Burrows-Wheeler Transform on Purely Morphic Words

A. Frosini*, I. Mancini[†], S. Rinaldi[†], G. Romana[‡] and M. Sciortino[‡]

*Università di Firenze Firenze, Italy andrea.frosini@unifi.it †Università di Siena Siena, Italy ilaria.mancini@student.unisi.it simone.rinaldi@unisi.it [‡]Università di Palermo Palermo, Italy giuseppe.romana01@unipa.it marinella.sciortino@unipa.it

The study of the compressibility of repetitive sequences is an issue that is attracting great interest. We consider purely morphic words, which are highly repetitive sequences generated by iterating a morphism φ that admits a fixed point (denoted by $\varphi^{\infty}(a)$) starting from a given character a belonging to the finite alphabet A, i.e. $\varphi^{\infty}(a) = \lim_{i \to \infty} \varphi^i(a)$. Such morphisms are called prolongable on a. Here we focus on the compressibility via the Burrows-Wheeler Transform (BWT) of infinite families of finite sequences generated by morphisms. In particular, denoted by r(w) the number of equal-letter runs of a word w, we provide new upper bounds on $r(\text{bwt}(\varphi^i(a)))$, i.e. the number of equal-letter runs produced when BWT is applied on $\varphi^i(a)$. Such bounds depend on the factor complexity $f_x(n)$ of the infinite word $x = \varphi^{\infty}(a)$, that counts, for each $n \geq 0$, the number of distinct factors of x having length n.

More in detail, given the infinite word $x = \varphi^{\infty}(a)$ over the finite alphabet A, the following upper bounds for $r(\mathtt{bwt}(\varphi^i(a)))$ can be proved:

- 1. if $f_x(n)$ is $\Theta(n)$ then $r(\mathsf{bwt}(\varphi^i(a))) \in \mathcal{O}(i)$.
- 2. if $f_x(n)$ is $\Theta(n \log \log n)$ then $r(\mathsf{bwt}(\varphi^i(a))) \in \mathcal{O}(i \log i \log \log i)$.
- 3. if $f_x(n)$ is $\Theta(n \log n)$ then $r(\mathtt{bwt}(\varphi^i(a))) \in \mathcal{O}(i^2 \log i)$.

When the special case of binary alphabet is considered, it is possible to give an upper bound also for another class of morphisms. In particular, if φ is a morphism on the binary alphabet $\{a,b\}$ admitting the fixed point $x = \varphi^{\infty}(a)$ such that $f_x(n)$ is $\Theta(n^2)$, we can prove that $r(\mathtt{bwt}(\varphi^i(a)) \in \mathcal{O}(i)$.

Such results allow us to state that, for the BWT-clustering ratio ρ [1] of almost all the sequences on the binary alphabet $\{a,b\}$ generated by a prolongable morphism φ , the following inequality holds:

$$\rho(\varphi^i(a)) = \frac{r(\mathrm{bwt}(\varphi^i(a)))}{r(\varphi^i(a))} \ll 1.$$

This extends some results shown in [2].

- [1] S. Mantaci, A. Restivo, G. Rosone, M. Sciortino, and L. Versari, "Measuring the clustering effect of BWT via RLE," *Theoret. Comput. Sci.*, vol. 698, pp. 79 87, 2017.
- [2] S. Brlek, A. Frosini, I. Mancini, E. Pergola, and S. Rinaldi, "Burrows-Wheeler Transform of Words Defined by Morphisms," in *IWOCA*. 2019, vol. 11638 of *Lect. Notes Comput. Sci.*, pp. 393–404, Springer.

452