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Abstract

Learning spatial distribution of neurons in specific brain areas is crucial

for advancing the knowledge of brain structures and functions. Thanks to

the advancements brought by light-sheet fluorescence microscopy, large-scale

brain tissues are nowadays available at sub-cellular resolution. This comes

with the challenge of processing Tera-bytes of data in a reasonable time

and with strong performances. The work described in this thesis presents

a reliable and accurate two-step approach for cell detection from vast and

highly variable 3D image datasets. Multiple convolutional neural network

variants are implemented in order to extract truthful probability maps from

raw images and to facilitate the cell localization performed by a subsequent

blob detector. The efficacy and scalability to huge data of the proposed

technique is demonstrated through extensive validation and application on

a cohort study of whole mouse brains and the entire Broca’s area of a hu-

man. The automatic detection of neuronal soma from whole mouse brains al-

lowed for brain-wide quantitative analyses, confirming biologically accepted

theories of brain activations and connectivity on fear memory experiments,

but also suggesting novel neuroscientific research directions. An extensive

comparison with other state-of-the-art algorithms and with stereology, the

gold-standard for large-scale neuronal counts, is presented on an entire hu-

man Broca’s area. Results therefore prove the adaptability and effectiveness

of deep-learning approaches in a high variety of contexts, hoping to pro-

vide many life-science laboratories worldwide with a tool to advance their

researches.
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Chapter 1

Introduction

Cell detection is a highly common and fundamental task in many biological

experiments. Having a complete mapping of the neurons in a brain region or

even the whole brain could reveal important insights on its organization and

functions. Systematic sampling procedures, as employed by stereology, have

been applied for decades allowing for unbiased count estimates on whole

brain regions. However, only average densities are retrieved, homogeneity

assumption and a-priori subregion segmentation are necessary and moreover

each tissue sample needs individual analysis requiring new manual anno-

tations and subregion segmentation. Some automation were introduced by

software like Fiji [68] and CellProfiler [11] that made classical image process-

ing pipelines available to a large audience. However, relying on user defined

image filters and thresholds, finding the parameters of such operations can

be time-consuming and their results are not guaranteed to be optimal on

all conditions the data may provide. Machine-learning approaches [19, 75]

tried to overcome this issue by letting an automatic classifier to choose the

optimal combination of features for the given task, but the set of input fea-

tures must be a-priori selected, thus possibly avoiding considering other more

important aspects of the data under study. Moreover and importantly, all

above mentioned tools are not designed for large-scale image analyses, hence

their application to high resolution images of whole brain regions could take

years, hampering their adoption in this field. Deep-learning on the other

hand, could overcome all these limitations by automatically learn the most

discriminative features and providing highly efficient GPU implementations.

Here we present BCFind-v2, a two-step approach for cell localization from

1



2 Introduction

3D images. A fully-convolutional neural network is exploited to obtain 3D

probability maps of neuronal soma from which a subsequent blob detector

can easily recover the cell coordinates. Extensive application to whole mouse

brains and to the entire Broca’s area of a human together with a compre-

hensive comparison with two state-of-the-art deep-learning models for cell

segmentation (StarDist [69,83] and CellPose [77]) and with stereology prove

the effectiveness of the proposed approach and its adaptability to various

imaging properties.

1.1 The objective

The primary aim of this research project is the development of a robust and

highly accurate deep-learning model for the precise cell localization from 3D

light-sheet fluorescence microscopy images. This rapidly expanding imaging

technique allows worldwide laboratories to acquire biological tissue samples

of unprecedented scale at sub-cellular resolution. This possibility has the

potential of unveiling previously unknown mechanisms within highly com-

plex organs, contributing therefore to the improvement of treatments even

for severe diseases. However, in order to make it possible highly accurate,

automatic and scalable techniques are needed for systematic quantitative

analyses. Our research moves towards this direction. We aim at develop-

ing a deep-learning model that provides state-of-the-art results on a wide

range of distinct datasets with specific voxel resolutions and image proper-

ties. Moreover, since variability does not only come from different datasets

but also from within the same dataset, the approach should be robust and

reliable even after being specialized on that same data. It is indeed hard

to train a model on a truly representative subset of such vast and variable

data. Therefore, proper validation must be carried out in order to verify its

generalization capability. Moreover, scalability is another key factor that we

would like to address: processing even huge amount of data should be done in

a reasonable time. Finally, we would also like to develop a user-friendly soft-

ware which takes care of all needed steps, from data I/O, its preprocessing,

the model training and validation, debugging protocols and visualization, to

the final large-scale prediction, and last but not least, such software should

be portable in order to be used in a large variety of environments even by

people without extensive deep-learning expertise.
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1.2 Contributions

The contributions of this thesis are manifold. A two-step approach that

adopts a fully-convolutional neural network (FCNN) followed by a blob de-

tector is exploited in order to maximize cell localization accuracy and adapt-

ability to the unique challenges posed by 3D light-sheet fluorescence mi-

croscopy. Multiple variants of FCNNs are studied, implemented and tested

both on mice and human brain datasets. An efficient GPU implementation of

a classical blob detector is provided together with an automatic selection of

its parameters. A fast and reliable localization pipeline is therefore presented

and successfully applied to a cohort study of 29 whole mouse brains. More-

over, we further apply our technique to an entire Broca’s area of a human,

comparing its performances both with other state-of-the-art deep learning

methods for cell localization and with the gold-standard for neuronal counts

that is stereology. All these extensive applications and validations prove the

reliability of our method and its scalability to large-scale data.

The developed software is available at https://codeberg.org/curzio/

BCFind-v2. Easy-to-use command line commands to train and predict on

large-scale data are provided, experiment settings can be specified by con-

figuration file and a Docker image can be built from provided Dockerfile for

consistent deployment.

The organization of this thesis follows the evolution of the above men-

tioned contributions. Starting by giving an overview of the problem under

study and reviewing the principal related works in Chapter 2, we then de-

scribe the adopted approach and all considered variants, finally presenting

experimental results on two challenging datasets, in Chapter 3. Part of this

chapter have been also published in [74]. The application of developed local-

ization pipeline and its biologically relevant results are described in Chapter 4

and published in [21]. Finally the extensive comparison between multiple

deep-learning approaches and stereology is presented in Chapter 5 and will

be submitted soon.

https://codeberg.org/curzio/BCFind-v2
https://codeberg.org/curzio/BCFind-v2
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Chapter 2

Brain cell counting techniques

This chapter gives a brief survey of related work on the analy-

sis of biological images. The first part introduces the problem of

cell counting and characterization from high-resolution light-sheet

fluorescence microscopy images. Then we present, in order of in-

creasing level of automation, various techniques usually adopted

in the field to solve this problem. From histology and stereology

for counts estimates, to classic computer vision approaches for

feature extraction, to most modern machine-learning and deep-

learning algorithms for pixel or image classification, a compre-

hensive review of the main software and tools available for brain

cell analyses is given.

2.1 Introduction

Understanding the cellular composition of the brain is essential for unraveling

its intricate functions and addressing neuroscientific questions. Cell count-

ing, the process of quantifying the number and distribution of specific cells,

has long been a fundamental technique in this endeavor. Over the years,

several methodologies have been employed to count brain cells, ranging from

traditional histological techniques to modern, cutting-edge technologies.

Light-sheet fluorescence microscopy (LSFM) [37] has transformed our

ability to visualize and quantify neural cells in three dimensions with un-

precedented clarity and efficiency. By illuminating and capturing specific

fluorescent markers in brain tissues, LSFM provides subcellular-resolution

5



6 Brain cell counting techniques

(a) (b)

Figure 2.1: LSFM imaging. (a) Slice of the Broca’s area of a human

brain [18]. (b) Maximum intensity projection of a whole mouse brain [74].

images of very large samples while minimizing photobleaching and photo-

toxicity. These advantages make it an invaluable tool for both basic research

and clinical studies. However, light scattering arises when imaging deep

within thick tissues and higher-resolutions also imply lower speeds, requiring

a trade-off between acquisition time, image quality and tissue size. Separate

acquisitions can also reveal large variations in image brightness, contrast and

noise sources. Examples of LSFM imaging of a whole mouse brain and a slice

of human brain are depicted in Figure 2.1.

Coupling this high-throughput imaging technique with accurate cell count-

ing methodologies could be therefore a cornerstone in understanding the

complex organization of the brain and its evolution across various develop-

mental stages of diseases or experimental conditions. We here review some

of the most common counting tools in the field, classifying them according

to their underlying processes and presenting them in order of increasing level

of automation.

2.2 Mathematical methods

Traditional methods rely on manual counts and spatial distribution assump-

tions to obtain cell density estimates in specific regions of interest. In the

early years of XX century, scientists used to manually counts cells from 2D
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sections and infer volume counts with mathematical models taking into ac-

count cell diameter and section thickness [1, 85]. However, such approaches

find applications only on small regions due to the human effort required

and the inherent biases of large-scale 3D extrapolation. Later, stereologi-

cal method has been introduced to obtain unbiased estimates of true cell

counts [76]. By working on 3D probes and assuring that cells were counted

once and only once, stereology provides a more reliable and scalable tool

for cell counting. Based on systematic sampling procedures, 3D boxes are

selected from a grid subdivision of evenly spaced volume sections. Manual

annotations are then performed on these boxes avoiding cells overlapping

the bottom-left borders in order to assure cells are only counted once (Fig-

ure 2.2). Then denoting with csi the number of counted cells in frame i of

section s, x, y and h the sizes of annotation frames, T the section thickness,

xstep and ystep the grid horizontal and vertical steps and with ssf the section

sampling fraction (i.e. the ratio between the number of sampled sections and

the total number of sections in the volume of interest), volume counts are

estimated as follows:

asf =
x · y

xstep · ystep

N =
T

h
· 1

asf
· 1

ssf
·
∑
s

∑
i

csi

Section sampling fraction and grid steps are selected in order to minimize

the coefficient of error as defined by Gundersen (1988) [31].

Due to its several applications and its unbiased estimates, stereology is

commonly considered, especially by the neuroscientific community, as the

gold standard for cell counting. However it still requires a large amount of

human labor, needs to be applied on regions with homogeneous density and

repeated for different samples.

2.3 Classic computer vision approaches

Early efforts in trying to automate cell detection procedures exploit classical

computer vision algorithms. Tools as ImageJ [68] and CellProfiler [11] pro-

vide the users with customizable pipelines of image processing, thresholding

and morphological transformations in order to fit a wide range of needs. Im-

age filters are commonly adopted as initial steps to remove noise, equalize



8 Brain cell counting techniques

Figure 2.2: Optical fractionator sampling scheme for stereology. Sections of

whole volume are evenly sampled from the tissue, a grid is superimposed to

each section and annotations are performed on 3D frames of the grid.

contrast and enhance objects of interest. Then, a threshold is manually, or

automatically [56,67,87], selected to separate the most likely relevant objects

from the rest of the image. Finally, morphological transformations are then

applied to refine cell segmentation and remove non biologically meaningful

regions. On top of these operations watershed algorithm [79] is also com-

monly applied to separate and locate individual instances. However, when

the objects of interest are defined more by texture and context than raw in-

tensity many classical image processing techniques may fail. As a matter of

fact these tools are mainly adopted for data exploration and quantification

of known biologically-related features and are characterized by a high degree

of human intervention.

ClearMap [62] is another open-source software specifically developed for

LSFM imaging of cFOS+ neurons in iDISCO [63] cleared tissues. In their

workflow, cells are detected by consecutive application of an illumination cor-

rection pipeline, a background removal pipeline, a custom-designed equaliza-

tion filter, a difference of Gaussians filter and a final local maxima detection.
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2.4 Machine-learning methods

In the search of more flexible, generic and automated methods for cell detec-

tion and characterization in microscopy images, tools have been developed

exploiting the advances in machine learning programs. iLastik [7, 75] of-

fers an easy-to-use graphical user interface (GUI) to train a random forest

classifier [9] from scribble annotations provided by the user. The random

forest model is used to “capture highly non-linear decision boundaries in the

feature space” [75] and for its generalization capabilities due to bootstrap

sample (bag) of the training-data in each decision tree [10], optimization

of the out-of-bag classification error and random feature selection at each

leaf of the trees. However, by the very nature of machine learning models,

users must select a fixed set of image features (color-based, edge-based and

texture-based in iLastik) and this can hamper the accurate prediction of

highly variable images, typically encountered in LSFM acquisitions.

Only recently CellProfiler developers have introduced CellProfiler Ana-

lyst [19] and in particular the Classifier application programming interface

(API) for training classification algorithms. Unlike iLastik, their API al-

lows for a variety of machine learning models, specifically random forest,

adaptive boosting [24], support vector machine [17], gradient boosting [26],

logistic regression, linear discriminant analysis [16], nearest neighbors and

gentle boosting [25]. Being highly linked with CellProfiler, CellProfiler An-

alyst uses features previously extracted with the functionalities of its parent

software. Classification is here more intended for cell type discovery rather

than pixel-wise discrimination as in iLastik, i.e. it classifies image patches

and uses more raw intensity than texture or context features. Moreover, only

MySQL and SQLite databases can be accessed thus limiting more general

uses.

2.5 Deep-learning methods

The last decade has seen the emergence of a broad family of algorithms

known as deep-learning (DL) also in the field of biomedical image analysis.

These algorithms automatically learn the most discriminative features thus

greatly reducing the need of human intervention and feature engineering. DL

models have also proven to reach unprecedented levels of accuracy gaining

the attention of many scientists.
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In a pioneering work, Frasconi et al. (2014) [23] proposed a neural net-

work approach to 3D cell detection (BCFind). The model consisted of two

steps: a 3 layers feedforward network (FFN) [14,66] for semantic deconvolu-

tion (i.e. non-linear transformation of input images to enhance semantically

coherent objects) followed by mean-shift algorithm for the prediction of cell

centers. Due to the high computational cost of MLPs, especially when ap-

plied to images, very small patches were considered and a strided sliding

window was applied to predict all voxels more efficiently. Moreover, to ac-

count for spatial correlation of neighbors voxels, MLP outputs had the same

shape of the inputs so that each voxel prediction could be obtained by aver-

aging a window around it. They demonstrated high accuracy and scalability

of this model by predicting the location of neurons in a whole mouse cere-

bellum.

Afterwards, convolutional neural networks (CNN) [15, 28, 43, 45] have

increased their popularity and have also been applied to image segmenta-

tion [48,64]. The UNet [64] was certainly the biggest breakthrough in modern

image-to-image problems especially those related to biological images. Its

encoder-decoder configuration together with skip connections between these

two (see Figure 2.3) allowed the authors to train accurate models even with

relatively small training-sets, thus motivating its popularity among scientists

working with biomedical images.

In the context of cell segmentation from high-resolution microscopy im-

ages, worth to mention is StarDist [69, 83], a UNet-based model which ex-

ploits the a-priori knowledge of cell shape convexity and includes star-convex

polyhedra as targets. By asking the CNN to predict both a probability

map and the radial distances to the nearest cell center for those pixels with

probability greater than zero, they demonstrate improved performances in

detecting the marked nuclei, especially in crowded scenes. Following the

CNN predictions, object approximation to star-convex polyhedra and non-

maximum suppression are adopted in order to retrieve the most probable cell

shapes and locations. Notably, they provide easy command line utilization

of both 2D [69] and 3D [83] versions of their model.

In a similar fashion, CellPose [77] uses vertical and horizontal gradients

to refine the shapes of predicted objects and improve differentiation between

very close instances. However, unlike StarDist, the adoption of spatial gra-

dients relaxes the shape convexity assumption, allowing the prediction also

of non-convex shapes. Moreover, CellPose proposes various modifications to
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Figure 2.3: Schematic representation of UNet architecture. [64]

the original UNet architecture. Residual blocks [32] are used instead of the

standard convolutional ones, an image style is extracted from the bottleneck

of the UNet and then passed to subsequent decoding residual blocks, and en-

coder feature maps are added instead of concatenated to that of the decoder.

By developing a new dataset of highly varied images of cells, they show high

performances whether training and testing the model on specific types of

data or training on all kind of available images and testing on specific data,

demonstrating high transfer capabilities. Worth to notice that, up to date,

CellPose is uniquely implemented in 2D and for 3D data relies on merging

predictions over each plane view.
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Chapter 3

BCFind-v2: Soft Semantic

Segmentation for 3D Brain Cell

Detection

In this chapter we describe a supervised algorithm for cell detec-

tion in 3D fluorescence microscopy images. We follow a two-step

approach consisting of an initial soft-segmentation of raw im-

ages followed by a blob detector to extract cell coordinates. Soft-

segmentation is used to train a fully convolutional network (FCN)

from point annotations, a much easier labeling method compared

to the highly time-consuming hard masks. This step serves to

denoise the images and standardize cell shapes, luminosity and

contrast. Localization is then performed by a blob detector based

on the difference of two Gaussian kernels. A model-based hyper-

parameter tuning is also adopted to automatically select the op-

timal parameters for the blob detector in order to facilitate its

usage and improve the accuracy. Experimental results are pro-

vided, along with a comprehensive comparison of different FCN

configurations. Results show that the our proposed technique is

efficient and effectively detects neurons in highly variable and

noisy brain images. 1

1Part of this chapter has been published in “Universal autofocus for quantitative vol-

umetric microscopy of whole mouse brains”, Nature Methods, 2021 [74].

13
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3.1 Introduction

Accurate quantification of neurons in high-throughput microscopy images is

one of the essential goals in neuroscience. Having an automatic method to

quantify or even localize and segment cells is paramount for many biological

laboratories. However large variability in the data and expensiveness of man-

ual annotations are the main obstacles in developing flexible, accurate and

automatic methods to do so. Many newly developed tools rely on highly

customizable pipelines of classic computer vision algorithms [11, 62, 68] or

adopt machine learning techniques with user-defined features [7, 75]. These

approaches though, even if highly flexible and adaptable to many imaging

techniques, struggle to generalize on highly variable intensities and sources of

noise, requiring intensive hand tuning on small subsets of the data. More ad-

vanced deep-learning (DL) techniques have been proposed [69,77], but they

all rely on hard-mask labeling, a highly time-consuming annotation method.

Here we present a two-step approach to localize cells from 3D fluorescence mi-

croscopy images using point annotations, a much faster annotation method

that allows for the generation of larger data-sets with relative ease. Strongly

inspired by the work of Frasconi et al. [23] we brought some improvements

and additional features to the original implementation. Firstly, we replaced

the two fully connected hidden layers neural network with a more advanced

fully convolutional 3D UNet [13]. Multiple variations of the basic building

block are explored and made available for data-specific needs and perfor-

mances. In particular, users can choose among three different attention

mechanisms [27, 36, 81], a residual convolutional block [32] and a mixture

of UNets [39, 70] to fulfill their specific needs. Data augmentation is also

included for better generalization capabilities. Secondly, coordinates extrac-

tion is performed by a fast and efficient GPU implementation of a standard

blob detector based on multi-scale Gaussian kernel differences [50] in place

of the original iterative mean-shift algorithm. We also equipped the blob

detector with model-based automatic hyper-parameter optimization [8] for

improved ease of use and performances. A schematic representation of the

whole pipeline is depicted in Figure 3.1. We report results on two mice and

one human brain dataset showing the effectiveness of the method and its

adaptability to multiple contexts.
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Figure 3.1: Pipeline of the proposed cell detection algorithm. Yellow boxes

and edges are only needed for training.

3.2 Convolutional encoder-decoder: the UNet

Learning the probability that each pixel belongs to brain cells is the first

step of our method. Given such a probability map it would be indeed easy

for a blob detector to find center mass coordinates. Probability maps in

fact would show only cells in a homogeneous way with any background noise

removed. To this end we adopted the well-known UNet architecture [64], a

fully convolutional network (FCN) that have shown remarkable performances

on biomedical image segmentation problems. However, standing apart from

standard semantic segmentation tasks which use hard-masks as labels, in

our work segmentation is soft, i.e. rather than asking to precisely determine

membrane voxels, the network is trained using Gaussian spheres as target.

This “weak” supervision allows the adoption of point rather than pixel-wise

annotations, much easier to obtain.

In our work we explored different UNet configurations, from a wide base

implementation to the adoption of residual blocks for a much deeper network,

the inclusion of attention mechanisms and the implementation of an ensemble

model. The following subsections will give the details of all these variants.

3.2.1 Base model

Our base model follows the original implementation [64] with the straight-

forward adaptation to 3D data. The contracting path comprises four convo-

lutional blocks, while the expanding path as many transposed convolutional
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blocks. We may mutually refer to blocks belonging to the contracting path as

encoding blocks, while blocks in the expansive path as decoding blocks. Each

of them are however similarly composed by a single 3× 3× 3 convolutional

layer, using transposed convolution in case of decoding blocks, followed by

batch normalization and ReLU activation. Due to the small size of cells,

the last two encoding blocks do not apply downsampling operations, here

implemented with strided convolution. Due to the high variability of pixel

intensity, we decided to build a network as wide as possible by using a large

number of initial filters (see Section 3.5.1 and 3.5.2 for the specific values

adopted) and exponentially increase them by a factor of 2 every encoding

block and symmetrically decrease them every decoding block. In order to

output a probability map at the end of the network, a final convolutional

layer with only one filter followed by sigmoid activation is applied.

3.2.2 Residual model

Residual learning was firstly proposed by He et al. (2016) [32] as a way to

solve the vanishing gradient problem [6, 29, 35] for which deeper layers were

difficult to train. Backpropagation in fact propagates small gradients of little

activated layers through all the network, inducing very small or even null

parameter updates. The solution presented in [32] was to allow the gradients

to follow an alternative pathway that could skip those little activated layers

and hence continue to regularly update the parameters. This was achieved by

introducing an additive skip connection between the inputs and the outputs

of each convolutional block. In mathematical notation, denoting with fθ
the learnable operations of a neural network building block, they did the

following:

y = fθ(x) + x

that could also be written as

fθ(x) = y − x

from which the name of residual learning. Thanks to this trick, the authors

were able to train an unprecedentedly deep neural network (152 layers) still

reaching state-of-the-art results on image classification problems. Moreover,

studying a method to visualize loss landscapes, Li et al. (2018) [46] found



3.2 Convolutional encoder-decoder: the UNet 17

Figure 3.2: Loss landscape of plain vs residual neural network. [46]

that the above mentioned residual blocks actually prevent the loss from

becoming chaotic and indeed maintain it smooth (Figure 3.2).

A residual version of the UNet is therefore implemented. This version

adopts residual blocks in place of previously described convolutional blocks.

Following the work of He et al. (2016) [33] we chose to adopt full pre-

activation blocks (Figure 3.3b) and apply an initial 7 × 7 × 7 convolutional

block followed by 3× 3× 3 residual convolutional block to the inputs. Since

the high capacity of residual networks we decided to go deep too and apply

three residual blocks in each contracting and expansive step while maintain-

ing the same number of encoding and decoding blocks as the base model.

Probability maps are here computed by a single 1×1×1 convolutional layer

with sigmoid activation, leading to a total of 52 layers. A representation of

this architecture is depicted in Figure 3.3.

3.2.3 Attention models

Since their introduction in natural language processing (NLP) [78], attention

mechanisms have received much consideration in the scientific literature and

many adaptations to computer vision (CV) have been proposed [27,36,54,81].

The main contribution of these mechanisms is to model long-range interac-

tions between input components to focus the most important ones. While

in [78] and [27] attention is achieved by linearly combining each compo-

nent accordingly to its correlation with the others, in [36] and [81] attention
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(a)

(b)

Figure 3.3: Deep residual UNet as implemented in BCFind-v2. Whole ar-

chitecture (a) and (b) pre-activated residual block.
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weights are estimated by two fully-connected and a convolutional layer re-

spectively (Figure 3.4). In CV there are two types of interactions that can

be exploited: position-wise or channel-wise. In our work however we con-

sidered channel attentions only. This choice is mainly motivated by two

reasons. On one hand, we believed that long-range spatial dependencies

would not really help the detection of small objects that can appear every-

where in the image like cells do. On the other hand, being able to select

really discriminative features and more importantly, being able to differen-

tiate them across different inputs could be beneficial in wide networks with

highly variable inputs. We therefore explored three different channel at-

tention mechanisms: the squeeze-and-excite (SE) module [36], the efficient-

channel-attention (ECA) [81] and the channel attention (CA) proposed by

Fu et al. [27]. We also tried two different ways of including attention mech-

anisms into a UNet-like architecture. The first one adopts either the SE or

ECA module into each block of the base model described in Section 3.2.1 in

order to put more emphasis on the most important features of each convolu-

tional layer. The other one instead employs the CA module in between the

encoder-decoder skip connections, in a similar fashion to [54]. This latter in

fact, uses the interactions between encoder and decoder features to better

exploit the subsequent combination of the two. In particular, denoting as

fi the flattened encoder output at level i and with gk−i the corresponding

flattened decoder output at level k− i, where k denotes the total number of

blocks in the UNet, our CA gate can be written as:

Q = linear(gk−i), K = linear(fi), V = linear(fi)

Attn = softmax
(
QT ·K

)
hi = fi + (V ·Attn)

hi is then concatenated to gk−i as usual.

3.2.4 Mixture model

Light microscopy imaging comes with lots of variability, either within the

same acquisition (luminosity and contrast can drastically change in the Z

dimension), or between different acquisitions and subjects. Modeling such

diversity is therefore essential for the model to be accurate on all possible

conditions. To do so we here treated the conditional distribution P (Y |X) as



20
BCFind-v2: Soft Semantic Segmentation for 3D Brain Cell

Detection

(a)

(b)

(c)

Figure 3.4: Attention modules implemented in BCFind-v2. (a) Squeeze-and-

Excite [36], (b) Efficient Channel Attention [81] and (c) the channel attention

proposed in [27].
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a multimodal function and represented it with a mixture model. Following

the seminal paper of Jacobs et al. (1991) [39], a fixed number of neural

networks is depicted to model each unimodal distribution in the data, while

a gating network estimates the mixing coefficients of the mixture. Denoting

with g the gating network, with fk the expert for the kth component and

with K the total number of considered components we can write the model

as follows:

y =

K∑
k=1

g(x)(k)fk(x)

Thanks to this configuration each input is dispatched to one or more different

experts which become more and more specialized on the given subset of the

data. Even if training could be done by directly minimizing the difference

between the linear combination of each expert and the target, this usually

tends to distribute each input to many experts without really inducing a

clustering of the data. Therefore a more convenient formulation of the loss

would be if competition between experts is encouraged by making each expert

learn the whole target rather than the residual of the others. In practice this

is translated by defining the error as follow:

L(x, y) =
K∑

k=1

g(k)(x)||fk(x)− y||2

From this formulation, a smoother and better performing version of this

same loss has been proposed in [39] and in fact this is what we also used:

L(x, y) = − log

[
K∑

k=1

g(x)(k)e
1
2 bce(fk(x),y)

]

where bce denote the binary cross-entropy.

However, competitive training could lead to a self-reinforcing behavior in

which the best performing expert is recursively selected and hence improved

while the others are most of the time left apart. To avoid this trivial solution

and encourage a more balanced expert selection, Shazer et al. (2017) [70]

proposed an additional expert importance loss, defined as:
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impk =
∑
x

g(x)(k)

Limp = α

[
sd (impk=1,...,K)

mean(impk=1,...,K)

]2
;

and Fedus et al. (2022) [20] a load balancing loss:

loadk =
1

n

∑
x

1 [argmax(g(x)) = k]

Lload = γK

K∑
k=1

loadk · 1
n
impk

Both were tested, however results in Section 3.5.2 refer to this latter, since

we found inducing more balance.

The gating network is actually implemented as in [70] in which only the

top J experts are selected and an additional learnable noise component is

added to the predicted gate weights.

In our implementation we set K = 5, J = 1 and γ = 0.2. Moreover, to

increase as much as possible the batch size and believing that even a simpler

expert could effectively learn the within-cluster conditional distribution we

select an initial number of filter equal to 32 and use the same architecture of

the base model. Figure 3.5 graphically represents a mixture of UNet experts.

3.2.5 Data augmentation

Data augmentation is a technique to artificially enlarge the training set by

randomly transforming existing data. This is particularly useful in biological

images where labels are scarce. Moreover, data augmentation serves also as a

regularizer and in contexts with small training-sets overfitting is particularly

easy to happen. For all these reasons and through extensive experimentation

we also included it in our pipeline. In particular, we found the following

transformations particularly useful:

� Gaussian noise: σ ∈ (0, 0.03)

� Gaussian blur: σ ∈ (0, 0.5)
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Figure 3.5: Mixture of UNets

� gamma: γ ∈ (0.8, 1.2)

� brightness: δ ∈ (−0.06, 0.06)

Images are always rescaled in the interval (0, 1) before transformation. Above

augmentations are applied in random order, all with a probability of 0.4.

3.2.6 Point annotations and soft-masks

In order to train a segmentation model from point annotations, soft-masks

are generated by placing a Gaussian sphere on each annotated coordinate.

This method is particularly suited for light microscopy data in which only

the nuclei are stained and cell membranes are not clearly recognizable but

on the contrary, are rather blurry. The width of each Gaussian is selected

in order to avoid overlaps and hence depends on the distance to the nearest

cell. Starting with a default value of 3.5 for the σ, if the lowest distance

is lower than 3.52 it will be decreased to the ratio of the distance and 3.5.

Anisotropy is also considered by rescaling it on the dimensions with lower

resolution. Soft-masks are then rescaled by their maximum value, ranging

in the interval (0, 1).
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3.3 Blob detection with difference of Gaus-

sians

Blob detection is the second step of our model: once the original images

are transformed into probability maps through the UNet, cell coordinates

are extracted by a blob detector based on the difference of two Gaussian

kernels [50]. Such kernel is in fact an approximation of the Laplacian of

a Gaussian whose shape is particularly suited to enhance blob-like objects.

We chose to adopt this technique, in place of the original mean shift [23],

because of its faster convolutional operations (computed on the GPU in

our implementation) compared to the iterative mean shift algorithm and

for its recognized performances on detecting (spherical) objects at multiple

scales [5, 47, 52, 62, 72]. The algorithm works by blurring the input image

with multiple Gaussian kernels whose σ increases by a fixed factor. After-

wards, consecutive filtered images are subtracted to obtain a transformation

equivalent to the application of a kernel representing the difference of two

Gaussians. Once the spherical objects are thus highlighted, a maximum fil-

ter retrieves the local maxima of the image and hence is able to return our

desired cell coordinates.

3.3.1 Model-based hyperparameter optimization

In our experiments we found that selecting the optimal parameters is how-

ever not that straightforward and different values could lead to very different

results in terms of F1-score. We therefore chose to make the selection au-

tomatic both obtaining more accurate results and making the blob detector

usage easier. To do so a model-based hyperparameter optimization algo-

rithm is adopted. In particular we used the tree-structured Parzen estimator

(TPE) [8] to select the parameters that maximize the expected improvement

(EI) on a surrogate function of the F1-score. Denoting with y the observed

value of the objective function f , with y∗ some quantile γ of the y values

and with θ the set of parameters to be optimized, the TPE actually models

p(θ|y) as follow:

p(θ|y) =

{
l(θ) if y < y∗

g(θ) if y ≥ y∗

where l(θ) is the non-parametric density estimated from those observed θ(i)

whose f(θ(i)) < y∗ and g(θ) the density formed by using the remaining
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observations. By using this parametrization, Bergstra et al. (2011) [8] found

that

EIy∗(θ) ∝
(
γ +

g(θ)

l(θ)
(1− γ)

)−1

and hence, thanks to the adopted forms of l and g (details in the paper [8]),

it would be easy to draw many samples from l and evaluate them according

to g(θ)
l(θ) to maximize the EI.

3.4 Evaluation metrics

Due to the object-wise nature of our annotations, models are evaluated by

their capability of finding those objects. If our labels are points, those same

points should be ideally our predictions. Considered metrics therefore look at

the correct matches between predicted and annotated coordinates. Unique

matching is firstly computed through Hungarian algorithm [44], a method

to solve unique assignment problems by mean of matching distance mini-

mization. Predicted cell coordinates are therefore matched to their closest

annotation. We then classified the predictions within a distance d to their

matched annotation as true positives (TP) and as false positives (FP) oth-

erwise. On the other hand, annotations whose assigned prediction is further

than d are denoted as false negatives (FN). Considered metrics are then

defined as follow:

Precision :=
|TP |

|TP |+ |FP |

Recall :=
|TP |

|TP |+ |FN |

F1 := 2
Precision ·Recall

Precision+Recall

where |A| denotes the cardinality of set A. Compared to pixels-wise or

correlation-based [55] metrics we found these criteria better suited for point

annotations. On one hand, pixel-wise metrics tell us if shapes are well pre-

dicted, but our UNet targets have just proxy shapes which do not necessarily

reflect reality and are not biologically accurate. Evaluating a model from

these approximated shapes would be in fact biologically misleading. On the
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other hand, we find correlation too much coarse and inaccurate. Firstly, it

considers counts only and not how close predicted cells are to the annotated

ones. Secondly, even very different counts can be correlated, in fact, correla-

tion does not tell us anything about the actual values of compared variables.

Paradoxically, if a model consistently obtains equal but very low values of

precision and recall, it will predict counts perfectly correlated with, even

identical to, the ground truth, but highly wrong coordinates.

3.5 Experimental results

Models have been tested and applied on two main data-sets, kindly provided

by two neuroscientific groups of LENS. For the experiments, the data-sets

have been randomly split in three non-intersecting sets: one for training

(70%), one for validation (10%) and one for test (20%). UNet models have

been trained to minimize the binary cross-entropy loss between predictions

and soft-masks of training-set volumes, however weights are only saved when

the validation loss improves. DoG parameters are then optimized on the

UNet predictions of validation volumes. Reported results refer, of course,

to the test-set. To train the UNet models we found particularly effective

the adoption of stochastic gradient descent (SGD) optimizer with Nesterov

momentum [53] set to 0.9 and the cosine decay with warm restarts [49]

schedule for the learning rate. All UNets have been trained for 3000 epochs

with an initial learning rate of 0.1. While DoG optimization has been carried

out for 50 TPE steps.

3.5.1 Test on mice brain tissue

We here test the base model configuration (Section 3.2.1) on two different

mice datasets whose brain cells were stained with different reagents. SST+

neurons dataset comprises 327 volumes of 312 × 312 × 320µm3 each at a

resolution of 0.65× 0.65× 2.0µm3 per voxel with a total of 28264 manually

annotated cells. On the other hand, cFos+ neurons dataset comprises 278

volumes of shape 312 × 312× 320µm3 each at a resolution of 0.65× 0.65×
2.0µm3 per voxel with a total of 20952 manually annotated cells. Some

examples of raw volumes and corresponding predictions for both datasets

can be seen in Figure 3.7.
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Prec. Rec. F1
Staining Model

(%) (%) (%)

SST UNet [74] 83.0 90.0 86.0

cFos

UNet [21] 84.0 74.0 78.0

SE-UNet 75.1 73.3 74.2

ECA-UNet 74.8 71.3 73.0

Table 3.1: Localization metrics on different mice brain datasets.

3.5.2 Test on human brain tissue

Here we compare all described UNet variants applied to images of NeuN+

neurons in the human brain. This dataset comprises 54 volumes of 360 ×
360 × 180µm3 at a resolution of 3.6 × 3.6 × 3.6µm3 per voxel with a total

of 26596 annotated cells. Some examples of raw volumes and corresponding

predictions for the Res-Unet configuration (Section 3.2.2) can be visualized

in Figure 3.7. While Figure 3.6 shows the MIP of some volumes taken from

the clusters induced by the Mixture of Unets (Section 3.2.4).

Prec. Rec. F1
Model

(%) (%) (%)

UNet 68.3 75.9 71.9

SE-UNet 70.5 79.1 74.6

ECA-UNet 71.2 81.1 75.8

Attn-UNet 75.1 76.3 75.7

Res-UNet 79.0 76.0 77.4

MoUNets 80.8 69.5 74.7

Table 3.2: Localization metrics for various UNet configurations on human

NeuN+ neurons data. Bold values highlight the best model for each metric.

3.5.3 Discussion

BCFind-v2 has been trained and validated on both mouse and human brain

data at two different pixel resolutions (0.65 × 0.65 × 2.0µm3 for the mouse

and 3.6 × 3.6 × 3.6µm3 for the human). While on both mouse datasets

we achieved satisfactory results already with the base UNet, on the human

tissue dataset a wider architectural exploration has been deemed necessary.
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Figure 3.6: Clusters induced by Mixture of UNets. Images are the MIP over

whole volume depth.

In fact, the lower spatial resolution of human brain images, the higher cell

density, the lower contrast of the cells compared to the background and the

less clear cell boundaries (Figure 3.7) added difficulties to the detection task.

Six different CNN have been therefore compared trying to overcome such

increased complexities. As a result, the best model improved the F1-score

by 5.5 points with respect to the base UNet model.

Model architecture has however been found to be data-specific, indeed

the SE-UNet and the ECA-UNet had better results than the UNet on the

human brain, but worse on the cFos mouse brain dataset.
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Data-set

SST

Raw

Pred.

cFos

Raw

Pred.

NeuN

Raw

Pred.

Figure 3.7: Raw and predicted volumes for each considered data-set. Pre-

dictions for human NeuN+ neurons refer to Res-UNet model, while for mice

SST+ and cFos+ neurons to the base UNet model. White dots represent true

positive, red dots false positive and orange dots false negative detections.
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Chapter 4

BRANT: Brain-Wide Neuron

Quantification Toolkit to Study

Fear Memory in Mice

In this chapter we introduce brain-wide neuron quantification

toolkit (BRANT) for mapping whole-brain neuronal activation at

micron-scale resolution, combining tissue clearing, high-resolution

light-sheet microscopy, and automated image analysis. A detailed

knowledge of the neural circuitry modulating fear memory could

be the turning point for the comprehension of this emotion and

its pathological states. A comprehensive understanding of the cir-

cuits mediating memory encoding, consolidation, and retrieval

presents the fundamental technological challenge of analyzing ac-

tivity in the entire brain with single-neuron resolution. The tool

presented in this chapter allows for robust and scalable quantifi-

cation of activity patterns across multiple phases of memory in

mice. The methodology presented here paves the way for a com-

prehensive characterization of the evolution of fear memory. 1

2

1This chapter has been published as “Brain-wide neuron quantification toolkit reveals

strong sexual dimorphism in the evolution of fear memory” in Cell Reports, 2023 [21].
2Acknowledgments: this work was largely developed in collaboration with and

supported by the European Laboratory for Non-Linear Spectroscopy (LENS), Sesto

Fiorentino (FI), Italy.
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4.1 Introduction

Fear responses are functionally adaptive behaviors that can be induced by

a direct encounter with a threat or with situations previously associated

with a threat. Fear induces many changes at different levels, from molec-

ular and cellular to circuit ones [40, 41]. Typically specific brain areas, as

the hippocampus, the amygdala and the prefontal cortex, are identified as

the centers of memory processing. However, several studies highlighted

the involvement of many other regions [59, 73], supporting the hypothesis

that memory is distributed and dispersed across the entire brain. Unfor-

tunately, available analysis tools [62] are not capable of routinely handling

Tera-bytes sized datasets,limiting brain-wide activation analysis to anti-cFos

immunostaining. Here, we present BRANT (brain-wide neuron quantifi-

cation toolkit), a new pipeline for whole-brain mapping, exploiting TRAP

mice [30], high-resolution light-sheet microscopy (LSM), and terabyte-scale

image processing. Using BRANT, we analyze the evolution of whole-brain

neural circuits recruited upon aversive memory in 14 females and 15 males,

allowing for brain-wide cohort study. In order to study the evolution of

fear memory, mice learn to associate a particular context (i.e. black box)

with an aversive event (i.e. mild foot shock). The latency time to enter

the the dark compartment is used as a direct measurement of memory. We

selected three experimental groups based on three different memory phases

describing the evolution of fear memory, from encoding to retrieval: a train-

ing group was selected to study fear encoding, while test groups at 24h and

7 days after training were selected to explore the recent and long-term fear

memory retrieval, respectively. As expected, statistical analyses revealed

significant differences of recorded latency times between these experimental

groups. Moreover, after brain atlas registration through advanced normaliza-

tion tools (ANTs) [3], cell densities have been estimated on 48 brain regions

and partial least squares (PLS) [42] analysis has been performed to evalu-

ate the activation pattern differences between males and females revealing

gender-specific cFos expressions. Widely accepted theories also affirm that

memory is distributed across multiple brain regions that are functionally

connected [22, 65]. Therefore a functional connectome for each experimen-

tal group has been estimated and network statistics, as the nodes degree,

nodes betweenness and small-word coefficient, have been computed. Results

confirm once again the evolution of activation patterns over time and their

differences between males and females.
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4.2 BCFind-v2 on large-scale analysis

Working with TB-sized datasets is a complex task that requires a well-defined

and efficient pipeline starting from data storage and loading to the analy-

sis process. Each brain reconstruction comprises about 16 Terabytes of raw

data with a voxel size of 0.65×0.65×2.0µm3 . This data size is incompatible

with a cohort study, as it would require storage capabilities in the order of

1 Petabyte for a single study. For this reason, the acquired datasets were

first compressed by a factor of 20 using the 16-bit lossy JPEG-2000 format,

thus reducing disk usage while still retaining overall good image quality

and detail level. Images were then stitched using ZetaStitcher (https://

lens-biophotonics.github.io/ZetaStitcher/), a custom-made Python

software developed at LENS for large volumetric stitching specifically devel-

oped for LSM. An important feature of ZetaStitcher is VirtualFusedVolume,

an application programming interface (API) that provides seamless and ef-

fective access to high-resolution data by simply providing the spatial coordi-

nates of the subvolume of interest within the virtually fused volume. In this

way, large volumes can be programmatically processed in smaller chunks in a

distributed environment and without user intervention, a key requirement to

process the large datasets produced by high-resolution LSM. Automatic cell

detection is achieved using BCFind-v2 (see Chapter 3) whose components

(UNet and blob detector) have been separated in order to make them run

in parallel. In particular, we used a queue to store multiple chunks of raw

data coupled with a single threaded worker to run UNet predictions, and a

second queue to store the UNet predictions coupled with a multiple threaded

worker to retrieve and pass them to the blob detector for cell coordinates

extraction. It was also on this occasion that we moved from CPU to GPU

implementation of the blob detection. Efficient GPU memory allocation,

both for the UNet and the blob detector, was also essential to avoid unde-

sired overheads. Such implementation allows for fast and scalable analysis,

reaching an average inference time of 240Gb/h, about one order of magni-

tude faster than the reported speed of ClearMap [62] for datasets of this size

(Figure 4.1). BCFind-v2 predictions are done on overlapping substacks of

the whole volume and then merged by removing those coordinates inside a

frame with half of the overlap size. Figure 4.2 shows the axial, coronal and

sagittal views taken from a predicted point cloud of a whole mouse brain.

https://lens-biophotonics.github.io/ZetaStitcher/
https://lens-biophotonics.github.io/ZetaStitcher/
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Figure 4.1: Inference speed of BCFind-v2 and ClearMap on whole mice brain

analysis.

(a) (b)

(c)

Figure 4.2: Brain-wide BCFind-v2 inference. (a) Sagittal, (b) coronal and

(c) axial views of predicted mouse brain point cloud.
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4.3 Predicted densities differentiate memory

phases and gender

By looking at latency times and predicted densities in each of the 48 brain re-

gions considered we first studied correlation between neuronal activation and

memory. As expected, the amygdala, the hippocampus, and the prefrontal

cortex are correlated with the step-through latency times, but also, the ac-

tivation of areas such as the pallidum, the striatum, the pons, and other

regions less known to be involved in fear memory correlates with the time

mice spent in the bright cage before stepping through into the dark compart-

ment (where the aversive event happens). Moreover and importantly, brain

regions found to be correlated with behavior are different for both sexes,

underlining a sexual dimorphism (Figure 4.3a). A result confirmed also by

PLS analysis. PLS is a statistical technique mainly used in high-dimensional

contexts (i.e. the number of variables is much higher than the number of

observations). Variables are firstly projected in a lower dimensional space

whose components maximize the correlation with the response variable. Such

projection allows for standard linear regression, previously unfeasible due to

the curse of dimensionality, but also for evaluating the contributions that

each variable has on the components used for the actual regression. There-

fore, by looking at the contributions on those components that maximally

correlate with the response variable we can measure the importance that

each variable has on the predictions. Considering sex as response variable

and brain region densities as predictors, the analysis highlighted significant

gender specificity of some region densities. Those regions were also found

to change between different memory phases. While the hippocampus and

the amygdala are the areas that most differentiate males and females during

training, in both 24h and 7d tests is the prefrontal cortex that gains more

importance (Figure 4.3b-d).

4.4 Network analysis of cell densities

Whole-brain connectivity analysis is fundamental to understand the com-

plex interactions between functionally coherent regions and their role in the

development of fear memory. We therefore considered the strongest cross-

correlations (p < 0.05) between the predicted brain region densities and built

a whole-brain functional network for each experimental group (Figure 4.4).
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(a) (b)

(c) (d)

Figure 4.3: Neuronal activity analysis. (a) Pairwise correlation of latency

time with neuronal density. (b-d) Standardized PLS contributions of each

brain region density divided by experimental group. The gray, red, and

blue lines reflect, respectively, contribution scores of 1.64 (p < 0.1), 1.96

(p < 0.05), and 2.58 (p < 0.01).
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Quantitative comparisons of the estimated networks are then carried out by

extracting global and local connectivity features. Density, ρ, of a graph is

defined as the probability of observing an edge between two random nodes.

From this statistic we note the high connectivity of females network on the

24h test (ρ = 0.1285), much higher than that of males (ρ = 0.0585). If we

restrict this statistic to positive vs negative correlations we find even higher

differences, with females that tend to increase the probability of positive

correlations on the 24h test (ρ+train = 0.0284, ρ+t24h = 0.0975) while males

do the opposite (ρ+train = 0.0629, ρ+t24h = 0.0346). On the other hand, neg-

ative correlations remain similar across sexes and memory phases, with the

only exception of few negative links in training males. Removing isolated

components, we also look at small-world coefficient

σ =
C/Cr

L/Lr

,

where the subscript r refers to a random graph, C to the clustering coefficient

and L to the average shortest path length. This statistic indicates that most

nodes can reach any other node with a small number of steps. Specifically

a small-word network is defined to be a network where the average shortest

distance between random nodes grows proportionally to the logarithm of

the total number of nodes, i.e. is characterized by high average clustering

coefficient and short average shorted path length. By sampling 100 random

graphs, we found that whether males network shows small-world features in

all memory phases, as also found in [84], conversely, females network at 24h

test largely resembles a random graph, suggesting different reorganization

pathways between males and females.

Moreover, looking at local statistics such as the node degree and the

betweenness, we were able to select central nodes (hubs) in each memory

phase, highlighting those regions responsible for controlling the exchange of

information. Defining as hubs those regions above the 80th percentile of

both degree and betweenness distributions, we found a cortical transition

from sensorimotor cortices to associative areas in males. A finding in line

with standard theory of memory consolidation [38]. Conversely, in female

subjects, network hubs persist in subcortical regions across the entire time

span investigated, encouraging the sexual dimorphism findings of this work.
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Figure 4.4: Fear memory networks in male and female mice. Gray circles

represent the 48 selected regions, while lines the significant (p < 0.05) posi-

tive (red) or negative (blue) correlations.
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4.5 Conclusion

The collaborative effort between scientists of multiple disciplines allowed the

definition of a well-defined high-throughput pipeline able to acquire multiple

whole-brain high-resolution images, efficiently store them and retrieve them,

obtain accurate brain-wide cell locations, align the predicted point clouds to

a reference atlas and finally extract brain region counts for in-depth study

of brain functions. Thanks to all the adopted steps we confirmed previous

studies and suggested novel research directions for better understanding fear

memory.
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Chapter 5

The Human Broca’s Area:

Comparing Automatic

Detections with Stereological

Estimates

This study presents a comprehensive comparative analysis of

three deep-learning (DL) methods (BCFind-v2, StarDist and Cell-

Pose) and stereology for neuron quantification in the human Broca’s

area. We firstly evaluate the ability of DL methods to correctly

detect cell coordinates both on unseen brain slabs and on anno-

tations made by two different groups of experts with two differ-

ent software. Then, we look at the predictions on whole brain

slices, their visible quality and the comparison between densities

predicted by DL models and those predicted by stereology. Infer-

ence time of DL methods is also taken into account and eval-

uated. Lastly, we discuss about the manual annotation effort

each method requires and the granularity of the information it

retrieves. 1 2

1Part of this work was conducted while the author was a visiting Ph.D. student at the

European Molecular Biology Laboratory (EMBL), Heidelberg (Germany), from September

to the end of December 2022 (working with. Dr. Anna Kreshuk).
2The work presented in this chapter is ready for submission with the title “Stereology

or Deep-Learning? On the reliability and extrapolation power of deep-learning methods

applied to large-scale human brain tissue” to Scientific Reports.

41
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5.1 Introduction

The accurate quantification of neurons in specific brain regions is of utmost

importance for understanding the intricate organization and function of the

human brain. Although comprehensive cell census in animal models are

now possible [51], there is no such correspondence in the human brain due

to unavoidable distortions introduced by the slicing, clearing and staining

processes of actual imaging protocols. This study uses an innovative high-

throughput LSFM-based imaging pipeline [18] that allows for subcellular

visualization of the entire Broca’s area of a human brain with minimum dis-

tortions. This cutting-edge imaging technique has therefore made it possible

to apply the most modern image analysis tools and hence obtain information

details previously unavailable. However, the images thus obtained are still

characterized by high brightness and contrast variability and poor signal-to-

noise ratio (see Figure 5.1). Our comparative analysis evaluate the possibility

of applying DL models on this difficult yet fundamental, domain.

To properly validate the automatic methods, we not only verify localiza-

tion metrics on a (small) test-set, but we also compare large-scale predictions

with stereology. The latter, relying on human counts and systematic sam-

pling procedure, produces unbiased estimates and in fact, it is considered the

gold standard for neuronal counts estimate on such complex and large-scale

data. In fact, if properly validated, DL models are able to extract much more

granular information (i.e.individual cell coordinates or even segmentation)

and, unlike stereology, are completely data-driven allowing the researchers to

relax a-priori assumptions and possibly highlighting subregional anomalies,

undetectable by simple stereology.

Unlike previous studies [2,55] that validate a single model and mainly rely

on predicted counts and their correlation with ground truth annotations, we

take into account three automatic DL methods (BCFind-v2, see Chapter 3,

the 3D implementation of StarDist [83] and CellPose [77]) and evaluate them

on multiple facets. We firstly test the models on their capability of correctly

locating cell coordinates, their main contribution with respect to standard

stereology, with a particular focus on testing their predictions on unseen

brain slices, arguably the most difficult task on this kind of data. Then, we

look up at whole slice predictions, both visual inspection and direct com-

parison with stereological density estimates are considered, discussing both

qualitatively and quantitatively their reliability on large-scale extrapolations.

Later, since dealing with huge amount of data, inference speed is considered.



5.2 Cell localization on multiple brain slabs 43

Finally, we evaluate the human effort required by each method related also

to the granularity of information retrieved.

(a) (b)

Figure 5.1: LSFM imaging of the Broca’s Area of a human brain. (a)

Maximum intensity projection (MIP) of an entire slab, 482.4 × 38775.6 ×
44197.2µm3. (b) The axis projections of a smaller volume, 180 × 360 ×
360µm3.

5.2 Cell localization on multiple brain slabs

To acquire the human Broca’s area with LSFM the tissue has been sliced into

48 400µm-thick sections (in the text referred as slabs or slices interchange-

ably) which, even if they underwent identical treatment, reveal strong vari-

ability (see histograms in Fig. 5.3). Testing models’ resiliency to this changes

is therefore essential to evaluate their reliability in this common scenario in

human brain LSFM 3D reconstruction.

Available volumes for training DL-models were derived from six distinct

slices (1–6), therefore we carried out a leave-one-slab-out cross validation

procedure where each fold corresponds to all volumes belonging to a specific

brain slice. We here evaluate the models on the correctness of predicted

locations looking at object-wise metrics (see Section 3.4). Table 5.1 reports

mean and standard deviation of precision, recall and F1-score on this 6-fold
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experiment.

Hard-masks for StarDist and Cellpose are generated by thresholding the

soft-masks used by BCFind-v2 at 0.06. Moreover, to adapt the 2D nature

of CellPose to our 3D data we trained this model on 9 XY-planes MIPs of

the original volumes. An example of inputs and targets given to StarDist

and CellPose for training is depicted in Figure 5.2. During inference we

did not use the 3D adaptation proposed by the authors due to a distortion

on XZ-planes coming from the 45◦ inclination of the microscope (see Fig-

ure 5.1b) which is not properly taken into account by the adopted spherical

masks. Moreover, their proposed method for 3D prediction would require

three forward passes of the whole model, greatly increasing the inference time

(see Section 5.4). We therefore only predict on XY slices and subsequently

merge the predicted instances of adjacent planes that have an intersection-

over-union higher than 0.5. Coordinates are finally extracted by taking the

mean location of each instance. Hyperparameters are kept as close as pos-

sible to the official implementations, only adding a dropout rate of 0.3 for

StarDist and setting the average cell diameter to 5 pixels for CellPose.

As we can see from Table 5.1, BCFind-v2 achieves the highest mean recall

and F1-score, however due to the high standard deviations this model cannot

be uniquely identified as the best, especially on the recall metric. StarDist

in fact, obtains similar F1-score, but with higher precision and lower recall.

On the other hand, Cellpose shows the lowest F1-score (with 99% confidence

interval in [33.2, 58.0]), mainly driven from the very low recall, a result we

also share with Oltmer et al. (2023) [55]. We however need to be aware of

the challenge CellPose faced by using 2D hard-segmentation targets obtained

from 3D point annotations.

We then compared models’ predictions with the annotations made for

stereology, here available only for brain slices 6, 18, 30 and 42. In fact, if

DL methods could accurately predict stereological annotations, their predic-

tions would obtain near identical stereological estimates, therefore any dif-

ferences in predicted densities should be explored more in detail. Worth to

notice that these annotations were made by a different group of experts with

a different software specifically designed for stereological purposes (Stereo

Investigator® by MBF bioscience). To take into account the peculiarity

of stereological annotations which exclude cells overlapping the bottom-left

border of the annotation box, we used the predicted coordinates on a 3 pixels

top-right shifted box. Overall (last row of Table 5.2), BCFind-v2 achieves
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A B C

Figure 5.2: Examples of input-target pairs adopted in (A) BCFind-v2, (B)

StarDist and (C) CellPose training.

Prec. (%) Rec. (%) F1 (%)
Method

(st. dev.) (st. dev.) (st. dev.)

BCFind-v2 (ResUNet)
81.2 74.7 77.4

(5.8) (8.9) (4.2)

StarDist (ResNet)
85.1 67.9 75.3

(3.5) (6.2) (3.7)

StarDist (UNet)
85.3 67.4 74.5

(5.7) (11.7) (6.4)

CellPose
79.7 32.4 45.6

(3.7) (6.2) (5.9)

Table 5.1: Localization metrics on LENS annotations. Mean and standard

deviation of precision, recall and F1 metrics on 6-fold leave-one-slab-out

training procedure. Here only volumes available to train DL-models, taken

from slabs 1–6, are considered.

best F1-score and recall, with StarDist (ResNet) not too far behind. Cell-

Pose, again, still struggles in detecting all cells, yet improving from the

previous test, however it now reaches the highest precision. From this ex-

periment we mainly note two facts: StarDist and BCFind-v2 predictions

experience a sharp drop on the recall metric on Slab 18; the recall metric is

almost always (except for Slab 18 and CellPose predictions) higher than the

precision metric, an inverted relationship compared to Table 5.1. While the

first one can be better understood by looking at Figure 5.3, the second one

we speculate could be caused by a more conservative annotation approach
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adopted by stereological experts compared with the more comprehensive one

adopted at LENS. A conjecture corroborated also by the substantial recall

improvement of CellPose predictions.

Slab n. Tot. markers Method Prec. (%) Rec. (%) F1 (%)

6 379

BCFind-v2 (ResUNet) 69.0 84.4 75.9

StarDist (ResNet) 74.7 79.7 77.1

StarDist (UNet) 81.5 70.7 75.7

CellPose 81.5 36.2 50.1

18 746

BCFind-v2 (ResUNet) 76.9 68.7 72.6

StarDist (ResNet) 76.5 61.8 69.6

StarDist (UNet) 81.2 39.9 53.5

CellPose 78.9 47.0 58.9

30 626

BCFind-v2 (ResUNet) 72.0 81.6 76.5

StarDist (ResNet) 73.6 81.8 77.5

StarDist (UNet) 77.0 81.9 79.4

CellPose 76.1 56.4 64.8

42 494

BCFind-v2 (ResUNet) 76.4 82.6 79.4

StarDist (ResNet) 74.8 84.6 79.4

StarDist (UNet) 78.0 81.2 79.6

CellPose 83.8 47.2 60.4

BCFind-v2 (ResUNet) 73.8 78.0 75.8

StarDist (ResNet) 75.6 75.4 75.5

StarDist (UNet) 78.9 65.9 71.8
Tot. 2245

CellPose 79.3 47.8 59.7

Table 5.2: Localization metrics on the annotations made for stereology,

grouped by slab. Bold values are the per slab best metrics. Stereological

estimates have been done on these four slices only.

5.3 Large-scale predictions

Enlarging the view, but decreasing the granularity of performance metrics,

we here look at predictions on whole brain slabs, those in which also stereol-

ogy has been applied: slab 6, 18, 30 and 42. We would like to point out that

this work is the first one, to our knowledge, comparing so many methods on

such large-scale data.

The human cortical Broca’s area is organized into five main layers, paral-

lel to the surface of the brain, which differentiate each other by the size, shape

and function of the neuronal bodies: molecular (plexiform) layer, external

granular, external pyramidal, internal pyramidal and multiform (fusiform)



5.3 Large-scale predictions 47

layer. These are also referred for brevity as layer I, II, III, V and VI re-

spectively. To note that while most of the cerebral cortex is organized into

six layers, the Broca’s area and, in general the motor cortex, is usually di-

vided into four layers only being layer IV very thin and considered only as a

pathway from the thalamus without specialized neurons [4, 71].

Table 5.3 shows the predicted densities on layer III, V and VI of the four

above mentioned slabs for all considered methods. Since stereology reports

layer estimates, we here group the results by layer. Average results per layer

are considered more robust estimates of real densities.

On Layer III StarDist (UNet) obtains the closest to stereology estimate,

but also shows high variability, as we can understand from the bad predic-

tions on Slab 18 (see Figure 5.3). On Layer V is StarDist (ResNet) to achieve

the closest estimate, but still high variability is also detected. However, stere-

ology itself is affected by high variability, obtaining density estimates ranging

from 12162 to 20484 #cells
mm3 . BCFind-v2 densities are, on the other hand, the

closest to stereology on Layer VI, moreover with a much lower standard de-

viation. Overall, BCFind-v2 and StarDist (ResNet) obtain similar results on

all layers and slabs.

Qualitatively, looking at Figure 5.3, we firstly notice the low brightness

on the imaging of Slab 18 which also decreases along the Y axis, explain-

ing the poor recall performances of BCFind-v2 and StarDist on this slice

(Table 5.2). However, BCFind-v2 predictions seem less affected by stripe ar-

tifacts and the poor contrast on the upper part of the image. While StarDist,

especially with UNet backbone, displays higher rate of false negatives and

stripe artifacts all over the considered section. Secondly, the high fluores-

cence of Slab 30, even if it does not reveal clear artifacts on the predictions,

mainly visible with high rates of false negatives, can explain the decreased

precision metrics of BCFind-v2 and StarDist (ResNet) (Table 5.2), hence

possibly hiding some false positive predictions. Finally, CellPose low recall

is here evident with less dense predictions, strongly affected by changes in the

image brightness. By an overall inspection of Figure 5.3, BCFind-v2 seems

to return more consistent predictions, only marginally affected by variations

in input brightness. We would also like to point out how clearly visible the

cell density changes between cortical layers are in the DL predictions (Fig-

ure 5.4), paving the way for a possibly automatic layer segmentation and a

more in depth inspection of brain cytoarchitecture.
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BCFind-v2 Stardist StarDist Volume
Layer Slab

(ResUNet) (ResNet) (UNet)
Cellpose Stereology

(mm3)

III

6 16299.80 13826.54 11435.43 6235.90 10646.75 84.9555

18 14413.17 13245.13 9713.07 9866.65 13412.64 113.2260

30 13656.05 15475.09 14465.01 10517.81 11649.91 102.6240

42 18052.03 18546.95 16531.34 9643.21 12251.03 51.2406

mean 15605.26 15273.43 13036.21 9065.89 11990.08

(st. dev.) (1709.50) (2377.96) (3496.18) (1922.80) (1156.44)

V

6 18017.30 14864.79 11970.96 6380.82 12162.03 47.1015

18 15780.55 13827.55 9843.87 9875.26 17037.78 62.9554

30 14428.27 16011.94 14808.08 10118.20 16708.95 56.7181

42 20371.37 20665.24 18194.80 9541.95 20484.54 27.4817

mean 17149.37 16342.38 13704.43 8979.06 16598.32

(st. dev.) (2259.02) (3016.84) (3485.60) (1748.19) (3415.10)

VI

6 15839.03 13978.84 11517.38 7664.54 13890.03 8.6068

18 13480.22 11848.20 8439.84 10217.72 17602.81 79.6373

30 13316.53 14374.16 13235.04 10340.26 15462.57 59.0898

42 17273.42 17402.98 15689.57 10576.47 23231.62 35.0406

mean 14977.30 14401.05 12220.46 9699.75 17546.76

(st. dev.) (1659.38) (2288.20) (3074.82) (1364.95) (4083.97)

Table 5.3: Predicted densities
(

#cells
mm3

)
and corresponding volumes on whole

human brain slabs, grouped by layer. Bold values are the estimates based

on DL predictions the closest to stereology.

5.4 Inference time

Dealing with huge amount of data, as in this case, could require impracticable

machine-time to perform the analyses, therefore it is essential for a model to

keep its inference time as short as possible. We therefore measure the times

each DL method employs to make predictions on volumes of 100× 100× 50

voxels. To avoid hardware and implementation impacts on the reported

times, we rescaled the execution times by resource percentage usage: 60%

of the GPU for CellPose neural network and post-processing, 10% of the

CPU for CellPose 3D adaptation of 2D predictions, 80% of the GPU for for

BCFind-v2 neural network and post-processing, 10% of the GPU for StarDist

neural network and 90% of the CPU for StarDist post-processing. Moreover,

since time is highly affected by the number of predicted cells, in Figure 5.5

we report the average results after binning the number of predicted cells in

a sample of 8000 volumes.

Worth to notice that while both BCFind-v2 and StarDist directly in-

gest 3D volumes, CellPose needs to process 2D slices per time and subse-

quently merge them. Unfortunately, the official implementation does not

allow for batch prediction (only large 2D images are internally tiled and

batched) so we had to predict each z-plane separately. The 2D nature of

this model is therefore its main speed bottleneck. BCfind-v2 and StarDist

on the contrary, being 3D models, have faster neural network predictions.
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Slab Raw Data
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Intensity
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BCFind-v2
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Figure 5.3: Maximum intensity projections (MIP) of four brain slabs from

the considered human Broca’s area, corresponding pixel intensity histograms

and cell coordinate predictions of DL methods. As its clear from the his-

tograms, the pixel dynamics of displayed MIPs (red vertical lines) cover very

different ranges of intensities.

Low-weighted StarDist neural networks (400K parameters for the ResNet

and 1.2M parameters for the UNet) compared to BCFind-v2 neural net-

work (18M parameters) are faster. However, the CPU-implemented post-

processing of StarDist greatly increases the prediction time, while the low-

weighted GPU-implemented blob detector of BCFind-v2 maintains strong

speed performances. Overall, considering the rescaled time, BCFind-v2 em-

ployed 10min to analyze the 8000 considered volumes, StarDist (ResNet) 1h

13min, StarDist (UNet) 1h 36min and CellPose 4h 10min.

Computations are made on a system with an Nvidia GeForce RTX 2080

Ti, eight cores Intel Xeon W-2123 and 126Gb RAM. The implementation

of each model is taken from its official repository: https://github.com/

stardist/stardist/tree/master for StarDist and https://github.com/

https://github.com/stardist/stardist/tree/master
https://github.com/stardist/stardist/tree/master
https://github.com/MouseLand/cellpose
https://github.com/MouseLand/cellpose
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Figure 5.4: DL predictions identify cell density changes between cortical

layers. (A) MIP of slab 30. (B) Corresponding BCFind-v2 predictions. The

highlighted region of interest (RoI) (C) without and (D) with layer contours

on the raw data MIP. The same RoI on the BCFind-v2 predictions (E)

without and (F) with layer contours. Red numbers in D and F denote the

cortical layer identifier. Scale bars in A–B are 3 mm long, while in C–F are

750 µm. Layer segmentation has been manually drawn on a central plane

of the raw image. DL predictions, unaware of layer segmentation, delineate

individual layers and even two known subregions of clustered neurons at the

layer III-V interface and in the upper part of layer VI that appear as dense

bands in these layers.

MouseLand/cellpose for CellPose.

5.5 Manual annotation effort

When analyzing 3D biological images three kind of information can be mainly

extracted. From the finest to the coarsest we have: complete segmentation,

centroid location and density or counts of objects of interest (in our case

neurons). It is easy to understand how much complex and labor intensive is

https://github.com/MouseLand/cellpose
https://github.com/MouseLand/cellpose
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Figure 5.5: Execution times for different numbers of predicted cells. Predic-

tions are made on volumes with identical shape of 360× 360× 180µm3. All

operations are performed on a machine with an Nvidia GeForce RTX 2080

Ti, eight cores Intel Xeon W-2123 and 126Gb RAM.

having to completely segment 3D objects, since highly irregular polyhedrons

have to be drawn. On the other hand, having to locate object centers only is

a much faster process, just requiring one point per object. For what concerns

density/counts predictions, they actually need to rely on some sort of coor-

dinate annotations, but since they only require the model a large context

understanding of the scene, necessitate a minor number of manual annota-

tions. Additionally, making assumptions on the context under analysis and

thus reducing the need for the model to learn it, decreases further the num-

ber of annotations required. Stereology, with its assumption of homogeneous

layer densities and its count predictions, falls into this category: the model

with lowest demand for annotations and hence human effort required. Only

2245 cell markers were indeed needed for stereology to estimate layer densi-

ties in the Broca’s area of a human, leading to an approximate labor time

of 6-7 h. To which we should also add the time to correctly segment the

cortical layers, estimated at 6-7 h. To note that layer segmentation is here

uniquely done on a central 2D plane of each brain slab and then projected

to the whole slab thickness. Conversely, DL models, to learn how to detect
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cells in 3D images, needed in this case 22596 ground truth markers (10 times

the number needed by stereology) requiring an approximate labor time of 81

h (< 6 times the time needed by stereology). We do not have information

on the time that would be needed to segment at least the same amount of

cells as needed for localization purposes, but we argue that this would be far

beyond the acceptable time or price of many life-science laboratories.

In conclusion, despite complete cell segmentation being the most refined

information obtainable, it is almost impracticable on large-scale, highly vari-

able LSFM images. On the other hand, marker annotations for coordinate

predictions are a much more feasible task, but still, quite laborious. This

labor is however paid back with no underlying assumptions on cell distribu-

tion and object-wise information retrieval. Stereology instead, stands on the

highest step of the podium when talking about manual annotation effort,

but only average layer densities are retrieved. If homogeneity assumption

within segmented layers holds and no finer information is deemed necessary,

stereology would surely be the method of choice. Otherwise, if assumptions

do not easily hold or you don’t want to rely on a-priori layer segmentation,

DL models could give you more fine-grained information without relying on

spatial distribution assumptions. We also note that StarDist and CellPose,

unlike BCFind, not only return cell coordinates, but also their segmentation,

making them the methods with the most fine-grained predictions. However,

when trained from markers only and on images where the cell membranes

are not visible, as in our case, the quality of segmentation is not guaranteed

and hence probably misleading.

5.6 Conclusion

Three DL models for cell detection (BCFind-v2, StarDist-3D and CellPose)

have been extensively tested and evaluated under multiple aspects, each com-

plementing the other. Object-wise metrics and large-scale comparison with

stereology showed the high overall performances of StarDist and BCFind-

v2, while CellPose, despite its claims of generality and adaptability, fails

in detecting many cells from complex 3D LSFM images. Visual inspection

of predicted point clouds revealed the impacts of imaging variability and

artifacts, especially on StarDist (UNet) predictions, but also biologically co-

herent structures. The work therefore proves that when properly validated,

automatic models con obtain reliable and, importantly, biologically inter-
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pretable predictions. On the side of limitations however, supervised DL

models still require very large training-sets, hence depending on a great hu-

man labeling effort. In this sense, the trade-off between human labor and

prediction granularity is the real crossroads when it comes to choosing a

model. Future research must surely go in the direction of reducing this

human effort (Section 6.2).
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Chapter 6

Conclusion

This chapter summarizes the contribution of the thesis and discusses avenues

for future research.

6.1 Summary of contribution

The thesis presents an efficient and scalable software for accurate cell detec-

tion on large-scale light-sheet fluorescence microscopy data. We validated

and applied the proposed method on two challenging, diverse (in voxel res-

olution, stained neurons and origin of biological samples) and vast 3D data.

Multiple variants of deep-learning backbone are available for case-specific

needs and performances. An easy-to-use implementation is freely available

at https://codeberg.org/curzio/BCFind-v2 provided with a Dockerfile

for consistent deployment. The successful application to whole mouse brains

led to two international journal publications [21,74]. The extensive compar-

ison of proposed technique applied to the entire Broca’s area of a human

is ready for submission under the title “Stereology or Deep-Learning? On

the reliability and extrapolation power of deep-learning methods applied to

large-scale human brain tissue” to Scientific Reports.

6.2 Directions for future work

Supervised-learning surely offers a reliable method for training accurate

quantification methods, however the requirement of large training-sets hinder
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its applicability to high-throughput biological experiment pipelines. Future

researches will need therefore to reduce the burden of human annotation.

Self-supervised pre-training techniques could be a real cornerstone to this

end. Contrastive-learning indeed has proven to give huge opportunities in

reducing the number of training labels [12, 82], exploiting them more effi-

ciently [88] or even in image-to-image translation [58]. Similarly, generative

models [34, 61, 89] can also be applied both to generate reliable artificial

data [57] or to learn effective features without supervision [60, 86]. More-

over, model efficiency and scalability can be further improved through the

adoption of end-to-end object detectors [80,90] removing therefore the com-

putational cost of the blob detection step of our pipeline.
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This research activity has led to several publications in international journals

and conferences. These are summarized below.

International Journals

1. A. Franceschini, G. Mazzamuto, C. Checcucci, L. Chicchi, D. Fanelli, I.

Costantini, M. B. Passani, F. S. Pavone, L. Silvestri. “BRAin-wide Neu-

ron quantification Toolkit reveals strong sexual dimorphism in the evolu-

tion of fear memory”, Cell Reports, vol. 42, iss. 8, August 2023. [DOI:

10.1016/j.celrep.2023.112908]

2. L. Silvestri, M. C. Müllenbroich, I. Costantini, A. P. Di Giovanna, G. Mazza-

muto, A. Franceschini, D. Kutra, A. Kreshuk, C. Checcucci, L.A. Toresano,

P. Frasconi, L. Sacconi, F. S. Pavone. “Universal autofocus for quantitative

volumetric microscopy of whole mouse brains”, Nature Methods, vol. 18, pp.

953-958, 2021. [DOI: 10.1038/s41592-021-01208-1]
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“3D molecular phenotyping of the human brain Broca’s area using light-

sheet fluorescence microscopy”, in Biomedical Spectroscopy, Microscopy and

Imaging II (SPIE Photonics 2022), Strasbourg (France), 2022
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C. Checcucci, C. Bruno, R. Pecci. “Hearing outcomes and patient satisfac-

tion after stapes surgery: local versus general anaesthesia” Acta Otorhino-
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[13] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger,

“3d u-net: learning dense volumetric segmentation from sparse annotation,”

in Medical Image Computing and Computer-Assisted Intervention–MICCAI

2016: 19th International Conference, Athens, Greece, October 17-21, 2016,

Proceedings, Part II 19. Springer, 2016, pp. 424–432.
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