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Abstract—Human skeletal remains are an immense source of However, thanks to the paradigm of Arti cial Intelligence

data to describe human biodiversity with an intrinsic complexity  [5] (Al), newer tools are today available to explore this kind
due to the multifactorial origin of human variability. Evolution ¢ 445

and ontogeny produced complex patterns of variation through . . . . .
contingent events and adaptations. Multivariate approaches have ~ Machine Learning (ML) algorithms, in particular, are the

been widely adopted in physical anthropology; however, at core of many successful applications, covering nowadays every
present, Articial Intelligence algorithms have scarcely been eld of knowledge, from engineering [6], physics [7] and

applied to such datasets. Data analysis techniques based omangphotonics [8] [10], up to medicine [11] [14] and cultural
Arti cial Intelligence algorithms have shown to be suitable in heritage [15], [16]

many different elds, from engineering and medicine up to L
cultural heritage and Egyptology. In this work we aim to show ~ Among the factors of variation, sex and ancestry are par-

how Machine Learning algorithms can be applied in the eld ticularly important for forensic anthropologists, as they help
of anthropology, using the W.W. Howells dataset of cranial in the identi cation of crime victims. However, the intrinsic
measurements, limited to the analysis of African populations. complexity of human phenotype (and its continuous variation

Principal Component Analysis (PCA), t-distributed stochastic . R .
neighbor embedding (t-SNE), Spectral Embedding and Uniform among sexes and populations) make it dif cult to estimate

Manifold Approximation and Projection (UMAP) were used for ~ those t.raits from met.ric data.. .
dimensionality reduction, along with supervised and unsuper-  In this work we tried to disentangle such complexity us-

vised methods to explore and quantify the differences due to ing ML, employing the Howells dataset [17] [19] of cranial
ancestry and sex in the skulls of African populations. Algorithms ye55rements, in our application limited to the African pop-

such as Support Vector Machines and the unsupervised DBSCAN . . . . . .
were applied to the data in order to quantify this similarity. This ulations. The idea is to identify a ML data analysis work ow,

strategy allows a discrimination of sex and ancestry (aboug5% Starting from data visualization up to supervised and unsu-
of accuracy for both) in human remains, ultimately opening up pervised classi cation, supporting the work of anthropologists
new routes for anthropological research. o to identify sex and ancestry from human cranial remains.

Index Terms—component, formatting, style, styling, insert Recent works support our vision, highlighting the importance

| INTRODUCTION to introduce ML in Anthropology [20] [24].

Human skeletal remains provide a vast amount of data to Il. WORKFLOW
study human variability. Extant human variability derives from
multiple factors. Evolutionary history (in the generations) and )
ontogeny (in an individual’s life course) shape the space of Dataset selection _
human variation, through contingent events and adaptations. Machine Learning data analysis
The sources of variation are multiple and include sex and Anthropological interpretation of the results
ancestry [1], [2] as well as cultural practices, lifestyle and . .
socioeconomic conditions [3], [4]. The interplay between aﬁ‘ Dataset selection - Cranial data
these factors, produces complex patterns of variation, oftenWe selected the public available dataset [25] compiled by
dif cult to disentangle. Dr. William Howells, comprising more than 3000 individuals

In this work the following steps were performed:
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and up to 82 linear cranial measurements with notes about tlegiance of abou80% 14 PC components must be taken into
provenance and sex of the individuals. consideration.
Aiming to challenge the discrimination power of ML algo-
rithms, 5 African populations (BushmgnDogon, Egyptian,
Teita and Zulu) were selected.

Fig. 2. PCA plots showing the rst 2 components for all African populations.

Fig. 1. Cranial example of measurements taken from Howells. On the right

the geographic distribution of the 5 African populations. Clearer results can be obtained using t-SNE (Fig. 3). Sex

difference can introduces more variability, as observed by the

B. Machine Learning difference in the 2D map between Female and Male (Fig. 4).
ML can be applied using a plethora of algorithms, some
suitable to create comprehensive maps to visualize data O wa

" FEMALE

tribution in 2D, other focused on classi cation of the data |
a supervised or unsupervised way. However, due to the
Free Lunch Theorem [26], there is no waypriori to know
which algorithm will perform better on our problem. So, th
only solution is to try different algorithms in our dataset. |
this work ML algorithms [27], [28] were used in order t
explore the data to uncover sex and ancestry.

1) Dimensionality reduction techniqueBimensionality re-
duction can be ful lled with many algorithms, such as PC/
t-SNE [29] [31], Self-Organizing map [32], and UMAP [33],

[34]. In this work we started from the well-known PCA, it oM
components potentially useful as input of the other algorithr ; e
moving then to probabilistic techniques such as t-SNE [3 s
[31], UMAP (based on topological data analysis) [34] and Sen

Organizing map [32]. Fig. 3. Ancestry t-SNE results. Hyperparameters: Perp. 10 and Exag. 4.

2) Supervised and unsupervised classi catiosupport
Vector Machines [35], Random Forest (RF) [36], Neural Better results can then be obtained by restricting to just one
Network (1 hidden layer allocating 100 neurons with ReLu asex, as shown in Fig. 5.
activation function, Adam solver and a regularization factor An example of dimensionality reduction, using UMAP
of 10 4), k-Nearest Neighbor (kNN) [37] and AdaBoost [38Japplied to the Ancestry of African men, is reported in Fig. 7,
were used for supervised learning, while for unsupervised khile an example using Self Organizing Map applied to the

Means and DBSCAN [39], [40] were applied. Ancestry of African is illustrated in Fig. 8. All the algorithms
Cross validation was implemented to evaluate every perfguggest the same conclusions: Bushman and Egyptian are
mance of ML classi cation algorithms. separated clusters, while the other three populations are more
l1l. RESULTS mixed.
A. Dimensionality reduction B. Classi cation

PCA decomposition seems to suggest 5 clusters (Fig. 2).gypervised classi cation results (average over all classes)
However, it is worth to note that in order to obtain an explainegq reported in Tab. | for Ancestry considering Male and

1We kept the Bushman wording, instead of San, as used in the origirFa?male or separ'ate.Iy _(Ta_b- II'and Tab. IIl). Tab. IV reports
Howells database. results for Sex discrimination.
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Fig. 4. Sex t-SNE results. Hyperparameters: Perp. 20 and Exag. 4.

Fig. 7. UMAP Ancestry clustering of African men populations. Hyperparam-
eters: number of neighbor = 30, minimum distance = 0.25.

Fig. 5. Ancestry t-SNE results, restricting the analysis to Men only. Hyper-
parameters: Perp. 15 and Exag. 3.

Fig. 8. Self Organizing map showing populations Ancestry clustering.

Fig. 6. Bushman Sex t-SNE results. Hyperparameters: Perp. 10 and Exag. 4.
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TABLE |
ANCESTRY SUPERVISED CLASSIFICATION RESULT.S
Algorithm | AUC | Accuracy | F1 Precision | Recall
SVM 0.98 0.87 0.87 0.87 0.87
RF 0.92 0.75 0.75 0.75 0.75
NN 0.985 0.89 0.89 0.89 0.89
kNN 0.93 0.76 0.76 0.76 0.76
AdaBoost | 0.73 0.58 0.58 0.58 0.58
TABLE I
MEN ANCESTRY SUPERVISED CLASSIFICATION RESULTS
Algorithm AUC | Accuracy F1 Precision | Recall
SVM 0.97 0.85 0.85 0.85 0.85
Random Forest| 0.92 0.75 0.745 0.745 0.75
Neural Network | 0.98 0.87 0.87 0.87 0.87
kNN 0.91 0.77 0.765 0.765 0.77
AdaBoost 0.77 0.64 0.64 0.64 0.64
TABLE Il
FEMALE ANCESTRY SUPERVISED CLASSIFICATION RESULTS
Algorithm AUC | Accuracy F1 Precision | Recall
SVM 0.97 0.87 0.87 0.87 0.87
Random Forest| 0.94 0.75 0.745 0.745 0.75
Neural Network | 0.98 0.88 0.88 0.89 0.88
kNN 0.93 0.75 0.74 0.75 0.75
AdaBoost 0.72 0.56 0.56 0.565 0.56
TABLE IV
SEX SUPERVISED CLASSIFICATION RESULTS FOR ALL POPULATIONS
Algorithm AUC | Accuracy | F1 | Precision| Recall
SVM 0.93 0.86 0.86 0.86 0.86
Random Forest| 0.91 0.83 0.83 0.83 0.83
Neural Network | 0.93 0.85 0.85 0.85 0.85
kNN 0.88 0.79 0.79 0.80 0.79
AdaBoost 0.75 0.75 0.75 0.75 0.75
TABLE V
SEX SUPERVISED CLASSIFICATION RESULTS FOBUSHMAN.
Algorithm AUC | Accuracy | F1 Precision | Recall
SVM 0.82 0.78 0.78 0.78 0.78
Random Forest| 0.83 0.73 0.73 0.73 0.73
Neural Network | 0.85 0.77 0.77 0.77 0.77
kNN 0.765 0.70 0.70 0.70 0.70
AdaBoost 0.70 0.70 0.70 0.705 0.70

IV. DISCUSSION

Dimensionality reduction algorithms such as t-SNE and
UMAP allow making some considerations on the relationships
among the analysed populations. Egyptians are the only non
sub-Saharan population; their separation from the others is
likely linked to a reduced genic ow with sub-Saharan groups.
Also the Bushman cluster separately, in agreement with their
deep rooting in the phylogenetic tree of human populations
[41].

It is worth noting as the importance of dimensionality
reduction techniqgues must be researched not just in their
power to visualize distinct clusters of data for a particular
combination of hyperparameters, but rather in a wider view.
E.g. Mixing or partial superimposition of clusters can give
valuable information. Tweaking the hyperparameters such as
metric, perplexity, and exaggeration for t-SNE, or the number
of neighbors, minimum distance, number of components, and
metric for UMAP, allows to obtain different visualization
which must be carefully analyzed in order to extract mean-
ingful knowledge [29], [33].

Classi cation results employing supervised learning algo-
rithms are very promising, e.g. some of them (SVM and
Neural Network) reach accuracy abo886% in ancestry and
sex determination.

However, unsupervised classi cation unfortunately is not
performing equally well. K-Means and DBscan don't allow
discrimination between Ancestry always pinpointing to 2 clus-
ters, while for Sex things seem better, but strong results are far
away. These conclusions are re ected in the low values of the
Silhouette score index [42], found for different combinations
of Populations and Sex variables. For K-Means this can be
ascribed to its ability to deal just with spherical clusters, which
is not the case for our dataset. Surely, unsupervised methods
deserve to be explored in details in future works, extending
the kind of algorithms.

V. CONCLUSION

In this work we have shown how the problems of Ancestry
and Sex determination in forensic anthropology can be tackled
using machine learning algorithms, getting some understand-
ing of the data structure, aiming to support the work of foren-

Results for unsupervised methods such as K-Means (Tal: anthropologists. Interesting results were found using di-
V1) and DB-SCAN suggest 2 clusters relative to Sex, whilgensionality reduction algorithms and supervised approaches,
Ancestry is complicated to uncover.

TABLE VI
K-MEANS RESULTS FORANCESTRY AND SEX.

Dataset Sex Objective | Clusters | Silhouette
All Populations | M+F Ancestry 2 0.160
All Populations | Female | Ancestry 2 0.125
All Populations | Male Ancestry 2 0.129
Bushman M+F Sex 2 0.166
Dogon M+F Sex 2 0.134
Egypt M+F Sex 2 0.174
Teita M+F Sex 2 0.154
Zulu M+F Sex 2 0.144

while unsupervised methods deserve deeper investigation.
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