2 was from 65 ± 5 to 62 ± 3.
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3.3. In Vitro Release Study

The release profile of TQ from liposomes was compared with the release of a saturated
aqueous solution at 37 ◦C (Figure 3). Both the HA-coated and uncoated formulations
did not prevent the release of TQ. In the aqueous solution, TQ was completely released
in about two hours, while the percentage was 71% and 74% from LP-TQ1 and LP-TQ2,
respectively, and 44% and 59% from HA-LP-TQ1 and HA-LP-TQ2, respectively. Both
liposomal formulations realized a prolonged release with respect to the aqueous solu-
tion, and a slower release than the uncoated liposomes was obtained in the case of the
HA coating.
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The release data were fitted to the appropriate mathematical models (zero order, first
order, Higuchi, Korsmeyer–Peppas and Hixson–Crowell; Table 2) for the LP-TQ1 and
HA-LP-TQ2 liposomes tested in the in vivo model of tendinopathy.

Table 2. Regression coefficient (R2) obtained in different kinetics models for TQ release from LP-TQ
and HA-LP-TQ2.

Release Kinetics LP-TQ1 HA-LP-TQ2

Zero order 0.756 0.930
First order 0.854 0.935

Korsmeyer–Peppas 0.423 0.686
Hixson–Crowell 0.820 0.944

Higuchi 0.952 0.977

Comparing the values of the regression coefficient of the release curves of LP-TQ1
and HA-LP-TQ2 reported in Table 2, the Higuchi model (KH = 27.07, R2 = 0.952 and
KH = 19.18, R2 = 0.977, respectively; Table 2) was the best one to describe the kinetics of
these two liposomes, as also reported in the literature [24,40]. Higuchi described the drug
release as a diffusion process based on Fick’s law, and a linear relationship was found
between the amount of drug released and the square root of time (Q = KHt1/5). It could
be concluded that the vesicles acted as reservoir systems for the continuous delivery of
the encapsulated drug. This suggests that the TQ release is mainly driven by a diffusion-
controlled mechanism [41].

3.4. In Vivo Study

The TQ formulations were developed with a view of finding new and alternative
anti-inflammatory treatments of tendinopathy. It has been previously reported that TQ is
involved in the regulation of various molecular signaling pathways. The molecule also
reduces ROS production by inhibiting the expression of various pro-inflammatory factors,
including IL-1β, IL-6, TNF-α, IFN-γ and PGE2 [42]. For these properties, TQ could repre-
sent a valid option for tendinopathies’ management. Nevertheless, its pharmacological
relevance is hampered by its poor aqueous solubility and low bioavailability. The effi-
cacy of the liposomal formulations was then tested in a rat model of tendinopathy. The
tendinopathy was induced by a single intra-tendon injection of 20 µL of carrageenan 0.8%
on day 1. The efficacy of different liposomal formulations containing TQ was evaluated
following five peri-tendon treatments performed on days 1, 3, 5, 7 and 10. Behavioral mea-
surements were performed in the time course on days 3, 5, 7, 10 and 13 to highlight the pain
threshold of the animals in response to noxious and non-noxious stimuli (paw pressure and
von Frey tests, respectively), to evaluate the spontaneous nociception (Incapacitance test)
and the motor skills (beam balance test) and coordination (Rota rod test). Peri-tendinous
administration is usually used for the management of chronic tendinopathies [43]. This
modality of administration avoids injecting the drug directly into the tendon, a procedure
that might lead to tendon damage and rapture. The very low bioavailability of TQ has
reduced the studies that explore the clinical application of this compound due to its low oral
absorption. To overcome this problem, nanotechnology is usually pursued to improve TQ
bioavailability. For this purpose, we tested TQ-loaded liposomes (LP-TQ) and HA-coated
TQ liposomes (HA-LP-TQ) in comparison to TQ alone and the nanocarrier HA-LP alone. It
has been already demonstrated that the topical and oral administration of Nigella sativa oil
had antinociceptive properties against different stimuli in mice and that these effects are
related to TQ. The TQ antinociceptive effect could be due to a direct interaction with opioid
receptors; specifically, µ and κ opioids’ receptors subtypes at the supraspinal levels are
involved [44]. From a review of the literature, it has also emerged how Nigella sativa and
TQ can be promising therapeutic approaches for the management of articular pain with
positive feedback from pre-clinical [45,46] as well as clinical studies [47,48] with mostly
recognized anti-inflammatory and anti-oxidant effects.
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The injection of carrageenan significantly lowered the animal’s nociception threshold
in response to a noxious stimulus (paw pressure test) starting on day 3 from the damage
and up to day 13 (Figure 4). The peri-tendon injections of HA-LP-TQ2 were significantly
effective, increasing the weight burdened by the animal on the ipsilateral paw starting
from day 5 (after two treatments) and remaining effective up to the end of the experiment
(Figure 4). The lower dose of 1 mg/mL contained in the HA-LP-TQ1 was effective after
four treatments (day 10). A reduction of mechanical hypersensitivity was also recorded on
days 10 and 13 with HA-LP and LP-TQ1, albeit with less effectiveness in comparison to
HA-LP-TQ1 and HA-LP-TQ2. The treatment with only TQ was ineffective, thus confirming
the necessity to deliver the TQ in the liposomal formulations to evoke an antinociceptive
effect. The HA was considered as a constituent of the liposomal formulation, since it
is one of the fundamental components of tendon tissue and it is able to enhance the
cellular activities of fibroblasts, including their adhesivity, extracellular matrix synthesis
and proliferation [49]. Among the therapeutic strategies such as platelet-rich plasma (PRP),
adipose-derived mesenchymal stromal cells and botulinum toxin, HA injections seem to
inhibit the pro-inflammatory response by local fibroblast [50], improve function, reduce
pain and reduce tendon rubbing in pre-insertion areas during major tendinopathies and
post-surgical tendon repair [51]. Its positive effect as a pain reliever was confirmed in the
HA-LP-treated animals in which an anti-hyperalgesic effect was highlighted on day 13
even in the absence of TQ.
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Figure 4. Antinociceptive properties of liposomes against carrageenan-induced mechanical hyper-
algesia. Following intra-tendon injection of 20µL of carrageenan 0.8% on day 1, the efficacy of
peri-tendon injections (20µL) of HA-LP-TQ1 (1 mg/mL), HA-LP-TQ2 (2 mg/mL), HA-LP, LP-TQ1
(2 mg/mL) and TQ (0.55 mg/mL) was evaluated. Formulations were injected on days 1, 3, 5, 7
and 10 and the response to a noxious mechanical stimulus was assessed by the paw pressure test
in time course (days 1, 3, 5, 7, 10 and 13). Control animals were treated with vehicles. The value
represents the mean of 8 rats performed in two different experimental sets. ** p < 0.01 compared to the
vehicle + vehicle group; ˆ p < 0.05 and ˆˆ p < 0.01 compared to the carrageenan + vehicle group.

The carrageenan injection was also able to generate the hind limb weight-bearing al-
teration measured as spontaneous nociception by the Incapacitance test (Figure 5). Postural
unbalance was higher in carrageenan-treated animals in comparison to the control group
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(vehicle + vehicle) in all evaluations performed. All treatments reduced the difference
between the weight placed by the animal on the contralateral and the ipsilateral paw
(expressed as ∆ weight) on day 3 (after one injection of each formulation); on this day,
the HA-LP-TQ1 treatment showed the highest efficacy. The same trend was confirmed by
the behavioral evaluations performed on day 5. All treatments lost their efficacy over the
next days with the exception of HA-LP-TQ1, which was still active on day 13. As already
shown in the paw pressure test, the only aqueous solution of TQ was ineffective in reducing
spontaneous pain (Figure 5).
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Figure 5. Antinociceptive properties of liposomes against carrageenan-induced spontaneous no-
ciception. Following intra-tendon injection of 20µL of carrageenan 0.8% on day 1, the efficacy of
peri-tendon injections (20µL) of HA-LP-TQ1 (1 mg/mL), HA-LP-TQ2 (2 mg/mL), HA-LP, LP-TQ1
(2 mg/mL) and TQ (0.55 mg/mL) was evaluated. Formulations were injected on days 1, 3, 5, 7
and 10 and the development of spontaneous nociception was assessed by the Incapacitance test
in time course (days 1, 3, 5, 7, 10 and 13). Control animals were treated with vehicles. The value
represents the mean of 8 rats performed in two different experimental sets. ** p < 0.01 compared to the
vehicle + vehicle group; ˆ p < 0.05 and ˆˆ p < 0.01 compared to the carrageenan + vehicle group.

Carrageenan also affected the motor skills and coordination of the rats as depicted in
Figures 6 and 7. The carrageenan-treated animals showed an increase in the pathological
score, in comparison to the control group, that lasted up to day 13. HA-LP-TQ2 significantly
improved the animals’ motor skills, halving the score assigned from day 5 to day 13 and
showing the best treatment in relieving motor alterations evoked by carrageenan (Figure 6).
HA-LP-TQ2 was also effective in reducing the number of falls from the rotating rod that
were upregulated in carrageenan + vehicle-treated animals. On day 10, HA-LP-TQ1 and LP-
TQ1 were effective, and on day 13, all these treatments were able to reduce this parameter.
On the contrary, TQ alone proved ineffective at all time points (Figure 7).

At the end of the behavioral evaluations, a histological analysis of the tendons was
performed. Based on the in vivo results, the analysis was conducted on the most promising
treatment, which turned out to be HA-LP-TQ2. The tendons of the control animals appeared
normal with well-aligned parallel and compact collagen fibers as shown in Figure 8. The
damage with carrageenan determined a disorganization of the tendon matrix represented
by discontinuous, crimped and thinned collagen fibers in comparison to the control group.
Moreover, an increase in vascularity was also evident by a moderate increase in the smaller
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capillaries. HA-LP-TQ2 peri-tendon treatments partially restored the degenerative changes
caused by carrageenan (Figure 8). The healing process of tendons can be summarized
with three different phases that overlap with each other: inflammation, formative and
remodeling phases. The high production of collagen type I is mandatory for rapid and
effective tendon healing [52]. It has been demonstrated that TQ can regulate the expression
of the mitogen-activated protein kinase (MAPKs), p-p38, p-JNK, p-ERK and PI3K/pAkt,
thus upregulating collagen I expression in a dose-dependent manner [53,54]. That would
explain the protective and regenerative effect of TQ previously highlighted by Soltanfar
and colleagues on an experimental model of tendinopathy in rabbits induced by a trau-
matic injury, which demonstrated a pronounced effect exerted by TQ treatment on collagen
production [55]. The results that we obtained in our study were also in line with previous
evidence in which the protective effect of Nigella sativa extract containing TQ and other
bioactive compounds was highlighted in a rat model of Achilles tendon rupture. Ruru and
colleagues indeed demonstrated a stronger tensile strength of tendons and lower malondi-
aldehyde levels in rats treated with the extract, suggesting this treatment as adjuvant for
tendon rupture therapy [56]. The promising results achieved in our study could be due also
to the anti-inflammatory properties of TQ already known and reported by the scientific
literature [57,58] and not only to a direct action of collagen production. In particular, TQ
can inhibit pro-inflammatory cytokines that are involved in collagen synthesis and MMPs
activation that lead to collagen degradation [59,60]. Not to be excluded, a mechanism of
action of TQ relates to an antioxidant activity which can protect fibroblasts from reactive
oxygen species overproduced in a damaged tendon tissue.
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Figure 6. Antinociceptive properties of liposomes against carrageenan-induced motor alterations.
Following intra-tendon injection of 20µL of carrageenan 0.8% on day 1, the efficacy of peri-tendon
injections (20µL) of HA-LP-TQ1 (1 mg/mL), HA-LP-TQ2 (2 mg/mL), HA-LP, LP-TQ1 (2 mg/mL)
and TQ (0.55 mg/mL) was evaluated. Formulations were injected on days 1, 3, 5, 7 and 10 and the
efficacy against motor alterations was assessed by the beam balance test in time course (days 1, 3, 5,
7, 10 and 13). Control animals were treated with vehicles. The value represents the mean of 8 rats
performed in two different experimental sets. ** p < 0.01 compared to the vehicle + vehicle group;
ˆˆ p < 0.01 compared to the carrageenan + vehicle group.
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In the literature, several TQ liposome formulations have been successfully developed
to work against colon, prostate, cervical, skin and breast cancer [61–65], resulting in an
enhanced solubility and improved therapeutic efficacy of TQ. TQ also showed a synergistic
cytotoxicity and ameliorated the encapsulation efficiency when co-loaded into liposomes
with docetaxel or curcumin [63,66]. In addition, TQ liposomes exhibited antibacterial and
antifungal properties [67–69]. There are no examples in the literature of TQ HA-coated
liposomes, except for two studies by the authors for the ocular delivery of TQ. Liposomal
formulations, and, in particular, HA-coated liposomes, reduced the toxicity of TQ at high
doses in HCE-2 and HConEC cells and improved the absorption at the nucleus level,
with a more pronounced effect for HA-coated liposomes [26,39]. Furthermore, liposomes
were effective in dry eye disease. Here, for the first time, the authors evaluated liposomal
formulations in an in vivo model of tendinopathy. Liposomes improved the TQ solubility
until eight folds and showed an antinociceptive activity in the in vivo test, with respect to
free TQ, which was ineffective, as evidenced by the promising results. Furthermore, the
HA coating was considered due to its physiological role in tendons [17]. HA improved the
anti-hypersensitivity effect of TQ with respect to the uncoated formulations and prolonged
the effect up to the end of the treatment. Liposomes containing 2 mg/mL of TQ and
covered with HA (HA-LP-TQ2) reduced the development of spontaneous nociception and
hypersensitivity for a long-lasting effect more than the other formulations. Furthermore,
HA-LP-TQ2 partially restored the degenerative modifications caused by inflammation as
evidenced by the histological findings.
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Figure 7. Antinociceptive properties of liposomes against carrageenan-induced motor alterations.
Following intra-tendon injection of 20µL of carrageenan 0.8% on day 1, the efficacy of peri-tendon
injections (20µL) of HA-LP-TQ1 (1 mg/mL), HA-LP-TQ2 (2 mg/mL), HA-LP, LP-TQ1 (2 mg/mL)
and TQ (0.55 mg/mL) was evaluated. Formulations were injected on days 1, 3, 5, 7 and 10 and the
efficacy against motor alterations was assessed by the Rota rod test in time course (days 1, 3, 5, 7,
10 and 13). Control animals were treated with vehicles. The value represents the mean of 8 rats
performed in two different experimental sets. ** p < 0.01 compared to the vehicle + vehicle group;
ˆ p < 0.05 and ˆˆ p < 0.01 compared to the carrageenan + vehicle group.
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Figure 8. Histological evaluation of HA-LP-TQ2 injections on tendinopathy models. After 5 peri-
tendon treatments with HA-LP-TQ2 on carrageenan, damaged tendon samples of the animals were
collected. To make histological evaluation, Hematoxylin-Eosin was performed. The histological
score was calculated according to the following parameters: extracellular matrix organization (0–2),
tissue homogeneity (0–2), presence of degenerative changes (0–2), cell nucleus morphology (0–2),
cell distribution (0–2) and alignment (0–2), vascularization (0–1), inflammation (0–1) and Azan-
Mallory red stain intensity (0–2). Total score for each animal ranged between 0 (most severe tendon
impairment) and 16 points (control, normal tendon). ** p < 0.01 compared to the vehicle + vehicle
group; ˆˆ p < 0.01 compared to the carrageenan + vehicle group.

4. Conclusions

The protective and pain reliever effects of TQ-loaded formulations in a rat model
of tendinopathy induced by carrageenan intra-tendon injection have been demonstrated.
Both conventional and HA-coated TQ liposomes improved the TQ solubility, guaranteed
a prolonged release and were stable for 1 month at +4 ◦C. The HA coating enhanced
and extended the anti-inflammatory effect of TQ, compared to the uncoated formulation
and TQ alone. In particular, the liposomes containing the highest dose (2 mg/mL) of
TQ and covered with HA (HA-LP-TQ2) reduced the development of spontaneous noci-
ception and hypersensitivity for a long-lasting effect more than the other formulations.
The anti-hypersensitivity effect matched with the histopathological evaluation, since this
formulation partially restored the tendon damage evoked by carrageenan, thus improving
the matrix organization and normalizing collagen fibers’ orientation. The promising results
achieved in the study confirmed the protective and regenerative effects of TQ in addition
to its anti-inflammatory properties and its action on collagen production. The liposomes
represented a biocompatible formulation indispensable for the delivery of effective doses
of TQ through injection. The HA coating too had a positive effect as a pain reliever. In
conclusion, the use of TQ encapsulated in HA-LP is suggested as a new injection treatment
for tendinopathy management.
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