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Cyanobacteria are widespread phototrophic microorganisms that represent a

promising biotechnological tool to satisfy current sustainability and circularity

requirements. They are potential bio-factories of a wide range of compounds that

can be exploited in several fields including bioremediation and nanotechnology

sectors. This article aims to illustrate the most recent trends in the use

of cyanobacteria for the bioremoval (i.e., cyanoremediation) of heavy metals

and metal recovery and reuse. Heavy metal biosorption by cyanobacteria

can be combined with the consecutive valorization of the obtained metal-

organic materials to get added-value compounds, including metal nanoparticles,

opening the field of phyconanotechnology. It is thus possible that the use

of combined approaches could increase the environmental and economic

feasibility of cyanobacteria-based processes, promoting the transition toward a

circular economy.
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1. Introduction

In recent years environmental pollution has become one of the main concerns troubling
societies due to its detrimental effect on human health, ecosystems, and the ways it can affect
ecological balance and resource availability. Human activity is incessantly contributing to
increasing concentrations of different polluting compounds in the environment. Within
organic and inorganic pollutants, heavy metals, including cadmium, chromium, copper,
lead, mercury, nickel, selenium, and zinc, are commonly found in all ecosystems. Despite
some metals being essential for living organisms, all metals become toxic at high
concentrations (US EPA, 2015). Their non-biodegradable nature causes their accumulation
in the environment as well as their magnification through the food chain with a mutagenic
and/or carcinogenic risk for humans.

Metal-based industries, such as those that involve mining and electroplating activity,
produce effluents with high heavy metal content (Briffa et al., 2020), which become the main
cause of redistribution and concentration of the metals in water, soil, and air ecosystems
and generating a danger to aquatic life, water availability for rural and urban areas, and
human beings. Thus, stringent regulations, efficient technologies, and long-term sustainable
strategies are essential for reducing the accumulation of heavy metals in the environment.
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In addition, the possibility of recovering and reusing these
compounds may represent an economic opportunity for the
industry and could also sustain the development of “end of
waste” processes through the implementation of a circular
economy approach.

Cyanobacteria are cosmopolitan photoautotrophic bacteria
that represent the largest and widest group of microorganisms.
Their metabolic diversity represents a rich source of
biotechnological instruments for sustainable development
(Mona et al., 2020; Priyanka et al., 2020). Their ability to survive
in extreme conditions, comprising environments containing
pesticides, petroleum by-products, radioactive compounds, crude
oils, xenobiotics, and heavy metals, has drawn increasing interest
from the scientific community, shedding light on the cellular
mechanisms involved as well as their possible exploitation as
a clean green technology for degradation or detoxification of
contaminants. Many studies have been carried out for soil and
water bioremediation adopting cyanobacteria. Such a process
is also named cyanoremediation (Mona et al., 2020; Rueda
et al., 2020; Dutta et al., 2022; Zanganeh et al., 2022). The
possibility of cultivating cyanobacteria on a large scale in large
ponds, coupled with the ability to fix carbon dioxide as well as
atmospheric nitrogen (for some genera), makes them self-sufficient
in terms of adaptability, growth, and maintenance in controlled
or contaminated environments (Gehlot et al., 2022). Furthermore,
the use of cyanobacteria for bioremediation is enhanced also
by their ability to tolerate environmental fluctuations (Gehlot
et al., 2022). Additionally, the cyanobacterial biomass generated
through this process can be exploited as a feedstock for the
production of a wide range of biobased products with several
applications (Encarnação et al., 2023). However, the valorization of
cyanobacterial biomass obtained after heavy metal bioremediation
is still poorly investigated (Blanco-Vieites et al., 2023; Encarnação
et al., 2023; Thevarajah et al., 2023).

In recent years the field of nanotechnology has shown
increasing scientific and economic interest in the possible
application of cyanobacterial biomass (Selmani et al., 2022).
Nanotechnology-based on phototrophic microorganisms is
called phyconanotechnology (Chan et al., 2022; Pandey et al.,
2022b), and represents an opportunity for cyanobacterial biomass
valorization. Nevertheless, research studies in cyanoremediation
and phyconanotechnology are still unlinked.

Considering that cyanobacteria may represent a useful
biotechnological tool to promote societal transitions toward a
circular economy, through waste recovery and valorization, this
article aims to illustrate recent trends and future directions in
cyanobacteria-based heavy metal bioremediation and recovery of
the metals and/or the valorization of the biomasses with a particular
focus on phyconanotechnology. The combination of both processes
will be suggested within a circular concept to ensure higher
economic and environmental feasibility.

2. Heavy metal cyanoremediation:
bioaccumulation vs. biosorption

Cyanobacteria exploit a variety of mechanisms to sequester and
minimize the effect of heavy metals in contaminated environments,

such as biosorption, bioaccumulation, and biotransformation.
Metal-binding metallothionein (MT) proteins and phytochelatins
(PCs), enzymatic and non-enzymatic antioxidants, and enzymes
reducing heavy metals to less harmful forms play a pivotal
role in cyanobacteria defense against heavy metals (Chakdar
et al., 2022). A key role has been attributed to cyanobacteria
exopolysaccharides (EPS), which are heteropolymers characterized
by unique properties compared to other bacteria, including strong
anionic nature due to the presence of one or two uronic acids
and sulfate-containing sugars, and the presence of six or more
different types of monosaccharides. The role of EPS in metal
sequestration is mainly due to the presence of negatively charged
groups, such as sulfate, phosphate, carboxyl, and hydroxyl, that
may work as chelating agents for positively charged heavy metals
(De Philippis and Micheletti, 2017; Cui et al., 2021; Potnis et al.,
2021; Bhatt et al., 2022) and it has been widely demonstrated
through molecular and biophysical techniques: mutagenesis, X-ray
spectroscopy, Fourier transformed infrared spectroscopy (FTIR),
and Scanning or Transmission Electron Microscopy (SEM–TEM)
(Potnis et al., 2021).

Heavy metal remediation by cyanobacteria can be carried out
through two main processes: bioaccumulation and biosorption
(Bloch and Ghosh, 2022). The former is a metabolically driven
active process that requires living cells, whereas the latter is a
passive process that can be performed by both dead or living cells
(Pandey et al., 2022a).

Biosorption, which is considered the major mechanism
for the removal of heavy metals from wastewater, involves
several mechanisms, such as ion exchange, adsorption, surface
complexation, precipitation, and chelation (Bhatt et al., 2022).
Since the cell wall of cyanobacteria is generally rich in negatively
charged groups, which represent potential binding sites for heavy
metals (De Philippis and Micheletti, 2017; Mota et al., 2022), in the
first stage, metal ions can be rapidly sorbed to the surface of the
cells. Consequently, metal ions can be translocated inside the cells
through active transporters and carriers which are converted into
less toxic forms and/or stored in vacuoles.

Several cyanobacteria genera, such as Anabaena, Cyanobium,
Nostoc, Cyanothece, Arthrospira, Microcystis, Synechocystis, and
Leptolyngbya, have shown promising results on Cu, Cd, Zn, Cr,
Pb, Ni, Co or Hg removal with initial concentration ranging from
some mg/L to 150–200 mg/L (Mota et al., 2016; Zinicovscaia et al.,
2018; Yadav et al., 2021; Bloch and Ghosh, 2022; Pandey et al.,
2022a). Maximum uptake is typically in the range of 15–80 mg/g
dry weight, but some works have presented values even higher than
300 mg/g dry weight (Cui et al., 2021). Also, the use of consortia
of different cyanobacteria species or microalgae/other microbes
and cyanobacteria may help to attain higher metal tolerance as
well as higher metabolite synthesis, positively contributing to
metal removal (Cui et al., 2021). Nevertheless, the stability of
the consortia should be monitored to ensure constant bioactivity.
Generally, since the removal efficiency is maximized with a lower
initial metal concentration, biosorption or bioaccumulation by
cyanobacteria can be adopted after conventional methods that are
characterized by low efficiency at a low heavy metal concentration
(Agarwal et al., 2020).

Biosorption is considered a more feasible approach for heavy
metal removal from wastewater compared to bioaccumulation,
as it is characterized by faster kinetics, and the cells are not
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affected by heavy metal concentration which may be toxic at a
high value. Nevertheless, several parameters are known to influence
the biosorption process, such as pH, temperature, biosorbent
dosage, and pretreatment, which require attention for improving
the adsorption ability (Al-Amin et al., 2021). Another advantage
of biosorption is represented by the possibility to exploit the
cells for several desorption/adsorption cycles increasing their shelf-
life and thus their economic value. During desorption, several
solutions may be adopted, including strong acid or base, EDTA,
or water, depending on the strength of the binding between
metal ions and binding groups as well as the mechanical and
physical strength of the biosorbents (Chatterjee and Abraham,
2019; Agarwal et al., 2020; Satya et al., 2021). Once eluted, the
metal ions can be recovered to enter again inside the productive
cycle of the industries, while the metal-free biomass can be used
in a further adsorption cycle. When the adsorption capacity of the
biomass is exhausted, the cells can be harvested for the last heavy
metal recovery or their valorization.

It is worth mentioning cyanobacterial biomass management
options. If cyanobacteria can be directly grown in open ponds
or closed photobioreactors containing heavy metals contaminated
wastewater exploiting active removal processes, other approaches
should be implemented for biosorption since it doesn’t require
metabolically active cells. The biomass obtained after their
cultivation can be confined in closed systems with low porosity,
such as dialysis membrane devices, or immobilized in polymeric
matrices or filter-columns or filter-press (De Philippis et al.,
2011; Ramírez Calderón et al., 2020). These systems are also
advantageous to carry out adsorption/desorption cycles and/or for
the recovery of metal-contaminated biomass that can be disposed
for the following valorization. Since the materials remain confined
or entrapped for the entire duration of the process, no risks due to
biomass or metal contamination exist. Batch systems, which consist
of metal-containing solutions and biosorbents, are commonly
used in lab trials due to their simplicity. Nevertheless, the use
of continuous reactors (e.g., fixed-bed column with continuous
liquid flow) is favored at the industrial scale (Ramírez Calderón
et al., 2020). Immobilization of cyanobacteria as biofilms has been
recently developed as a feasible cultivation strategy to reduce
water use and simplify the harvesting process (Cui et al., 2021).
Immobilized cells or EPS onto a suitable carrier can be also used
for the metal biosorption process, due to the increase in mechanical
strength and chemical resistance of the biosorbents. Thus, multiple
adsorption/desorption cycles can be easily carried out, and the
exhausted biosorbents can be harvested at the end of the process
for their valorization. In this context, adsorption, covalent bonds
in vector compounds such as silica gel, entrapment/encapsulation
in polymeric matrices, and cross-linking, can be exploited for
immobilization. Nevertheless, the diffusion rate of metal ions
into the polymeric matrices should be carefully checked (Velkova
et al., 2018; Ajao et al., 2020; Cui et al., 2021). Nostoc muscorum
immobilized on a glass surface through the formation of biofilm
has been used for Cd removal from water solutions. The cultures
exhibited higher cell resistance compared to the cell suspension
and higher Cd tolerance (Raghavan et al., 2020). Velu et al. (2020)
cultivated Tolypothrix sp. in outdoor cultures in simulated ash dam
wastewater adopting 500 L vertical bag photobioreactor and as
biofilms in algal-turf scrubbers. They found similar metal removal
efficiency between the two cultivation systems.

Despite cyanobacteria biosorption has been widely recognized
as an effective, fast, low-cost, and eco-friendly treatment method
due to the large surface-to-volume ratio, the strong anionic
character of EPS, and the possibility to regenerate, reuse, and easily
recover the biosorbents (De Philippis and Micheletti, 2017; Singh,
2020; Priya et al., 2022), there are still economic and technical
concerns that need to be managed for the process optimization,
such as the economic cost and environmental footprint of biomass
production, and metal recovery and reuse, that will be further faced
in the following sections.

3. Heavy metal recovery and
valorization

During the last decades, the necessity to minimize resource
overexploitation and maximize waste prevention while generating
economic gains has developed the circular economy concept
(Velenturf and Purnell, 2021). This topic has been addressed by
many research areas, including phycology (i.e., the study of algae).
Many recent works investigated the cultivation of microalgae and
cyanobacteria in conjunction with nutrient recycling from agro-
industrial wastewater for biomass production and valorization
(Abinandan et al., 2018; Gorain et al., 2019; Bhatt et al., 2022).
However, research studies on heavy metal removal coupled with
biomass application are still missing.

Cyanobacteria are commonly considered a potential source
of bio-control agents, bio-fertilizers, soil amendments, food
supplements, biofuels, high-value products, and biopolymers
(Gomes Gradíssimo et al., 2020; Mona et al., 2020; Kholssi
et al., 2021). Thus, the cyanobacteria biomass obtained after
biosorption and/or bioaccumulation of heavy metal can be
harvested and potentially converted into various economically
significant by-products. Additionally, heavy metals can be
recovered through desorption from metal-enriched biomasses or
can be immobilized on biomass-derived carbons as metal-loading
materials (Chai et al., 2022).

For instance, Serrà et al. (2020) proposed a circular zero-residue
process adopting living cells of Arthrospira platensis for heavy
metal bioremediation and the generated biomass for the production
of bioethanol, biogas, and Fenton-like catalysts adopted for the
degradation of persistent organic pollutants. Besides, the remaining
low-activity ashes were used for the preparation of an ash-based
medium for microalgae cultivation.

A further potentially interesting application that may
be coupled with heavy metal removal is suggested by a
recent work that investigated the use of hydrogels composed
of sulphated polysaccharides from red microalgae and
enriched with Zn as antimicrobial wound-dressing materials
(Netanel Liberman et al., 2021).

4. Phyconanotechnology: synthesis
and application

The valorization of metallic-organic materials obtained
through metal biosorption in nanotechnology may represent
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a significant opportunity to increase the economic value of
cyanobacteria. Nanotechnology is an emerging field concerning
the synthesis, characterization, and application of nanomaterials
(1–100 nm size) characterized by high surface area-to-volume
ratio enhancing their physico-chemical properties (Hamida et al.,
2020). The global nanotechnology market was valued at USD 9.39
billion in 2021 and is expected to register a CAGR of 14.9% by 2030
with increased application in electronics, followed by the medical
industry (Market Analysis Report, 2021).

Among nanotechnologies, metal nanoparticles (NPs) are
applicable in several fields, including diagnostic, biosensing,
imaging, antimicrobials, catalysis, electronics, optics, biofuel cells,
anticancer, and drug delivery (Hamida et al., 2020). Nevertheless,
conventional methods for NP synthesis are often expensive
and produce toxic by-products. To avoid these drawbacks, eco-
compatible systems for the production of NPs are challenging:
intra- and extracellular green synthesis of NPs adopting biological
systems, including algae and cyanobacteria are receiving increasing
attention (Ijaz et al., 2022; Mandhata et al., 2022; Barciela et al.,
2023).

Microbes, and in particular prokaryotic organisms, have been
demonstrated to be effective nano-factories, thanks to their ability
to accumulate and detoxify heavy metals and to the presence of
a wide range of reductase enzymes, microbial cells are able to
immobilize and reduce heavy metals, through a dose-dependent
process (Mandhata et al., 2022). Metal NPs synthesis can be carried
out through a metabolism-dependent or independent process,
where proteins and polysaccharides work as reducing, stabilizing,
and capping agents (Mandhata et al., 2022). Generally, metal ions
are entrapped into the cell surface thanks to the presence of
negatively charged groups in the biosorption process, where they
are reduced by enzymes, proteins, lipids, and pigments. Metal ions
can also enter into the cell through internal absorption, to be
reduced intracellularly by enzymes (nitrate reductase, nitrogenase)
and then stabilized.

The term phyconanotechnology is referred to nanotechnology
based on biobased material produced or constituted by
photosynthetic microorganisms (Chan et al., 2022; Pandey
et al., 2022b). For example, polysaccharides from brown algae
(e.g., alginate, fucoidan, and laminaran) can be used as reducing
and stabilizing agents for eco-friendly synthesis of silver NPs
with cytotoxicity and antibacterial activity (Yugay et al., 2020).
Recent studies have been carried out to obtain Cu, Zn, Cd, Ti,
Au, and Ag NPs of different sizes (5–266 nm) and shapes (mainly
spherical) adopting cyanobacteria EPS, cells, or cellular extracts as
summarized in Table 1. These metal NPs have been tested for their
application in medical, antimicrobial, and bioremediation fields
(Saran et al., 2017; Ebadi et al., 2019; Ismail et al., 2021; Hanna
et al., 2022; Mandhata et al., 2022; Pandey et al., 2022b). Most
studies are based on AuNPs and AgNPs biosynthesis (Table 1)
due to their non-toxicity, bio-compatibility, and for their high-
potential therapeutic applications (Aziz et al., 2021; Mandhata
et al., 2022). Although therapeutic and anti-microbial applications
are commonly studied, the use of bio-based metal NPs in the
industrial sector needs deeper investigation.

For instance, the development of functional textiles
adopting metal NPs has triggered the interest of the industrial
sector in recent years. The incorporation of metal NPs
provides textiles with antimicrobial, ultraviolet-resistance,

self-cleaning capabilities, and flame-retardant properties.
Polysaccharides can reduce and stabilize metal NPs and
promote their adhesion to fabrics. In addition, polysaccharides
can improve the properties of textiles due to their physico-
chemical characteristics (Fernandes et al., 2022). In this
frame, cyanobacterial EPS, with metal chelating properties
and a high amount that can be synthesized, could constitute
an interesting tool for NPs stabilization and functional
textiles improvement.

Additionally, metal NPs offer numerous benefits as green
catalysts due to their high reactivity, selectivity, low cost, and
easy preparation, and the fact that they can be widely applied
for the production of pharmaceuticals and some commodity
chemicals (Sheldon and Woodley, 2018). For instance, simple
Pd complexes can be heterogenized into red algae-derived
polysaccharide supports to improve conversion rates in Suzuki
cross-coupling reaction (Wolfson et al., 2018), while CuNPs can
be stabilized in chitosan-based hydrogel and used as a catalyst
for the synthesis of 1,2,3-triazoles (Souza et al., 2019). Sulfated
polysaccharides of algal origin have been also used as bio-matrix
and capping agent for BaFe12O19 NPs. These heterogeneous
materials were characterized by high catalytic activity in the
one-pot synthesis of 2-amino-4H-pyrans and pyrans annulated
heterocyclic compounds, effective reusability, and antibacterial
activity (Amirnejat et al., 2022). The differences in the catalytic
effectiveness between commercial polysaccharides and extracted
microbial exopolysaccharides are probably ascribable to their
different composition, for example to the presence of peculiar
monomers in the polysaccharidic backbone of microbial EPS
(Sutherland, 1990).

According to Sheldon and Woodley (2018), new developments
in the biobased economy will further enhance broader applications
of biocatalysis. The study of microbial cells or soluble chelating EPS
for obtaining metal-bearing biocatalysts can be a new opportunity
for developing innovative and eco-sustainable high value industrial
products even in a circular economy concept.

For example, microbial biomass and EPS can be recovered
after metal biosorption and used as biocatalysts for many organic
transformations. In this context, Gandolfi et al. (2022) successfully
valorized the use of two EPS-producing bacterial strains, using their
biomass after Cu biosorption as hybrid catalysts in the asymmetric
boron addition on α,β-unsaturated chalcones for the synthesis of
valuable pharmaceutical intermediates.

Therefore, as a perspective, since many cyanobacteria species
are excellent EPS producers in terms of quality and quantity
(Cruz et al., 2020; Morais et al., 2022), and their monosaccharidic
composition is highly heterogeneous, their application in the field
of green catalysis may represent a huge opportunity.

Despite ongoing research in phyconanotechnology, the field
is still at the beginning, this area of study is considered an
option for increasing the market value and potential applications
of EPS (Morais et al., 2022). Additionally, coupling heavy
metal removal with metal NPs production may promote the
development of a circular system to get high-added value products
from waste as suggested in Figure 1. Nevertheless, new studies
based on the elucidation of the mechanisms for biosynthesis of
NPs and screening of different strains are needed to develop
standardized protocols.
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TABLE 1 Metal nanoparticle synthesis by different cyanobacteria.

Cyanobacteria Synthesized
nanomaterials

Shape and size Application/Activity References

Anabaena variabilis Ag NPs spherical and oval, 26 nm dye removal Ismail et al., 2021

Anabaena spiroides Au NPs different shapes, <80 nm antimicrobial activity Mandhata et al., 2021

Anabaena sp. 66-2 Ag NPs irregular, 24 nm antibacterial activity Patel et al., 2015

Arthrospira platensis Au NPs spherical, 14 nm antioxidant and catalytic activity Zayadi and Abu Bakar, 2020

Arthrospira platensis CuO NPs spherical, 15 nm photocatalytic activity Alsamhary et al., 2022

Arthrospira platensis ZnO NPs spherical, 30–55 nm antibacterial and anticancer activity El-Belely et al., 2021

Arthrospira platensis Au NPs spherical, 15–60 nm antibacterial activity Uma Suganya et al., 2015

Arthrospira platensis Ag NPs spherical and oval, 18 nm dye removal Ismail et al., 2021

Cyanothece sp. Ag NPs different shapes, 80–129 nm curative effect on myocardial infarction Younis et al., 2019

Leptolyngbya sp. WUC 59 Ag NPs spherical, 20–35 nm antibacterial activity Singh et al., 2020

Microchaete sp. NCUU-342 Ag NPs spherical, 60–80 nm dye decolorization Husain et al., 2019

Nostoc cameum Ag NPs spherical, 7–27 nm antibacterial, cytotoxic and antihemolytic activity El-Naggar et al., 2018

Nostoc commune Ag NPs spherical, 15–45 nm antifungal and antibacterial activity Morsy et al., 2014

Nostoc sp. EA03 ZnO NPs star, 20–80 nm antibacterial, antibiofilm and anticancer activity Ebadi et al., 2019

Oscillatoria limnetica Ag NPs spherical, 5–26 nm antibacterial and anticancer activity Hamouda et al., 2019

Oscillatoria sp. NCCU-369 ZnO NPs spherical, 40–130 nm antioxidant and antibacterial activity Asif et al., 2021

Phormidium tenue NTDM05 CdS NPs spherical, 5 nm biolabeling MubarakAli et al., 2012

Synechococcus sp. AgNP spherical, 15–266 nm Photocatalytic and antibacterial activity Keskin et al., 2016

Synechocystis NCCU-370 TiO2 NPs spherical, 73 nm antibacterial, antifungal and antioxidant activity Siddiqui et al., 2022

Synechocystis sp. Ag NPs spherical, 10–35 nm antimicrobial and wound-healing activity Younis et al., 2022

Synechocystis sp. 48-3 Ag NPs irregular, 15 nm antibacterial activity Patel et al., 2015

5. Future directions

Cyanobacteria advanced cultivation systems for higher target
molecules and biomass productivity or improved downstream
processing may be adopted to enhance the bioremoval process.
Molecular engineering strategies targeting the ability, specificity,
and robustness of cyanobacteria strains can also improve
their properties. Even if general risks for cyanobacteria-based
remediation are not illustrated in the literature, biosafety issues
and contamination risk need to be considered for engineered
cyanobacteria (Cui et al., 2021).

Another target to achieve is the reduction of the costs associated
with biomass cultivation while increasing the environmental
benefits of the process (Wan Mahari et al., 2022). Cyanobacteria can
be cultivated by replacing conventional fertilizers with nutrient-
rich wastewater (Figure 1), leading to a double outcome: the
recovery of carbon, nitrogen, phosphorus, and other nutrients
through their assimilation, together with cyanobacteria biomass
production (Sachdeva et al., 2018; Gomes Gradíssimo et al.,
2020; Kholssi et al., 2021; Prabha et al., 2022). Thus, the
costs associated with artificial salts and water requirements are
reduced together with the environmental footprint of the process
(Sachdeva et al., 2018). The produced biomass can be harvested
and pre-treated to be repeatedly used as biosorbent in multiple
adsorption/desorption cycles for the continuous recovery of metals
from wastewater. Moreover, when used at the end of the cycle,
the obtained metal-organic materials can be valorized, exploiting

the biochemical properties of cyanobacteria to achieve high-
value products through phyconanotechnologies (Figure 1). In this
context, the effect of biomass-specific properties, or metal type and
quantity on the performance of the obtained materials needs to
be explored together with their physical-chemical characterization.
This approach may help to reach circularity and sustainability
requirements, maximizing the valorization of wastes.

To date, a limited number of works have evaluated metal
biosorption from industrial wastewater, despite their composition
and pH being known to strongly influence the heavy metal removal
process, including the selectivity of the biosorbent toward metals
(Zinicovscaia et al., 2019; Li et al., 2022). Specific studies with
metal-rich wastewater are needed to implement this approach at
pilot and industrial scales. For instance, the recovery of water and
metals from electroplating effluents is particularly challenging due
to the high costs associated with the metal-coating process and
the treatment of the generated effluents (Li et al., 2022). Thus,
the cyanobacteria-based approach suggested in this article may be
implemented to reduce metal concentration from these effluents,
while obtaining a metal-rich organic material.

The environmental and economic benefits as well as the
potential risks of converting and recycling heavy metal-
contaminated biomass into value-added materials should be
carefully evaluated. The valorization of these materials (cells or
EPS) in different application fields, including nanotechnology,
encompasses several safety concerns, which hinder their
applicability. The increasing worldwide production of NPs
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FIGURE 1

Schematic representation of heavy metal biosorption adopting cyanobacteria coupled with metal recovery and phyconanotechnology through a
circular process. Created with BioRender.com.

and their low size may lead to their release into the atmosphere,
aquatic, and terrestrial environments, through aggregation or
biological transportation, reaching long distances. Due to their
small size, NPs can easily cross biological barriers reaching any
organ in living beings. Their bioaccumulation has been associated
with many toxic effects, including alteration of the immune
system, oxidation stress, carcinogenesis, and DNA damage
(Solano et al., 2021; Liu et al., 2022). Size, shape, surface charge,
and agglomeration state define several toxicological aspects of
metal NPs (Fernandes et al., 2022). The risk assessment of these
materials should be taken into account, even more accurately if the
synthesis is coupled with heavy metal bioremoval from wastewater.
Risk assessment and management process must be evaluated
through the identification of the physic-chemical properties of
the material, hazard identification, and dose-response assessment
(Solano et al., 2021).

6. Conclusion

Cyanobacteria represent a potential tool for heavy metal
bioremediation exploiting biosorption or bioaccumulation
processes. Cyanobacteria cultivation, harvesting, pre-treatment,
and exploitation in heavy metal bioremoval can be manipulated to
get efficient metal recovery together with a reduced environmental
footprint and the economic cost of the process. Nevertheless,
considering cyanobacteria exclusively for their use in the
bioremediation sector is economically disadvantageous. The
metal-rich biomass obtained through this system can be converted
into high-value products, such as metal nanoparticles, to be
valorized into pharmaceutical and industrial fields, exploiting a
closed-loop system with no waste production. However, more
studies are needed to optimize heavy metal bioremoval at an

industrial scale and also to explore a feasible and safe valorization
of the obtained materials.
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