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Preface & Abstract

January 31, 2023

The mid-infrared (MIR) part of the electromagnetic spectrum is known as the molecular
fingerprint region due to the abundance of fundamental rovibrational molecular absorption
lines falling therein. Consequently, the MIR region has been deeply investigated for
many molecular spectroscopy and sensing applications. One of the most recent scientific
and technological breakthroughs in these fields is the development and demonstration of
quantum cascade lasers (QCLs), both as MIR compact laser sources (1994, Bell Labs)
and, more recently, as direct frequency-comb emitters (2012, ETH Zurich). Despite
the importance of the MIR spectral region and the large number of applications, lasers,
materials, and related technologies are still under development and far less available if
compared to the visible and near-infrared spectral regions. This gap is even more dramatic
if we move to the quantum world, as the MIR region nowadays lacks both non-classical
light sources and suitable detectors for their investigation. This thesis, entitled Chip-scale

quantum light infrared emitters, represents one of the first scientific attempts to push the
MIR research towards quantum technologies. This manuscript provides a collection of
experiments to which I contributed directly during my Ph.D. research activity. They all
aimed at generating infrared non-classical state of light and developing suitable detection

systems, paving the way to a very high-level long-term goal: the realization of the very
first chip-scale quantum source based on quantum cascade laser frequency combs.
For the past three years (Nov. 2019–Jan. 2023), I have been enrolled in the three-year
Ph.D. program International Doctorate in Atomic and Molecular Photonics organized
by the European Laboratory for Non-Linear Spectroscopy (LENS) of the University of
Florence (Florence, Italy). I worked in the research group (part of the Italian National
Institute of Optics, CNR-INO) led by Dr Paolo De Natale under the supervision of my
Ph.D. tutor, Dr Alessandro Zavatta. During this experience, I had the amazing and
extremely fascinating opportunity to learn and combine some of the high-level Dr De
Natale’s group expertise in the fields of MIR frequency metrology, spectroscopy, and
sensing, together with the high-level quantum technology skills of my tutor, Dr Zavatta.
Additionally, with both of them, I had the privilege to collaborate on a large European
project, the Qombs Project (https://www.qombs-project.eu), funded by the European
Quantum Flagship. As stated in its title, the project aimed at the "Quantum simulation
and entanglement engineering in quantum cascade laser frequency combs". Within the
project, I had the chance to collaborate in an international partnership with researchers
spread all across Europe. Furthermore, the Ph.D. international course I attended provides
a period abroad. During the third year, thanks to a preexisting collaboration of my tutor
with Dr Virginia D’Auria, I had the chance to spend around five months in her team at
the Institut de Physique de Nice (INPHYNI) in Nice (France). Her group’s activity is
mainly focused on studying, realizing, and manipulating continuous-variable quantum
states of light at telecom wavelengths. Thanks to this experience, I learned to deal with
fiber-based Schrödinger’s cat states and, more generally, I acquired the know-how to work
with non-classical squeezed light and utilize it as a resource. Finally, I believe that this
experience will allow me in the near future to apply the gained knowledge in the MIR,

https://www.qombs-project.eu


creating new quantum tools in this still limited-quantum-explored region, opening the door
to new joyful and fruitful collaborations between the two labs.

I am incredibly grateful to all the mentioned research groups for everything I learned
during these highly stimulating years. I developed many skills related to a wide range of
research topics, including frequency-comb emission control, intensity-correlation meas-
urements, testing the properties of quantum cascade lasers, and manipulating squeezed
and non-classical states of light at telecom wavelengths. What an exciting, amazing,
challenging, and highly advanced scientific journey it has been!

Tecla Gabbrielli
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Introduction

I.1 The mid infrared: a region rich of applications

The MIR part of the electromagnetic spectrum, spanning the range from 3µm to
50µm [1], is known as the molecular fingerprint region due to the abundance of fun-
damental rovibrational transitions of light molecules (e.g. CO2, N2O, CH4, H2O).
These molecules have a high atmospheric and astrophysical interest, but they are also
fundamental for biological processes and environmental control [2, 3]. An example of
the molecular rovibrational transitions findable in the MIR is shown in Fig. I.1. Here,
the absorption coefficients of air gas mixture (see the caption) are plotted in the 4–8-µm
window using the HITRAN database [4]. As a natural consequence of such abundance
of strong molecular bands, this spectral region has been widely used for spectroscopic
and trace-gas detection applications, as food analysis [5], environment monitoring
[6, 7], medical diagnostics [8], and dating biological specimens [9, 10]. Moreover,
also different applications as IR-radars [11, 12] and free-space communication sys-
tems [13, 14] have started looking with interest at the MIR region [2]. The main reason
lies in the presence of atmospheric transparency windows suitable for free-space com-
munications e.g. around 4 µm and around 8 µm (Fig. I.1). With respect to near infrared
(NIR) (0.78 -3 µm [1]) and visible (0.38 -0.78 µm [1]), the MIR light is less affected
by particle scattering and scintillation. Moreover, the black-body radiation of the sun
(peaked at 500 nm) is well-suppressed for wavelengths longer than 3 µm [14–16]. In
addition, MIR communication channels are more robust to losses in case of adverse
weather conditions (fog, haze, clouds) than those at shorter wavelengths [14, 15, 17].
This feature is also relevant for ground-to-satellite communications [16, 18, 19].
Despite the importance of the MIR for all the above-mentioned technological applic-

ations, this spectral region lacks most of the advanced technology available, instead,
both in the NIR and visible regions. These are, indeed, the spectral regions where
historically the laser-correlated research has been developed and conducted [20, 21],
and where high-efficiency detectors, high-power sources [3] and technological infra-
structures (such as the worldwide NIR fibre-based communication links [22, 23]) have
been developed. For several decades, non-linear optics has been the key tool to dab the
lack of MIR mature laser technologies, providing for coherent sources with interesting
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I.2 QCLs: high-performance MIR laser sources
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Figure I.1: Absorption coefficients of a standard air gas mixture in the MIR region from 4 µm to 8 µm,
adapted by the data obtained with the HITRAN database’s [4] USA model, mean latitude,
summer, H=0 and the following setting: T=296 K, P=1 atm, step= 0.0086cm−1, Profile = Lorentz,
Wing = 200 HW, Scut = 1× 10−28 cm/mol. The gas mixtures of this model is by default:
H2O(1.860000%) CO2(0.033000%), O3 (0.000003%), N2O (0.000032 %), CO (0.000015%),
CH4 (0.000170%), O2 (20.900001%), N2 (77.206000%).

features as a wide tunability and spectral purity. As a matter of fact, via non-linear
processes like Different Frequency Generation (DFG), it has been possible to develop
coherent sources suitable for high-resolution MIR spectroscopy setups, by mixing NIR
and visible light via non-linear crystals [24–27]. The drawback of this approach is,
however, the level of generated power: standard DFG sources have a power that remains
at sub-mW or mW level even in presence of high-power pump lasers [28, 29]. This
represents a limit for the ultimate achievable sensitivity. Furthermore, the transparency
of the available non-linear crystals limited, for a long time, the accessible wavelengths:
for instance, the commonly used Litium Niobate (LiNbO3) can not be used for the
generation of wavelengths longer than 5.5 µm [2, 3].

In this sense, the "launch" of Quantum Cascade Lasers at Bell Lab in 1994 repres-
ented a milestone for the technological development of the MIR [30].

I.2 QCLs: high-performance MIR laser sources

Nowadays, QCLs are well-established and worldwide-used semiconductor laser sources
able to operate in the mid-to-far infrared [15]. Chapter 21 is entirely dedicated to these
devices. Here I anticipate some of the features which have allowed QCLs to emerge
among the currently best-performing lasers in the MIR.
QCLs are unipolar heterostructured laser devices with chip-scale dimension2 (Fig.
I.2). In these devices, the fast laser transition (( τ < 1ps) occurs between sub-levels
of the conduction band. As a consequence, they can be engineered to emit in the
mid-to-far spectral region [15] and they can be modulated up to some GHz (and

1Further details regarding the MIR and QCLs can be found in [2, 3] and in [15, 31, 32], respectively.
2Their waveguide is a few millimetres long [15].
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I.3 QCL-combs: from direct frequency comb emitters to appealing quantum resources

Figure I.2: Picture of a QCL fabricated at ETH Zürich taken using a mobile phone and a microscope.

above [33]), a very interesting feature for free-space communications. Furthermore,
the characteristic power-magnification cascade process results in an emitted power
from QCLs that can overcome the Watt [34, 35] (see chapter 2). Another advantage
of QCLs is the possibility of operating at room temperature both in continuous-wave
and pulse emissions [36, 37]. Furthermore, these devices benefit from a particularly
small Schawlow-Townes linewidth of ≈ 100Hz [38, 39], making them appealing
for high-resolution spectroscopy and frequency metrology applications. Since their
discovery, QCLs have been deeply studied and optimized to fulfil the request of high-
level sources for new technological applications and challenges such as metrological
measurements [31, 40], high-resolution Doppler-free spectroscopy [38, 41, 42], high-
resolution cavity ring down spectroscopy [43, 44], free-space communications [16, 45–
48], quantum key distribution [49], and secure communication protocol based on
chaos [50].

As it will be better discussed in the next section, the discovery of direct comb
emission from QCLs [32, 51] was another tremendous conquest for MIR technologies
and opened the doors to the investigation of quantum effects in QCL-emitted light.
This, in particular, has significantly motivated and driven my Ph.D. research activity.

I.3 QCL-combs: from direct frequency comb emitters
to appealing quantum resources

The possibility of generating frequency combs emission from coherent sources has
revolutionized the field of precision measurements. Citing the Nobel laureate Theodor
W. Hänsch’s Nobel lecture, "the quest for an optical frequency counter is almost as
old as the laser itself"; in this sense "optical frequency combs from mode-locked
femtosecond lasers have revolutionized the art of counting the frequency of light" [52].
Optical Frequency Combs (OFCs) consist of several discrete frequency modes that,
like comb teeth, have a fixed frequency step, the mode spacing, and a well-defined
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I.3 QCL-combs: from direct frequency comb emitters to appealing quantum resources

phase relation. Since their first generation via mode-locked pulsed lasers [53], OFCs
have been established as a powerful precision tool to measure optical frequencies,
leading to the development of the first frequency ruler capable of absolute frequency
measurements [54–57]. Their high stability, combined with their wide spectral cover-
age3, has led to both fundamental (atomic clocks) and practical applications (precision
spectroscopy) [3, 58, 59].
For many years, frequency mixing in nonlinear crystals was the only approach allowing
to equip the MIR with OFCs [2, 3, 60]. Indeed, in this way, it is possible to transform
visible/NIR comb sources into MIR OFCs via DFG processes [27, 60–65]. Altern-
atively, MIR OFCs can be also generated via optical parametric oscillators (OPOs)
where, e.g, a periodically poled lithium niobate (PPLN) crystal is used as non-linear
medium [60, 66].
Nowadays, an alternative solution for the generation of MIR comb radiation is represen-
ted by QCLs. In the last decade, the possibility of direct frequency comb emission from
QCLs (QCL-comb) has been demonstrated [32, 51, 67, 68]. In QCLs, the complex
hetero-structured active medium is characterized by a large resonant χ(3) (i.e. third-
order non-linearity) enabling a broadband Four-Wave Mixing (FWM) due to the fast
lasing upper-state lifetime [32]. These ingredients, together with a small enough Group
Velocity Dispersion (GVD), have led to comb emission by broadband Fabry-Pérot
QCLs [69], where the free-running multimodal emission is injection-locked by means
of multiple FWM processes [32, 51]. More details about QCL-comb working principle
are given in chapter 2.
The FWM process is the driving motor not only for comb emission by QCLs but even
for my research activity regarding non-classical effects in the emission of these devices.
Indeed, being a third-order parametric non-linear effect, FWM can induce, in principle,
the generation of a non-classical state of light (chapter 1, section 1.4.4). This propriety
has been proved in many different platforms: for instance FWM provides squeezing
in optical fibers [70], in optical cavities [71], in rubidium vapour [72], and microring
resonators [73]. In particular, considering the case of microring resonators, it is possible
to evidence common elements with QCLs: they are both chip-scale photonic platforms
where FWM triggers comb emission [32, 74]. Despite dense comb emissions, in both
of these photonic platforms, it is also possible to find an emission regime, named
harmonic comb, characterized by a strong central mode (the pump) and two weak
sidebands (typically named signal and idler), nearby multimodal emission threshold
(see section 4.2). In such a three-mode photonic state, the FWM process responsible
for this emission involves two photons of the pump which generate one photon for each
sideband. In this scenario, the expected correlation between signal and idler can be
therefore measured by analyzing the difference of the sideband-sideband photon num-
ber signal and non-trivially interpreted [73, 75]. However, while microring resonators
are passive devices (i.e. the device is optically pumped with an external laser source
and presents only non-linear gain), QCLs are active devices and, as always occurs in
an amplification stage, the active medium gain can introduce noise overwhelming the
quantum correlation induced by FWM [76]. Moreover, QCL emission is affected by

3The near-continuous coverage of OFCs goes from microwave frequencies to the extreme ultra-
violet [58].
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other noise contributions typical of such devices, e.g. the 1/ f technical noise emerging
at low Fourier frequencies [75, 77, 78]. All these effects make the detection of quantum
correlations a hard task. The task is even more difficult if we consider that, in the
MIR, we have to fight against the lack of important technological tools necessary
for the investigation of quantum properties, like high quantum efficiency detection
systems [79, 80]. Moreover, low-loss optical components (e.g. optical isolators and
gratings) are available only for narrow spectral MIR bands, making the challenge
of detecting non-classical features in QCL-combs emission even harder. These last
points will be deeply analyzed in the experimental sections dedicated to the realization
of a MIR balanced detector and to the measure of amplitude correlations in MIR
QCL-combs (chap. 3 and chap. 4, respectively).

For clarity, let’s summarize the main points raised above:

• QCL-comb emission is given by the FWM process triggered by the active
medium third-order non-linearity;

• In general, FWM is responsible for the generation of non-classical states from
several photonic systems;

• QCLs are complex devices with multiple sources of noise, and the MIR is still
not well equipped as the NIR for quantum measurements.

Here the non-trivial question naturally arises: Can FWM enable also squeezed state of
light emitted by QCLs? This is the starting point of my work.
Aside from the interest in fundamental physics, the demonstration of possible squeezed
and non-classical states emission from QCLs can lead to several new applications as
well as to a sensitive improvement of all the precision applications that already exist in
the MIR region. For instance, in sensing and metrology applications relying on optical
field measurements, which are widely used in the MIR, the minimum detectable signal
is typically constrained by the sum of photon shot noise and back-action noise [81]. In
this context, establishing a MIR squeezed source, based on QCLs’ technology, can lead
to an ultimate precision enhancement, by taking advantage of the noise suppression
below the shot-noise level typical of these state of light [81]. The use of a squeezed
light can therefore enable the detection of signals that otherwise are covered by a
shot-noise limited detection [82]. As a matter of fact, the squeezed light has started
to be successfully employed in precision experiments such as in the famous LIGO
interferometer, e.g. to increase the gravitational-wave detection sensitivity [83, 84]. In
literature, there are already many proof-of-principle works involving squeezed light as
a resource for sensing [81, 82] and spectroscopy [85, 86], although their practical ap-
plication is still under-construction [82]. In this framework, a recent European project
involving my research group has started: it is named MUltiscale QUAntum BIoimaging

and Spectroscopy (MUQUABIS) and it is financed by the European Quantum Flagship4.
One of the goal of this project is, indeed, the practical application of infrared squeezed
light as a precision enhancement tool for the detection of biological samples.
Moreover, as already stated, the MIR is a region of interest for free-space communica-
tion, due to the presence of transparency windows and to the robustness of the MIR

4Grant agreement ID: 101070546.
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I.4 Thesis overview

radiation in case of adverse weather conditions. Therefore, establishing QCL-combs as
non-classical-light compact sources can revolutionize MIR communications, enabling
e.g. the application of quantum key distribution protocols based on squeezed states
of light [87–92]. Furthermore, squeezed states of light can be used as a resource for
the generation of quantum states of light such as Schrödinger’s states [93–95] which
are used in the development of quantum error correction in quantum computation [96]
and as a resource in advanced communication protocol like the quantum distillation
[97, 98] (chapter 5).

To conclude, testing QCL radiation at the quantum level has the potential of paving
the way to innovative quantum-based technologies with both fundamental and practical
interest and, despite the drawback of the lack of mature quantum detection technologies
in this spectral region, it is a path that worth to be explored.

I.4 Thesis overview

The first two chapters of this thesis aim to provide the theoretical background for the
quantum features investigated in the experimental sections and an introduction to QCLs
and QCL-combs. The last three chapters describe, instead, my experimental works and
the achieved results.
In more detail, the first chapter (chap. 1) describes the theoretical quantum optics
tools useful to describe quantum light and light-matter interaction from a quantum
perspective. In the first part, the chapter provides the quantum optics basis for the
quantization of the free electromagnetic field (section 1.1) as well as a review of some
of the most common quantum states of light (section 1.2). The linear interaction via a
beam-splitter (section 1.3) and the non-linear interaction via non-linear media are then
presented (section 1.4). The description of the electric field in continuous modes is
then introduced (section 1.5). Finally, the theory underlying photodetection techniques
is given, with a focus on balanced homodyne detection (section 1.6).
In chapter 2, the working principle and the properties of QCLs are reviewed: in
section 2.1, the operating principle of these devices is briefly introduced; in section 2.2
the QCL structure is described; in section 2.3 the spectral features of QCLs are
presented. Finally, in section 2.4 the comb emission of these devices is described.
Chapter 3 is devoted to the description of the experimental effort made during my
Ph.D. to equip the MIR with a shot-noise limited balanced detector capable of testing
a non-classical state of light. The work relates to the published article [99]. There
are four main sections in this chapter: in sec. 3.1 an introduction about the topic is
provided; section 3.2 described the working principle and the theory at the basis of
the experiment; in section 3.3 the experimental setup is described; in section 3.4 the
results are discussed, with a focus on the limits and potentialities of the assembled
setup. Finally, the last section (section 3.5) summarize the experimental activity, and
presents some remarks and perspectives.
Chapter 4 is devoted to my experiments on intensity correlation measurements in
QCL-combs. At first, a general overview of different emission regimes in QCLs is
provided in section 4.1. The experimental work, published in [75], is then described in
4.2. In this work, we tested a three-mode harmonic comb generated by a MIR QCL,
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I.4 Thesis overview

with the aim of revealing a squeezed state of light in the photon difference between
the two sidebands. The introduction and motivations behind these measurements are
provided in section 4.2.1. In section 4.2.2, the measurement technique is described.
In section 4.2.3 the results are presented and discussed. Finally, in section 4.2.4 a
summary and some remarks are given, as well as a description of the limits, possible
improvements, and perspectives of this type of measurement. Instead, section 4.3 is
devoted to the use of the intensity-correlation setup for the analysis of QCL-comb
emission operated at high driving current, characterized by a peculiar bilobed modal
distribution. In section 4.3.1, the characterization of the utilized QCL-comb is described.
In section 4.3.2, the correlation measurements are presented and the achieved results
are discussed. Finally, the performed measurements are summarized in section 4.3.3.
The fourth chapter ends with a conclusive section about intensity correlations in MIR
QCLs, the section 4.4 where the perspectives of my research regarding this topic are
described.
In chapter 5, the work I have done in Nice (France) regarding the generation of
Schrödinger’s cat state at telecom wavelength is described. This work refers to the
published article [95]. The overarching goal of this research activity was to acquire the
know-how and experimental expertise required to generate and detect quantum states
of light from non-linear passive media, with a view to possible future applications
of such methodologies to generate non-classical light in the MIR. This chapter is
divided into five main sections. Section 5.1 introduces the topic; section 5.2 provides
the theoretical pills needed to understand the experimental results, which are later
described in section 5.4, after an experimental setup description provided in section 5.3.
Conclusion, remarks and perspectives about this topic are given in section 5.5.
A final conclusion chapter closes the thesis, with a discussion of the experimental
perspectives of the works presented in this manuscript.
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In physics, the light-matter interaction is one of the foundational phenomena. This
interaction may be linear or not. For example, a linear interaction typically happens
when two states of light interfere via an optical beam splitter, or when in an experiment
there is a weak field used to probe some matter properties, or when an absorbed photon
generates an electron in a photodetector. Instead, the interaction between a strong
laser source and materials is most commonly based on non-linear processes. Many
classical and quantum physics experiments depend on non-linear interactions between
matter and radiation. An example of application is given in the introduction chapter,
where the application of non-linear interactions (e.g. DFG) is described as a useful
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1.1 Free electromagnetic field quantization

method to generate OFCs in frequency range suffers from the lack of mature laser
comb technologies.

This chapter goes over the quantum optics theoretical framework that I used in my
experiments. The first sections provide an overview of free electric field quantization
and common quantum optics states of light. Then the linear and non-linear interactions
are described, focusing on the quantum perspective. Finally, the theoretical basis for
the homodyne detection scheme is provided. This chapter follows the quantization
presented in [100]. Other textbooks to deeply study the below-presented topics are
[101–104].

1.1 Free electromagnetic field quantization

The recipe to quantize the free electromagnetic field starts from its classical decompos-
ition in normal modes: The electric field can be decomposed into a sum of independent
modes, and each of them is associated with a different harmonic oscillator oscillating
at the mode frequency ωk. In this description, a specific number of energy packets ℏωk,
(i.e. photons) in the k-th electric-field normal mode corresponds to a different level of
excitation of its associated harmonic oscillator.

In the case of free radiation (no electrical charges, no currents), the electromagnetic
field can be fully described in terms of vector potential A(r, t), satisfying the wave
equation in the Coulomb gauge [100]:(

−∇
2 +

1
c2

∂2

∂2t

)
A(r, t) = 0 , (1.1)

where c is the speed of light. Both the electric field, E, and the magnetic field, B, can
be retrieved from the potential vector using the following formulae:

B = ∇∧A , (1.2)

E =−∂A
∂t

. (1.3)

As for the harmonic oscillator equations [100], if the potential vector is confined in a
cubic cavity of a volume V = L3, we can describe A, B and E as a sum of independent
modes, Akλ, the normal modes, characterized by a frequency ωk, a wavevector k, and a
complex amplitude Akλ:

A(r, t) = ∑
k

∑
λ=1,2

ekλAkλ(r, t) = ∑
k

∑
λ=1,2

ekλ

(
Akλe(ik·r−ωkt)+ c.c

)
, (1.4)

B(r, t) = ∑
k

∑
λ=1,2

ik∧ ekλ{Akλe(ik·r−ωkt)− c.c}= B(+)(r, t)+B(−)(r, t) ,(1.5)

E(r, t) = ∑
k

∑
λ=1,2

iωkek,λ{Ak,λe(ik·r−ωkt)− c.c}= E(+)(r, t)+E(−)(r, t) .(1.6)

where ωk = ck, and the two unitary polarization vectors e1λ and e2λ are in a orthonormal
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1.1 Free electromagnetic field quantization

vector triad with k1. Furthermore E(+)(r, t) and E(−)(r, t) are defined as :

E(+)(r, t) = ∑
k

∑
λ=1,2

iωkek,λAk,λe(ik·r−ωkt) =
[
E(−)(r, t)

]∗
. (1.7)

An analogue expression can be written B(+)(r, t) and B(−)(r, t) [100].
In this description, the electromagnetic field energy in the cavity V is defined as:

H (t) =1/2
∫

V
dV [ε0E(r, t)E(r, t)+µ−1

0 B(r, t)B(r, t)]

=∑
k

∑
λ=1,2

ε0V ω
2
k(Ak,λA∗

k,λ + c.c.) .
(1.8)

.
After such normal-mode decomposition, to go from the classical to the quantum

description, it is sufficient to replace the field vectors and the scalar quantities of interest,
with the corresponding operators, e.g. A → Â and H → Ĥ, and to substitute the
amplitude field Akλ with the creation of annihilation operator, â†

kλ
and âkλ

, commonly
associated to the kλ-th energetic level of the quantum harmonic oscillator:

Ak,λ → (ℏ/2ε0V ωk)
1/2âk,λ and A∗

k,λ → (ℏ/2ε0V ωk)
1/2â†

k,λ . (1.9)

By applying such substitutions to Eq. (1.8), the following quantum Hamiltonian
can be retrieved:

Ĥ = ∑
k

∑
λ=1,2

ℏωk(â
†
kλ

âkλ +h.c.) == ∑
k

∑
λ=1,2

ℏωk

(
n̂kλ +

1
2

)
, (1.10)

where the photon number operator n̂kλ = â†
kλ

âkλ represents the number of photons of
the kλ-th mode. This Hamiltonian turns out to be a sum of Hamiltonians of quantum
harmonic oscillators, each of these associated with a specific kλ mode of the field
[100]. In particular, the operators âkλ

and â†
kλ

satisfy the commutation relation:[
âkλ

, â†
k′λ′

]
= δk,k′δλ,λ′ . (1.11)

As for the Hamiltonian, by applying the above-mentioned quantization strategy to Eq.
(1.6), the quantum electric field can be retrieved:

Ê(r, t) =∑
k

∑
λ=1,2

ekλ
(ℏωk/2ε0V )1/2

(
âkλ

e−iϕk(r,t)+h.c.
)

=∑
k

∑
λ=1,2

ekλ

(
Ê+

kλ
(r, t)+ Ê−

kλ
(r, t)

)
,

(1.12)

where ϕk(r, t) = ωkt −k · r−π/2.
It is convenient to introduce the amplitude and the phase quadratures, respectively

1By imposing periodical boundary condition for A, the following relations are obtained:

Akλ(0, t) = Akλ(L, t) ∀t → ki =
2π

L
ni, ni = 0,±1,±2,±3 . . .

where ki is the i-th component of k.
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1.1 Free electromagnetic field quantization

defined as:

X̂kλ =
âkλ

+ â†
kλ

2
(1.13)

Ŷkλ =
âkλ

− â†
kλ

2i
, (1.14)

and their commutation rule:

[
X̂kλ,Ŷkλ

]
=

i
2

δk,k′δλ,λ′ . (1.15)

Indeed, X̂kλ and Ŷkλ are Hermitian operators and are therefore observable quantities.
Eq. (1.12) can be, then, written in terms of such quantities as follows:

Ê(r, t) =∑
k

∑
λ=1,2

ekλ
(ℏωk/2ε0V )1/2 (X̂kλcos [ϕk(r, t)]+ Ŷkλsin [ϕk(r, t)]

)
=

=∑
k

∑
λ=1,2

ekλ
(ℏωk/2ε0V )1/2 Q̂kλ(ϕk) ,

(1.16)

where:
Q̂kλ(ϕk) = X̂kλcos [ϕk(r, t)]+ Ŷkλsin [ϕk(r, t)] (1.17)

is the quadrature evaluated at a general phase ϕk(r, t).
In the case of a single-mode field, neglecting the dependence upon r and k to make the
notation simpler, the commutation rule for the quadrature operator Q̂, evaluated in two
different points of the phase space (ϕ1, ϕ2), is:

[
Q̂(ϕ1) , Q̂(ϕ2)

]
=− i

2
sin(ϕ1 −ϕ2) . (1.18)

From which the following uncertainty principle is obtained:

∆Q(ϕ1)∆Q(ϕ2)≥
1
4
|sin(ϕ1 −ϕ2)| , (1.19)

which is maximized for the two conjugated quadratures X̂ = Q̂(ϕ = 0) and Ŷ = Q̂(ϕ =

ϕ/2):

∆X∆Y ≥ 1
4
. (1.20)

Finally, it is useful to introduce another observable quantity commonly measured in
quantum and classical experiments: the intensity of the propagating field. In particular,
the operator Îkλ related to the observable intensity of the kλ-th mode is defined as:

Îkλ =2cε0Ê−
k,λ(r, t)Ê

+
k,λ(r, t)

=ℏωkâ†
kλ

âkλ

=ℏωkn̂kλ ,

(1.21)

and it this propositional to the photon number operator n̂kλ of the kλ-th mode.
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1.2 Quantum states of light

1.2 Quantum states of light

Given a certain light source, e.g., a laser or a light bulb, the emitted light is characterized
by specific photon or quadrature statistics. In quantum optics, a proper quantum state
can be connected to the produced light depending on the source’s statistical properties,
as described in the next section. The notation used in the previous section is simplified
below by considering single-mode states of light. Despite its simplicity, a single-mode
state of light is, however, a good approximation for representing the light commonly
used in some experiments, for instance when light beams are collimated and their
transverse electric field can be, therefore, approximated by a single-mode [100].

1.2.1 Fock’s states

Fock’s states, |n⟩, are quantum states of light characterized by a well-defined number
of photons. They are, indeed, the eigenvectors of the photon number operator n̂:

n̂ |n⟩ = n |n⟩ , (1.22)

â |n⟩ =
√

n |n−1⟩ where â |0⟩= 0 , (1.23)

â† |n⟩ =
√

n+1 |n+1⟩ . (1.24)

where n represents the number of photons of the Fock’s state |n⟩, and the |0⟩ identifies
the vacuum state. Being states characterized by a well-defined number of photons,
their statistics is characterized by a variance (∆n)2 = 0. Furthermore, they are also
eigenvectors of the single-mode Hamiltonian Ĥ (Eq. (1.10)):

Ĥ|n⟩= ℏω

(
â†â+

1
2

)
|n⟩= ℏω

(
X̂2 + Ŷ 2) |n⟩= ℏω

(
n+

1
2

)
|n⟩ . (1.25)

Therefore, in order to evaluate the energy and the number of photons associated with a
certain quantum state |Ψ⟩, it is useful to decompose it in the {|n⟩} basis:

|Ψ⟩= ∑
n

Cn |n⟩ (1.26)

where |Cn|2 = | ⟨n|Ψ⟩ |2 represents the probability of having a certain number of photons
n in the state |Ψ⟩.
Regarding the quadratures X̂ and Ŷ (Eq. (1.13) and Eq. (1.14)), the Fock’s states satisfy
the following relations:

⟨n|X̂ |n⟩ = ⟨n|Ŷ |n⟩= 0 , (1.27)

(∆X)2 = (∆Y )2 =
1
2

(
n+

1
2

)
. (1.28)

From this latter relation (Eq. 1.28) the vacuum state |0⟩ results to be the Fock’s state
characterized by the minimum quadrature uncertainty:

(∆X0)
2 = (∆Y0)

2 =
1
4
, (1.29)

∆X0∆Y0 = 1/4 . (1.30)
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1.2 Quantum states of light

Additionally, from the above-introduced relations, it is possible to find the mean value
and the variance of the generic quadrature Q̂ (Eq. (1.17)):

⟨n|Q̂|n⟩= 0 and (∆Q)2 =
1
2

(
n+

1
2

)
(1.31)

1.2.2 Coherent state

The coherent states are defined as the eigenvectors of the annihilation operator â:

â|α⟩= α|α⟩ con ⟨α|α⟩= 1 , (1.32)

where α = |α|eiθ ∈ C is the eigenvalue of the eigenvector |α⟩, with θ ∈ R. Using Eq.
(1.26), they can be decomposed in the Fock’s basis:

|α⟩= exp
(
−1

2
|α|2

)
∞

∑
n=0

αn

(n!)1/2 |n⟩ . (1.33)

From such relation, it is possible to calculate the number of photon number mean
value, variance and probability distribution for a certain coherent state, leading to the
following results:

⟨n⟩ = ⟨α|n̂|α⟩= |α|2 , (1.34)

(∆n)2 = ⟨n2⟩−⟨n⟩2 = |α|2 = ⟨n⟩ , (1.35)

P(n) = |⟨n|α⟩|2 = exp
(
−|α|2

) |α|2n

n!
= e−⟨n⟩ ⟨n⟩n

n!
. (1.36)

It is worth to notice that P(n) is a Poissonian distribution. An example of such
distribution is provided in Fig. 1.1.

It is here convenient to introduce the definition of the displacement operator D̂(α).
Via this operator, it is possible to construct a coherent state starting from the vacuum
state:

|α⟩= exp(αâ† −α
∗â)|0⟩= D̂(α)|0⟩ . (1.37)

This operator is unitary and its action can be interpreted as follows: the displacement
operator infers a translation in the phase space of a quantity |α| to the quadratures of
the vacuum state without changing their variance2. Indeed, the measured quadratures
X̂ and Ŷ of a coherent state have the following mean values and variances:

⟨α|X̂ |α⟩ =
1
2
⟨α|

(
â† + â

)
|α⟩= 1

2
(α∗+α) = Re[α] = |α|cosθ , (1.38)

⟨α|Ŷ |α⟩ =
1
2i

(α −α
∗) = Im[α] = |α|sinθ , (1.39)

(∆X)2 = (∆Y )2 =
1
4
. (1.40)

2The displacement operator moves the operator â (â†) of a quantity α (α∗) [100]:

D̂†(α)âD̂(α) = â+α ,

D̂†(α)â†D̂(α) = â† +α
∗ .
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1.2 Quantum states of light

Figure 1.1: Poissonian photon-number probability distribution of a coherent state as a function of its mean
number of photons ⟨n⟩.

The coherent state turns out to be a state with minimum quadrature uncertainly,
whatever it is its average number of photons3 |α|2.
In general, the expectation value and the variance for the quadrature operator Q̂(ϕ),
defined in Eq. (1.17), for a coherent state are respectively:

S = ⟨α|Q̂(ϕ)|α⟩= |α|cos(ϕ−θ), (1.41)

N = (∆Q(ϕ))2 =
1
4
. (1.42)

While the average amplitude of the field signal S (Eq. (1.41)) depends on the observation
phase of the field ϕ and on the amplitude and phase of α, i.e. S = S(ϕ−θ,α), the
variance N (Eq. (1.42)) is constant and phase-independent.

Finally, it is worth to remark that among quantum states of light the coherent state
is one of particular interest, being a good representation for the radiation emitted by a
laser source4 operating well above threshold [100].

1.2.3 Squeezed light

Although in the previously-presented states of lights the quadrature variance is in-
dependent of the observation phase ϕ, in this section we analyze a particular type
of single-mode field excitation which vice-versa shows this phase-dependence: the

3This result is the contrary of the one obtained for the Fock’s state where the variance of the quadratures
is closely linked to the number of photons n, as shown in Eq. (1.31).

4In the here represent theoretical framework the laser source is meant to be single mode.
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1.2 Quantum states of light

squeezed state of light. In general, a state of light is squeezed when for a certain ϕ the
quadrature variance is:

0 ≤ (∆Q(ϕ))2 ≤ 1
4

(1.43)

Due to the fact that in any case the uncertainty principle must be valid, the measurement
of a quadrature squeezing in a certain quadrature phase-space direction ϕ comes
at the cost of the increment of the quadrature uncertainty observed in the relative
perpendicular direction. In particular, in this section, we introduce the squeezed
vacuum state of light, which is the one used in the experiment shown lately in chapter
5, and the squeezed coherent states. More info about squeezed states of light can be
found in [100].

Squeezed vacuum state

Starting from the vacuum state |0⟩, it is possible to generate a squeezed state of light
by applying the squeezing operator5 Ŝ(ζ):

|ζ⟩= Ŝ(ζ)|0⟩ , (1.44)

where Ŝ(ζ) and the squeezing parameter ζ can be defined as:

Ŝ(ζ) = exp
[

1
2

ζ
∗â2 − 1

2
ζ(â†)2

]
(1.45)

ζ = seiϑ con s,ϑ ∈ R . (1.46)

The squeezed vacuum state can be written as a superposition of (even) Fock’s states:

|ζ⟩= (sech(s))1/2
∞

∑
n=0

[(2n)!]1/2

n!

[
−1

2
eiϑtanh(s)

]n

|2n⟩ . (1.47)

To calculate the mean value and the variance of both the photon number operator and
the quadratures, it is useful to use the following transformation rules for the squeezing
operator:

Ŝ†(ζ)âŜ(ζ) = âcosh(s)− â†eiϑsinh(s) , (1.48)

Ŝ†(ζ)â†Ŝ(ζ) = â†cosh(s)− âe−iϑsinh(s) . (1.49)

With these transformations, it is possible to evaluate the mean value and variance of
the photon number operator onto the squeezed vacuum:

⟨n⟩ = ⟨ζ|â†â|ζ⟩= ⟨0|Ŝ†(ζ)â†Ŝ(ζ)Ŝ†(ζ)âŜ(ζ)|0⟩= sinh2(s) , (1.50)

(∆n)2 = 2⟨n⟩(⟨n⟩+1) . (1.51)

The squeezed vacuum state is characterized by a photon-number variance higher than
the one retrieved for a coherent state which is equal to ⟨n⟩ (Eq. (1.35). Therefore its
number-photon statistics is ruled by a Super-Poissonian distribution.
Using the transformations reported in Eq. (1.49) and in Eq. (1.48), it is also possible to

5The squeezing operator is a unitary operator, therefore Ŝ(ζ)Ŝ†(ζ) = Ŝ†(ζ)Ŝ(ζ) = 1.
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1.2 Quantum states of light

Figure 1.2: Representation of the quadrature operator’s mean value and uncertainty for the squeezed vacuum
state in the XY -quadrature phase space.

find the following mean values and variances for the quadrature operators:

⟨ζ|X̂ |ζ⟩ = ⟨ζ|Ŷ |ζ⟩= 0 , (1.52)

(∆X)2 =
1
4

{
e2ssin2

(
1
2

ϑ

)
+ e−2scos2

(
1
2

ϑ

)}
, (1.53)

(∆Y )2 =
1
4

{
e2scos2

(
1
2

ϑ

)
+ e−2ssin2

(
1
2

ϑ

)}
. (1.54)

(1.55)

A representation of a squeezed vacuum state of light in the XY -quadrature phase space
is depicted in Fig. 1.2. More in general, a measurement of the quadrature Q̂(ϕ) of a
squeezed vacuum state is characterized by a zero mean value:

S = ⟨ζ|Q̂(ϕ)|ζ⟩= 0 (1.56)

and a variance:

N = (∆Q(ϕ))2 =
1
4

{
e2ssin2

(
ϕ− 1

2
ϑ

)
+ e−2scos2

(
ϕ− 1

2
ϑ

)}
. (1.57)

By detecting the quadrature Q̂ at different phases ϕ, it is possible to find the maximum
and the minimum for N which are:

∆Qmin = ∆Q
(

1
2

ϑ+mπ

)
=

1
2

e−s , (1.58)

∆Qmax = ∆Q
(

1
2
(ϑ+π)+mπ

)
=

1
2

es with m ∈ Z . (1.59)

The uncertainty principle for these quadratures is therefore:

∆Qmin∆Qmax = 1/4 . (1.60)
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1.2 Quantum states of light

Figure 1.3: Envelope of the noise band of the field, evaluated in terms of Q̂, for a squeezed vacuum state
with a squeezing parameter s = ln(2)) (black dashed lines) and of the vacuum state (s = 0, grey
dashed lines) as a function of the phase. The noise band is obtained by evaluating the square root
of Eq. (1.57) for the squeezed vacuum state, and of Eq. (1.31) for the standard vacuum state.

An example of the detected field quadrature Q̂ as a function of the phase (ϕ− 1
2

ϑ ) is
depicted in Fig. 1.3.

Squeezed coherent states

By applying the displacement operator D̂(α) (Eq. (1.37)) to the squeezed vacuum state
(Eq. (1.44)), a squeezed coherent state is obtained:

|α,ζ⟩= D̂(α)Ŝ(ζ)|0⟩ . (1.61)

By using the following relations [100]:

Ŝ†(ζ)D̂†(α)âŜ(ζ)D̂(α) = âcosh(s)− â†eiϑsinh(s)+α , (1.62)

Ŝ†(ζ)D̂†(α)â†Ŝ(ζ)D̂(α) = â†cosh(s)− âe−iϑsinh(s)+α
∗ , (1.63)

it is possible to determine the mean value of the photon number operator:

⟨n⟩= |α|2 + sinh2(s) , (1.64)

and its variance:

(∆n)2 = |α|2
{

e2ssin2
(

θ− 1
2

ϑ

)
+ e−2scos2

(
θ− 1

2
ϑ

)}
+2sinh2(s)

(
sinh2(s)+1

)
.

(1.65)
In particular, Eq. (1.64) is the sum of the mean values of the photon number operator
evaluated on the coherent state (Eq. (1.34)) and on the squeezed vacuum state (Eq.
(1.50)), respectively. Instead, the photon-number variance of Eq. (1.65) becomes the
variance of the coherent state for s → 0 (Eq. (1.35)), and the variance of the squeezed
vacuum state for |α| → 0 (Eq. (1.51)).

28



1.3 Linear interaction: the beam splitter

Regarding the quadratures, for a squeezed coherent state of light X̂ and Ŷ follow the
relations:

⟨α,ζ|X̂ |α,ζ⟩ = |α|cos(θ) , (1.66)

⟨α,ζ|Ŷ |α,ζ⟩ = |α|sin(θ) , (1.67)

(∆X)2 =
1
4

{
e2ssin2

(
1
2

ϑ

)
+ e−2scos2

(
1
2

ϑ

)}
, (1.68)

(∆Y )2 =
1
4

{
e2scos2

(
1
2

ϑ

)
+ e−2ssin2

(
1
2

ϑ

)}
. (1.69)

Their mean values are the ones found in the case of a coherent state (Eq. (1.38) and
Eq. (1.39)), while their variances are the ones of a squeezed vacuum state (Eq. (1.53)
and Eq. (1.55)). It is possible to generalize these results for the measurement of the
quadrature Q̂:

S = ⟨α,ζ|Q̂(ϕ)|α,ζ⟩= ⟨α|Q̂(ϕ)|α⟩= |α|cos(ϕ−θ) , (1.70)

N = (∆Q(ϕ))2 =
1
4

{
e2ssin2

(
ϕ− 1

2
ϑ

)
+ e−2scos2

(
ϕ− 1

2
ϑ

)}
. (1.71)

A quadrature-squeezed coherent therefore has the typical signal of a coherent state |α⟩
(Eq. (1.41)) and the noise band suppression typical of the squeezed vacuum state |ζ⟩
(Eq. (1.57)). The maximum signal-to-noise ratio (SNR) is obtained in the following
case:

SNR =
S
N

= 4e2s|α|2 with ϕ = θ =
1
2

ϑ . (1.72)

Starting from the above-mentioned relations (Eq.(1.64) and Eq. (1.65)), it is also
possible to define the amplitude-squeezed state of light in the case of θ = 1

2 ϑ. In
particular, in the case of:

|α|>> es and ⟨n⟩ ≈ |α|2 , (1.73)

the number photon variance of the amplitude-squeezed state of light is [100]:

(∆n)2 = ⟨n⟩e−2s . (1.74)

Compared to the coherent state of light (eq. (1.35)), the amplitude-squeezed state of
light has a photon-number variance reduced6 by a factor equal to e−2s. Therefore its
photon-number statistic is expected to be sub-Poissonian with a photon-number noise
smaller than the corresponding shot noise [100]7.

1.3 Linear interaction: the beam splitter

In quantum optics experiments, a commonly used optical element is the beam splitter
(BS), which is used to create linear superposition between two propagating fields

6The photon number variance reduction comes at the cost of an increase in the phase variance with
respect to a coherent state. This magnification factor is equal to e2s [100].

7More in general, sub-Poissonian photon-number fluctuations occur in the amplitude-squeezed coherent

state when the following condition is satisfied: |α|2 > 1
4
(
e2s −1

)
cosh(2s) [100].
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1.3 Linear interaction: the beam splitter

impinging on it. To give an idea about the mathematics rules under such superposition
we can assume that such fields are independent, monochromatic, at the same frequency
and we can schematize their radiation via the corresponding annihilation operators,
being Ê+ ∝ â (Eq. 1.12). Referring to the Fig. 1.4, in the approximation of ideal

Figure 1.4: Schematic representation of an ideal beam splitter. In the figure, the annihilation operators
associated with the inputs and output fields are reported and are labelled with the pair of numbers
(1,2) and (3,4), respectively.

symmetric beam splitter (no losses), the relations between the input fields (â1, â2) and
the outputs fields (â3, â4) are:

â3 = Râ1 +T â2 , (1.75)

â4 = T â1 +Râ2 , (1.76)

where R and T are the transmission and the reflection coefficients associated with the
BS and, for the energy conservation, they satisfy the following relations:

|R|2 + |T |2 = 1 , (1.77)

RT ∗+R∗T = 0 . (1.78)

All the annihilation operators introduced have to follow the commutation rules given
by:

[âi, â
†
j ] =

1 se i = j ,

0 se i ̸= j ,
(i, j = 1,2,3,4) (1.79)

and the photon number operator n̂i associated to the i-th BS input/output is defined as:

n̂i = â†
i âi (i = 1,2,3,4). (1.80)

In particular, using Eq. (1.75) and Eq. (1.76), it is possible to write the outputs’ photon
number operators as a function of the inputs’ ones:

n̂3 = |R|2n̂1 +R∗T â†
1â2 +RT ∗â†

2â1 + |T |2n̂2 , (1.81)

n̂4 = |T |2n̂1 +RT ∗â†
1â2 +R∗T â†

2â1 + |R|2n̂2 . (1.82)
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1.4 Non-linear phenomena

It this way, their mean values and variances can be evaluated directly onto the input
state8. In particular in the case of a vacuum state, |0⟩, at the input 2 the photon number
mean values and variances are:

⟨n3⟩ = |R|2⟨n1⟩, (∆n3)
2 = |R|4 (∆n1)

2 + |R|2|T |2⟨n1⟩ , (1.83)

⟨n4⟩ = |T |2⟨n1⟩, (∆n4)
2 = |T |4 (∆n1)

2 + |R|2|T |2⟨n1⟩ , (1.84)

It is worth noticing that in the output variance equations an extra term appears,
|R|2|T |2⟨n1⟩, with respect to the input variance, (∆n1)

2. This term is proportional
to ⟨n1⟩ and it is due to the coupling between the input state and the vacuum. Note that
all the ⟨·⟩ mentioned are evaluated onto the generic state |ψ1⟩ entering in BS input 1.
To summarize, by coupling a state via a BS with the vacuum state, its photon number
statistics is modified accordingly to the found relation (Eq. (1.84)). However, there is
an exception: the coherent states of light. If we assume that |ψ1⟩= |α1⟩, the BS output
states will be still coherent states. E.g. it is possible to substitute in Eq. (1.84) the
variance equation found in case of coherent states: (∆n1)

2 = ⟨n1⟩ (Eq. 1.34). Knowing
that the BS coefficients follow the relation of Eq. (1.77), the variance at the output 4
can be written as:

(∆n4)
2 = |T |4⟨n1⟩+ |R|2|T |2⟨n1⟩= |T |2(|T |2 + |R|2)⟨n1⟩

= |T |2⟨n1⟩= ⟨n4⟩ .
(1.85)

The photon number variance at output 4 is still at the shot-noise level, as expected by a
coherent state. It can also be verified that the photon-number probability distribution at
the BS outputs is still Poissonian [100]. Therefore we can conclude that in case of a
coherent state the statistics it is not changed by the coupling with the vacuum field, at
the cost of a reduction in terms of mean photon number 9.

1.4 Non-linear phenomena

Non-linear phenomena are at the basis of a large number of optical techniques and
technologies. In this section, the theoretical tools to deal with non-linear interactions
are provided. In particular, the concept of non-linear polarization is introduced from
a classical point of view, as well as some examples of second and third-order non-
phenomena (section 1.4). Finally, the squeezing generation via non-linear phenomena
is discussed from a quantum optics perspective (section 1.4.4). A complete theoretical
description of these phenomena can be found in [101, 102, 104–106] and in [3, 107–
109] from which the here provided equation toolkit is inspired.

1.4.1 Non-linear polarization

When a certain electric field E(r, t) is applied to a dielectric material10, it generates a
polarization P(r, t) of such material, i.e. a dipole moment per unit volume [105, 106].

8The input state is the tensor product between the states of the beams impinging on the BS (on input 1
and input 2, respectively).

9Indeed: ⟨n1⟩ → ⟨n4⟩= |T |2⟨n1⟩ with |T |2 < 1.
10For standard dielectric materials the permanent dipole moment is zero.
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1.4 Non-linear phenomena

In-lab produced fields are often far weaker than those that bind electrons to molecules,
therefore P(r, t) can be expanded in series with respect to the applied E(r, t):

P = ε0χ(E)E = ε0(χ
(1)E+χ

(2)E2 +χ
(3)E3 + . . .) (1.86)

where χ( j) = χ( j)(E) is the j-th order electrical susceptibility of the material. Such
equation can be expressed in tensorial form11 as follows:

Pk(r, t) = ε0(χ
(1)
kl El +χ

(2)
klmElEm +χ

(3)
klmnElEmEn + . . .) (1.87)

where Pk is the k-th component of the polarization, the indices l, m, n run over the
three spatial coordinates x y z, while:

χ
( j)
1,2,..., j+1 =

1
j!ε0

∂ jP1

∂E2∂E3 . . .∂E j+1
(1.88)

is the electrical susceptibility tensor of rank j+1 [106]. In Eq. (1.86), the linear term
can be separated from the non-linear term leading to the relation [110]:

P(r, t) = ε0χ
(1)E(r, t)+P(NL)(r, t) , (1.89)

where P(NL)(r, t) represents the non-linear polarization part. To understand the role of
the non-linear response of the material, it is useful to combine Maxwell’s equations,
under the assumption of no magnetization of the material and far away from charges or
currents, to determine the following wave equation [105]:

∇
2E = µ ε

∂2

∂t2 E+µ
∂2

∂t2 P(NL) (1.90)

with ε = ε0(1+ χ(1)) where ε0 is the dielectric constant in vacuum, while µ is the
magnetic permeability constant. This equation can be written in a scalar form under
the assumption P(NL) ∥ E:

∇
2E = µ ε

∂2

∂t2 E +µ
∂2

∂t2 P(NL) (1.91)

If now we expand the electric field in normal modes propagating along the z as in sec.
1.1, each of them characterized by the frequency ωi, the following equation can be
obtained:

E(z, t) = ∑
i

1
2
[Ei(z) ei(kiz−ωit)+c.c.] (1.92)

Replacing Eq. (1.92) in Eq. (1.91) and comparing the left and right terms characterized
by the same electric field power, it clearly emerges that the non-linear term mixes the
components at different frequencies12 [3, 106].

11Here the Einstein summation convention is adopted. The summation over repeated indices is implied.
12This mixing takes place since the field is multiplied by itself, therefore terms related to different

frequencies multiplies among each other [3, 106].
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1.4 Non-linear phenomena

1.4.2 Second-order non-linear phenomena

For the interpretation of second-order non-linear phenomena, only the second-order
term in Eq. (1.87) must be considered, as well as only three plane waves in Eq. (1.86).
We can assume that two of them are applied to the material, E1(z, t) and E2(z, t), and
that the third one, E3(z, t), is the result of their non-linear interaction [106]. The three
fields are defined according to Eq. (1.92) as:

1
2
[Ei(z) ei(kiz−ωit)+c.c.] with i = 1,2,3 . (1.93)

By replacing in the second order term, P(2) ∝ E2, of Eq. (1.86) the sum of the two
electric fields E1(z, t) and E2(z, t) as E, we can find terms oscillating at 2ω1 and 2ω2

(second-harmonic generation - SHG), ω1 +ω2 (sum-frequency generation - SFG), and
|ω1 −ω2| (difference-frequency generation - DFG) [3]. All of these phenomena are
capable of generating a new field at ω3. The relation among the frequencies is given by
the energy conservation law [106]. Instead, the relation among the three fields can be
found via Eq. (1.91). In the case of a SFG process, neglecting the second derivative of
the field with respect to z in Eq. (1.91) (slowly varying amplitude approximation [106]),
recalling that k3 =

n3ω3

c
where n3 =

√
ε3/ε0 is the refractive index (ε3 = ε(ω3)), the

following relation can be found [106]:

d
dz

E3 = 2i
ω3

n3c
deffE2E1 ei∆k z , (1.94)

where, for energy conservation, the following relation must be satisfied:

ω3 = ω1 +ω2 , (1.95)

and the phase-mismatch factor 13 ∆k satisfies the relation:

∆k = (k1 + k2)− k3 , (1.96)

and where deff is the effective value of the non-linear constant and it depends on the
non-linearity χ(2), as well as on the fields’ geometry [106]. The value of deff can be
calculated from the definition of the non-linear constant dklm = 1

2 χ
(2)
klm (defined from

Eq. (1.87)) as described in details in reference [106]. An equation similar to Eq. (1.94)
can be found for the other fields, when a sum of three plane waves is introduced in
Eq. (1.91). The three field amplitudes are coupled via the non-linear constants deff. It
is worth remarking that Eq. (1.94) can represent a good description of second-order
non-linear phenomena in the low conversion efficiency regime where the source fields
are not significantly depleted [106].
To find the equation for E3 we can integrate Eq. (1.94) assuming that E1 and E2 hit at
z = 0 the surface of a χ(2) non-linear crystal of length L and that E3(z = 0) = 0 [106].

13For the other second-order non-linear processes the phase-mismatch factor is defined in the same way
with just a different distribution of the signs.
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1.4 Non-linear phenomena

The obtained result is:

E3(L) = 2i
ω3

n3c
deffE2E1

ei∆k L−1
i∆k

, (1.97)

and the related intensity is [106]:

I(L) = 2n3ε0cE3(L)E∗
3 (L) = 8ε0

ω2
3(deff)

2

n3c
|E2|2|E1|2 L2 sin2 (L∆k/2)

(L∆k/2)2 . (1.98)

Phase matching

From Eq. (1.98), we can see that:

I(L) ∝ sinc2
(

L∆k
2

)
=

sin2(L∆k/2)
(L∆k/2)2 −−−→

∆k→0
1 . (1.99)

In case of ∆k = 0 → I(L) ∝ L2, the intensity increases quadratically with the crystal
length14. Otherwise, this function oscillates with a spatial period given by the coherence

length lc = π/∆k, as shown in Fig. 1.5. There are different techniques to fulfil the
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Figure 1.5: a) Phase-matching curve (Eq. (1.99)) as a function of the phase-mismatch factor ∆k, with a fixed
crystal length L. b) Generated intensity (Eq. (1.98)) as a function of the crystal length L for
different fixed values of the phase-mismatch factor ∆k. The crystal length L is expressed in terms
of a reference length L0. figures adapted from [3].

phase-matching condition like the birefringent phase matching and the quasi-phase
14This is true in the approximation of plane waves. For Gaussian beam I(L) ∝ L [3].
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1.4 Non-linear phenomena

matching [106]. Here the latter technique is described15.
The so-called quasi-phase matching exploits the potential of periodically reversing
one of the crystal’s principal optical axes, resulting in a modulation of the sign of
the nonlinear constant de f f . If this modulation has a spatial period, i.e. the poling

period, Λ = 2lc, the generated power oscillates but grows with each oscillation [3, 106].
Formally, the new phase-matching condition is the following:

∆k′ = k3 − k2 − k1 −
2π

Λ
= 0 (1.100)

In this new phase matching equation, the parameter to be finely selected is Λ which
depends on the crystal fabrication16. For a fixed phase-matching condition, a key
indicator to consider in the non-linear conversion processes is the phase-matching

bandwidth, which is how much the frequency of the generated radiation can be modified
while still having a meaningful amount of power [106]. Supposing that the tunable
frequency is ω2, via Eq. (1.95) it is possible to write the phase-mismatch factor (Eq.
(1.96)) as a function of the other two frequencies by applying the following substitution
ω2 → ω3 −ω1. By comparing this result with Eq. (1.100), it is possible to determine
the following equation of mismatching in case of a quasi-phase-matching condition:

ω3(n3 −n2)−ω1(n1 −n2)−
2πc
Λ

= c∆k . (1.101)

Observing the phase-mismatch function (Eq. 1.99 and Fig. 1.5), we can assume as a
limit for having the generation its first zero, i.e. L∆k/2 = π, yielding to the following
relation for the crystal length L < 2π/∆k = 2lc. The bandwidth of the generated
radiation at ω3 is now obtained subtracting member by member Eq. 1.101, one time
evaluated in phase-matching condition ∆k = 0 and the other one in the limit condition
∆k = 2π/L, under the assumption that the tuning of ω2 does not affect the reflective
index, which remains constant17. The resulting phase matching bandwidth ∆ω3 is
therefore:

∆ω3 =
2πc

L ∆n32
. (1.102)

This result depends only on the difference of the refractive indices ∆n32 = n3 −n2 and
on the crystal length L.

1.4.3 Third-order non-linear phenomena

The third-order term in Eq. (1.86) (or in Eq. (1.87)) must be considered, as well as four
plane waves (i = 1,2,3,4 in Eq. (1.92)) for the description of third-order non-linear
phenomena. The resulting third-order susceptibility χ

(3)
klmn is, in general, a fourth-rank

tensor [106]18. For simplicity, we can assume that the non-linear crystal used to model
the third-order non-linear effect is isotropic: in this way the number of independent

15The advantages of the quasi-phase matching are an overall higher conversion efficiency and higher
flexibility in reaching the phase-matching condition [3].

16In the experiment such parameter can be slightly adjusted by changing the crystal temperature.
17In general ni = n(ωi) and therefore the refractive index can change by changing the frequency of the

radiation, however, if the tuning is small, it is possible to assume it constant [106].
18For low-symmetry crystals, all terms are independent and can be nonzero. In contrast, the number

of independent elements is greatly reduced in high-symmetry materials, arriving at just three independent
elements in isotropic materials [3, 106].
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1.4 Non-linear phenomena

elements of the tensor is reduced at three [106]. Considering E1 the resulting element
of the non-linear process, in the corresponding third-order non-linear polarization P(3)

there are, for instance, terms oscillating at 3ω2 (third-harmonic generation), ω2 +

ω3 +ω4 (sum-frequency generation), and |ω3 +ω4 −ω2| and permutations (four-wave

mixing - FWM) [3, 106]. All of them are capable of generating a new field at ω1, where
the conservation of energy provides the relation among the mixed frequencies. With an
analogue derivation to that of section 1.4.2, an expression equivalent to Eq. (1.94) can
be retrieved in case of third-order process involving a FWM [3, 102, 106]:

d
dz

E1 = i
ω2

1µε0χ(3)

8k1

[
6E3E4E∗

2 ei∆k z︸ ︷︷ ︸
four-wave mixing

+

+6E1

(
1
2
|E1|2 + |E2|2 + |E3|2 + |E4|2

)
︸ ︷︷ ︸

Kerr

] (1.103)

Similar formulae occur for the other three fields, and the four amplitudes are related
via the χ(3) parameter. In particular, the four-wave mixing (FWM) term comes from
the mixing of the other three waves19, while the Kerr term comes from the quadratic
sum of the field, i.e. of their intensities and it is proportional to E1. Therefore, the Kerr
term only modifies the propagation constant of the wave associated with the normal
mode E1 by determining an increment of the refractive index [3, 106].
By integrating Eq. (1.103) and computing the intensity, a dependency from the phase-
mismatch factor ∆k of the same type as Eq. (1.99) is obtained, along with a corres-
ponding phase-matching bandwidth [106].

1.4.4 Squeezing generation via non-linear phenomena

Non-linear effects are powerful tools to generate squeezed radiation. In the sections
below such phenomena are described using quantum formalism. The models here
provided are simple, however, despite their simplicity, it clearly emerges the possibility
of squeezing generation via non-linear processes. More info can be found in [101, 102,
104, 107–109].

Squeezing via Spontaneous Parametric Down Conversion

A common way to generate squeezing is via the second-order non-linear process named
Spontaneous Parametric Down Conversion (SPDC) which is the reverse process of
the above described SFG (section 1.4.2). In case of a non-degenerate process, a field
E3(ω3) is applied to a χ(2) non-linear crystal to generate two field E2(ω2) and E1(ω1)

such that ω1 +ω2 = ω3.
From a quantum perspective, it is useful to associate to each field a quantised

normal mode as already seen in section 1.1. Supposing that the fields have a defined
polarization λ and propagate in the same direction z, it is possible to simplify the
notation of Eq. (1.12), defining for each of them a couple of operators âi, â†

i (i =
1,2,3) which create/destroy photons at the field frequency. We can then build, from a

19The factor 6 in front of it comes from the degeneracy given by the interchangeability of the three fields
[106].
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phenomenological perspective, an interaction Hamiltonian for the non-linear process
made by two terms: the first term represents the SPDC process and it creates a couple
of photons at the frequency ω2 and ω1 at the cost of a photon ω3; while the second term
is its c.c. and describes the opposite process, i.e. the SFG. The overall Hamiltonian can
be represented by a free-evolving term (Ĥ0) plus the interacting one [104]:

Ĥ = Ĥ0 + ĤI = ∑
i=(1,2,3)

(
â†

i âi +
1
2

)
+ℏk

(
â1â†

2â†
3 + â†

1â2â3

)
, (1.104)

where k ∝ χ(2). If we forget about the H0 part, we can consider just the interaction part
to understand how the squeezing is generated from this process. In a fully quantum
mechanics interaction picture under the rotating wave approximation and the hypothesis
of a bright coherent single-mode pump (approximated with a classical mode), the
interaction Hamiltonian can be seen as [102]:

ĤI = ℏk|α1|
(

e−iϕâ†
2â†

3 + eiϕâ2â3

)
=−ℏ

i
2

k′χ(2)|α1|
(

e−iϕâ†
2â†

3 + eiϕâ2â3

)
, (1.105)

where k =− i
2

k′χ(2) and the operator â1 has been replaced with |α1|e−iϕ. From such
Hamiltonian we can define the unitary evolution operator [104, 108]:

UI = eiHIt/ℏ = exp
[

k′

2
χ
(2)|α1|

(
e−iϕâ†

2â†
3 + eiϕâ2â3

)
t
]
, (1.106)

where t is the time of interaction. It is immediately clear that this operator is of the same
form of S(ζ) (section 1.2.3), when it is defined in the case of two modes [101, 102]. In
the degenerative process where ω2 = ω3 = ω1/2 it is possible to find the same type
equation with a square dependence on the annihilation and creation operator, as shown
in chap. 5.

Despite its simplicity and limitation, this intuitive approach gives a taste of how
squeezing can be generated via a non-linear process. A more formal approach can be
found in [101, 102, 104].

Squeezing via four-wave mixing

As mentioned in the introduction chapter, we aim to study the FWM process in the case
of QCL harmonic combs characterized by a bright single central mode and two weak
sidebands. The quantum model for a QCL dynamics is quite complex: gain, losses, and
other coupling terms (e.g. mode competition) occur between the modes. However, the
motivation under the statement about the capability of FWM of generating a squeezed
state of light can be provided starting from a simple scenario considering an interaction
Hamiltonian similar to the case of χ2 passive medium 20.

In the case of a FWM process where two photons of a bright pump (ωp) generate
two photons of two sidebands (ωs1 and ωs2) such that: 2ωp = ωs1 +ωs2, we can find

20This model does not take into account about the gain, the losses, and the coupling between different
modes due to phenomena like gain competition. However, it is an intuitive and easy way to get the squeezing
generation in the case of a simple toy model.
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an interaction Hamiltonian similar to the case of SPDC [101, 102]:

ĤI = ℏk
(

â2
Pâ†

s1â†
s2 + â†2

p âs1âs2

)
(1.107)

where now k ∝ χ(3). If we schematize the pump as a classical bright coherent state,
we end up with an expression identical to the SPDC one, apart from a multiplicative
constant. Therefore, we can have the generation of a two-mode squeezing state also
via FWM. A more formal approach can be found in [101, 102, 104].
In particular, in the experiment presented in chapter 4, we aim to measure the presence
of squeezing in the photon number difference of the two side modes. About this topic,
we can compare the QCL-comb platform to the Kerr-comb emitted by micro-resonator
where such squeezed difference signal has been found [73, 111].
In the case of Kerr comb generated via micro-resonator, it has been shown that this
sideband-sideband photon-number difference, evolving via a Hamiltonian characterized
by a FWM term, leads to a difference photon-number squeezed state [111]. The
theoretical dissertation presented in [111] uses the quantum mechanics Heisenberg
picture, where the states are kept constant in their initial value, e.g. |Ψ⟩= |Ψ(0)⟩, and
the time evolution is applied to the operators 21. In particular, if we define the operator
of sideband-sideband photon-number difference as n̂−, its evolution in the Heisenberg
picture can be written as [100]:

d
dt

n̂−(t) =
i
ℏ
[
Ĥtot , n̂−(t)

]
+

∂

∂t
n̂− , (1.108)

where, as described in [111], the Hamiltonian Ĥtot has a free part evolution (analogue to
H0 defined above), a part linked to the external pump, Hpump, and, finally, an interaction
part, HKerr. In particular, HKerr is composed by three terms: the FWM part, HFWM , the
self-phase modulation part, HSPM ∝ ∑m(â†

m)
2(âm)

2, and the cross-phase modulation
part HCPM ∝ ∑m<l(â†

m)(â
†
l )(âm)(âl) [111].

In the specific case of bright pump and weak sidebands22, the interaction Hamiltonian
can be approximated as the one defined in Eq. (1.107) [111]. By doing the proper
calculations and evaluating the Fourier Power Spectrum S(ω)23 related to the sideband-
sideband photon-number difference24, and by normalizing it to the shot-noise, the
following equation can be obtained [111]:

S(ω) = 1+ρ
4k2

c

ω2 + kc42 , (1.109)

where kc is linked to the laser pump detuning with respect to the micro-ring resonator
cavity resonance, and ρ is a parameter that represents a direct indicator of the squeezing

21At the contrary, in case of the Schrodinger picture the state of light |ψ(0)⟩ evolves in the time
leading to |ψ(t)⟩= Û(t) |ψ(0)⟩ and the operator remains constant at the initial value. U(t) is the evolution
operator [100], which is the one applied to the operator Â to find Â(t) in case of Heisenberg picture :
hatA(t) = Û†(t)ÂÛ(t).

22⟨np⟩ ≫ ⟨n±⟩ where n± is the sideband-sideband sum (+) and difference (-) photon number operator
and np is the photon number operator associated to the pump mode.

23Given a certain signal A(t), the power spectrum is defined as |A(ω)|2, where A(ω) is the Fourier
Transform of A(t).

24In [111], the sideband-sideband photon-number difference operator is defined taking into account also
the losses which lead to a coupling between the side modes and the vacuum state.
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Figure 1.6: Power spectra of pure amplitude and phase quadratures for different values of the squeezing
parameter ρ. The solid curves refer to the sideband-sideband photon difference spectrum
section 1.4.4, whose spectrum equation is equal to the one found for the power spectrum
amplitude quadrature described in the main text as X̂ . The dashed-line curves refer to the spectra
found for the phase quadrature described in the main text as Ŷ . Figure taken from [111].

efficiency. ρ → 1 leads to a perfect squeezed state , ρ → 0 to no squeezing in the whole
spectrum. This parameter depends on the cavity experimental parameter such as the
cavity factor and the coupling losses and so dependence on the cavity manufacture
and coupling efficiency [111]. An example of the Lorentzian spectral shape of S(ω) is
provided in Fig. 1.6 where the squeezed state curve is represented with a solid line.

Explaining all the theories under the theoretical model presented in [111] is quite
complex and out of the scope of this experimental thesis. The aim of the work presented
in this manuscript is indeed to study possible non-classical features in QCLs. These
devices have some common features with microring resonators like the presence of a
cavity, comb emissions and the FWM, However, they are also quite different from them,
being active media. Furthermore, the sideband-sideband photon-number difference
measurements presented in chapter 4 do not evidence the presence of correlations
at the quantum level between the QCL’s sidebands. The noise difference of their
photon numbers signal remains, indeed, well above the corresponding shot-noise
level. However, by describing the possibility of having a squeezed state of light in
the sideband-sideband photon-number difference in a three-mode comb triggered by
a FWM process, the here presented brief introduction can help to understand the
motivation under the experiment described in chapter 4.

A complete and elegant theoretical dissertation about the quantum features of Kerr
comb out of micro-resonator can be found in [111].

1.5 Electric field: from discrete to continuous modes

The quantum optics derivation described in the sections above refers to the ideal case of
a time-independent single-mode quantum optics state. However, in the experiments, we
have to deal with travelling quantum states of light with time-dependent properties and,
in general, their field is characterised by a certain spectral bandwidth. The first step
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1.5 Electric field: from discrete to continuous modes

for a better description is to pass from a discrete modes’ decomposition to continuous
modes one [100].

Let’s assume that in our experiment we are dealing with the radiation of an optical
beam characterized by a transverse area A and by a well-defined polarization which
is propagating in free space from the emitting source to a detector in the z-direction
parallel to the optical table. It is convenient to model the propagation path as a fictitious
cavity of length L, extending in the direction parallel to the optical table. From a
discrete-mode decomposition perspective, the electrical field of the beam can be seen
as a sum of normal modes as in the case of Eq. (1.6), where the sum runs only over
the variable k, indeed the direction of propagation and the polarization of the beam are
fixed. Passing to a continuous mode description, we can now associate to the k−mode
the continuous quantity ωk and determine the distance between two normal modes in
terms of frequency as:

∆ω = 2πc/L , (1.110)

where L → ∞ in case of free-space propagation beam, transforming the discrete sum
into an integral over the frequency:

∑
k
→ 1

∆ω

∫
dω . (1.111)

Similarly to the derivation done for discrete normal modes, here it is possible to
associate to the electric field the operators â†(ω) and â(ω) which have now to satisfy
the commutation relation: [

â(ω), â†(ω′)
]
= δ(ω−ω

′) , (1.112)

where the Kronecker’s delta δk,k′ of Eq. (1.11) is substituted with the continuous Dirac
delta function δ(ω−ω′). By doing the following substitutions in Eq. (1.12) :

âk →
√

∆ω â(ω) , (1.113)

â†
k →

√
∆ω â†(ω) , (1.114)

the electric field can be written as:

Ê(ϕ) =
∫

∞

0
dω

(
ℏω

4πε0cA

)1/2(
â(ω)e−iϕ + â†(ω)eiϕ

)
(1.115)

where
ϕ = ω

(
t − z

c

)
+

π

2
. (1.116)

In this derivation, the photon number operator becomes:

n̂ =
∫

dω â(ω)â†(ω) . (1.117)

1.5.1 Narrow-bandwidth approximation

For a single-mode optical beam characterized by a central frequency ω0 and by a
narrow bandwidth (∆ωopticalbeam ≪ ω0) it is possible to approximate ω ≈ ω0 and to
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1.5 Electric field: from discrete to continuous modes

extend the frequency integral25 introduced in the previous paragraph from −∞ to ∞. In
this narrow-bandwidth approximation [100], the temporal-dependent operator â(t) can
be defined as the Fourier Transform of the operator â(ω):

â(t) = (2π)−1/2
∫

∞

−∞

dω â(ω)e−iωt , (1.118)

â(ω) = (2π)−1/2
∫

∞

−∞

dt â(t)eiωt , (1.119)

and in the same way it is possible to define a Fourier-Transform-based relation between
â†(t) and â†(ω). These temporal-dependent operators must satisfy the commutation
relation:

[â(t), â†(t ′)] = δ(t − t ′) . (1.120)

Furthermore, as in the case of discrete modes, the vacuum state satisfies the condition:

â(t) |0⟩= â(ω) |0⟩= 0. (1.121)

It is also possible to define the photon number operator n̂ in terms of photon flux
operator f̂ (t) = â†(t)â(t) as:

n̂ =
∫

dt â†(t)â(t) =
∫

dt f̂ (t) , (1.122)

and to evaluate its mean value by averaging the flux operator:

⟨n⟩=
∫

dt f (t) =
∫

dt⟨ f̂ (t)⟩dt =

= (2π)−1
∫

dt
∫

dω

∫
dω

′⟨â†(ω)â(ω′)⟩exp[i(ω−ω
′]t] .

(1.123)

Finally, in this narrow-bandwidth approximation, the electric field and the intensity
associated with the optical beam can be respectively written as:

Ê(z, t) =
(

ℏω0

2ε0cA

)1/2{
iâ
(

t − z
c

)
− iâ†

(
t − z

c

)}
=Ê+(z, t)+ Ê−(z, t)

(1.124)

and:

Î(z, t) =2cε0Ê−(z, t)Ê+(z, t)

=
ℏω0

A
â†

(
t − z

c

)
â
(

t − z
c

)
=
ℏω0

A
f̂
(

t − z
c

)
.

(1.125)

The here retrieved expressions are analogues to the ones found in the discrete mode
decomposition, with the difference that now both the annihilation and construction are
time-dependent, and the quantity associated with the intensity operator is the photon
flux.

25In general, this integral should be positive being the frequency a positive quantity.
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1.5.2 Distributed modes

A further step in the description of a real propagating state of light is to associate with
it a certain frequency spectrum g(ω), peaked at the frequency ω0, accordingly to its
photon-number statistical distribution which can be for instance Gaussian or Lorentzian.
In this scenario, it is useful to define the operators:

â†
g =

∫
dωg(ω)â†(ω) , (1.126)

âg =
∫

dωg∗(ω)â(ω) , (1.127)

which respectively create e destroy a photon in the wave-packet of the propagating state
of light characterized by a certain shape given by the distribution g(ω) which must be
normalized: ∫

dω |g(ω)|2 = 1 (1.128)

to satisfy the commutation relation rule:

[âg, â
†
g] = 1 . (1.129)

From this derivation, it is possible to find results similar to the one found for single-
mode states of light in section 1.2. A complete description of distributed quantum
states of light can be found in [100].

1.6 Measurements techniques

In this section, the mathematical tools useful for describing typical photon-detection
schemes are provided. In particular, the homodyne detection technique is here intro-
duced and described.

1.6.1 Photodetectors

In the case of direct photodetection using photovoltaic detectors, the flux of photons
characterizing the beam incident on the detector area is measured in terms of photo-
current. In the following description, we assume that the detector is ideal, with no
saturation and that it works in the linear responsivity regime, with a conversion effi-
ciency between incident photons and generated electrons, commonly called quantum
efficiency, of 1:1: i.e. for each incident photon the detector generates an electron. From
a quantum point of view the photocurrent Î(t) is proportional to the f̂ (t) defined in Eq.
1.122:

Î(t) = q f̂ (t) . (1.130)
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Figure 1.7: Representation of a real detector with quantum efficiency η < 1, schematized as an ideal
detector (D) preceded by an ideal and symmetrical beam-splitter which couples the field under-
investigation â(t) to the vacuum field v̂(t) . The resulting field is described via d̂(t). The
beam-splitter is described via the coefficients T =

√
η and R = i

√
1−η.

where q is the electron charge. The number of photons26 arriving to the detector in the
measuring time T is given by the operator:

M̂(t,T ) =
∫ t+T

t
dt ′ f̂ (t ′) =

∫ t+T

t
dt ′â†(t ′)â(t ′) . (1.131)

This model, however, does not represent a real detector where the quantum efficiency
η < 1: in fact, a real detector is affected by losses (e.g. the photons are reflected
from the detector surface or not absorbed in the sensitive region and/or the loss of
electrons as a result of ionization processes). This leads to a conversion of photons
in electrons lower than 1:1. In quantum optics, the losses can be schematized with
a BS as shown in Fig. 1.7. This BS couples the field of interest (described via the
operator â(t)) with the vacuum field (v̂(t)), and it is characterized by a transmission
coefficient and a reflection coefficient both expressed in terms of η: T =

√
η and

R = i
√

1−η, respectively. Therefore, a real detector can be seen as an ideal one (D
in Fig. 1.7) preceded by the BS schematizing the losses. By using the beam splitter
relations presented in sec. 1.3, the output field d̂(t) can be written as:

d̂(t) = (η)1/2â(t)+ i(1−η)1/2v̂(t) , (1.132)

and the detected number of photons can be defined as:

M̂D(t,T ) =
∫ t+T

t
dt ′d̂†(t ′)d̂(t ′) . (1.133)

Accordingly to Eq. (1.84), the mean number of detected photons and its variance are:

⟨m⟩ = η⟨M̂(t,T )⟩ , (1.134)

(∆m)2 = η
2⟨
[
[∆M̂(t,T )

]2⟩+η(1−η)⟨M̂(t,T )⟩ . (1.135)

The mean number of photons is the one of the incident beam, scaled by the quantum
efficiency. The variance has instead an extra term, i.e. η(1−η)⟨M̂(t,T )⟩, with respect
to the one of the incident beam. This extra term is due to the coupling with the vacuum.

26This quantity M̂(t,T ), as defined in Eq. (1.131), remains a finite quantity even in the case of a stationary
beam, being T a finite amount of time[100]. Vice-versa for non-stationary light the photon flux depends on
the position of the detector zd which can be explicated in the introduced relation by doing the substitution
t → t − zd

c [100].
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1.6.2 Balanced homodyne detection

Figure 1.8: Scheme of the homodyne detection. The signal field is indicated by âS, that of the local oscillator
by âLO. The output fields are respectively indicated with â3 and â4 to which the currents Î3 and
Î4 are associated, revealed by the two detectors. The measured quantity is Î3 − Î4, which we call
Î− in the text.

In quantum optics, the balanced homodyne detection is a commonly used technique
that allows the measurement of the electric field of a specific state of light and, therefore,
of the associated observable Q̂ (Eq. (1.17)). This technique involves the mixing of
the signal of interest with areference radiation, via a 50/50 BS (i.e. |R|2 = |T |2 = 1/2,
sec. 1.3) and a differential measurement performed between the output signals of two
identical photodetectors located at the two 50/50 BS outputs, as shown in Fig. 1.8.
In the following discussion the fields are assumed in a single mode, with the same
frequency and polarization27. Another prerequisite for efficient homodyne detection
is that the two states must have the same spatial and spectral shape. This requirement
can be experimentally obtained, for example, from beams generated by the same
or identical sources (an example of this detection scheme is described in chap. 5).
Furthermore, in the following description, we assume to have an ideal symmetric BS.
Referring to Fig. 1.8, in a typical balanced homodyne detection scheme the signal of
interest âS is mixed via a 50/50 (ideal and symmetric) BS (i.e. R = T ) with a signal of
reference âLO, commonly called Local Oscillator (LO). While the signal state |Ψs⟩ is a
generic one, the LO is typically a strong coherent state |αLO⟩. The homodyne detection
consists of transforming the BS output signals, â3 and â4, in two photocurrent signals
(Î3 and Î4, respectively) via two identical (ideal) photodetectors and performing the
difference between this latter retrieved quantities. By writing the coefficients of the
50/50 BS as T = i/

√
2 and R = 1/

√
2, from the BS equation found in sec. 1.3 (Eq. 1.75

27Throughout the discussion, the temporal dependencies are left implicit, assuming that the various
operators are valued at the same instant in the measure. In this discussion, the concepts introduced in the
previous paragraphs are also taken for granted (definition of the various operators, rules of the beam-splitter,
etc.).

44



1.6 Measurements techniques

and Eq. 1.76), it is possible to retrieve the equations for the outputs signals:

â3 =
1√
2
(âS + iâLO) , (1.136)

â4 =
1√
2
(âLO + iâS) . (1.137)

The two detectors’ photocurrent signals can be schematized through the operators:

Î3 ∝ â†
3â3 =

1
2
(â†

SâS + iâ†
SâLO − iâ†

LâS + â†
LâLO) (1.138)

Î4 ∝ â†
4â4 =

1
2
(â†

SâS − iâ†
SâLO + iâ†

LâS + â†
LâLO) (1.139)

Therefore, the differential current operator Î−, representing the differential measure-
ment done at the two detectors’ outputs, can be written as:

Î− = Î3 − Î4 ∝ i(â†
SâLO − â†

LOâS) . (1.140)

In the approximation of strong coherent LO its beam can by considered classical
and in the latter equation the operator âLO can be replaced with |αLO|eiϕLO leading to:

Î− ∝ |αLO|(â†
Sei(ϕLO+π/2)+ e−i(ϕLO+π/2)âS) = |αLO|Q̂S

(
ϕLO +

π

2

)
. (1.141)

Therefore, it is immediately visible that a measurement of Î− gives information
about the quadrature Q̂S of the signal. Moreover, by controlling the LO phase ψLO it is
possible to scan the quadrature signal in the quadrature phase space. This procedure
corresponds to a scan of the electric field Ê in the time domain if we consider r = 0 in
Eq. (1.12). Furthermore, in the balanced homodyne detection, the measured quadrature
signal Q̂S is amplified by a factor proportional to the LO amplitude. This can be
useful to get access to small quadrature fluctuations that are covered by the detector
background noise otherwise (see chap. 3 for a practical explanation).

The equations above presented do not take into account the measuring time T
and the presence of losses. If we assume that the overall detection efficiency of the
assembled balanced detector is η, with the two real detectors identical and schematized
as in Fig. 3.1, following the formalism introduced to describe the real detector, the
measured quantity with the balanced homodyne detection can be written as:

M̂HD(t,T ) =
∫ t+T

t
dt ′

(
d̂3

†
(t ′)d̂3(t ′)− d̂4

†
(t ′)d̂4(t ′)

)
, (1.142)

where d̂3(t) and d̂4(t) have a definition analogue to the one reported in Eq. (1.132),
evaluated in terms of â3(t) and â4(t), respectively. It is possible to demonstrate that
the mean value and the variance of M̂HD are [100]:

⟨m⟩ = iη⟨M̂−(t,T )⟩ = iη

∫ t+T

t
dt ′⟨â†

S(t
′)âLO(t

′)− â†
LOâS(t

′)⟩, (1.143)

(∆m)2 = η
2 (∆M−(t,T ))2 +η(1−η)

∫ t+T

t
dt ′⟨â†

LO(t
′)âLO(t

′)+ â†
SâS⟩ .(1.144)
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Where M̂−(t,T ) is the homodyne measured quantity corresponding to the temporal
integration of the one previously introduced in Eq. (1.140), and (∆M−(t,T ))2 is its
variance. In this derivation, it is useful to introduce the homodyne-field operator [100]
as:

ÊHD(ϕ, t,T ) =
1

2T

∫ t+T

t

(
â†

S(t
′)ei(ϕ−ωSt ′)+ âS(t

′)e−i(ϕ−ωSt ′)
)

(1.145)

where ωS is the frequency of the signal-of-interest field. By making again the assump-
tion that the LO is a strong (bright) coherent state, and by doing the approximation
âLO → |αLO|ei(θLO−ωLOt), where ωLO = ωS is the frequency of the LO radiation28, it is
possible to find the following results:

⟨m⟩ = 2η|αLO|T 1/2⟨ ÊHD(ϕ, t,T )⟩ (1.146)

(∆m)2 = ηT |αLO|2
[
(4η(∆EHD(ϕ, t,T ))2 +(1−η)

]
(1.147)

where ϕ = π/2+θLO. The results are similar to the ones that we can get via Eq. (1.141).
However, we can see here the presence of an extra-term due to the coupling with the
vacuum in the variance of the homodyne measured signal.

1.7 Wigner fuction

As described in the previous section homodyne detection is a technique that allows
the measurement of the quadrature signal of a certain quantum state of light under
investigation. Regarding the state of light characterization, another useful quantity
related to its quadrature signal is the so-called Wigner function, which is a quasi-
probability function commonly used in quantum optics to asset the non-classicality
of light states [112]. Moreover, this quantity can be reconstructed starting from the
quadrature measurements done via the homodyne detection scheme as described below.

In general, the Wigner function for a single-mode pure state |Φ⟩ is defined as
[101, 112, 113]:

W (x, p) =
1

πℏ

∫ +∞

−∞

Φ
∗ (x+q)Φ(x−q)e2iqp/ℏdq (1.148)

where x and p are the two conjugated variables representing the position and the mo-
mentum operators x̂ and p̂ satisfying the commutation rules [x̂, p̂] = iℏ [100]. Starting
from this definition, the Wigner function can be adapted to represent any couple of
conjugated quadrature operators [109] like the quadratures X̂ and Ŷ defined in Eq.
(1.1), used to describe the space phase of the electric field. In this manuscript X̂ and Ŷ

are defined following the description of [100], while their commutator is [X̂ ,Ŷ ] = i/2.
Therefore, it is possible to define W (X ,Y ) starting from Eq. (1.148) by doing the
following substitutions x → X , p → Y and ℏ→ 1/2, yielding to the equation:

W (X ,Y ) =
2
π

∫ +∞

−∞

Φ
∗ (X +q)Φ(X −q)e4iqY dq . (1.149)

28As already mentioned, the two light states have the same frequency.
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This description holds for pure states of light. However, in a real experiment quantum
states of light are typically contaminated by the losses, therefore it is no more possible to
describe them as a single pure state of light |Φ⟩ [100]. To give a suitable description of
a realistic quantum state, it is better to use the density matrix (ρ̂) formalism [100, 101].
In this formalism, a quantum state is, indeed, described as a superposition (mixture) of
pure states of light {|ψ⟩i} [100, 101, 108]:

ρ̂ = ∑
i

P(ψi) |ψi⟩⟨ψi| (1.150)

where P(ψi) is probability associated to the pure state |ψi⟩.
In this scenario, it is possible to generalize Eq. (1.148) for a generic state described by
the density matrix ρ̂ [101] as follows:

W (X ,Y ) =
2
π

∫ +∞

−∞

⟨X +q| ρ̂ |X −q⟩e4iqY dq . (1.151)

As for the density matrix, the Wigner function gives us a complete description of
the associated state of light29 [103]. In particular, the Wigner function gives us a
description of the density matrix in the XY -phase space [100, 103].
As mentioned at the beginning of this section, the Wigner Function is a quasi-probability
distribution that gives information about the light state under investigation: in fact, if
W (X ,Y )< 0 the state is quantum [114]. Therefore, by reconstructing this quantity in
our experiment we can asset the non-classicality of the state under study. However, in
an experiment, the quantities that we can measure are actually the marginal probability
distributions P(X) and P(Y ) of X̂ and Ŷ , respectively. Such quantities are linked to
W (X ,Y ) via the following relations [103, 112, 113]:

∫ +∞

−∞

W (X ,Y )dY = P(X) , (1.152)∫ +∞

−∞

W (X ,Y )dX = P(Y ) . (1.153)

In a more general picture, we can think of shifting of a quantity θ the quadratures in
XY -phase space, yielding the following shifted quadratures:

Xθ = Xcos(θ)+Y sin(θ) , (1.154)

Yθ = −Xsin(θ)+Y cos(θ) . (1.155)

Following the new notation, the marginal distribution probability of measuring a certain
value Xθ for the observable defined via the operator X̂θ is therefore:

P(Xθ) =
∫ +∞

−∞

W (Xθ,Yθ)dYθ . (1.156)

In the same way, it is possible to define the marginal distribution for Ŷθ.
To re-construct the marginal probability distribution of both quadratures, we have to
do a statistical-significant repetition of measurements of these quantities, e.g. via a

29In case of pure state ρ̂ = |Φ⟩⟨Φ| and from Eq. (1.151) it is possible to retrieve Eq. (1.148).
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homodyne detection scheme. After that, we can invert the corresponding equations
(Eq. (1.152) or Eq. (1.153)) to get W (X ,Y ). This is the philosophy under the quantum

state tomography that allows via an inversion process to reconstruct the quantum state
of light under investigation [103]. An example of this procedure is provided in the
experimental work described in chapter 5.
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QCLs are hetero-structured semiconductor lasers, characterized by a complex
structure composed of multiple semiconductor layers of nanometric thickness. This
peculiar structure enables the development of devices capable of producing coherent
radiation at the desired wavelength in the spectral range from mid- to far-infrared. This
chapter describes the QCLs’ working principles and their key characteristics.
More info about such devices are available in [15] and in [2, 3]. A review of comb
operation in these devices is given in [32].

2.1 QCL working principle

Conventional semiconductor lasers (e.g. diode lasers) are distinguished by an emission
based on an interband transition that occurs inside the active medium between the
conduction and valence bands. The wavelength of the emitted radiation is determined
by the difference in energy between the two bands, the so-called energy gap, and it
is thus an intrinsic property of the active medium. Due to the hard availability of
semiconductors characterized by sufficiently small energy gap and, at the same time,
easy to implement and sufficiently robust1, the typical semiconductor lasers cannot
emit at wavelengths above ∼3µm [2]. In bipolar diode lasers, each electron injected

1For example, lead-salt diode laser are semiconductor devices characterized by a small energy gap,
however, these devices have to work at cryogenic temperature. Furthermore, these devices are characterized
by a low efficiency of conversion between pumping current and emitted optical power [15].
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into the active zone, recombining with a hole, can generate a single photon, and the
output power from each of the two facets of the laser cavity is equal to [110]:

P =
1
2e

hν η (I − Ith) , (2.1)

where e is the electron charge, I is the supplied laser current, Ith is the lasing threshold
current, hν is the photon energy, while 0 ≤ η ≤ 1 is a parameter that depends on the
cavity properties, as the losses, the cavity length and the reflectivity. The factor 1/2
is, instead, due to the equipartition of the output power between the two cavity facets.
By fixing all the parameters, with the exception of the emission frequency, from this
equation it is immediately possible to notice that the emission power decreases by
increasing the laser wavelength (λ), being ν ∝ 1/λ. Furthermore, typically the losses
increase by increasing the wavelength, and η decreases consequently. This gives,
therefore, an idea about the inefficiency of using standard bipolar laser for the MIR
wavelength [3].

Figure 2.1: Energy-level scheme of a quantum well. The depicted quantum well is characterized by three
discrete energy levels: in the electronic transition between levels 3 and 2, a photon of energy hν

is emitted. Non-radiative processes are, instead, at the basis of the transition between level 2 and
level 1.

Unlike what happens for bipolar semiconductor lasers, the wavelength emitted by
quantum cascade lasers does not depend on the size of the gap, but on the confinement
of the electrons in well-defined energy levels of sub-bands of the conduction band
[15, 30, 115]. The active medium of such devices is composed of different layers of
semiconductors materials, which are grown via the molecular beam epitaxy (MBE)
technique. This technique allows the growth of single layers of different chemical
compositions with a nanometric thickness. In the case of QCLs, this results in a
variation of the electric potential encountered by electrons as they propagate through
the active medium, which can be represented as a series of wells and barriers (quantum
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wells). This determines a division of the conduction band in discrete sublevels, as
depicted in Fig. 2.1. Referring to this figure, the QCL lasing transition occurs between
two of these sublevels (level 1 and level 3): electrons are injected in level 3 and they
relax in level 2 via stimulated emission. A non-radiative relaxation process (electron-
phonon scattering), then, assures that level 2 is quickly and efficiently emptied into level
1. The gap between such levels, and therefore the emitted wavelength, is determined
by the material and the thickness of the layer composing the active medium [15].
Furthermore, QCLs are able to emit high power, even above the Watt level, thanks to
a cascade mechanism. The heterostructured active medium is, indeed, characterized
by multiple active regions (multiple quantum wells) connected by injection regions

serving as channels for electrons. Therefore, each electron, flowing into the active
medium, contributes multiple times to the laser transition. Furthermore, differently
from the bipolar standard semiconductor laser, QCLs are unipolar devices because the
electrons are the only charge carriers engaged in the lasing process. This, together with
their particularly fast dynamics, has consequences also in the QCLs’ intrinsic linewidth,
which is much lower than that of bipolar junction lasers [116].

2.2 QCL structure

Demonstrated in 1994 [30], the first QCLs were created by alternating layers of InGaAs
with layers of InAlAs on a substrate of InP. Today, they are manufactured almost the
same way, and they can be engineered to emit wavelengths ranging from 3.4 µm to
24 µm [15]. A few years later, GaAs-AlGaAs devices were developed with an emission
wavelength ranging from 8 µm to 80 µm[15, 117–119]. However, the actual structure
of these devices is more complex with respect to the simple quantum-well model
introduced in the previous section. An example of the typical QCL structure is reported
in Fig. 2.2. More specifically, the layers in which the laser action occurs (composing
the active region in Fig. 2.2a and b) form a waveguide. The beam propagates parallel
to the layers and the facets of the guide are cut perpendicular to the direction of the
beam, forming the semi-reflection mirrors2 of the laser cavity (Fig. 2.2 c). As shown in
Fig. 2.2, the electrons are injected in the waveguide via gold (Au) connections. Here
they experience the N-stage cascade 3 of the heterostructure active medium (each stage
width is of the order of 50 nm, as depicted in Fig. 2.2 c). Each stage is divided into
an electron injection region and an active region in which the laser transition takes
place (Fig. 2.2 c and Fig. 2.3). The operating principle of this complex system is based
on the confinement of an electron in a potential well, its Schrödinger equation leads
to a discrete system of energy levels [2, 3, 15]. Additionally, if two adjacent wells
are characterized approximately by the same energy and the barrier between them is
quite thin, the electron wave function is no longer localized. The new wave function is
given by the linear combination of the previous ones, which extends into the two wells.
Moving from the example of two wells to numerous layers of semiconductor material
of ad-hoc-chosen composition and thickness, i.e. to multiple wells, the possibilities for

2The used waveguide semiconductors have a typical refractive index of the order of 3, while air has
a refractive index of around 1: these conditions cause a reflection of the intracavity (i.e. intra-waveguide)
propagating beam about 30%, sufficient to guarantee the laser action [15].

3The number of stages typically range between 10 and 100 [15].
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2.2 QCL structure

Figure 2.2: (a) A QCL representation from the front facet. Bottom: two images of a QCL taken via an
electronic microscope. In (b), there is an image from above of a QCL, and in (c) of its active
medium seen from the front. Image taken from [2].

Figure 2.3: Scheme of a QCL’s band structure. A three-quantum-well vertical-transition architecture is
depicted in the scheme. There are two time periods displayed. The square moduli of the
electronic wavefunctions are shown alongside the superlattice. The externally applied electric
field determines the overall slope. The thick arrows represent electron transport, whereas the thin
wavy arrows represent laser transition. The ground-state miniband in the relaxation-injection
area is denoted by g. a TEM micrograph of a clived cross-section of an active region of the same
type is shown, similarly to the one shown in Fig. 2.2 c. Light regions are AlInAs barriers, while
dark regions are GaInAs wells. Pictures taken from [3].

manipulating the wave functions and the levels structures emerge quite clearly. Indeed,
these latter quantities can be really discrete as in the case of the active region (Fig. 2.3),
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2.2 QCL structure

or they can determine the formation of minibands where the electrons flow freely4,
as in the case of the injection/relaxation regions. In particular, the electron injection
region is composed of quantum wells separated by very thin barriers, characterized
by thicknesses of the order of 1 – 3 nm [15], forming a super-latex structure. As
a result, the electronic wave functions stretch into several layers, generating narrow
minibands separated by minigaps and with a low state density. According to [15], the
number of states in a miniband equals the number of quantum wells. Furthermore,
when a strong electric field5 is applied to the active region, it causes a cascade of
the potential wells. The electrons in the miniband of an injection region have the
same energy as the level 3 of the adjacent active region, where they migrate by a
tunnelling effect. To prevent the electron escape from the active region via thermal
excitation, the materials are selected so that the energy of level 3 is sufficiently below
the top of the potential well6. As already explained in the previous section via Fig.
2.1, the lasing process takes place between level 3 and level 2. To guarantee the lasing
transition, it is necessary to maintain a population inversion between these two levels:
the requirement is therefore that the average level-2 lifetime must be significantly lower
that the level-3 ones. In general, the electron’s average lifetime in these levels depends
on the emission of optical phonons: an increment of the energy gap between these
levels, with respect to the average energy of the phonons, increases the level-3 average
lifetime [15]. Commonly the energy gap between the lasing levels is selected to be
an order of magnitude higher than the energy of such photons, which is typical of the
order of 35 meV [3, 15]. This leads to a typical average lifetime for the higher level
(level 3) of the order of ps. Instead, the energy gap between levels 1 and 2 is of the
order of the optical photons’ energy. Therefore, the time scale decay of electrons from
level 2 to level 1 is of the order of tenths of ps, allowing a quite fast emptying of level
2. From an experimental point of view, the described fast dynamics allows modulating
the radiation of QCLs up to GHz and above [15, 33], making such devices appealing
for communications. The last barrier of the active zone is often quite thin to promote
the depletion of the 1 level, favouring the electron tunnel effect to the adjacent injection
region. In this region, due to the miniband structure, the electrons quickly relax to the
ground state, where they are injected to the next active region7.
The three-level conduction band works well in QCL with wavelength shorter than
11 µm [2, 15]. A variety of issues come up with longer wavelengths, but the challenge
of obtaining population inversion stands out: the energy difference between levels 3
and 2 must decrease contextually as the wavelength is increased; once this difference
reaches the typical energy of optical phonons, the electrons decay non-radiatively,
which prevents the laser transition. Being the collisions between electrons the most
efficient mechanism for emptying the lower level, in these conditions, the most suitable
implementation for the active region is to use a two-level system for the lasing transition

4The latter case is obtained when the states are engineered so that the separation between the levels is
less than the electrons’ thermal energy.

5The applied electric fields vary from 1 to 10 kV/mm [15].
6To have QCL capable of operating even at room temperature, it is crucial that the energy difference

between the top of the quantum well and the level in question is significantly greater than the energy of the
phonons in the crystal. Otherwise, these electrons would be excited towards continuous states outside the
hole and there would be no laser transition[15] .

7Here a minigap prevents the opposite injection, i.e. from the level 3 of an active region to the ground
state of the previous injection region.
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made by two successive minibands. For more information see [2, 3, 15].

2.2.1 The cascade process

The so-called cascade process enables QCLs to achieve high output powers [15]:
once an electron emits a laser photon in an active region, it goes through the adjacent
injection region and then ends up in the next active region, where it emits a new photon8.
For these devices, the Eq. 2.1 still holds as long as the right side of the equation is
properly multiplied by the number of stages Ns of the active medium. Therefore, a
higher number of stages leads to a proportionally higher emitted power. This feature,
combined with the fact that the semiconductor materials composing QCLs have large
gaps supporting high current flows (up to 1 A), allows QCLs to achieve output powers
up to a thousand times greater than the common diode lasers hypothetically engineered
to emit at the same wavelength [120].

2.3 QCL spectral features

2.3.1 Emitted wavelength

In the active region, the depth of the wells limits the shortest wavelength that QCLs
can emit. By placing level 3 too close to the top of the holes, electrons are easily
stimulated to continuum states. It has been experimentally confirmed that the energy
of the emitted photons cannot exceed half the depth of the potential wells in devices
suitable to work nearby room temperature [121]. Variations in the active medium’s
temperature have the effect of changing the active medium’s refractive index and, as
a result, tuning the wavelength emitted by these devices [15]. In particular, when the
temperature rises, the refraction index rises, increasing the emitted wavelength. An
analogous effect is achieved by changing the supplying current.

2.3.2 Linewidth

In general, when we talk about the laser linewidth, we mean the full width at half
maximum (FWHM) of the laser’s spectral emission profile over a given timescale.
There are several effects which can contribute to the laser linewidth, some due to
fundamental laws of physics and some due to additional technical noise. Temperature
and (driving) current fluctuations are two of the most significant technical contributions.
When the linewidth is only due to fundamental mechanisms (essentially the spontaneous
emission of photons), we speak of intrinsic linewidth and its value is calculated with
the Schawlow-Townes formula [122]. The intrinsic linewidth of QCLs is predicted
to be significantly narrower than that of a conventional semiconductor laser [123].
This is because, in the conventional semiconductor laser, the laser transition occurs
between the conduction band and the valence band, which have dispersion curves
with opposite concavities when viewed in the space of the wave vectors, as shown
in Fig. 2.4a. In QCLs, on the other hand, the laser transition occurs between two

8The photons are emitted by electron via stimulated emission. Therefore, they have the same energy,
propagation direction, and phase as the stimulating photons.
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Figure 2.4: Scheme of the band of transition in the case of a standard semiconductor laser (a) and of a QCL
(b) in the E−k space. a) The conduction band and the relative electrons are depicted in red, while
the valence band and the relative holes are represented in blue. The two bands are characterized
by an opposite concavity, As a consequence, their energy gap increases as k increases from k = 0.
This leads to the emission of photons at higher frequencies. (symbolized by arrows of greater
length). (b) Scheme of two QCL sub-bands: These have the same curvature and, therefore the
emitted frequency remains constant for overall the k represented.

sub-bands (or sublevel as described in the previous sections) of the same band, i.e. the
conduction band. These subbands are characterized by the same curvature (Fig. 2.4b).
As a consequence, the emission is expected to be narrower, similar to what happens in
solid-state lasers [110]. This prediction has been experimentally confirmed by Bartalini
et al. [122]. In their experiment, by exploiting an absorption line of the CO2 molecule

Figure 2.5: Frequency noise power spectral density (FNPSD) of a MIR QCL, in double logarithmic
scale [122]. The noise profile is characterised by a 1/ f trend for Fourier transform frequencies
lower than 50 kHz, and by a 1/ f 2 trend for frequencies up to 10 MHz. For higher frequencies,
the noise becomes flat, at the white noise level of Nw = 163Hz2/Hz. the line profile that belongs
to this latter noise component is purely Lorentzian with an FWHM of πNw = 510(160)Hz.
Figure taken from [122].

to convert frequency fluctuations into amplitude fluctuations, the frequency spectral
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noise density of a MIR QCL9 was analyzed (Fig. 2.5). In particular, they observed
that the measured Frequency Noise Power Spectral Density (FNPSD) has a profile
characterized by three different trends: a 1/ f trend at low Fourier frequencies, followed
by a 1/ f 2, and a final flattening to a constant value (Nw in Fig. 2.5) for frequencies
higher than 10 MHz, which is typical of white noise. According to the theory of
frequency noise, the line profile that belongs to the white noise component is purely
Lorentzian, with a FWHM value of πNw. This corresponds to the intrinsic linewidth
mentioned above, and in the case of QCLs10 is of the order of 500 Hz [38]. From the
linewidth measurement, it is also possible to retrieve the typical coherence time, τc, of
these devices, expected to be the inverse of the linewidth itself. However, in general,
the technical noise contributions (mostly depending on the characteristics of the power
supply or on the temperature stabilization) strongly enlarge the actual laser linewidth.
This leads to a QCL actual linewidth ranging from hundreds of kHz to few MHz[15]
and to a corresponding coherence time τc ∼ 1−10µs.

2.4 Comb emission

Optical frequency combs OFCs are particular multifrequency coherent photonic states
consisting, in the frequency domain, of a series of equally spaced modes having a
well-defined phase relationship [52]. The mode-locking mechanism converts the group
of independent modes into a set of modes with fixed reciprocal phases and modal
spacing. The frequency components of such a spectrum can be therefore described in
the following way [3]:

νN = N fs + fo , (2.2)

where fs is the mode spacing, fo is the offset frequency, while N is a large integer11.
Frequency combs are typically generated by stabilized mode-locked pulsed lasers
[56, 57, 124, 125]. Such lasers’ modes can be utilised as accurate frequency references
in the visible and NIR spectral regions, proving a direct link between optical frequencies
(which are not directly mensurable with a counter) and radio frequencies. Due to this
capability, they have become essential instruments in many fundamental and practical
studies [52, 126].
To expand the applicability of frequency combs in the fields of telecommunications,
molecular spectroscopy and gas detection, significant efforts have been made towards
both the miniaturization of comb sources and the extension of their operation towards
new spectral regions (e.g., mid and far infrared, ultraviolet) [2, 3]. As already mentioned
in the introduction chapter, the lack of fs pulsed laser in the MIR has required the use
of non-linear processes to transfer OFCs generated at lower wavelengths in the MIR.
Matching the two requirements of being compact sources and emitting in the mid-to-far
infrared spectral region, QCLs have been soon considered as valid candidates for
frequency comb generation in this wavelength range. Due to the structure and working

9The tested QCL emission is centred around 4.33µm.
10The intrinsic linewidth of a QCL is comparable with the natural linewidth of the rovibrational transitions

of molecules in the infrared: these devices can be successfully used to perform precision spectroscopic
measurements.

11The notation used is: ν for optical frequencies, f for radio-frequencies.
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principle of their active region, in QCLs the upper laser level lifetime (≈ 0.5 ps) is
much shorter than the optical cavity round-trip time (≈ 130 ps for devices with 6 mm
long waveguide) [15, 32]. Consequently, the energy cannot be accumulated during
the round-trip propagation in the cavity. Therefore, the maintenance and amplification
of optical pulses are not possible and the locking between the modes with the losses’
modulation (passive mode locking) is not feasible [32, 51, 127]. An alternative to
passive mode locking is the active locking between the modes by means of gain
modulation, successfully demonstrated in [77, 128–130]. However, this technique has
several limits: it needs extensive and complex optical apparatus; the devices must be
powered slightly beyond the threshold to avoid gain saturation, which drastically limits
the available power; moreover, the duration of the pulses has a lower bound, preventing
them from reaching the inverse of the gain band.

Figure 2.6: a) Scheme of the FWM process in Fabri-Pérot QCL. The dashed arrows indicate the frequency
modes emitted by a multimodal Fabri-Pérot QCL. To these modes are added the secondary
modes (black lines with double arrow) generated by the degenerate FWM (example 1 in grey)to
the non-degenerate FWM (example 2 in red). In the case of degenerate FWM, accordingly to
the grey example, two photons competent in the mode ω1 mix to generate a pair of photons
competent one in the mode ω2 and the other ω3. While the red example, should a non-degenerate
FWM process where two photons of independent modes (ω1 and ω2) combine to generate a pair
of photons competent to the other two modes (ω3 and ω4). This process involves phase locking
between the modes of the QCL (Fabri-Pérot modes are phase-locked to the modes generated by
the FWM by optical injection). The result is a frequency comb with phase-locked and equally
spaced modes in the frequency domain (modes represented by solid line arrows). b) Example of
a comb emitted by a Fabry-Pérot QCL. Figure adapted from [32].
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Quite surprisingly, in the last decade, the possibility of direct comb emission from
free-running multimode Fabry-Pérot12 QCLs (QCL-combs) has been demonstrated
[32, 51, 68]. These devices are engineered to have low group velocity dispersion13

[32]. In these devices, the comb emission is due to the third-order non-linearity of
the laser active medium which triggers a FWM process. This process optically injects
the independent longitudinal modes emitted spontaneously by Fabry-Pérot devices,
coupling them with those generated by the mixing process itself. This induces a strong
correlation among these modes. The result is a frequency combs generation with
equally spaced modes and with a fixed phase relation given by the non-linear process.
The spacing between the modes corresponds to the FSR of the cavity. In particular,
the comb emission out of a QCL-comb is more a quasi-continuous emission rather
than a pulse [32]. The working principle of the QCL-comb generation is depicted in
Fig. 2.6. Many advanced techniques have been employed to demonstrate the effective
phase-coherence of QCL-comb multimodal emission. Among these techniques, I
would like to mention the well-known intermodal beat note spectroscopy [51], the
Shifted Wave Interference Fourier Transform Spectroscopy (SWIFTS) [131–133], the
characterization of the emitted modes both individually and in groups [134, 135],
the Vernier technique, which employs an optical cavity for the characterization of
frequency noise [136], as well as the characterization, via Fourier transform, of the
frequency combs generated by QCLs with respect to a reference comb (FACE) [137].
All these techniques confirmed the existence of phase coherence among the modes of
QCL-combs compatible with the one observable in a standard frequency comb.

12Fabry-Pérot QCLs are devices characterised by a simple waveguide in semiconductor material as laser
cavity. In general, these devices have multimode emissions, as there is no selection mechanism for the
emitted frequency. Instead in the so-called distributed feedback QCLs, the waveguide has a grating engraved
on it which acts as a frequency filter inducing a single-mode emission [15].

13The group velocity dispersion (GVD) of the cavity plays a crucial role in four-wave mixing’s capacity
to produce mode proliferation and, ultimately, comb operation. E.g. for an active region characterized by a
gain bandwidth of 100 cm−1 the number of modes emitted by a Fabry-Pérot QCL is about 300 modes for a
3 mm laser waveguide. If we consider a cavity finesse of about 5, it is possible to find the following upper
bound for keeping the modes efficient coupling by FWM: GVD < 560fs2/mm [32].
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This chapter is dedicated to my experimental work regarding the realization of a
MIR shot-noise-limited balanced detector as a tool for quantum measurement in this
spectral region. The presented setup and results refer to the work published in 2021 in
Optics Express [99].

The chapter is organized as follows: the first part is dedicated to the motivation at
the basis of the implementation of a shot-noise-limited balanced detector working in the
MIR (sec. 3.1); then, the theoretical working principle of the detector characterization
is introduced (sec. 3.3), followed by the presentation and discussion of the achieved
results (sec. 3.4); finally, a brief summary and the final remarks are given (sec. 3.5).

3.1 Introduction to MIR balanced detection

Balanced homodyne detection is a measurement technique widely spread and used
in quantum optics [100, 138–144]. From a quantum perspective, this technique can
prove the non-classicality of a light state via an electric field quadrature measurement.
As described in sec. section 1.6,a balanced homodyne detector (BHD) relies on a
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differential measurement performed with two identical detectors, detecting at the two
outputs of a 50/50 BS a combination of the signal of interest with a reference radiation
(the LO). Due to the equal splitting of the signal in two different but identical paths (i. e.
the two paths must have the same length and the same type of detector), the common
noise (e. g. correlated noise due to the photon-generation process or amplification or
1/ f -noise in case of QCLs) is, in principle, suppressed when the balanced difference is
performed 1. Therefore, in a BHD any extra classical noise affecting the measurement
can be cancelled out 2 and it is possible to achieve the detection sensitivity requested by
the standard quantum limit [145]. In the linear responsivity regime, the variance of the
measured differential signal is proportional to the product between the variance of the
tested field quadrature and the amplitude of the LO (section 1.6.2). As a consequence,
in the limit given by the saturation of the detection system, increasing the LO amplitude
results in a quadrature variance magnification and it can allow for measuring even small
fluctuations (variance) of the tested signal [100]. Given all these benefits, BHDs have
been massively utilized in NIR quantum optics schemes [100, 140–142, 146, 147],
and, in particular, in CV quantum communication both in optical fibers and free-space
links [148–150]. A BHD can be a valid tool to explore the quantum feature of the MIR
CV light emitted by QCLs, as well.
The aim of the work described and published in the manuscript [99] is to explore
the extension of MIR balanced homodyne to the quantum level. In this spectral re-
gion, balanced detection has already been investigated in many classical applications
such as frequency-modulation spectroscopy [151], difference-frequency laser spectro-
scopy [152], balanced radiometric detection [153], and Doppler-free spectroscopy [38].
Other optical schemes suitable for single-photon quantum applications, such as coin-
cidence measurements [154] or free-space Quantum Key Distribution with discrete
variables [49], have so far been studied. The general goal of the implemented BHD
is to equip the MIR with a tool suitable for testing CV states of light at the quantum
level. In particular, the here-presented BHD has been tested with a MIR QCL, with
the aim of realizing a novel tool allowing the investigation of QCLs-radiation quantum
properties which are yet unexplored.
The implemented setup, as described in the following sections, is a versatile setup
that allows not only to perform the balanced differential measurement required by the
balanced homodyne detection scheme but can be used to compute different operations
with the same stream of acquired data (dataset) thanks to a post-processing data analysis
approach. This method has allowed characterizing at the same time both the BHD
performance in terms of noise suppression and amplitude noise of the used LO, by
analysing the difference and the sum of the output signals from the detectors. The
BHD characterization procedure is described in detail in the next sections, from both a
theoretical and experimental point of view. More details concerning the theory under
such application can be found in [100], in chapter 1, and in Appendix A.1.

1This is true up to the limit given by the maximum extinguishable noise achievable with the implemented
setup, typically expressed in term of CMRR (see the sections below for a detailed explanation and analysis)

2If the extra classical noise does not exceed the maximum CMRR, otherwise it can be at least reduced.
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3.2 Working principle

The sketch of the working principle of a real balanced detector is reported in Fig. 3.1a.
It consists of a 50/50 BS and two identical photovoltaic detectors (real detectors D1

and D2). To characterize a BHD, it is sufficient to send the LO radiation, described
via its field operator â, onto the 50/50 BS, measuring the sum and the difference of
the photocurrents generated by the two photovoltaic detectors (Î3D and Î4D)3. In this
way, it is possible to test the noise suppression performance of the system via the
measurement of the maximum achievable Common-Mode Rejection Ration (CMRR)
and to prove that the differential detection is shot-noise limited. Furthermore, the
possibility of measuring sub-shot-noise non-classical signals (e.g. as the one expected
by squeezed states of light [100]) is tested by demonstrating that the clearance (i.e. the
ratio between the shot-noise level, retrieved via the differential measurement, and the
background noise) is significantly larger than one. In the following dissertation, we
assume that the detectors are identical with no saturation and with instantaneous and
linear responsivity. In the creation and annihilation operators, any time dependence is
neglected. Furthermore, the detection system is assumed to be perfectly balanced to
benefit from the advantages of a balanced detection in terms of noise suppression [100,
145]. The two identical photovoltaic detectors (in our case two MIR MCT detectors)
generate a photocurrent that, in the linear responsivity regime, is proportional to the
incident power. As a consequence, by studying the statistical properties of the output
photocurrent (e.g. mean value, variance), it is possible to get information about the
statistics of the incident light. In an ideal scenario, a perfect photovoltaic detector (D3

and D4) generates an electron for each incident (and absorbed) photon (section 1.6.1).
However, in a real detector losses occur and, as a consequence, the translation rate
between incident photons and generated electrons, known as quantum efficiency (ηeff),
is lower than one (section 1.6.1). In quantum optics, real photodetector losses can be
modelled a BS4 which couples the incident radiation (e.g. the output radiation from
the 50/50 BS described via the operators â3 and â4, fig. 3.1) with the vacuum field (e.g.
v̂3 and v̂4), as described in sec. 1.6.1 [100]. Furthermore, in a real optical setup, the
propagating optical radiation is attenuated due to absorption and reflection from optical
components. Also in this case it is possible to model the losses as a BS mixing the
propagating beam with the vacuum field. The loss budget on the implemented BHD
should be, therefore, carefully addressed in order to give the right interpretation of the
data, taking into account all the losses contributions that may affect the measurements.
For instance, if we want to characterize the implemented balanced detector to test its
applicability as BHD for quantum light characterization, the LO losses are not relevant,
being just the reference radiation, and we must take into account only the optical
losses that affect the path (named input in Fig. 3.1) in which the possible quantum
state under investigation propagates [100] (e.g. the losses of the 50/50 BS, of the
photodetectors and of the other optical elements that may be placed in the two 50/50
BS output paths). Differently, if the goal is to characterize the implemented balanced

3Referring to Fig. 3.1a the LO radiation enters via the LO path of the BS, while no radiation is sent in
the Input path. Therefore, the LO is mixed with the vacuum state.

4as described in sec. 1.6.1. The losses’ BS is described via the transmission coefficient TL =
√

ηeff and
the reflection coefficient RL = i(

√
1−ηeff).
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Figure 3.1: Conceptual working scheme for a real balanced detector with losses (a) and of the real balanced
detector used to characterize the amplitude noise of a certain source (b). In (a) the LO radiation
(LO), represented by the operator â, is mixed via a 50/50 BS with the vacuum field (v̂, Input),
generating the output fields (â3 and â4) that are collected by two real detectors (D1 and D2).
Each real detector is schematized with an ideal detector (D3 and D4) and a BS that accounts for
the losses by mixing the incident field with the vacuum field (v̂3 and v̂4). The collected power
radiation described via the operator d̂3 and d̂4 is transformed in a proportional photocurrent
(Î3D and Î4D) by the photovoltaic detectors. The measured photovoltaic signals are used to
retrieve information regarding the shot-noise level (by measuring the difference) and the overall
amplitude noise (by measuring the sum) of the collected radiation. In (b) it is added the part of
optical losses (described again via a BS that couples the radiation with the vacuum v̂1) affecting
the LO radiation, which is now described with the operator âR.

detector for testing the statistic of the LO itself, we must address an optical loss budget
taking into account also the optical losses experienced by the LO, as it becomes the
radiation under investigation. In Fig. 3.1 and in the following paragraphs we describe
both scenarios. In particular, Fig. 3.1a refers to the characterization of the BHD, while
3.1b refers to the application of the balanced detector for LO characterization.
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3.2.1 BHD characterization

In the characterization of the BHD as a shot-noise-limited detector, the losses that matter
are those affecting the input light described by the operator v̂, as shown in Fig. 3.1.
Therefore, the loss budget must take into account all the optical losses experienced
in the two output paths of the BS into account, including the losses of the BS itself,
and also the detection efficiency of the two photovoltaic detectors. By defining η1 as
the overall optical transmission of each of the two paths5, we can incorporate such
contribution in the transmission coefficient of the BSs simulating in 3.1a the lossy
photodetectors, i.e. η = η1 ·ηeff. As already stated, in the BHD characterization
the measured quantities are the sum and the difference of the photovoltaic detectors’
photocurrents (Î3D and Î4D) that are proportional to the flux of incident photons. This
latter quantity, once integrated in the measured time, gives the mean value of the
incident photons and information concerning the photon number statistics of the tested
light (section 1.6). Therefore, in the case that the input mode v̂ is the vacuum field, the
mentioned quantities leads to the following results:

⟨N̂D
+⟩ = η⟨n̂⟩, (3.1)(

∆ND
+

)2
= η

2 (∆n)2 +η(1−η)⟨n̂⟩, (3.2)

⟨N̂D
−⟩ = 0 , (3.3)(

∆ND
−
)2

= η⟨n̂⟩, (3.4)

where N̂D
+ (Eq. (3.1) and Eq. (3.2)) is the sum of the detected photon-number signals,

N̂D
− (Eq. (3.3) and Eq. 3.4) is their difference, and n̂ is the number of photons emitted

by the LO source6. The expectation values ⟨·⟩ are calculated over the state of the LO.
More details concerning this calculation can be found in Appendix A.1. From this
simple derivation, it is clear that measuring the variance of the differential measurement
allows estimating the shot-noise level of the incident radiation collected by the BHD. If
the LO is a perfect coherent state, the variance of the sum is equal to the variance of the
difference, being (∆n)2 = ⟨n̂⟩. From the presented model, it is also clear that the losses
play a fundamental role in this type of measurement: by coupling the radiation with the
vacuum field, the losses add an extra term in Eq. (3.2) that is proportional to the losses
factor 1-η. If the losses are too high, the retrieved amplitude noise of the LO is covered
by the shot-noise term, and/or both the sum and difference measurements (section 3.2.1)
can be covered by the background noise. In this sense, the noise floor given by the
sum/difference7 of the backgrounds of the two photovoltaic detectors8 sets the limit of
sensitivity in terms of measurable shot-noise level. As a consequence, in order to have
the best signal-to-noise ratio in terms of measured shot-noise level the best operating
scenario for the BHD is to work with the maximum power of the LO tolerated by the
detectors, avoiding their saturation. This means having the best clearance. Moreover,
the clearance itself contributes to the overall detection efficiency [155]: the effective

5The losses in the two output paths of the BS are assumed to be equal.
6Typically the LO is a coherent state, i.e. with a variance in terms of photons equal to the number of

emitted photons: (∆n)2 = ⟨n̂⟩, where n̂ = â†â is the number of incident photons.
7Due to the fact that the two detectors are independent the noise of the sum and of the difference of the

two background signals are equal.
8The background noise is due to both electronics and dark current noise.
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detection efficiency of the photodetectors is given by the product of their quantum
efficiency and the equivalent optical efficiency (as defined in [155]) calculated as

ηee =
1−C

C
, where C is the measured clearance.

The simple model here described gives us another possible path of investigation: by
comparing Eq. (3.2) with Eq. (3.4) it is also possible to understand how much the LO
statistics deviate from the coherent state one, in case of a signal not dominated by
vacuum fluctuations. By the way, for studying the statistics of the LO, a specific loss
budget must be addressed, as reported below.

3.2.2 LO characterization

As already stated in the previous section, with the implemented balanced detector, it
is possible to characterize also the statistics of the LO radiation. In this case, the loss
budget includes also the optical losses in the LO arm, as sketched in Fig. 3.1b. It is
possible to achieve the same results found in the above equations by including in the η

the transmission efficiency ηLO experienced by the LO before impinging on the BS
(η−→η=ηLO ·η1 ·ηeff) and by redefining â in terms of the new operator âR associated
to the LO field before that optical losses occur (â −→ â =

√
ηLO âR + i(

√
1−ηLO) v̂).

By doing these substitutions, it is possible to write Eq. (3.1), Eq. (3.2), Eq. (3.3) and
Eq. (3.4) in terms of the new LO photon number operator (n̂R) and its variance by
doing the following substitutions: n̂ −→ n̂R = â†

RâR and (∆n)2 −→ (∆nR)
2. For the

LO characterization, it is important to remark that the retrieved sum signal relates to
the LO properties only if the quantum efficiency is high enough (i.e. the signal is not
dominated by the vacuum fluctuations). In this scenario, by comparing Eq. (3.2) with
Eq. (3.4), it is possible to verify if the LO radiation is shot-noise limited and/or how
far it is from an ideal coherent state.

3.3 Experimental setup

The implemented MIR detection system is schematically shown in Fig. 3.2. The core of
the BHD consists of a 50/50 CaF2 BS (BSW510, Thorlabs) working in the wavelength
range 2-8 µm and of two MCT (MgCdTe) commercial photovoltaic detectors (PVI-4TE-
5-2x2-TO8-wAl203-36+MIP-10-250M, VIGO System) characterized by a nominal
bandwidth of 180 MHz and covering the spectral range between 2.5 and 5 µm. The
detectors have a two-stage preamplifier consisting of a DC transimpedence stage and
an AC-coupled second stage with a measured voltage gain of 26.5. The detectors
are set at a working temperature of 200 K via a 4-stage Peltier system driven via the
temperature cooler provided within the detectors (PTCC-01-BAS, VIGO System)9.
The AC and DC photocurrent signals generated at the outputs of the photodetectors are

9The detectors’ DC outputs have been added in house. Indeed, these detectors are commercialized
with only the AC output. The AC-coupled amplifier works nominally in the range 10 Hz-250 MHz. From
the producer final test, the nominal bandwidth of the detector plus amplifier is estimated to be 180 MHz.
Moreover, they have a declared time constant τ ≤ 80ns, a transimpedance of 1.95×104 V/A and an output
noise density of 400nV/

√
Hz ((averaged over 1 MHz to high cut-off frequency of 180 MHz), measured on

a load RLOAD = 50Ω. Notice that the data shown in this thesis and in [99] have been acquired using the
oscilloscope in high-input-resistance mode with RLOAD = 1MΩ. Other specs of these detectors are available
from the VIGO System website.
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QCL
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attenuator

isolator
D2

D1

oscilloscope
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Figure 3.2: Sketch of the implemented BHD. The radiation emitted by a single-mode QCL working in the
MIR (λ = 4.47µm) is used as LO to test the performance of the assembled BHD. An isolator
is used to avoid feedback and the power impinging on the BHD is controlled via a variable
attenuator. The BHD is composed of a 50/50 BS and two identical photovoltaic detectors D1 and
D2. The photocurrent signal generated by the two photodetectors is acquired in the time domain
using different channels of an oscilloscope.

acquired simultaneously by 4 channels of a 200 MHz-bandwidth oscilloscope (MSO44,
Tektronix) with a sample rate of 625 Ms/s and a 1-ms acquisition time. In the assembled
BHD, the 50/50 splitting of the LO radiation is done with a precision |R|2−|T |2 = 0.2%,
calculated via DC signals obtained via the oscilloscope. Furthermore, the overall
measured bandwidth of the implemented system at -3-dB-cutoff (oscilloscope and
detectors) results to be 120 MHz10. Thanks to the double outputs available from each
detector, it is possible to measure both the mean value of the generated photocurrents
via the DC output and its fluctuations amplified by the AC gain stage, at the same time.
The BHD has been characterized for two different wavelengths, using two continuous-
wave (CW) Fabry-Pèrot QCLs emitting at 4.47 µm and 4.72 µm, respectively. These
lasers have been provided by the group led by Jérôme Faist settled at ETH Zürich
(Switzerland). To characterize the noise response of the BHD avoiding possible extra-
noise from the MIR sources, the QCLs’ working conditions have been fixed at specific
values of driving current and temperature (I = 712mA, T = 18 ◦C for the 4.72-µm-
wavelength QCL; I = 490mA, T = 20 ◦C for the 4.47-µm-wavelength QCL). In these
conditions, the devices operate in single-mode emission, as far as possible from the
threshold to avoid any extra-noise contribution (e.g. due to spontaneous emission)11.
To test the BHD in different noise regimes, the power impinging onto the BHD is varied
by means of an optical variable attenuator (Fig. 3.2). Furthermore, in the LO path
an isolator (wavelength working range 4.5-4.7 µm) is set to prevent possible intensity
fluctuations due to the feedback from the BHD optical elements. To minimise the
technical noise, the lasers are driven by ultra-low-noise current drivers (QubeCL 15-P,
PpqSense S.r.l.) characterized by a current noise density of 200pA/

√
Hz.

As a first step in the BHD characterization, the responsivity of two photodetectors has
been measured at both the tested wavelengths, as shown in Fig. 3.3. At fixed working
conditions of the QCLs, the attenuation is varied via the variable attenuator to test
the current response of the photodetectors for different values of incident power. By

10The actual bandwidth evaluated at 3-dB-cutoff is, therefore, lower than the nominal bandwidth of
180 MHz declared by the producer.

11At the selected temperature, the lasing threshold current is 450 mA for the 4.47-µm-wavelength QCL
and 620 mA for the 4.72-µm-wavelength QCL, respectively.
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fitting the acquired data with a linear curve (orange lines), it is possible to estimate the
responsivity Ri, with i = 1,2, of the two detectors in the linear regime for both the laser
wavelengths. Their quantum efficiency is calculated as ηqe = Rihc/(λe), where h is the
Plank constant, c is the speed of light, and e is the electron charge. At λ = 4.72µm the
responsivity for Detector 1 is R1 = 1.24(2)A/W and R2 = 1.25(2)A/W for Detector
2. The corresponding quantum efficiency is 33(1)%. At λ = 4.47µm the detectors
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Figure 3.3: Current response of the two photovoltaic detectors (Detector 1 and 2) for different values of
incident power at 4.72 µm (a, b) and 4.47 µm (c, d). In the graphs, the raw data with their error
are represented in blue. At low power, the error bars are covered by the data spot size (blue
circles). Via the linear fit of the data (orange line) is possible to retrieve the responsivity of the
detectors, corresponding to the slope of the fitted lines: at 4.72 µm the responsivity for Detector
1 is R1 = 1.24(2)A/W (a) and for Detector 2 is R2 = 1.25(2)A/W (b), at λ = 4.72µm they
are R1 = 1.48(1)A/W (c) and R2 = 1.48(2)A/W (d), respectively. In graphs (a) and (b), it is
possible to see the saturation of the detectors for P > 1.2mW.

have the response peak, as stated by the producer, and their measured responsivity is
R1 = 1.48(1)A/W and R2 = 1.48(2)A/W, respectively. Therefore, the corresponding
quantum efficiency is 41(1)%.

3.3.1 Loss budget for BHD characterization

To get a preliminary value for the detector efficiency, we must consider both the
estimated quantum efficiencies and the optical transmission experienced by the light
due to the 50/50 BS and the other optical elements placed in the paths from the BS
output to the detectors (e.g. lenses in front of the two detectors). The overall optical
losses due to optical elements are estimated to be 2% for both paths. As a result, the
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detection efficiency is 40 % at λ = 4.47µm, and 32 % at λ = 4.72µm. These values
must be multiplied for the equivalent optical efficiency of the detector (as stated in
sec. 3.2), retrieved via the clearance measurement obtained from the calculation of the
detector CMRR, as explained in sec. 3.4. However, we can already observe from this
preliminary estimation that in the MIR region we have to face lower quantum efficiency
than that at lower wavelengths (e.g. optimized Silicon and InGaAs photodetectors
have a quantum efficiency higher than 90%). As a consequence, Wigner function
analysis of complex quantum states, such as single-photon Fock’s state and cat states
(chapter 5), is not possible with available MIR detectors, requiring an efficiency higher
than 50% to observe non-classical features [156]. The efficiency of the MCT detectors
is not intrinsically limited by the material but by its purity. Moreover, in the MIR,
a large loss contribution is due to the Fresnel reflection of the utilized materials,
typically characterized by a large refractive index [99]. Some anti-reflection coatings
are available but are expensive and in general less effective than the ones available at
lower wavelengths (visible and NIR light). Besides the coatings, further improvements
can be achieved by placing a golden surface on the back of the semiconductor medium
acting as a retro-reflector. A more detailed analysis of the possible measurements
available with such detector efficiency is given in the Results and Discussion section
(sec. 3.4).

3.3.2 Loss budget for LO characterization

As already described in sec. 3.2, it is possible to utilize this balanced detection scheme
to study the amplitude noise of the laser source used as LO. In this case, being the
LO itself the light under study, all the optical losses affecting the LO arm must be
included in the loss budget done for the BHD characterization. At the maximum
transmission value achievable with the variable attenuator, taking into account the
contribution from all the optical elements (attenuator, isolator, beam splitter, lenses,
mirrors) placed between the QCLs and the photovoltaic detectors, the total optical
transmission is 47(1)% at 4.72 µm and 55(1)% at 4.47 µm. In general, a limitation for
this loss budget is represented by the attenuation of the LO power required to avoid
the detectors’ saturation. For example, Figs. 3.3a and b show that at 4.72 µm both the
detectors saturate at an incident power higher than 1.2 mW. With this transmission
ratio, the achieved detection efficiency for the LO is around 23%. If the LO emission is
lower than this value, and in case of optimal alignment (no feedback), there is no need
for the optical attenuator or the isolator, characterized by a transmission of 70 % (65%)
at 4.47 µm (4.72 µm). In this scenario, the LO characterization detection efficiency can
increase up to 40 %.

3.4 Results and discussion

The goal of the BHD characterization is to prove its eligibility as a shot-noise-limited
detector suitable for quantum measurements. To this purpose, for each incident power
value selected via the variable attenuator (Fig. 3.2), the time-domain AC signals
retrieved at the outputs of the photovoltaic detectors are added/subtracted and then
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translated in the FTT domain. In particular, the variance of these two signals is studied
in the frequency domain via the computation of the Intensity Noise Power Spectral
Density (INPSD), retrieved via a Python analysis code12. Therefore, the INPSD of
the sum provides information regarding the intensity noise13 of the LO radiation (sec.
3.2, Eq. (3.2)), while the INPSD of the difference should give us the shot-noise level
corresponding to the incident radiation power (sec. 3.2, Eq. (3.4)). This is true in the
BHD linear responsivity regime, when the extra noise does not exceed the limit given
by the maximum CMRR of the detectors, and when the shot-noise level is higher than
the noise floor given by the detector background. An example of the calculated INPSDs
of the sum (difference) is shown in orange (blue) in Fig. 3.4a. The traces refer to a LO
incident power of 2.2 mW (1.1 mW for each photovoltaic detectors) obtained using as
source the CW single-mode QCL working at 4.72 µm. Both the INPSDs (orange and
blue traces) lay above the background noise of the BHD, obtained as the INPSD of the
sum of the two detectors (grey trace), and of the oscilloscope, obtained as the INPSD
of the sum of the two oscilloscope channels (petroleum trace). In particular, since the
oscilloscope background noise is approximately 20 dB lower than that of the detector
background, it is negligible and, in practice, does not affect the measurements.
In Fig. 3.4, the difference INPSD (blue trace) perfectly lies on the expected shot-
noise level (dashed black-line) calculated from the DC signals as PSDshot−noise = 2eI,
where e is the electron charge and I is the sum of the photocurrent mean values
measured at the two DC photovoltaic detector outputs [157]14. With this evidence,
it is possible to conclude that, for the tested LO power and under the LO amplitude
noise condition shown by the orange trace, the assembled BHD is therefore shot-
noise limited in the differential measurement and has a clearance above one (the
measured shot-noise level is above the background noise floor) and flat response for a
wide FFT frequency range (1-100 MHz). Fig. 3.4a allows also to estimate the actual
bandwidth of the measurement system (photovoltaic detectors plus the oscilloscope)
that is 120 MHz, calculated at the signal -3dB-cutoff. Because of the limited bandwidth,
all the measured traces drop below the estimated shot-noise level at FFT frequencies
higher than 100 MHz. Moreover, it is worth noticing that with the introduced analysis,
it is possible to have information regarding the noise of the LO. The example shown
in Fig. 3.4 shows that for the used QCL the measured intensity noise (INPSD of the
sum) remains above the corresponding shot-noise level in the tested FFT frequency
range. Moreover, there is the presence of a peak at around 3 MHz related to the laser
dynamics. This is just an example of how adaptable the setup in use is and of how
different analyses may be performed using the same set of data. By the way, in this
experiment, the focus is not on QCLs as "noisy LO" but rather on testing the BHD

12The INPSDs are calculated as twice the value obtained via the matplotlib Python library function
matplotlib.mlab.psd(). We applied the Hanning windowing and normalized the data to the noise bandwidth.
The NFFT parameter, i.e. the number of data points used in each block for the FFT is 1/50 of the length of
the input data. The input data are the AC current signals scaled by the AC gain

13With the expression intensity noise we refer in the text to the optical power noise of the laser beam.
Indeed, the measured quantity using the photodetector is the power impinging onto the detector and its
fluctuation, via the generator of a proportional photocurrent.

14Actually at the DC output of the photovoltaic detector the measured quantity is the mean value of the
voltage drop experienced by the transimpedence for a certain value of incident power. Knowing that the
transimpendence circuit has a unitary voltage gain and that the transimpedence is 2.2 kΩ, it is possible to
retrieve the mean value of the corresponding photocurrent.
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Figure 3.4: (a) Example of INPSDs calculated for a certain value of incident power (2.2 mW) and laser
wavelength (4.72 µm). The INPSD of the sum is shown in orange and the difference one in
blue. The INPSD of the detector background and the INPSD of the difference between the two
oscilloscope channels’ backgrounds are the grey and the petroleum traces, respectively. The
dashed black line represents the theoretical one-sided PSD shot-noise level for an ideal detector
with an infinite bandwidth. For frequencies higher than 100MHz, the drop of the measured
spectra below the theoretical curve is ascribable to the finite detector bandwidth, characterized
by a -3-dB-cutoff at 120 MHz. The orange area of 3 MHz centred at 30 MHz is an example of
the frequency window in which the data are analysed. The excess noise at 100 MHz is a spurious
noise compatible with FM radio signals. Moreover, it is far from the frequency ranges selected
for data analysis, therefore it is not relevant for the purpose of the BHD characterization. b)
Common-Mode Rejection Ratio (CMRR) of the BHD (blue circles) and of the oscilloscope (grey
circles), measured with a square-wave modulation of the signals. The CMRR data are shown in
the flat response FFT frequency window 1-100 MHz of the detector respect to noise subtraction,
as emerged from (a).

performance for potential quantum applications. As a consequence, the BHD rather
than the QCLs is the focus of the analysis described below.

In order to characterize the maximum noise extinction ratio of the assembled
BHD,i.e. the maximum CMRR, we have modulated the laser current and, therefore its
emission, simultaneously at multiple frequencies with a square wave signal centered at
1 MHz, whose FFT spectrum is characterized by FFT odd harmonic components, shown
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as blue spots in Fig. 3.4b. In particular, for each tested frequency we have measured
the CMRR as the ratio between the INPSD of the sum and the INPSD of the difference.
To correctly evaluate the CMRR at each frequency component of the square-wave
signal, the modulation signal amplitude has been selected to guarantee the presence
of a residual noise component after the subtraction in the INPSD of the difference.
The CMRR of the BHD (blue trace) is compared with the CMRR of the oscilloscope
that represents the ultimate limit for the measurements (grey trace). In particular, to
measure the CMRR of the oscilloscope we have sent the modulation directly into the
two oscilloscope channels used to acquire the detectors’ AC outputs in the measurement
procedure. As shown in Fig. 3.4, for frequencies lower than 5 MHz the CMRR is

Figure 3.5: INPSD of the difference of the AC output signals as a function of the incident power impinging
onto the BHD. Each point corresponds to the average level in the frequency window of 3 MHz
centred at 30 MHz, evidenced in orange in 3.4a. The BHD performances are tested via two single-
mode QCLs, emitting at 4.47 µm (a) and 4.72 µm (b), in fixed working conditions (temperature
and current). The incident power is changed via the variable attenuator depicted in Fig. 3.2

limited by the oscilloscope and it is over 30 dB, while for higher frequencies the
CMRR decreases. By the way, it is possible to find a high-frequency region around
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30 MHz where the CMRR is still over 20 dB. Starting from this consideration and
to get a deep analysis about the BHD performance, with the laser at fixed condition,
the INPSD is calculated for different incident power values obtained via the variable
attenuator depicted in 3.2. To evaluate the linear responsivity in the BHD differential
measurements, for each acquired dataset, we computed the INPSD of both the sum and
the difference and, in particular, we averaged the INPSD of the difference in a Fourier
frequency window of 3 MHz set around 30 MHz, retrieving the data points shown in
blue in Fig. 3.5. The data are compared to the background INPSD level, averaged in
the same Fourier frequency window. For an impinging radiation wavelength of 4.47 µm
(Fig. 3.5a), the BHD saturates for an incident power higher than 2 mW ( 1 mW for
each photovoltaic detector) while at 4.72 µm it starts to saturate for power higher than
2.4 mW (Fig. 3.5b). This result is in agreement with the responsivity peak of the MCT
detector expected at 4.5 µm. To increase the saturation level of detectors, one possible
solution could be increasing the surface size of the photodetectors. By the way, this
later change can lead to a decrease in the detection bandwidth. The analysis shown
in Fig. 3.5 proves the linear responsivity of the assembled BHD, as expected by a
shot-noise limited detector whose INPSD of the difference increases proportionally to
the incident power. Furthermore, from both the plots it is possible to conclude that the
BHD is suitable for sub-shot noise measurements and, therefore, for possible quantum
state characterization. Indeed the retrieved INPSDs (blue dots) are above the BHD
noise (grey dots). A more quantitative spectral analysis of the BHD clearance and
linearity, performed for several values of incident power, is shown in Fig. 3.6. In Fig.
3.6a and Fig. 3.6b, the clearance FFT spectra are shown in the flat responsivity window
previously identified in Fig. 3.4. At 4.47 µm the saturation clearly emerges for a LO
incident power of 2.20 mW, and a maximum clearance of 8, corresponding to 9.0 dB, is
found. At 4.72 µm the clearance is slightly lower, reaching a value of 7 (≈ 8.5dB) for
an incident power of 2 mW, approximately. For higher powers (i.e. 2.54 mW) the BHD
starts to saturate for Fourier frequencies higher than 40MHz. The BHD linearity has
been also tested in several Fourier frequency windows of 3 MHz, centered at different
frequencies, as explained in the legend of Fig. 3.6c and Fig. 3.6d. The clearance
and saturation power level previously mentioned are confirmed by this analysis. In
summary, from Fig. 3.6c and d it is possible to conclude that the detector shows a linear
behavior with the incident power until the saturation level is achieved, for different
Fourier frequencies going from 10 MHz to 80 MHz. In addition, the plots show that
the clearance decreases by increasing the central frequency of such analysis. The best
performance for homodyne application is achieved for a LO emitting at 4.47 µm, in
the Fourier frequency window centered at 10 MHz. Here the clearance reaches the
value of 8, corresponding to an equivalent optical efficiency (as defined in sec. 3.2) of
87.5%. From the responsivity characterization (section 3.3) the quantum efficiency at
this wavelength is 41%, thus the total overall detection efficiency is 36%. Given the
best clearance, this is the best scenario for a future investigation of MIR quantum states
of light.
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Figure 3.6: BHD FFT spectral response in terms of Clearance measured at 4.47 µm (a) and 4.72 µm (b),
for several values of incident power on the BHD. In graphs (c, d), the clearance spectra have
been integrated over a frequency window of 3 MHz centered at different values (written in the
legend) and plotted as a function of the incident power. The experimental data are shown as a
circle. Each dataset has been fitted via a linear function for testing the linearity of the BHD in the
different FFT frequency windows analysed. In particular, graph (c) refers to the data acquired for
an incident radiation wavelength of 4.47 µm, and graph (d) of 4.72 µm.

3.5 Summary and remarks

To conclude, the achieved results confirm the possibility of using the presented balanced
detector for future quantum applications, enlightening the optimal working conditions
in terms of clearance and LO incident power. Moreover, the presented analysis method
allows multiple operations with the same set of data. In the presented analysis, just the
sum and the difference have been computed, but even more complex operations can be
performed, as well as correlation measurements by computing the product between the
two detector outputs. However there are also some limits: even if the achieved values
of overall detection efficiency and clearance are promising and suitable for possible
non-classical states characterization such as squeezed states of light, due to the limited
detection efficiency it is however not possible to use the BHD to test the non-classicality
of a state of light via the Wigner Function reconstruction, requiring efficiencies above
50% to certify its non-classicality [156]. Nevertheless, with a quantum efficiency
lower than 50% more sophisticated procedures can be applied to certify it [158]. Also,
for quantum information processing. e.g. CV quantum teleportation [159] or long-
distance CV free-space quantum communications (e.g. satellite-based [160]), the
overall detection efficiency needs to be improved.
To prove the versatility of the implemented BHD, in the next chapter its application to
the analysis of multimodal emissions by MIR QCLs is discussed.
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In this chapter, the characterization of different types of QCL emission is presented.
In particular, the measurements of intensity correlations in multimodal regimes emitted
by QCLs are described. The core of this chapter is represented by the work published
in 2022 in Advanced Photonics Research [75]. The work shows an application for
the balanced detector described in chap. 3 to investigate the presence of intensity
correlations in the harmonic combs generated by QCLs. A harmonic comb is a peculiar
comb emission regime with a limited number of lasing modes (e.g. three-five modes)
characterized by a modal spacing that is a multiple of the standard FSR findable when
the device is operated in the dense comb regime (made by tens of modes) [161], as
described in the next sections. In particular, the study reported in [75] concerns a three-
mode harmonic-comb emission from a MIR QCL, consisting of two weak sidebands
and an intense central mode which is considered the pump of a FWM non-linear
generation process.

The chapter is organized into different sections. A brief introduction regarding
QCL emissions is provided in sec. 4.1, where different emission regimes are presented.
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4.1 QCL emission: harmonic comb, dense comb and bilobed emission

Then the motivations for studying intensity correlations in QCLs’ harmonic combs are
provided in sec. 4.2. As proof of the versatility of the implemented intensity-correlation
detection setup, in sec. 4.3 unpublished results concerning the intensity correlations
in QCL bilobed emission are presented. This particular emission regime is present in
some broadband QCLs, typically at high values of driving current, nearby the saturation.
Finally, a final remark and perspective section concludes the chapter (sec. 4.4).

Disclaimer and Acknowledgment. The lasers presented in this "intensity-correlation"
chapter have been produced and provided to P. De Natale’s lab by the group of Jèrôme
Faist (ETH Zürinch) for scientific collaboration purposes. Here I want also to mention
that the ongoing work regarding the characterization of harmonic comb has been, in
particular, carried via a strong and close collaboration between Francesco Cappelli and
myself with Mathieu Bertrand from ETH Zürinch, with continuous supervision and
scientific discussion with the group leaders and other members of both the research
groups. Instead, the ongoing investigation regarding the characterization of bilobed
emission regimes has been possible thanks to a collaboration between our group and
one of Carlo Sirtori working at Ecole Normale Supérieure (Paris), and in particular,
among the researchers, I want to mention Baptiste Chomet, the researcher in charge
for this joint project of characterization. All the here-presented unpublished measure-
ments, analysis and results have been done in our lab, mainly by myself and Francesco
Cappelli, with the supervision and collaboration of all the other group members and of
my tutor.
I would like to personally thank all the collaborators here cited for the amazing work
done together.

4.1 QCL emission: harmonic comb, dense comb and
bilobed emission

Depending on the device structure and the working conditions, broadband QCLs
can emit both in single mode and/or in multimodal regimes (as already stated and
presented in the introduction chapter and chapter 2). During my lab activity, all the
tested QCL emissions are characterized by a single spatial mode and one, few or many
frequency modes that, in principle, can be spatially split with a proper diffraction
grating, as shown in the next sections. To characterize the spectral emission of QCLs,
it is possible to use commercial interferometer-based optical spectrum analyzers. In
particular, Fig. 4.1 shows the setup I have used to characterize MIR QCL emissions
via the optical spectrum analyzer FTIR 721 Spectrum Analyzer produced by Bristol.
The working principle of this spectrum analyzer is based on the Fourier transform
infrared spectroscopy (FTIR): using a Michelson interferometer with a moving mirror,
the interferogram of the light is measured and, by translating the raw data in the
frequency domain via the FFT algorithm, the spectral emission is obtained [162]. The
radiation under study has been attenuated during these measurements to prevent the
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4.1 QCL emission: harmonic comb, dense comb and bilobed emission

Figure 4.1: Scheme of the experimental setup used for the measurements of QCL emission spectra: The laser
is driven via an ultra-low noise current driver (QubeCL, PpqSense) and the spectra are measured
with an optical spectrum analyzer (OSA) based on FTIR spectroscopy (Fourier Transformer
Infrared Spectroscopy). The optical path of the laser beam is shown in red, two golden mirrors
are depicted in dark yellow, and in the computer icon, the emission is sketched in yellow which
is retrieved via the dedicated software provided by the FTIR producer company.

FTIR saturation1. The data have been acquired with a sampling of ∆λc = 0.3nm and a
spectral resolution ∆νris = 6GHz2. In general, this spectral resolution is sufficient to
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Figure 4.2: QCL spectral emissions acquired via the setup shown in Fig. 4.1. The tested laser is a MIR CW
Fabry-Pèrot QCL emitting around 4.5 µm. The laser working temperature is set at 20 ◦C, and the
driving current is scanned to evidence different emission regimes.

measure even dense combs emitted by MIR Fabry-Pérot QCLs. Their FSR depends on
the laser waveguide length: in the tested devices, the waveguide length goes from 4
to 6 mm, and the typical FSR is around 6-10 GHz. Although the detection is possible,
due to limited FTIR resolution, each mode cannot be resolved properly. Therefore, to
distinguish each mode, a longer-arm spectrometer or alternatively more sophisticated

1This instrument operates both as a spectrometer and a wavemeter. The saturation of the instrument
is visible in the wavemeter mode via a sort of loading bar that saturates. In the spectrometer mode, the
saturation is characterized by some aliasing effects resulting in a distortion of the spectrum (e.g., some
extra-modes can appear), therefore it must be carefully avoided in order to get the right information.

2With this spectral resolution, if we consider, for example, a laser emission peaked around a wavelength
of λ ≈ 4.6µm, the corresponding wavelength resolution is ∆λris ≈ λ2

c ∆νris ≈ 0.4nm, where c is the speed of
light.

75



4.1 QCL emission: harmonic comb, dense comb and bilobed emission

precise measurements are required (e.g. dual-comb multiheterodyne detection [137]).
To get different emission regimes from multimodal QCLs, it is possible to play with
their driving current and temperature. An example of this trend is shown in Fig. 4.2.
By changing the driving current, reported in the legend of the figure, it is possible to
go from single-mode emissions (I < 510mA), to few-mode emissions (I = 510mA,
I = 520mA) and, finally, at high gain and driving current the dense comb emission,
made by dozens of modes, is reached (I > 520mA). By precisely playing with the
two parameters mentioned above, it is also possible to find the working condition
where several devices show a harmonic comb emission. This emission regime is
characterized by a few lasing modes separated by a multiple of the FSR of standard
dense combs [161, 163, 164], which is advantageous for spatial mode separation and
analysis. Indeed, while standard QCL-comb emissions are characterized by dozens
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Figure 4.3: a) Example of five-mode harmonic comb emission by a QCL operating around 4.5 µm. The device
working conditions are a driving current of 550 mA and a working temperature of −15 ◦C (as a
reference, the lasing threshold at this temperature is 390 mA). b) Example of bilobed emission
out of a Fabry-Pèròt QCL emitting around 4.4 µm. The laser is operated at a temperature of
−5 ◦C and at a current of 770 mA, nearby the saturation (that occurs for I > 770mA), while the
laser threshold is around 530 mA at the tested temperature.

of modes, which cannot be properly distinguished via the setup shown in Fig. 4.1,
the harmonic comb emission can be, instead, completely resolved due to wider mode
spacing. Fig. 4.3a shows an example of a five-mode harmonic comb. Despite their
simplicity, harmonic comb regimes are the most promising for investigating intensity
correlations, indeed the low number of modes removes the ambiguities on the origin
of the FWM process generating the correlations. It thus makes the experiment much
easier to be interpreted and useful for future research. However, harmonic combs
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4.2 Correlation measurements in harmonic combs

need fine tuning to be found in standard QCL-combs and are not always available.
Recently some devices have been optimised to emit in the harmonic regime, by properly
engineering the laser waveguide for instance by acting on the reflection coatings of
the laser waveguide facets [161]. In the section dedicated to correlation measurements
in harmonic combs (section 4.2), the presented data regard a standard Fabry-Pérot
QCL, able to emit both in harmonic and dense comb regime. Even if the device is not
optimized for harmonic-comb emission, it shows a current range of several mA where
the analysis of correlations in a three-mode harmonic-comb state has been possible.
To complete the global picture of multimodal QCLs emission regimes that I measured
during my research activity, Fig. 4.3b shows an emission spectrum characterized by
bilobed or bicolor emission: the spectrum presents indeed two macroscopic emission
area, the two lobes. These two lobes are multimodal and characterized by the same
FSR. A characterization of intensity correlations in this type of emission is provided in
section 4.3.

The here-presented emission spectra are just some examples of the deep spectral
investigation that I performed searching for promising emission regimes where to test
the presence of intensity correlations. In particular, the driving motor behind this type
of research is presented in the following section.

4.2 Correlation measurements in harmonic combs

The work presented in this section refers to our work already published in 2022 in
Advanced Photonics Research [75].

4.2.1 Motivations

The research of new laser sources capable of generating non-classical light is essen-
tial for its applications in quantum information processing, which is in high demand
globally [165]. For this purpose, the intensity noise of the light emitted by semicon-
ductor lasers has been studied in depth in the last decades, also in the perspective of
controlling it at the quantum level [166–168]. A fundamental step for these studies
is to understand the operation mechanism of the different laser devices, focusing on
the different contributions that affect the intensity noise of the emitted light. Among
semiconductor devices, QCLs deserve a particular mention, presenting an interesting
possibility for developing novel quantum technologies operating in a spectral region,
the MIR, so far much less explored than the telecom wavelength range. In such devices
as stated in chap. 2, their complex heterostructure and their working principle, based on
fast electrons’ transitions in quantum well and on their recycling in a cascade process,
determine the noise contributions and the intensity noise behaviour of the emitted
light [168–171]. These devices show a 1/ f -trend in the low-frequency intensity noise
due to electron tunnelling through the multi-barrier structure [172, 173]. Moreover,
the high-frequency noise of these devices is typical of class A lasers, due to their
very fast upper-state lifetime [174]. Their complex conduction band structure makes
difficult the observation of quantum features in the emitted light even when the driving
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4.2 Correlation measurements in harmonic combs

current is sub-shot-noise [175]3. However, in recent years, the demonstration of the
presence of FWM4 as the responsible mechanism for the frequency-comb genera-
tion [32, 51, 68, 69, 176] (chapter 2) has boosted again the research regarding QCLs
towards the quantum limit. This is also the purpose of the already mentioned Qombs

Project 5, where novel quantum simulations platforms, based on ultracold atoms [177],
have been proposed and developed with the goal of optimizing the QCL structure and
dynamics targeting at the emission of quantum states of light. However, the FWM has
never been investigated as a driving motor for non-classical emission in QCLs, nor
the presence of potential non-classical intensity correlation in such devices. On this
trial, a recent pre-printed manuscript by M. Frankiè has demonstrated the possibility
of increasing the χ(3) non-linearity in such devices by acting onto three parameters: a
larger dipole moment, a narrower transition, and a lower the angular frequency (the
susceptibility resonance frequency of the material, as defined in [106]) increase the
nonlinearity, as well as the chances of generating non-classical light [178]. However, a
Hamiltonian derivation capable of modelling the FWM, as well as all of the other gain
and loss terms present in QCLs, is still lacking.
The study of possible intensity correlations due to FWM phenomenon motivated the
work presented below, with the perspective of achieving the quantum level in the near
future. In particular, in the next sections, the presence of classical intensity correlations
ascribable to FWM are proved. The correlations have been studied in harmonic combs
emitted by MIR QCLs made by three modes, an intense central emission mode (the
pump) and two weaker sidebands [179], which are equally spaced from the central
one. In particular, harmonic QCL-combs serve as a test bed for investigating intensity
correlations caused by FWM. In this sense, the tested three-mode emission represents
the simplest system accessible for experimentally characterizing the presence of in-
tensity correlations owing to FWM where two photons of the pump are expected to
be destroyed at the cost of producing two other photons, one for each sideband. In
this FWM process, the two sidebands must be equally spaced from the pump mode
to fulfil the energy conservation. Furthermore, they are expected to exhibit intensity
squeezing in their photon-number difference signal if this emission is solely the result
of the FWM non-linear process and the losses are not too high (see section 1.4.4) [111].
However, additional noise sources must also be considered in a real active system, like
a QCL [168], besides losses [76], as well as the intrinsic noise contribution proper of
such devices (e.g. 1/ f technical noise chapter 2), already mentioned above. Indeed,
QCLs are active devices: therefore, also the amplification caused by the lasing process,
as well as the eventual modes’ competition process, can destroy or partially conceal
possible quantum correlations [76, 168, 175]. In this framework, the first experimental
proof of the existence of FWM intensity correlations between the two side modes is the
detection of intensity correlations at the classical level. This proof can also pave the

3As described in [175], in QCLs, the suppression of the noise affecting the driving current, obtained by
correlating the electrons (i.e. getting a sub-shot-noise current), does not lead to squeezed light emitted by such
devices. Indeed the main contribution to the photon intensity noise comes from the non-radiative electronic
disexcitation (see chap. 2) that is proportional to the bias current, and this suppresses the amount of photon
number squeezing achievable in QCLs compared to semiconductor diode lasers, where the non-radiative
channels are much less efficient.

4As already explained in the introduction chapter and in section 1.4.4, this non-linear process can
generate quantum state on light.

5This is the European project where my work over the last years has been primarily focused.
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way for the development of new theoretical models and it may also drive technological
research on lasers and detection systems toward the quantum level, favouring the
existence and detectability of non-classical effects.

4.2.2 Measurement technique
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Figure 4.4: a) An example of the three-mode emission by the Fabry-Pérot QCL-comb emitting at 4.5 µm.
The spectrum is measured via the setup shown in Fig. 4.1, using an optical spectrum analyzer.
The measurement resolution is 6 GHz. b) Sketch of the experimental setup for correlation
measurements. The QCL-comb three-mode emission is split via a diffraction grating. The
two side modes are selected (the third one is blocked) and each of them is sent to different
photovoltaic detectors, and the generated photocurrent signals are acquired simultaneously in
the time domain via two different channels of an oscilloscope (MSO44, Tektronix). The data
analysis is performed digitally in post-production. c) Sketch of the experimental setup for noise
calibration, where we replaced the mirror M, shown in b, with a 50/50 beam-splitter (BS), to
reconstruct the balanced detector depicted in Fig. 3.2. The used isolator provides isolation of
40 dB at the laser wavelength resulting in a stable laser emission. No significant feedback effect
is observed.

The goal of the experimental work here presented is to test three-mode harmonic
frequency combs emitted by a MIR QCL, where the central, intense, mode is expected
to act as a pump in the FWM process generating two weaker sidebands (Fig. 4.4a).
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The used device is a Fabri-Pérot QCL, fabricated at ETH Zurich, with a waveguide
length of 4.5 mm operating at a wavelength of 4.5 µm [75]. The laser is kept at 23 ◦C,
where the lasing threshold is 470 mA, and driven in the current range between 512 mA
and 517 mA, where the laser operates in a three-mode harmonic comb regime, as
shown in Fig. 4.4a. Here the modes are labelled with the numbers +1, -1 and 0 to
indicate the two side modes (the sidebands) and the central mode, respectively6. In the
depicted emission, the distance between two neighbouring modes is, approximately,
of 100 GHz (Fig. 4.4a), about ten times the waveguide FSR7. To verify that the tested
emission is really harmonic combs, i.e. no sub-cluster of modes are present under each
detected mode, we checked via a radio-frequency spectrum analyzer the absence of the
intermodal beat-note at the FSR frequency value expected in the case of dense combs
(i.e. around 10 GHz for the tested device)8 (for further info see Appendix sec. A.1).
In this work, the interest is in characterizing the sideband-sideband intensity correlations
using the experimental setup depicted in Fig. 4.4b. In this setup, a diffraction grating
with a groove density of 300 grooves/mm spatially separates the three modes. At the
laser wavelength, the measured transmission of the grating is of the order of 60%. One
of the modes is blocked, and the other two are detected (e.g. the two sidebands or
one sideband and the central mode) via the balanced detector described in chap. 3. In
practice, each mode is collected via one of two preamplified photovoltaic detectors.
The detectors are extensively characterized and described in the previous chapter (chap.
3), but here some highlights are reported: they have both a DC output and an AC
output; they have a quantum efficiency of up to 41%, and a maximum clearance (ratio
between the observable shot-noise level and the dark-noise level) of 8, leading to an
effective quantum efficiency of 36%. The detection system effective bandwidth is
120 MHz, the CMRR is up to 30 dB and at 4.5 µm the maximum power impinging on
the BS tolerated to have a linear response is 2 mW. Via the detectors’ DC output, the
mean value of the incident radiation intensity and the corresponding shot-noise level
are retrieved. This latter level is used as a reference for the intensity noise measured at
the AC outputs. As in the BHD setup (sec. 3.4), also for the correlation measurements
the DC and AC output signals are acquired simultaneously in the time domain via
a four-channel oscilloscope with a sample rate of 625 MS/s. The duration of each
acquisition is 1 ms. Referring to Fig. 4.4b, according to the harmonic comb FSR
the position of the mirror M and the distance between the diffraction grating and the
detectors can be adjusted to properly collect the reflected mode (the ultimate limit
is given by the grating’s dispersion power). In all the measurements, the system has
always been kept in the linear responsivity regime to maintain a direct link between the

6In the characterized device, by changing the driving current, the sideband gain changes, as shown later
in the measurements of correlation taken at several sideband powers (Fig. 4.8). For each value of driving
current, we monitored the spectral emission via the spectrum analyzer. However, we acquired just one of
these spectral emissions as an example and reference. A flip mirror, located in the setup (Fig. 4.4a) after the
isolator, directs the radiation onto the FTIR in an analogous path to the one depicted in Fig. 4.1.

7This device, when operates as a dense comb, has a free spectral range of:

FSR =
c

2 ·ng ·L
≃ 1e−9

3e8
2 ·3.4 ·4.5e−3

GHz ≃ 10GHz,

where c is the speed of light, ng is the group dispersion index, and L is laser waveguide length.
8Such beat-note is acquired using the laser current. This measurement is possible thanks to the QCLs’

fast gain dynamics allowing the modulation of the carrier population up to tens of GHz. The intermodal
beating, being an intermodal modulation due to the comb emission, can be read out from the bias line, i.e.
from the laser driving current[180]. For further info have a look at Appendix sec. A.1.
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statistics of the tested photocurrent and the incident radiation power.
For the correlation measurements, a two-step characterization has been applied: first,
the shot noise calibration of impinging radiation is performed; then the intensity
correlations are measured and referred to the calibrated level of shot noise. The
methods and the expected results for the two characterization steps are described in
the two following paragraphs, entitled Single-mode noise and relative shot-noise level

calibration and Intensity correlation measurements. The same nomenclature is used in
the section dedicated to the presentation of the obtained results (sec. 4.2.3).

Single-mode noise and related shot-noise level calibration. As a first step in the
setup characterization, we performed a noise calibration of the system in terms of shot
noise. To accomplish this, a single mode is chosen using the diffraction grating, and the
mirror M in Fig. 4.4b is replaced with a 50/50 BS (Fig. 4.4c). This allows us to equally
split the single-mode intensity onto the two detectors, recreating the balanced detector
shown in chap. 3 and in [99]. The balanced detector is used to estimate the shot-noise
level for each mode using a differential measurement, and its match with the predicted
theoretical value, retrieved via the DC output, is checked. After the calibration, the
reference shot-noise level in correlation measurements is computed directly using the
mean value of the detectors’ DC outputs for a particular incident power9 10.
As already anticipated in sec. 3.2, the balanced detector can also measure the intensity
noise of the mode understudy by computing the INPSD of the sum of the AC signals
retrieved at the two detectors’ outputs. Moreover, by removing the grating, the three
modes are no longer spatially separated, and the balanced detector can be used to study
the intensity noise or the whole unsplit emission. The comparison of the intensity
noise level of each single mode with that of the whole unsplit three-mode signal offers
information on the modes’ relationships and on the presence of correlations. In particu-
lar, an INPSD level of the unsplit three-mode emission lower than that of each mode
measured singularly indicates the presence of intensity correlations.
However, there is an inherent limitation in this type of measurement and comparison:
the balanced setup system can only measure one mode at a time, whereas the cor-
relation setup can test two modes out of three at the same time. As a result, only a
post-production (asynchronous) comparison is possible to compare the three modes’
intensity noise and their correlations rather than a simultaneous one. However, the
simultaneous acquisition of the noise of each of the three modes requires a much more
complex and expensive system: a minimum of three detectors is necessary to test at the
same time the intensity noise of each mode and the correlation between each couple of
modes, while for the simultaneous acquisition of the shot noise of each mode, three
BSs and six detectors are requested. Furthermore, all the acquisitions should also be
synchronized (e.g., six detectors, each with two outputs, required, in principle, a twelve-
channel acquisition card). We can confidently state, however, that the implemented
setup is a good compromise between having a good analysis and keeping the budget

9In the calibration phase, we also verified that sending a single mode onto one detector did not saturate
its outputs.

10In this chapter, the term incident power refers to the incident power impinging on the balanced
detector in the case of single-mode noise measurements or on the single detector in the case of correlation
measurements.
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and implementation complexity at a reasonable level. Indeed, despite the limitations,
the three-mode emission shows good repeatability and stability for the entire time
required to acquire all the measurements11 and, therefore, it is reasonable to compare
acquisitions taken asynchronously.

Intensity-correlation measurement. Via the implemented intensity-correlation setup
(Fig. 4.4b), both the measurements of sideband-sideband and of sideband-pump correla-
tions are possible. The grating horizontal alignment allows for the selection of the mode
incident on D2, whilst the position of mirror M allows the desired mode reflected on
D1 to be selected. The implemented setup enables the detection of the intensity noise
of each of the two selected modes in the time domain using the dedicated detectors. In
the same vein as the analysis performed for the BHD characterization (chap. 3), the
AC time-domain data are added or subtracted, and the INPSD of the result is computed.
Depending on the type of correlation (i.e. if the tested quantities are correlated or
anti-correlated), by performing the sum or the difference, the common-noise terms in
the intensity noise of the two selected modes are subtracted or added up: if the level of
the sum INPSD is above (below) the level of the difference INPSD, the two beams are
(anti-) correlated12. Therefore, it is possible to evidence and demonstrate the presence
of correlation via the comparison between the INPSD of the sum (named sum INPSD

in the following text and analysis) with the INPSD of the difference (named difference

INPSD in the following text and analysis). In the case of a non-linear phenomenon that
generates the sidebands (i.e. FWM), where two photons of the pump are translated
into one photon for each sideband, the intensities of such modes are correlated and
increase together. We can also imagine them as two modes synchronously fluctuating
in intensity; therefore, they are expected to be correlated and to have a difference
INPSD lower than the sum INPSD. In the ideal scenario expected for non-classical
correlation, the difference INPSD should lay below the corresponding shot-noise level
as demonstrated for passive media [73]. In practice, the light originating from a laser
active region experiences several noise contributions and losses (such as 1/f noise, gain,
modes’ competition, and waveguide loss) both in the optical path and in the detection
that may affect the intensity noise of the sidebands, their intensity correlation and create
intensity unbalancing between the two modes. Furthermore, if each sideband noise
is far from the matching shot-noise level, a greater level of correlation is necessary

11A typical measurement cycle in which we test several emissions from a harmonic comb lasts a working
day, including alignment and overall measurement time. The repeatability means that it is possible to achieve
the same emission state on different days, in the same current range, by adjusting the laser driving current by
a few mA.

12As already stated in chap. 3, the INPSD allows via the Parseval theorem the estimation of the variance
of the measured signals, at the cost of an integration. With this in mind, let’s assume the quantity A and B are
correlated. If we have now to calculate the variance of the sum of the two quantities A+B depending if they
are correlated (+) or anti-correlated (-) we get the following error propagation [181]:

[∆(A+B)]2 = (∆A)2 +(∆B)2 ±2 · cov(A,B)

where cov(A,B) is the covariance between the two quantities A and B. An analogue formula can be retrieved
for the difference, where the sign of the correlation part will be opposite to the one in the sum. Now
let’s assume that the quantity A and B are the number of photons of two sidebands, then if they are shot-
noise limited, the variance of each of them is proportional to the square of the number of photons (e.g.
(∆A)2 =

√
A). Therefore, in case of correlation (+), while the sum should lie above the sum of the two

shot-noise levels, the difference should lie below. This is a simple and limited derivation of the results,
however, it helps in the general comprehension of the measurements.
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to get a sub-shot-noise level differential signal, as well as a high detectors’ quantum
efficiency and CMRR. If their noise is instead close to the shot-noise level, the system
can detect even a reduced amount of squeezing in the sideband-sideband difference
measurement and requests a lower CMRR. In addition, the background noise of the
used detectors is added on top of the INPSD contributions, and this may compromise
the detection of weak signals. While in the case of a balanced homodyne detection,
the LO acts as an amplifier for the noise of the light understudy (section 1.6.2), in this
application the balanced detector has no LO. Indeed both of the detector’s paths are
illuminated with the harmonic-comb signals in order to test the amount of correlation.
If the sidebands’ signals are too weak, the corresponding shot-noise level may lie below
the detector background. In this case, there is no chance of observing non-classical
effects and other techniques need to be explored13.
To sum up, the demonstration of quantum-level correlations requires that the difference
INPSD signal lies below the reference shot-noise level. This implies that the detection
system must have a clearance significantly larger than 1 [73, 99].

4.2.3 Results and discussion

Single-mode intensity noise and relative shot-noise level calibration

As described in sec. 4.2.2 and in Fig. 4.4c, we calculated the INPSD of the sum and
difference of the two detectors’ output signals, respectively, to assess the intensity noise
and the associated shot-noise level of a single mode (orange and blue traces, Fig. 4.5 a).
In the measured harmonic emission, the sidebands are quite weak in comparison to
the central mode: their power generally varies from a few µW to hundreds of µW,
whereas the central mode power is on the scale of dozens of mW. As a consequence,
the central mode has been attenuated in the measurements performed via the balanced
detector to avoid saturation (the saturation for each detector at the laser wavelength
occurs for an incident power P > 1mW), while no attenuation is necessary14 for the
weak sidebands. On the other hand, the low intensity of the sidebands (e.g. the
minimum tested sideband power is P ≃ 0.08mW) may translate into a shot-noise
level (black dashed line) lying below the background noise (grey trace), as shown in
Figure 4.5. This limit prevents unveiling possible quantum correlations, as already
stated in sec. 4.2.2. At higher gain (i.e. at higher driving current with fixed temperature),
the sidebands’ power can reach a value over 200 µW (e.g. this is the case of the relative
intensity-noise (RIN) spectra depicted in Fig.4.6), leading to a shot-noise level above
the background noise as expected by the detector calibration presented in the previous
chapter (chap. 3). However, at 4.5 µm, even when the power of the sidebands is
maximum (i.e. P = 0.25mW in Fig. 4.6), the detection clearance remains below 3

13E.g. as an alternative a balanced homodyne detector can be employed with an appropriate multimodal
LO, like as a second QCL with the same polarization, harmonic emission, and spatial mode. In this case, to
test several values of phase between the LO and the test harmonic state of light, an appropriate method for
varying the LO phase must be found [182].

14The sideband-sideband correlation is used to assess the presence of non-classicality, and, because of
their weak intensity, no attenuation is required in their detection. In the case of pump-sideband correlation
measurement, on the other hand, attenuation is required. In this measurement, the system is completely
unbalanced: the pump is much more intense than each of the sidebands, and most of the pump photons
do not participate in the non-linear process. In a certain sense, the attenuation can help to re-balance the
measurement, at the cost of adding vacuum coupling to the pump state.
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Figure 4.5: a) INPSD of the single sideband "mode +1" detected via the 50/50 balanced detector. The INPSD
of the sum (orange trace) is compared to the measured INPSD of the difference (blue trace),
to the computed level of the shot noise (black dashed lines) and to the background noise of
the detector. The achievement of the shot-noise level is limited by the background. However,
the sum of the expected shot-noise level and of the background noise (light red trace) is still
compatible with the INPSD of the difference, which lies slightly above the background noise. b)
Comparison among the sum INPSDs of each individual mode of the tree-mode emission ( +1
and -1 denote the sideband, 0 the central mode) and the sum INPSD of the whole signal obtained
by sending the unsplit three-mode radiation (mode all) on the balanced detector (no grating, no
modal dispersion). A spurious noise around 100 MHz, compatible with FM radio broadcasting
signals, is detected in case of mode all and mode 0.

(Fig. 3.6a), limited by the reduced amount of available power. Moreover, the performed
analysis reveals that the sideband intensity noise (orange trace in Fig. 4.5a) is well
above the corresponding shot-noise level. Regarding the calibration, by adding up the
expected shot-noise level and the background noise (light red trace in Fig. 4.5a) we can

84



4.2 Correlation measurements in harmonic combs

105 106 107 108

Frequency (Hz)
10 16

10 15

10 14

10 13

10 12

10 11

10 10

10 9

RI
N 

(1
/H

z)

P+1 = 0.3 mW
mode +1
mode 0
mode -1

a)

105 106 107 108

Frequency (Hz)
10 16

10 15

10 14

10 13

10 12

10 11

10 10

10 9

RI
N 

(1
/H

z)

P+1 = 0.5 mW
mode +1
mode 0
mode -1

b)

Figure 4.6: RIN of each individual mode of the three-mode emission for two different values of the single
sideband power (P+1). In both cases, the RINs of the two sidebands (mode +1, green trace and
mode -1, dark orange trace) are overlapped and above the level of noise of the central mode
(mode 0, blue trace). The excess noise around 100 MHz visible in graph a) is compatible with
FM radio broadcasting signals.

still estimate the experimental shot-noise level (blue trace in Fig. 4.5a), that in case of a
very weak sideband is slightly above the background noise. Given the above-mentioned
limitations, the solution seems to be working at higher sideband power to have higher
clearance. Anyway, it is worth noticing that higher powers mean higher gains that may
degrade the correlations.
By using the balanced detector setup (Fig. 4.4c), it is also possible to measure the
INPSDs of each single mode and, by removing the grating, to compare them to the
INPSD of the whole unsplit signal. Fig. 4.5b shows the INPSD of each sideband in
case of a very weak power (P ≃ 0.08µm) (modes +1 and -1, green and dark orange
traces). These quantities are compared with the central-mode INPSD (mode 0, blue
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4.2 Correlation measurements in harmonic combs

trace) and with the INPSD of the whole unsplit three-mode signal (mode all, pink
trace). The INPSD of the whole signal is lower than that of the signal of each single
mode, and this seems to indicate the presence of at least classical correlations15. To
understand this result we can write the expected results in terms of their variances 16.
If we assume the presence of correlation between the intensity of each pair of modes,
from the error theory analysis the variance σ2

all of the total intensity is given by [181]:

σ
2
all = σ

2
+1 +σ

2
-1 +σ

2
0 +2σ +1, -1 +2σ +1,0 +2σ0,-1 (4.1)

where σ2
i is the i-th mode variance, and σi,j is the covariance between mode i and

mode j with i, j =+1,0,−1 and it can be positive or negative, depending on the type
of correlation. Therefore, the measurement of an INPSD of the whole unsplit signal
(pink trace in Figure 4.5b) below each single-mode INPSD is a proof of non-negligible
correlation. Knowing that the variance of each quantity gives a positive contribution
being the square of the fluctuation, this lead to a negative contribution from the sum of
the covariance term in Eq. (4.1) to match our experimental results:

(σ +1, -1 +σ +1, 0 +σ 0, -1)< 0 . (4.2)

At this point, classical intensity correlations are expected, and a deep analysis of such
correlations is needed to understand the sign of each term of correlation. Furthermore,
analyzing the noise of each individual mode under different gain conditions (e.g., far or
close to the sidebands’ threshold) can indicate what is the most convenient regime for
observing strong correlations, as the gain is one of the parameters that can contribute
to the deterioration of correlations. In particular, at a fixed operation temperature,
the laser driving current can be spanned to experience several gain conditions of the
sideband modes. An anticipation of the results is offered by Fig. 4.6, where the RINs
of both the sidebands (renamed mode +1 and -1 in the figure) and of the central mode
(renamed mode 0) are displayed for two different values of sideband gain represented
in terms of single-sideband incident power. In particular, when the sidebands are weak
(Fig. 4.6a), their RIN is clearly higher than the one of the central mode. While at a
higher gain (corresponding to a sideband power P = 0.5mW, Fig. 4.6b) the gap among
these two noise levels almost disappears (Figure 4.6b). Interestingly, the RIN of the
two sidebands is overlapped in both configurations, evidencing the same amount of
noise, and indicating that the modes are balanced.
To summarize, the low-gain regime seems to be the most relevant condition for studying
sideband-sideband correlations, as shown in the following section.

15It is worth noticing that, usually, to perform this comparison we should calculate the RIN of these
quantities, by normalizing the retrieved INPSDs to the corresponding incident powers, indeed in case of
central mode and whole signals measurements the radiation has been attenuated. However, the measured
incident power, which is equal to the product between the attenuation factor and the actual power, results
higher for these latter two signals than for the weak sidebands. To have a reference, the incident power for
the overall signal is around 1.12 mW, and the one of the central mode is around 0.7 mW. Therefore the
comparison among the INPSDs does not alter the results. Indeed, the central mode and the overall signal
should be normalized to higher power values with respect to the sidebands, and thus the gaps between the
INPSDs are expected to widen.

16Via the Parseval theorem [183], we can extract information about the variance of the signal by measuring
its INPSD.
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4.2 Correlation measurements in harmonic combs

Intensity-correlation measurement

We investigated the sideband-sideband correlations and sideband-pump correlations
using the apparatus depicted in Fig. 4.4b and the measurement methods described
in Sec. 4.2.2. An example of both patterns is shown in Fig.. 4.7 at two distinct
single sideband power levels, P+1 = 0.08mW for sideband-sideband correlation and
P+1 = 0.21mW for pump-sideband anti-correlation. In fact, graph (a) shows a partial
sideband-sideband correlation since the difference INPSD lies up to 20 dB below the
sum INPSD, but still over 20 dB above the shot-noise level. Instead, in graph (b), the
difference INPSD is higher than the sum INPSD, indicating the presence of a partial anti-

105 106 107 108

Frequency (Hz)
10 23
10 22
10 21
10 20
10 19
10 18
10 17
10 16
10 15
10 14
10 13
10 12

IN
PS

D 
(A

2 /H
z)

correlation: P+1= 0.08 mW
background
sum
difference

background + 
 shot noise
shot noise

a)

105 106 107 108

Frequency (Hz)
10 23
10 22
10 21
10 20
10 19
10 18
10 17
10 16
10 15
10 14
10 13
10 12

IN
PS

D 
(A

2 /H
z)

anticorrelation: P+1= 0.21 mW
background
sum
difference

background + 
 shot noise
shot noise

b)

Figure 4.7: INPSD analysis of the sideband-sideband correlation (a) and sideband-pump anti-correlation (b)
for different values of the single sideband power (P+1), present in the three-mode harmonic comb
emitted by a MIR QCL. The INPSD of the difference (blue trace) and the INPSD of the sum
(orange trace) are compared with both the expected level of shot noise (black dashed lines) and
the background noise of the balanced detector. In both graphs, the 1-1 MHz frequency window
set around 10 MHz, and used in the CMRR analysis shown in Fig. 4.8, is coloured in dark orange.
In this window, the CMRR of the setup is optimal (over 30 dB) and the highest clearance is
reached [99] (chap. 3). The green dashed line indicates a 10-MHz frequency cut-off present
in such correlation data in the INSPD of the sum (a) and of the difference (b). This cut-off is
far from the -3-dB-cutoff of the detector and therefore it is ascribable to the laser dynamics
dominating such emission.
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4.2 Correlation measurements in harmonic combs

correlation between the two investigated modes. Even in this situation, both INPSDs
remain significantly higher than the background and shot-noise levels. However, unlike
the sideband-sideband case, due to the presence of much more intense modes (the
sideband power is of P+1 = 0.21mW, and the one of the central mode of P = 0.51mW,
Fig. 4.7b) the shot-noise level is above the background noise. Interestingly, in both
graphs (a) and (b), a 10-MHz-frequency cut-off is present (green dashed line), which is
highlighted in the sum in the case of correlation, while in the case of anti-correlation
in the difference. This cut-off is far enough from the detector’s limited-bandwidth
-3-dB-cut-off set at 120 MHz (sec. 3.3). As a result, we may conclude that this effect is
caused by the intermodal laser dynamics that define this sort of emission. This latter
assumption is supported by the fact that this cut-off appears in both the correlation
graph and in the single mode INPSDs (Fig. 4.5b), but not in the INPSD of the whole
unsplit signal (pink trace, Fig. 4.5b).
Prolonging the cut-off dashed green line trends in Fig. 4.7, the shot-noise level is
expected to be reached at a few GHz. Furthermore, the appearance of a 10-MHz cut-off
in the difference/sum INPSD shows that evaluating the signals for a shorter time frame
(i.e. at a higher frequency) can be advantageous in terms of noise reduction, increasing
the probability of revealing non-classicality. However, it is difficult to find a detector
with GHz bandwidth suitable for such measurements: some commercial fast detectors
with a few GHz bandwidth are available, but at the cost of a smaller detector area,
resulting in earlier saturation in comparison to the used detectors, while the background
noise remains at the same level. This situation results in a lower dynamical range
for faster detectors, which is inadequate to have a satisfactory clearance or even to
detect the shot noise. To meet all of the requirements of these intensity-correlation
measurements, new optimized detectors have to be implemented.
To provide a comprehensive picture of the revealed correlation and anti-correlation, we
examined such quantities at various single-sideband gains and powers, spanning the
driving current in the range 512-517 mA while maintaining the temperature constant.
In particular for such analysis, we estimated the correlation-measurement CMRR as
the ratio of the sum INPSD and the difference one in the dark orange frequency region

depicted in Fig. 4.7, i.e. correlation-measurement CMRR=
⟨sumINPSD⟩

⟨differenceINPSD⟩
. With

this definition, a CMRR > 1 indicates the presence of correlation, while a CMRR < 1
of anti-correlation17. As shown in Fig. 4.8, the correlation-measurement CMRR is
mapped as a function of the single sideband emission power, both in the case of pump-
sideband anti-correlation (a) and sideband-sideband correlation (b). This analysis
evidences that the two types of correlations have an opposite trend with the sideband
power (gain). The sideband-sideband correlation decreases while the sideband power
increases, indeed, their trend tends to 1. On the contrary, the sideband-pump anti-
correlation increases with a trend tending to get away from 1. These patterns suggest
that the lowest gain condition tested, i.e. near the sideband formation threshold, is
the optimal situation for measuring strong correlations between the two sidebands.
Indeed, as the sideband gain rises, so does the anti-correlation with the central mode,
indicating the presence of mode competition between the sideband and the pump.

17This CMRR should not be confused with the one previously introduced in chap. 3 that was defined as
the ratio between the shot-noise level and the background noise.
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Figure 4.8: CMRR between sum and difference in the measurements of sideband-pump correlation (a)
and sideband-sideband correlation (b) vs the power of the single sideband. The laser used
is a Fabry-Pérot QCL emitting at 4.5 µm, working at room-temperature (23 ◦C). The data are
obtained spanning the laser current in the range from 512 mA to 517 mA. To calculate the CMRR
(named in the text correlation-measurement CMRR), the sum and difference INPSDs have been
averaged in a 1-MHz-FFT window centred around 10 MHz and the ratio between the two has
been computed. The data shown in these graphs refer to the Fabry-Pérot laser emitting at 4.5 µm.

Aside from losses, it appears that gain and mode competition are the two components
that reduce the correlation between the two sidebands and prevent the detection of
non-classicality. In general, the values obtained in the correlation-measurement CMRR
graphs confirm the correlation sign found in the characterization shown in Fig. 4.7, i.e.
the presence of correlation between the sidebands which result both anti-correlated
with the central mode. Such results are summarized in Table 4.1 where the sign +

is associated with correlation, and sign − with anti-correlation18. As already stated
in the previous section, it is worth once again noting that we were only able to use
two detectors for observation of these correlations (anti-correlations), and therefore, to

18The results for the anti-correlation shown in the graph of this chapter concern specifically the sideband
mode +1 and the central mode 0, but identical results for the tested anti-correlation with the other sideband
mode (-1) have been found, as expected by the tested symmetrical emission state.

89



4.2 Correlation measurements in harmonic combs

mode +1 mode -1 mode 0
mode +1 + + −
mode -1 + + −
mode 0 − − +

Table 4.1: Correlation sign between the modes. The sign + indicates the presence of correlations, and the
sign − indicates anti-correlations.
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Figure 4.9: INPSD of each individual mode of the three-mode emission and of the whole three-mode signal
sent to the balanced detector without modal dispersion (no grating). The spectra have been
compensated for the related optical attenuation as reported in the legend. The retrieved mode 0
spectrum has been obtained by adding the spectrum of mode +1, -1 and of the whole signal (mode
all) according to Eq. (4.3). The excess noise around 100 MHz visible in the plot is compatible
with FM radio broadcasting signals.

monitor the correlation between only two modes at a time. A more deep investigation
may arise from the implementation of a three-synchronised-detectors scheme where the
correlation between the three modes can be monitored at the same time. Furthermore,
with a three-detector scheme, it is also possible to test the correlation between one
mode, e.g. the pump, and the sum of the other two. We have already deeply described
the increase of complexity of such measurements in the previous section, however, the
implementation of a more sophisticated detection system can be a target for near-future
investigations. In the meantime, the comparison with asynchronous data remains a
valid alternative in the case of stationary and reproducible emission (and noise) which
is the case of the harmonic state tested. To prove it, we decided to recombine the
single mode signal knowing the sign of correlation (Table 4.1) to highlight that the
overall signal can be retrieved and, therefore, the asynchronous data can be compared.
For this comparison, we need to normalize the INPSDs displayed in Fig. 4.5b for the
different attenuation factors affecting their measurements. The attenuation factors are
the ones shown in the legend of Fig. 4.9 and are defined as the ratio between the real
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4.2 Correlation measurements in harmonic combs

power and the measured incident power onto the detection system. In particular, all the
single modes are affected by the grating losses (attenuation of 1.8). The central mode
is attenuated with a glass, leading to a global attenuation of 4.7. The overall radiation
has no grating attenuation but it is attenuated by a factor of 7 (using two glasses) to
prevent detector saturation. Given these factors, starting from the dataset of Fig. 4.5,
it is possible to obtain the normalized INPSD traces depicted in Fig. 4.9. Then, by
combining these INPSDs following the correlation sign expected by the two-mode
correlations, it is possible to combine three of the cited spectra to obtain the fourth one.
E.g., if we want to reconstruct the mode 0 (retrieved mode 0, violet trace in Fig. 4.9)
we should combine the spectra as follows:

INPSD +1 + INPSD-1 + INPSDall = INPSD0 . (4.3)

The correspondence between the measured mode 0 and the retrieved one shows the
validity of such analysis19.

4.2.4 Summary and final remarks

In this section, the correlations between pairs of modes have been investigated in a
three-mode harmonic comb emitted by a MIR QCL. The origin of this investigation
comes from the presence of FWM in QCL-combs that, besides inducing comb emission
out of these devices, has also potential as a non-linear process able to induce non-
classical correlation.
In particular, the tested harmonic emissions are characterized by an intense central
mode and two sidebands. The performed analysis shows the presence of correlation
between the side modes, and each of them results anti-correlated with the central mode.
In particular, the harmonic emission is tested for different levels of gain obtained by
changing the laser driving current at a fixed temperature condition. When the gain
and the sideband power rise, the pump-sideband anti-correlation increases at the cost
of decreasing the sideband-sideband correlation. With the ultimate goal of reach the
sub-shot noise level, this analysis suggests that the best scenario for investigating
the correlation between the sidebands is the emission configuration in which the
sidebands are very weak and nearby their threshold. Indeed, the gain seems to promote
their competition with the central mode while decreasing the correlation level. The
presence of sideband-sideband correlation is in accordance with what is expected by
the presence of a FWM processes where two photons of the pump are mixed to generate
one photon for each sideband. However, with the performed analysis, only classical
correlations have been unveiled. Indeed, in case of sideband-sideband INPSD analysis,
the difference lies below the sum but still remains up to 20 dB above the corresponding
shot-noise level. An analogue result is obtained in case of the sideband-pump anti-
correlation, where the sum lays below the difference but it is still far from the reference
shot-noise level. In the perspective of observing quantum correlations, the present
setup can be successfully used for a single-sideband power above 0.1 mW, as suggested

19It is worth noticing that Eq. (4.3) is valid as long as the sideband-sideband correlation and sideband-
pump anti-correlation are dominant with respect to the intrinsic noise of each mode (see Eq. (4.1)), which is
the case of the tested harmonic comb emission.
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by the characterization of the clearance of our detection system reported in chap. 3.
Although the presented measurements remain at a classical level, this analysis is a valid
benchmark to prove FWM-induced correlations. Furthermore, by enlightening their
limitations, it is possible to set a strategy for future unveiling of FWM correlation in
QCLs targeting the quantum level. First of all, the analysis shows the presence of a
10-MHz frequency cut-off in both the INPSDs of the correlation measurements and
of the single modes. This cut-off is ascribable to the internal dynamics of QCLs and
it can help in two improvement directions. By studying the causes of such internal
dynamics, a new generation of QCLs can be optimized to minimize the extra noise
coming from this intermodal dynamical process. On the other hand, new detectors with
higher bandwidth (of the order of a few GHz) can be assembled to test the correlation
in the frequency region where the evidenced excess of this 1/ f noise is expected to
reach the shot-noise20. Furthermore, this detector should match the request of having a
dynamical range large enough to have a clearance well above one even in the case of
very weak sidebands. Another key parameter is the quantum efficiency which should
be as high as possible to increase the chance of unveiling non-classicality. Finally, a
theoretical model with a full quantum approach will substantially contribute to correctly
describing the correlation measurement data and to clarify which are the structural key
parameters to be optimized to increase non-classical emission out of QCLs.

4.3 Correlation in bilobed emission

As a final application for the balanced detector, I would like to briefly mention its use
in testing the emission of a Fabry-Perot QCL emitting around 4.41 µm with a peculiar
bilobed comb emission at high driving current, as shown in Fig. 4.3b. This peculiar
emission is likely due to some inhomogeneity in the gain and/or to its saturation, which
favors the emission in two separate (but close) spectral regions, the two lobes, at the
cost of the extinction of the emission modes in the gap between the two. Before going
into more detail about the preliminary results, I want to make clear that the goal of this
research is not to test the light’s quantum state but rather to comprehend the dynamical
process that created the two lobes in QCLs, especially whether and how they are
related.

4.3.1 Device characterization

The LIV (Light power (L) - current (I) - voltage (V)) curve of the tested device is
depicted in Fig.4.10, at a working temperature T =−5 ◦C, where the bilobed emission
is present for high driving current (nearby the saturation) as already anticipated in
Fig. 4.3. After the LIV characterization, the emission spectra of the laser are tested
for several values of the driving current using the setup of Fig. 4.1. The measured
spectral emissions are shown in Fig. 4.11. Depending on the driving current (I), the
laser emission switches from a single mode emission (I < 630mA), to dense comb
emission ((I < 630mA), reaching nearby the laser saturation the bilobed emission

20For instance, a reasonable detection bandwidth should not exceed the QCL cavity linewidth that gives
a frequency limit of 5 GHz in case of 5-mm-waveguide QCL [75].
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Figure 4.10: LIV curve of the ETH-fabricated Fabry-Peròt QCL emitting around 4.41 µm at a temperature
of T=−5 ◦C, where the laser exhibits a bilobed emission. The laser voltage drop (blue trace)
and the emission power (red trace) are plotted for several values of laser driving current. The
laser power saturates for a current around 800 mA. The power is measured at the laser output
via a standard power meter, and the voltage is read out via the software provided by ppqSense
to pilot the QubeCL current driver used to drive the laser.
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Figure 4.11: Fabry-Pèrot QCL emission spectra at several values of current (see the legend) at a fixed
temperature of T =−5◦C. The laser operation wavelength is around 4.4 µm, corresponding
to 68 THz, approximately. As shown in the graph, the wavelength changes depending on the
working condition.

.

(I = 750mA and above). In the case of bilobed emission, two multimodal lobes
appear, separated by around 1 THz. This distance allows for the measurement of
correlations between the two via the technique explained in sec. 4.2, being the distance
between these modes a factor 10 wider than the distance between harmonic-comb
modes. Before performing this measurement, the intermodal beat note of the laser has
been monitored via an RF spectrum analyzer with a radio bandwidth RBW = 100 Hz
(see Fig. 4.12) directly from the laser bias current, as described in the Appendix sec.
A.2. Additionally, for all the tested driving-current values, the QCL intensity noise has
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been characterized via the balanced detector widely described in chap. 3. An example

Figure 4.12: Intermodal beat note, spectrum, and INPSD of the sum (orange trace) and of the difference
(blue trace) referred to the shot-noise level (black dashed line), the background noise (grey
trace) and to the sum of the two (shot noise + background, red trace) in case of a driving current
of 720 mA (a) and 770 mA (b). The beat notes are acquired via an RF spectrum analyzer (Fig.
A.1) with a resolution bandwidth (RBW) of 100 Hz. The spectral emissions are acquired via an
optical spectrum analyzer (Fig. 4.1), while the intensity noise of the two emission modes is
measured via the balanced detector shown in Fig. 3.2. The measured incident power sent onto
the balanced detector, in both cases, is around 1.8 mW. Referring to the INPSDs plots: the sum
INPSD is shown in orange, the difference INPSD in blue and these quantities are compared to
the background noise (grey trace), shot-noise level (dashed black line) and to the sum of the
latter two noises (red trace). These quantities are computed following the procedure described
in chap. 3.

of the characterization of these three mentioned parameters (i.e. the intermodal beat
note, the spectrum and the intensity noise) is provided in Fig. 4.12 at a working
temperature of −5 ◦C. In particular, in (a) the parameters for the dense comb at a
driving current (I) of I = 720mA are shown, while in (b) the characterization of the
bilobed emission for I = 770mA is reported. By comparing the two beat notes, it
is clear that the one of the bilobed emission (b) is broader than the standard comb
one (a), suggesting a less coherent emission (sec. A.2): In case of bilobed emission,
the FWHM of the intermodal beat note is 50 kHz approximately, while the one of
the tested dense comb emission is, around a factor of 10 narrower. Focusing on the
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spectral emissions depicted in 4.12, it is possible to note that the standard dense comb
spectrum (a) is composed of a continuum of modes located in the frequency widows 67-
68 THz, while in the bilobed case (b) there is a huge gap between the two lobes being
around 1 THz far away. In particular, the low-frequency lobe falls around 67.3 THz,
corresponding to a wavelength of 4.46 µm, while the high-frequency lobe falls around
68.2 THz corresponding to 4.40 µm. For the intensity noise characterization reported
in (a) and (b) the whole (unsplit) radiation is measured with the balanced detector (as
described in section 1.6): the sum INPSD (orange trace) has a cut-off in the trend
around a few MHz, then the intensity noise decreases reaching the shot-noise level
(blue trace) in the case of dense comb, while it remains slightly above it in the case of
the bilobed comb. These two emissions are characterized by a high power (Fig. 4.11)
over 30 mW, therefore they had to be importantly attenuated to prevent the saturation
of the detection system. Besides the large attenuation (over 90%), in both the emissions
the noise remains so high that, due to the CMRR limitation, the estimated shot-noise
level (black dashed line) is reached only at high Fourier frequencies (over 10 MHz). As
for the other INSPD graphs shown in this manuscript, the above-mentioned quantities
are also compared to the background noise of the detector (grey trace), and to the sum
between this latter noise and the expected shot-noise level (red trace). A better overview
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Figure 4.13: RIN (Relative Intensity Noise) at different values of driving current of the MIR QCL, whose
spectra emission are depicted in 4.11. The RIN is calculated as the sum INPSD signal retrieved
via the balanced detector analysis procedure presented in chap. 3, normalized to the square of
the mean value of the photocurrent measured at the DC outputs of the detectors.

regarding the laser intensity noise is given in Fig. 4.13, where the QCL RIN21 is plotted
for several values of driving current. Nearby the lasing threshold (I = 560mA) the RIN
is quite high, then it decreases to lower values in case of single-mode emission, to rise
again in the dense comb emission, reaching the highest values in the bilobed emission.
The analysis remarks also the presence of a frequency cut-off around a few MHz only
in case of multimodal emission, and it is probably due to some collective dynamics

21As already defined, the RIN here depicted is obtained normalizing the computed sum INPSD to the
square of the mean value of the measured photocurrent.
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effects affecting this type of emissions, however, further investigations are needed to
draw a clearer picture.
By adding a grating before the balanced detector we also tested the intensity noise of
each single lobe composing the bilobed emission, as shown in Fig. 4.4c. An example

Figure 4.14: INPSD of the single lobe composing the QCL bilobed emission found at a driving current
of 770 mA and a working temperature of −5 ◦C shown in Fig. 4.11. The single-lobe noise
detection has been possible by using the variant of the implemented balanced detector where a
grating is set before the BS enabling the selection of one lobe at a time (Fig. 4.4c). The INPSDs
graph (a) is the one of the weaker lobe (the left one in the depicted spectrum), while (b) refers
to the other one. In both the plots the sum INPSD is shown in orange and the difference INPSD
in blue. These quantities are compared to the background noise (grey trace), shot-noise level
(dashed black line) and to the sum of the latter two noises (red trace). The measured incident
power impinging onto the detector is 0.4 mW for (a), 0.7 mW for (b), approximately.

of the retrieved INPSDs, as well as the corresponding shot-noise level is given in
Fig. 4.14. It is worth noticing that the intensity noise related to the two lobes is
higher compared to the one characterizing the sidebands in the harmonic three-mode
emission. For this reason, we were forced to use a higher oscilloscope scale with
respect to the other measurements shown in this chapter. This scale is characterized
by a higher background noise that limits the clearance of the measurement preventing
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4.3 Correlation in bilobed emission

the differential measurements to reach the shot-noise level and it totally overcomes
the background noise (grey trace) of the balanced detector that is now limited by the
oscilloscope contrary to what was observed in the BHD characterization shown in
chap. 3 or in its application in the correlation measurement in the case of harmonic
combs (sec. 4.2). To overcome this problem, we could use a commercial power
combiner to compute the difference between the AC outputs of the two photodetectors
and a RF spectrum analyzer. However, due to the fact that in this application we were
more interested in testing the intensity noise (sum INPSD) of the lobes, rather than
the detector ability of noise suppression, I do not believe that the faced instrumental
limitation has excessively impacted the measurement quality, in particular in the in case
of the bilobed emission, where the sum INPSD still lay above the corresponding shot-
noise level. To complete the general overview of this single lobe noise measurements,
we can notice for both the lobes the presence of a frequency cut-off after a few MHz:
in Fig. 4.14 (a) the cut-off occurs around 2 MHz, in (b) around 6 MHz. Furthermore, in
both the sum INPSDs a peak around 70 MHz is present. Finally, it is worth to remark
the different power of the two lobes: the left lobe has a power of 0.4 mW, the other
one of 0.7 mW, the unbalance between the two is therefore of around 30%. This may
impact the operation of the balanced detection in the correlation measurements.

4.3.2 Results and discussion

By adapting the position of the mirror M and the distance between the detectors and
the grating in the correlation setup depicted in Fig. 4.4b it is possible to match the
frequency gap between the two lobes. Therefore, the correlations between them are
retrieved, using the same methodology described in case of the three-mode harmonic
comb (sec. 4.2). Each lobe has been directed to a different photodetector and both the
INPSD of the sum and the difference are computed starting from the two AC detector
output signals. An example of the computed INPSDs is shown in Fig. 4.15, where
the bilobed correlation is tested for both the bilobed emission shown in Fig. 4.11 at a
driving current of 750 mA (a) and 770 mA (b). Both the plots show an anti-correlation
behaviour between the two lobes: the sum INPSD lays below the difference INPSD
until a few MHz (for Fourier frequencies < 10MHz) and also nearby the 70-MHz peak
registered also in the single lobe spectra (Fig. 4.14). This anti-correlation behaviour
suggests a competition of modes between the two lobes. It is worth remarking that
the bilobed system is unbalanced in terms of measured photocurrent (and therefore
of power). By the way, even with this constraint, we were able to detect such anti-
correlation22. As in the case of single lobe INPSD analysis, the intensity noise was
so high that we were forced to increase the oscilloscope scale during the acquisition.
This has prevented reaching the expected shot-noise at the tested power values (i.e.
1 mW a and 0.7 mW). However, the detection of anti-correlation was still possible.
Furthermore, the detected noise stays above such background noise limit for almost
all the tested Fourier frequency range, reaching it around 100 MHz, nearby the limit
given by the detector bandwidth (i.e. 120 MHz, chap. 3). Even in with the enlightened

22We also verified that by balancing the signal in post-production we obtained the same results. The
post-production balancing is obtained by renormalizing the AC fluctuations of one of the lobe using the ratio
between the two mean values of the measured current.
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4.3 Correlation in bilobed emission

Figure 4.15: INPSD analysis of the lobe-lobe correlation at a driving current of 750 mA (a) and of 770 mA
(b) at a fixed temperature of −5 ◦C. The INPSD of the difference (blue trace) and the INPSD of
the sum (orange trace) are compared with both the expected level of shot noise (black dashed
lines) and the background noise of the balanced detector. In (a) the total incident power onto
the balanced detector is 1 mW, and in (b) is 0.7 mW.

limitations, we believe that the detection of the anti-correlated behaviour between the
two lobes is already an interesting result, to be deepened in the near future.

4.3.3 Summary and final remarks

This section presents an unpublished application regarding the correlation setup shown
in section 4.2. In the presented application, the detector is used to test the correlation
in a specific comb emission made of two different multimodal lobes characterizing
the spectral emission of a MIR Fabry-Pérot QCL driven at high current (nearby its
saturation). Differently from standard dense combs, this emission is characterized by
two lobes that are separated by around 1 THz, likely due to some inhomogeneity in
the gain and/or its saturation, which favours the emission in the two specific spectral
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regions. At first, the balanced detector has been applied to measure the intensity noise
of both the whole unsplit bilobed signal and of each single lobe. The bilobed emission
is characterized by a general high-noise level compared to the RIN measured in the
other emission regimes of the laser (e.g. in cases of single mode or standard dense
comb emission). This is also in accordance with the intermodal beat note analysis,
where a larger FWHM of the note has been measured in the case of bilobed emission
with respect to a standard comb emission regime. Furthermore, the two lobes have
different average powers, with an unbalance of around 30%. Another limitation with
this high-noise regime emission is that in the case of the INPSD analysis performed
for each of the two lobes, the fluctuations required a higher oscilloscope scale. As a
consequence, in these measurements the background noise of the detector is limited
by the oscilloscope background, making it impossible to reach the shot-noise level
corresponding to the tested power (around 1 mW). However, even with this limitation,
we were able to test the intensity noise of the devices operated in this peculiar regime
at a classical level. The same limits are present even in the correlation measurement
performed between the two lobes. By the way, the performed analysis interestingly
reveals the presence of anti-correlation between the two lobes, suggesting a competition
between the two of them. In the near future, in order to improve the measurement
quality, a RF spectrum analyzer and a power splitter can be combined to measure the
INPSD of the difference/sum between the two lobes. These instruments are typically
characterized by low-level background noise and therefore the chances of reaching the
shot-noise level are higher. The disadvantage of this detection system is that it can only
perform one fixed measurement (i.e. sum or difference) at a time, whereas our balanced
detector has the advantage of performing multiple operations with the same dataset (as
described in chap. 3). However, I want to remark that while the target for harmonic
state emission was to test the correlation at the quantum level (section 4.2), this was
not the case for this type of investigation. In this case, we were more interested in
understanding the nature of correlation that may characterize this type of emission, in
particular, searching for anti-correlation between the two modes in the view of creating
a proper theoretical model able to describe the origin of this type of emission in QCLs.
Therefore, I consider the achieved results already satisfactory.

4.4 Conclusion and perspectives

In this chapter the balanced detector presented in chap. 3 has been applied to investigate
the emission of multimodal MIR QCLs. As a first application, the balanced detector
has been used to test three-mode harmonic comb emissions out of a MIR QCL, charac-
terized by an intense central mode and two sidebands (sec. 4.2), with a first-neighbour
mode separation of around 100 GHz. The ultimate goal of such measurement is to
prove the presence of non-classical correlation between the sideband modes expected
by the FWM process that takes place in the QCL-combs waveguide. Interestingly,
the obtained results show classical correlations between the sideband modes, but the
non-classical level was never reached. However, this work has set a benchmark for
future investigations, enlightening the next steps to take for testing these correlations at
the quantum level.
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The second application shown in this chapter (sec. 4.3) regards the application of the
implemented balanced detector in the measurement of correlation in the case of bilobed
emission out of MIR QCLs. This peculiar emission is characterized by two clusters
of modes, the two lobes, separated by around 1 THz, and is present at a high driving-
current value. Such emission might be due to the saturation of the laser gain and/or its
inhomogeneity. From the results, we can conclude that this emission is characterized
by a high-intensity noise regime and that the two modes are anti-correlated. In this
case, we were not interested in measurements at the quantum level, but rather more in
a classical characterization of this type of emission with the perspective of developing
a proper theoretical model.
Finally, to accomplish the task of pushing the MIR and QCL technologies to the
quantum level I am going to take the following steps:

1. Gaining the expertise in dealing with squeezing and quantum state generation at
standard wavelengths with passive optical devices;

2. Developing a non-linear passive device able to generate MIR squeezed light to
test the developed detector’s ability to measure non-classical effects;

3. Creating a theoretical model able to schematize the non-linearity of QCLs from
a quantum point of view, enabling the engineering of devices optimized for
enhancing the quantum features;

4. Working with scientific groups and manufactures able to provide a new generation
of MIR detectors that, following the prescriptions evidenced in both sec. 3.3 and
sec. 4.2, should have higher quantum efficiency (> 50%) and higher bandwidth
(> 1GHz) while keeping a good dynamical range in terms of clearance and
power saturation;

5. Testing new emerging devices such as Interband Cascade Lasers (ICLs), which
recently have emerged as a valid alternative to QCLs.

In the following chapter, the work that I have already done concerning the first step is
described.
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The work described in this chapter regards the experiment done during my research
abroad period, spent in Nice (France), with the aim of generating CV quantum states of
light (i.e. Schrödinger’s cat state [184]) via a chip-scale passive non-linear medium, a
PPLN ridge waveguide (PPLN/RW). In particular, the specific tasks of this work were
to generate, manipulate and detect small-amplitude cat states (named kitten states [93])
with a plug-n-play approach to a CV-quantum-optics experiment based on off-the-shelf
components coming from the telecom (1.55 µm) and non-linear optics. The work here
mentioned has been already published in Optics Express [95].
In a global view of generating non-classical states of light in the MIR, this work gave
me the know-how necessary for dealing with non-classical states of light at standard
wavelength, out of a passive medium.

In this chapter, a brief introduction about kitten state generation is provided in
section 5.1; a theoretical description regarding this topic is then given in section 5.2.
In 5.3, the experimental setup is described and in section 5.4 the obtained results are
shown and discussed.

Disclaimer and Acknowledgement All the work described in the next sections has
been carried out at the Institut de Physique de Nice1 (France) under the supervision

1https://inphyni.univ-cotedazur.eu/
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5.1 Introduction

of Dr Virginia D’Auria2, in cooperation with the Ph.D. student Mohamed Melalkia3.
This chapter offers a general overview of the work done in the five months that I have
spent there. A complete and rigorous theoretical approach to this argument is reported
in [108], as well as a detailed description of the data analysis done for the Wigner state
reconstruction. I have to thank all of the coauthors of [95] for giving me the opportunity
to view my first squeezed state and my first non-classical state with a negative Wigner
function in such a short amount of time.

5.1 Introduction

Squeezed states of light [185, 186] are a commonly used Gaussian resource in CV
quantum optics that can be applied in quantum communication and computation
protocols [88, 90, 91]. Furthermore, these states of light can be manipulated to generate
non-Gaussian quantum states of light such as Schrödinger’s cat states [187, 188],
consisting in a macroscopic superposition of two coherent states of opposite phase
[184], and Schrödinger’s kitten states, with smaller amplitudes [93]. These non-
Gaussian states of light allow the generation of advanced communication protocols like
quantum distillation [97, 98]. At standard wavelength, i.e. in the telecom spectral region
where the worldwide-fiber communication system is based, the generation of squeezing
is commonly obtained via OPO or Optical Parametric Amplifier (OPA), based on non-
linear PLNN crystal or waveguide implemented both in bulk optics setup [189, 190]
and in fully-guided system [191] where the elements are compact and integrated with
a plug-and-play approach [192–194]. These compact and integrated systems are of
particular interest in view of out-of-lab applications, e.g. for the application of quantum
communication systems in the urban fiber-based communication network. From an
experimental point of view, Schrödinger’s kitten states can be obtained by subtracting
a single photon from a squeezed vacuum state [93]. Recently a PPLN/RW-based
setup has been proven to be able to generate Schrödinger’s kitten state [94]. However,
in this experiment, the single photon subtraction and the detection of the prepared
non-Gaussian state of light are made in bulk optics, where the mode matching and
the spatial alignment are critical issues to be addressed to get good results. In the
work done in Nice, we realized a plug-and-play setup to overcome these issues: in the
experiment, the squeezing generation, the subtraction, as well as the detection, are all
obtained via fiber-based components [95].

5.2 Theoretical description

In this section, the theoretical description and the references to understand the principles
behind the experiment are provided.

2https://inphyni.univ-cotedazur.fr/a-propos-dinphyni/annuaire/virginia-dauria
3https://inphyni.univ-cotedazur.fr/a-propos-dinphyni/annuaire/mohamed-melalkia
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5.2 Theoretical description

5.2.1 Squeezing generation

In our experiment we used a PPLN/RW to generate vacuum squeezing via a degenerate
Spontaneous Parametric Down Conversion (SPDC) process: referring to the theoretical
section 1.4.4, one photon of the pump ωp generates two photons at half of its frequency
ωs = ωi = ωp/2. In case of a single-mode strong pump, its mode can be treated as a
classical coherent state and its depletion can be neglected, i.e âP → |α|e−iϕ, and the
Hamiltonian of interaction for the degenerative SPDC process in the rotation wave
approximation can be modelled as [102]:

HI = ℏk|α|
(

e−iϕâ†2 + eiϕâ2
)
=− i

2
k′ℏχ

(2)|α|
(

e−iϕâ†2 + eiϕâ2
)

(5.1)

where χ(2) is the second-order non-linearity of the non-linear crystal, the operator â

(and the h.c.) is associated to the generated state of light and k = − i
2

k′χ(2) is the

coupling constant of the non-linear process that depends on χ(2). The evolution of the
state can be described via the unitary operator UI as [101, 102, 108]:

UI = eiHIt/ℏ = exp
[

nLk′

2c
χ
(2)|α|

(
e−iϕâ†2 + eiϕâ2

)]
= exp

[
1
2

ζ
∗â2 − 1

2
ζ(â†)2

]
(5.2)

where t = nL/c is the interaction time where L is the crystal length, n is the refractive
index and c the speed of light and the squeezing parameter is defined as ζ = seiϕ where

s =
nLk′

2c
χ(2)|α|. This interaction toy model allows us to immediately recognize the

possibility of squeezing generation via a SPDC process. In particular, in the experiment
presented in [95] a squeezing vacuum state is generated at the output of the PPLN/RW.

It is worth noticing that in the experiment the PPLN/RW is pumped in the CW
regime, therefore the generated squeezed vacuum state is characterized by a certain tem-
poral wave-packet amplitude, defined by the non-linear crystal. A complete theoretical
treatment of this topic is provided in [195].

5.2.2 Kitten state preparation

In single-mode quantum optics, a cat state is a non-Gaussian state of light generated by
a macroscopic superposition of two coherent states characterized by opposite phases
(|α⟩ and |−α⟩) and the same amplitude [101]:

|Ψ⟩= 1
C

(
|α⟩+ eiϕ |−α⟩

)
(5.3)

where C =
√

2
[
1+ e−2|α|2 cos(ϕ)

]
is a normalization constant, ϕ is the relative phase4

and α is the amplitude of the coherent state |α⟩= e(αâ†+α∗â)|0⟩. The operators â† and
â, appearing in the definition of the coherent state, are the construction and annihilation
operator, respectively and they fulfil the commutation rule

[
â, â†

]
= 1 (section 1.2). In

particular, starting from this definition, we can call a kitten state a low-amplitude cat
state [93], as already mentioned. In particular, it is possible to generate a kitten state

4Depending on ϕ we can define different types of cat states: for ϕ = 0 we have the even cat state,
ϕ = π the odd cat state and for ϕ = π/2 we have the so-called Yurke–Stoler state. These three states are
eigenvectors of â2 [101].
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Figure 5.1: a) Wigner Function of a cat state of low amplitude |α|2 = 1, with ϕ = π (eq. 5.3). b) Wigner
Function of a cat state of low amplitude generated by subtracting a photon from a squeezing
state of 2.7 dB (eq. 5.4). The simulation has been done with the Python library QuTiP. In
both figures (a) and (b) two main elements are depicted: On the left, there is the projection of
Wigner Function W(X,Y) in the XY-plain with marginal probability distributions, shown in the
two graphs surrounding the XY-plain projection of W(X,Y) (they are obtained integrated the
W(X,Y) over the conjugated quantity); On the right, the 3D representation of the W(X,Y) with
the corresponding colour-bar is shown.

|Ψk⟩ by subtracting a photon from a squeezed vacuum state (Ŝ(ζ)|0⟩) [93]:

|Ψk⟩= âŜ(ζ)|0⟩ (5.4)

where Ŝ(ζ) = exp
[ 1

2 ζ∗â2 − 1
2 ζ(â†)2

]
is the squeezing operator [100] (section 1.2).

Indeed, this state is comparable to a cat state of low amplitude (eq. (5.3)), as shown in
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Fig. 5.1: The two graphs show the Wigner function [101, 112] (sec. 1.7) of the two
states in terms of the field quadrature X and Y 5. Both the depicted Wigner functions
are characterized by a negative part, that reaches the minimum (i.e. -0.3) at X=Y=0.
The negative of the Wigner function proves the state’s non-classicality [112, 114].
The analogy between the two states (Eq. (5.4) and Eq. (5.3) in case small amplitude)
allows from an experimental point of view to get a way to construct a kitten state: via
a non-linear crystal it is possible to generate a squeezing vacuum state and, then, an
unbalanced BS with a low reflectivity can be used as for the photon subtraction. This is
the working principle of the here presented experiment.

5.2.3 Detection and quantum state reconstruction

The detection technique used in this experiment is based on a homodyne detection
measurement. The theory of this technique is described in chap. 1 (section 1.6). As
already mentioned this technique allows to measure a current signal Iθ proportional
to the quadrature Q̂(θ) = X̂θ of the electric field associated at the state of light under
investigation:

Iθ ∝ X̂θ = X̂cos(θ)+ Ŷ sin(θ) . (5.5)

By performing multiple measurements of states identically generated, we can measure
the marginal probability distribution P(X̂θ) associated to the quadrature X̂θ, which is
also the marginal of the Wigner function (sec. 1.7) [113]:

P(X̂θ) =
∫ +∞

−∞

W (Xθcos(θ)−Yθsin(θ),Yθcos(θ)+Xθsin(θ))dYθ . (5.6)

From here, by inverting the relation, we can reconstruct the Wigner function of the
tested state [103].

In the experiment, the max likelihood algorithm is used to reconstruct the prepared
state of light [196], consisting in the estimation of the state (described via the density
matrix) that best represents the obtained results, by maximizing the probability of
obtaining them. The description of this algorithm is out of the scope of this thesis,
however, the principle of work of the data analysis done in Nice is provided in the
sec. 5.4. Further information about this algorithm is provided in [108, 196].

Impact of the experimental losses

All the theoretical framework here presented neglects the losses contribute. As shown
in the theoretical part of this manuscript (chap. 1), the presence of losses affects the
measurement of the quadrature of the state. Therefore, a careful analysis of the losses
is needed to understand the limits of the experimental setup.

By recalling the theory introduced in chap. 1 (sec. 1.6), in a real setup the measured
quadratures are affected by the losses (1−η) and the measured variance for a squeezed

5X and Y are respectively the real and complex part of the operator â (or of the electric field if multiplied
for the proper scale factor [100](see chap. 1)), and are therefore observable.
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vacuum state (∆XM)2 of the quadrature X̂M =
(
X̂θ

)
measured is given by:

(∆XM)2 = (∆X0)
2
[
η(∆Xθ)

2 +(1−η)
]

= (∆X0)
2 [

η{e2ssin2 (θ)+ e−2scos2 (θ)}+(1−η)
] (5.7)

where (∆X0)
2 = 1/4 is the quadrature variance of the vacuum state (section 1.2) and

(∆Xθ)
2 = (∆X0)

2 {e2ssin2 (θ)+ e−2scos2 (θ)} is the variance of the squeezed vacuum
state (without losses). Like in the other presented experiments, the losses can com-
promise the detection of the squeezing. Furthermore, if the overall efficiency (including
generation, transmission and detection) is lower than 50%, it is not possible to achieve
a negative value in the reconstructed Wigner function [156].

By recalling (∆X0)
2 = σ2

0 to simplify the notation, in this lossy scenario the min-
imum, (∆XM)2 |min = σ2

min, and the maximum, (∆XM)2 |max = σ2
max, of the variance

(∆XM)2 (Eq. (5.7)) are respectively [108]:

σ
2
min = σ

2
0
[
ηe−2s +(1−η)

]
, (5.8)

σ
2
max = σ

2
0
[
ηe2s +(1−η)

]
. (5.9)

.
In the experiment, starting from the measured maximum and minimum values of

the quadrature variance, it is possible to retrieve the squeezing parameter S = e−2s and
the efficiency η by inverting the above mentioned relations:

S =
1−σ2

min/σ2
0

σ2
max/σ2

0 −1
, (5.10)

η =

(
σ2

max/σ2
0 −1

)(
1−σ2

min/σ2
0
)

σ2
max/σ2

0 +σ2
min/σ2

0 −2
. (5.11)

5.3 Experimental setup

A schematic representation of the utilized setup for generating Schrödinger’s kitten
states is depicted in Fig. 5.2. A CW fiber-coupled laser produced by µQuans6 is used
as laser source. The laser has three outputs: a 780.2-nm amplified output and two
1560.4-nm outputs, but only one of them is amplified. Referring to the setup area
named squeezing generation, the emitted power of the 780.2-nm output is controlled
via a commercial fiber-coupled Variable Optical Attenutator (VOA) and its polarization
is adjusted via a polarization controller (PC). Then the radiation is sent to a commercial
pigtailed PPLN/RW produced by NTT Electronics corporation. Here the 780.2-nm
beam acts as a pump for the generation of a single-mode squeezed vacuum state at
1560.4 nm by degenerate SPDC process. In particular, the used commercial PPLN/RW
module is equipped with a thermistor and a thermoelectric cooler to control and stabilize

6In this device, the 1560.4-nm radiation is produced via a diode laser. the 780.2-nm light is generated
via a SHG process enabled by a PPLN/RW which is located inside the µQuans laser. A portion of the
generated SHG radiation is used to lock the diode to a 85Rb transition. The remaining SHG radiation and
a portion of the 1560.4-nm radiation are amplified via an Erbium doped fiber amplifier and they are sent
to two amplified polarize-maintaining-fiber outputs. Finally, the residual part of the 1560.4 nm radiation
is sent without amplification at the third polarize-maintaining-fiber output. This latter output radiation is
characterized by a linewidth of 8 kHz. More details can be found in [108].
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Figure 5.2: Overview of the experimental setup. The source is a µQuans laser able to emit both at λ =
1560.4nm (red and beige laser outputs) and at λ = 780.2nm (brown output). The setup is dived
into four main areas: in the squeezing generation part, the laser amplified output at λ = 780.2nm
is used to pump a non-linear PPLN/RW, generating a single-mode 1560.4nm-squeezed vacuum
state. The PPLN/RW is stabilized in the temperature via a temperature controller (T control),
while the intensity and the polarization of the pump are controlled via a Variable Optical
Attenuator (VOA) and a polarization controller (PC), respectively. By subtracting the 5% of the
generated squeezed state via a 5/95 BS, a non-Gaussian photon-subtracted squeezed state is then
generated. The prepared state (expected to be a kitten state), obtained at the 95%-output of the
BS, is then measured via a BHD (BHD, green area). In the BHD, this state is mixed via a 50/50
BS with the LO reference radiation which is obtained via the non-amplified µQuans’s output
at λ = 1560.4nm (sketched in beige). Before reaching the 50/50 BS, the LO radiation passes
through a phase shifter and a PC (L.O., pink area). At the two outputs of the 50/50 BS, the signal
is then acquired via a homodyne detector (HD) where the difference is electronically computed.
Furthermore, the 5% output of the subtracting BS is used for heralding the photon-subtracted
squeezed state detection (heralding path, grey area). This 5%-beam passes through a brag filter
and a cavity in order to match the bandwidth of the HD. Through an optical switch (link 1-2) the
heralding photons reach a superconducting nanowire single-photon detector (SNSPD), where
the signal is converted via a time-to-digital converter (TDC) and used to herald (trigger) the
detection of the kitten state done via an oscilloscope. The link 3-1 of the switch is used to lock
the cavity using the amplified laser output at λ = 1560.4nm. More details about the filtering
process and the setup are provided in the main text.

the PPLN temperature via an external driver. In our case, we used a commercial
thermoelectric cooler (MTD451T, Thorlab).
After the squeezing generation, a non-Gaussian photon-subtracted squeezed state (i.e.
our "kitten state") is then generated by subtracting a part of the squeezed light via a
5/95 BS. A BHD detector is then used to detect its quadrature signal (green area, Fig.
5.2), by mixing its radiation with that of the LO via a 50/50 BS. The LO radiation is
taken from the 1560-nm output of the laser source, where the polarization is controlled
via a PC (pink area, 5.2). In addition, the LO phase is scanned via a commercial phase
shifter produced by General Photonics7. Furthermore, by using a PC combined with

7During the quadrature measurement done via the BHD, it is possible to scan the quadrature of the
signal of interest in the phase space by scanning the LO phase.
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a 10/90-polarized BS, the LO power is monitored during the measuring process via a
power meter located at the 10% output of the BS. The remaining 90% part of the LO
beam is sent to the BHD.
Regarding the detection system, the homodyne detector (HD) is a commercial detector
produced by Insight Photonic Solutions characterized by a bandwidth of 300 MHz
and a quantum efficiency ηpd = 0.80. This detector has been characterized via the
same procedure shown in chap. 3.3. In the experiment, the HD was used in the linear
responsivity regime with a LO power of 3.1 mW corresponding to a clearance of 14 dB
between the related shot-noise level and the background noise, leading to an equivalent
efficiency ηel = 0.96. To compute the overall detection efficiency for the prepared state
propagating inside the implemented setup, the overall optical transmissivity is also taken
into account. By considering both the optical losses affecting the propagating radiation
before the BHD and the one of the 50/50 BS, we get an overall optical transmissivity
ηt = 0.94. Therefore, the effective detection efficiency is: ηd = ηt ·ηel ·ηpd = 0.728.
In the implemented setup, the 5% output of the subtraction stage is used to herald
the detection of the generated non-Gaussian state, as described in [94, 197], where
it is shown that a low-reflectivity BS can be used in combination with single-photon
detector to herald the homodyne detection of the prepared state.
In the heralding channel (grey area 5.2), a filter (composed by a Bragg grating filter
and a custom-made Fabry-Peròt cavity) is used to match the heralding bandwidth with
one of the homodyne detection. The filtering stage is then followed by an optical
switch, connecting via link 1-2 the 5%-filtered beam to the superconducting nanowire
single-photon detector, SNPSD, (Id281 SNSPD, IDQuantique), whose output signal
is sent to a time digital converter, TDC, (Id900, IDQuantique) and it is then used as a
trigger for the kitten state balanced homodyne detection measurements, acquired via
an oscilloscope (HDO6104A, Teledyne Lecroy).

The filtering stage and the cavity locking are described in the next section.

5.3.1 Heralding process

As already described, to herald the detection of the prepared non-Gaussian state, the
5% output of the subtraction BS is used, i.e. the detection of the single photon (idler)
heralds the kitten state. However, in general, in the SPDC process the signal and idler
photons can be generated at two different frequencies within the crystal bandwidth,
which is of 12 THz, centered around 192.5 THz (corresponding to 1557.3 nm), as
shown in Fig. 5.3. This means that, in principle, a detected single photon, along the
heralding path, can herald the detection of a state whose LO beating is outside the 300-
MHz bandwidth of the HD. Therefore, the heralding signal needs to be filtered to match
the bandwidth constraint given by the HD. The filtering process is made via a cascade
of two optical filters: a Bragg grating filter and a custom-made Fabry-Pèrot cavity.
In particular, The Bragg filter is a commercial adjustable ultra-narrow transmission
filter (Advanced Optics Solutions GmbH). This filter has the maximum of transmission
around 1560.5 nm and its bandwidth is 585 MHz9. Therefore a further reduction is

8More details about the HD characterization are available in [95].
9The bandwidth is measured in terms of FWHM of the spectral transmission, the measurements are

available in [108].
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Figure 5.3: Spectrum of the PPLN/RW (orange trace) acquired with an optical spectrum analyzer, compared
to the instrument background (grey trace).

needed to match the HD bandwidth. In order to accomplish this task we inserted a
custom-made in-house Fabry-Pèrot cavity in the setup. It is worth mentioning that the
used Fabry-Pérot cavity is the only bulk part of the experiment. However, it can be
substituted with a proper compact system, e.g. a thin etalon cavity or a sharper Bragg
filter, to create a more compact and fully plug-and-play setup.

Fabry-Pèrot cavity

The cavity has been designed in the following way [107]: in order to filter the output
light from the Bragg filter, the cavity modes have to be spaced more than two times the
filter bandwidth. This guarantees that only one cavity mode is inside the Bragg filter
mode width. Therefore, in our case, the cavity FSR must fulfil the following relation:
FSR ≥ 1GHz [108].
In particular, the mounted Fabry-Pèrot cavity is composed of a plane mirror with a
reflection coefficient RP = 0.98 and a curved one (attached to the piezo, PZ, in Fig.
5.4) with a curvature radius of 1 m and a reflection coefficient RC = 0.99. The expected
finesse F is therefore [198]:

F ≈ π

4
√

RC ·RP

1−
√

RC ·RP
≈ 208 . (5.12)

The distance10 between the two mirrors is set at LC = 7cm. Therefore the expected
single mode width ∆ν is:

∆ν =
c

2F LC
= 10MHz , (5.13)

where c is the speed of light, while the expected cavity FSR is:

FSR =
c

2 ·LC
= 2GHz . (5.14)

10The cavity has been designed in this configuration taken into account of the available space in the
optical table and the available optical elements [108].
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Therefore the designed cavity matches the requirement mentioned above. In order to
get a stable filtering process the cavity has been locked (link 3-1 of the switch, Fig.
5.2).

Cavity locking

The cavity-locking working principle is depicted in Fig. 5.4. The locking and the
measurement processes are not simultaneous, but one follows the other in a repeated
cycle. This cycle is iterated for all the measurements acquisition and it is obtained
via an optical switch (OSW12-1310E MEMS 1x2 Fiber Optic Switch Kit, Thorlabs):
the period of this cycle is 1 s divided in 0.2 s of cavity locking (switch in the position
1-3 as depicted in Fig. 5.4) and in 0.8 s of heralding photon detection (switch in the
position 1-2 as depicted in Fig. 5.2). The details of the synchronization needed for this
switching cycle are provided after the cavity locking description.

Figure 5.4: Sketch of the cavity setup both from optical and electronic points of view. Some elements are
already introduced in Fig. 5.2. The details of the setup are explained in the main text. The
principle of work is here summarized: The amplified 1560-nm radiation is used as a reference
for the cavity locking. When switch ports 1 and 3 (link 1-3) are connected the system is in the
locking part of the cycle. The 1560-nm passes through a shutter and a PC and it is modulated
via an EOM at 24.5 MHz. The modulated radiation arrives at the switch and then at the cavity,
passing through the circulator C (input 1- output 2). The reflection signal from the cavity is used
in the PDH locking method to stabilize the cavity. Through the switch and the circulator (input 2-
output 3), the reflection signal is collected via an AC detector. The detected signal is amplified
and beaten via a mixer with the modulation signal and filtered via a low-pass filter. After an
amplification stage, the obtained PHD error signal is then sent via a PID controller to a piezo
(PZ) mounted onto the curved cavity mirror. This mirror is moved accordingly to the PHD signal,
keeping the cavity stabilized.

The method used for the cavity locking is the Pound-Drever-Hall (PDH), consisting in
monitoring the cavity stabilization via the derivative of the cavity output signal[199] (in
our case we used the reflected signal). In the assembled setup, the amplified 1560-nm
beam is used to lock the cavity. For this purpose, it is modulated at 24 MHz11 via an

11The modulation signal is obtained via a clock generator breakout board (Si5351, Adafruit) combined
with Arduino Uno R3 chip [108]. Before reaching both the mixer and the EOM, this signal is amplified
(Amplifier 15 dB ZX60-100VH+, Mini-Circuits).
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electro-optic modulator (EOM) (PM7-SWIR,QUBIG GmbH). The modulated radiation
passes through a fiber circulator (C, Fig. 5.4) and, from the output 2, it reaches the
cavity passing through the switch link 1-3. The reflected light from the cavity comes
back reaching the circulator from the same switch link (link 1-3). Here, the reflected
light entering via port 3 of the circulator reaches the 100-MHz-bandwidth AC detector
(PD100, Koheron) (D, Fig. 5.4). The AC-detected signal is used in the error correction
of the PDH locking process. For this scope, such signal is amplified of 20 dB and mixed
via a commercial mixer (ZX05-1MHW-S+ mixer, Mini-Circuits) with the modulation
signal at 24 MHz, properly delayed. The resulting beat signal is then filtered via a
low-pass filter (BLP-2.5+ from Mini-Circuits) and sent to the PID controller (Teensy
3.2)12. The PID control signal is, then, amplified (TD250 amplifier, PiezoDrive) and

2 0 2 4
Time (ms)

0.130

0.135

0.140

0.145

0.150

0.155

0.160

Si
gn

al
 (V

)

Figure 5.5: Reflection signal from the cavity showing the cavity mode (central peak) used for the lock-in
and the sidebands due to the EOM modulation.

sent to the piezo (PZ in Fig. 5.4) mounted on the curved mirror to keep the cavity locked
to its resonance position. Moreover, a ramp signal generated by a servo controller
(Toptica) is added to the PID control signal to scan the cavity during the alignment.
An example of the reflection cavity signal obtained during a ramp scan is shown in
Fig. 5.5. Here both the central mode and the two EOM sidebands are visible. Knowing
that the EOM sidebands are distant 24.5 MHz from the central mode, corresponding
to 2 ms approximately in Fig. 5.5, it is possible to retrieve the FWHM of the central
signal which is 12.2 MHz, in good agreement with the value expected from Eq. (5.13).

Syncronization

As a side effect, the presence of the optical switch has the problem of cross-talk
between the two link channels that must be removed to guarantee a heralding signal
that comes from the subtraction process, only. To avoid this cross-talk, a shutter is
placed before the EOM in the 1560-nm beam path (SH05, Thorlabs). The shutter, the

12In order to have an error signal readable by the used PID controller, the signal is shifted via a DC offset
to have only positive input value at the Teensy entrance.
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switch and the PID are synchronized using a time delay generator (TDG) (DG535,
Standford Research). Furthermore, to ensure that the trigger signal received by the
oscilloscope comes only from the SNSPD detection of a subtracted single photon, an
AND gate is placed between the TTL signal generated by TDG and the SNSPD. The
synchronization is made with the following logic:
a) During the measurement process (0.8 s):

• the TTL signal sent to the shutter and the PID is 0, which blocks the shutter,
while the PID controller maintains the last control signal until the next locking
cycle activation;

• Simultaneously, a TTL signal 1 is sent to the switch, to activate the link 1-2, and
to the AND gate, to get a trigger from the detection of a single photon.

b) During the locking process (0.2 s):

• the TTL signal sent to the shutter and the PID is switched to 1, opening the
shutter and activating the PID controller;

• Simultaneously, a TTL signal 0 is sent to the switch, to activate the link 1-3, and
to the AND gate, to avoid any trigger in the locking phase.

With this scheme, the measured single-photon overall detection efficiency is 6%. During
the measurements, the SNSPD count rate is 3 kHz, while the dark count rate is 80 Hz,
giving an SNR = 17.5dB.

5.4 Results and discussion

As already stated, the scope of the data analysis is to reconstruct the Wigner function
of the photon-subtracted squeezed state. In the experiment, 43k 5-µs-long quadrature
traces xi(t) are acquired via the oscilloscope with a sample rate of 5 Gs/s. The LO
phase, spanning with a speed of 9π/s, results constant over each single i-th homodyne
acquisition. To reconstruct the Wigner function of the prepared state we have to
estimate both its quadrature Xi and the corresponding LO phase θi. From the filtering
process, we know that the heralding bandwidth is around 10 MHz (given by the cavity).
Therefore, during the 5 µs acquisition most of the collected data regards the squeezed
vacuum state and not the heralded states [108]. Being its quadrature phase dependent
(chap. 1), it is possible to calculate the variance σ2

sq of each measured xi(t)13 and used
them to extract the corresponding θi [108]. An example of this procedure is shown
in Fig. 5.6(a). In this figure, the squeezing variance calculated for 1000 acquired
homodyne traces xi(t) is displayed. The data are plotted via a sinusoidal function14

allowing to retrieve the phase θi for each computed squeezed state variance, and
therefore for each acquired trace xi. Via this analysis, the dependence of the squeezed
state variance as a function of the LO phase is therefore reconstructed (Fig. 5.6b).
As a consequence, it has been possible to identify the maximum and the minimum
value of the squeezed state variance. In particular, from Fig. 5.6b we can determine a

13The variance is calculated over all the 5 µs trace xi(t).
14The used fit function is f (t) = Acos(a · t2 +b · t + c)+B [108].
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Figure 5.6: (a) Squeezed variance σ2
sq computed for 1000 measured quadratures xi. The sinusoidal fit used

to extract the phase θi associated with each acquired quadrature trace xi, is displayed in red.
(b) Squeezed variance σ2

sq (blue dots) as a function of the LO phase. The data are compared to
the shot-noise level of the LO (green data) and are fitted via the equation Eq. (5.7) (red curve).
Figures adapted from [108].

minimum value of −1.81 dB and a maximum value of 3.36 dB. From these values using
the relations of Eq. (5.10) and Eq. (5.11), an initial squeezing amount of −5.37 dB
is expected (evaluated via the parameter S, Eq. (5.10)) and an overall transmission
efficiency η = 0.48 (Eq. (5.11)). At this point it is useful to explicate the definition of η

applied to our experiment: η = ηd ·ηwg ·ηs (Eq. (5.11)) where ηd = 0.72 is the overall
homodyne detection efficiency calculated in sec. 5.3, ηs = 0.96 is the transmission
of the subtracting 5/95 BS and ηwg takes into account both propagation losses and
losses due to the guide-fiber coupling occurring in the PPLN/RW. In particular, we can
estimate a ηwg = 0.69 from the retrieved value of η.
As already described in the case of the BHD presented in chap. 3, it is worth noticing
that with this efficiency (η<0.5) there is no chance of observing a negative Wigner
function, however, it is still possible to unveil a non-Gaussian state corresponding to
the lossy kitten state.
As already anticipated, together with the phase, the other key parameter to reconstruct
the Wigner function is the quadrature of the heralded state Xi. The procedure is the one
presented in [195, 200]. In this experiment, indeed we have to face the fact that, we are
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Figure 5.7: Temporal mode obtained as the eigenvector f (t) with the highest eigenvalue (blue trace) fitted
with the expected theoretical rising exponential function.

dealing with CW travelling quantum state of light. As shown in [195, 200], in the CW
regime it is possible to extract the quadrature of interest Xi by knowing the temporal
profile of the heralded state f (t), i.e. its wave-packet, which in our experiment is given
by the filtering process done in the heralding path. In particular, Xi can be extracted by
the homodyne raw data xi using the equation:

Xi =
∫

f (t) · xi(t)dt . (5.15)

To retrieve the f (t) function, the auto-correlation function of the acquired quadrature
segments is calculated [108, 200]: g(t, t ′) = ⟨xi(t)xi(t ′)⟩. The method involves, then,
the calculation of eigenvalues and eigenvectors of the auto-correlation function g(t, t ′).
In particular, as demonstrated in the manuscript [200], the eigenvector f (t) with
the highest eigenvalue is the proper temporal mode to use in the analysis15. In our
experiment, based on the fact that the squeezed bandwidth is higher than the filter
one, the temporal function should be a rising exponential function [108]. An example
of the obtained results is shown in Fig. 5.7, where the function f (t) related to the
highest eigenvalue is fitted with the theoretical rising exponential function16. Via the
fit procedure, a FWHM of approximately 10MHz is found, as expected by the filtering
process (dominated by the cavity mode FWHM). Once known f (t), the quadrature
Xi are retrieved via Eq. (5.15) and used, together with the phases θi, in the maximum
likelihood algorithm to extract the Wigner function17[108, 201, 202]. In Fig. 5.8 the
retrieved Wigner function (a) is compared with the Wigner function corrected for the

15Indeed, this eigenvector maximizes the variance of the quadrature X which can be defined as:

σ
2(X) =

∫ ∫
f (t) f (t ′) ·g(t, t ′)dtdt ′ .

This method is based on the fact that the variance of the heralded non-Gaussian state is greater than the
squeezed vacuum one [101, 108].

16The used fit function is:
f (t) = Θ(−t)e2πγt ,

where Θ(−t) is the Heaviside function [108].
17For the maximum likelihood application, the number of interaction done is 200 [95]. The description

of this method is out of the scope of this thesis, indeed the code for the tomography reconstruction has been
developed by Dr Melalkia and the details can be found in its manuscript[108].
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Figure 5.8: (a) Reconstructed Wigner function used the maximum likelihood method [108]. The reached
minimum is Wa(0,0) = 0.016±0.004. (b) Wigner Function corrected for the detection efficiency
the minimum is negative and reached at Wb(0,0) =−0.065±0.004.

detection efficiency (ηD = 0.72). As expected from the retrieved overall efficiency
eta (<50 % ), in Fig. 5.8a the Wigner function is always positive (the minimum value
is, indeed, Wa(0,0) = 0.016±0.004), but with a non-Gaussian shape. Instead, in Fig.
5.8b the Wigner function is corrected for the detection efficiency (ηd) and therefore it
has negative values, as expected (sec 5.2) for a kitten state. In particular, the minimum
value reached is Wb(0,0) =−0.065±0.004.
The setup can be improved: for instance by splicing together all the fibered components
the losses in the experiment can be reduced and, in particular, the PPLN/RW design
can be improved and integrated to increase the transmission efficiency being one of the
key parameter limiting the achievement of a negative Wigner function.

5.5 Conclusion and perspectives

The here presented work refers to the kitten state generation experiment done in
Nice whose results are published in [95]. Here a non-linear PPLN/RW, pumped in
CW regime, is used to generate a squeezed state of light at telecom wavelengths
(i.e. 1560 nm). The kitten state is then generated via a photon subtraction done on a
squeezed state of light. The prepared state is then detected via a BHD. Even though the
state tomography performed on the acquired data reveals a Wigner function compatible
with a Non-Gaussian state, this function never reaches a negative value, due to the
limited overall transmission efficiency (<50%). To retrieve the expected negativity,
the data are corrected for the detection efficiency (ηd = 0.72). The corrected Wigner
function shows a negative value in the origin as expected for a kitten state. This work
presents some limits that may be overcome by integrating and splicing the fibered
components, which should increase the overall transmission efficiency.
As a perspective, this work has given me the methods necessary to deal with CV

115



5.5 Conclusion and perspectives

non-classical state of light. The goal for my near future research is to apply such gained
knowledge to the construction of an innovative MIR setup, based on a non-linear
crystal, able to generate quantum states of light. This will allow having a controllable
system able to produce non-classical states of light to test the detection setups shown
in chap. 3 and in chap. 4. These applications will be a benchmark for the improvement
of the implemented setups, with the final goal of detecting non-classical CV quantum
states in the MIR.
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The main goal of the research activity presented in this thesis is to test the properties
of MIR radiation at the quantum level by using QCLs as efficient MIR coherent light
emitters. As described in the introduction, the MIR is a region of interest for many
applications spanning from spectroscopy and sensing to free-space communication.
In this context, the demonstration of non-classical properties of the light emitted by
QCLs can open the doors to many revolutionary quantum-technology innovations. For
instance, the availability of a MIR non-classical light can lead to an enhancement of the
ultimate sensitivity in spectroscopic and sensing measurements and to the development
of quantum secure free-space communication links based on non-classical states of
light. In this scenario, QCLs optimised for frequency-comb emission (QCL-combs)
seem to be promising non-classical-light compact sources. In multimodal QCLs, the
comb emission is, indeed, induced in the laser waveguide by a FWM process triggered
by the third-order non-linearity of the active medium. As introduced in chapter 1, this
phenomenon has also a quantum interest since FWM is a non-linear process able to
generate squeezed states of light.
Although the MIR lacks mature quantum-detection technologies, the above-mentioned
fundamental and practical interests in testing the MIR light at the quantum level have
driven my research activity.
This thesis starts with a theoretical chapter introducing the quantum optics tools needed
for describing light-matter linear and non-linear interaction, as well as the measurement
techniques. To complete this methodological overview, in chapter 2 the working
principle of QCLs is briefly reviewed. Instead, the remaining three chapters are fully
devoted to describing three different experiments I performed during my Ph.D. research
activity dealing with detection systems for quantum light characterization and quantum
sources:

• In chapter 3, the published work [99] is presented. This experimental work
focuses on the realization and characterization of a shot-noise-limited MIR bal-
anced detector able to test MIR light at the quantum level. The overall detection
bandwidth is 120 MHz. The best performance is achieved for a wavelength of
4.5 µm, where the best clearance (9 dB) and overall detection efficiency (36%)
are obtained. Even though these values are lower compared with respect to the
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ones achieved at shorter wavelengths (700-800 nm), this is a good starting point
to stimulate their improvement for the optimal detection of non-classical states
of lights, e.g. squeezed light.

• In chapter 4, intensity-correlation measurements in frequency combs emitted
by QCLs are presented. In the first part, section 4.2, the already-published
experimental work [75] is described. It reports on the measurement of the
sideband-sideband and sideband-pump intensity correlations in the case of a MIR
QCL-comb operating in a three-mode harmonic-comb emission characterized by
a bright central mode (the pump) and two weak sidebands. The results show the
presence of correlation between the two sidebands, ascribable to FWM process.
However, this correlation remains at the classical level within the detection
bandwidth. The best scenario to detect such correlation is proved to be the
operation of the harmonic comb nearby sideband-threshold. Indeed, increasing
the sidebands’ gain seems to favour the mode competition with the central mode
at the cost of reducing the correlation factor. In this work, some suggestions
about the improvements needed to achieve the quantum level are provided. For
instance, an increase in detection bandwidth may allow exploring the correlation
in the regime of reduced 1/ f noise. Furthermore, a comprehensive quantum
theoretical model for QCL emission is still missing. Indeed, a precise model
could help not only in the data interpretation but also to unveil the key parameters
that must be improved in the next generations of QCL-combs to optimise the
emission of quantum-featured light. The second part of this chapter (section 4.3)
describes, instead, the application of the correlation setup to study the anti-
correlated behaviour of the two frequency lobes present in a MIR QCL-comb
operated in bilobed emission.

• Finally, in the last chapter (chap. 5), the experiment that I have realized during
my research period at the Institut de Physique de Nice (France) is presented. The
experiment, published in Optics Express [95], describes the generation and the
detection of Schrödinger’s cat states at telecom wavelength (1560 nm). In this
work, by correcting the data for the losses, a Schrödinger’s kitten state with a
negative Wigner function is observed. Negative values of the Wigner function
clearly show the non-classical behaviour of the generated state. Along with
the results achieved, this experiment has been highly formative, giving me the
know-how necessary to generate, manipulate and detect quantum states of light.

As already anticipated in section 4.4, the next step that I would like to pursue to
make the generation and detection of MIR quantum light effective are:

• To generate MIR squeezed-light via a passive non-linear media. In particular,
currently in my lab, we are realizing and characterizing a quasi-degenerate
doubly-resonant OPO following the work presented in [203].

• To collaborate with quantum-optics-expert theoretical teams, to develop the
very first model describing the emission of QCL-combs with a fully quantum
approach.
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• To collaborate with teams devoted to the fabrication of detectors and devices, to
favour the development of a new generation of devices improved for quantum-
technology applications.

• To test other emerging MIR laser devices, i.e. interband cascade lasers which
seem to be a valid alternative to QCLs, being also characterized by the presence
of FWM.

Finally, the very last topic that I would like to investigate in the next years is the applic-
ation of MIR light sources in free-space communication, pointing to quantum-secure
protocols. As already explained in the introduction, the MIR is a valid and competitive
alternative to standard NIR wavelengths, in particular in case of adverse weather condi-
tions, being less affected by losses. For this scope, I have already contributed to two
proof-of-concept works where QCLs are used as free-space communication sources
[16, 46]. In the first cited work [16], we studied the noise contribution to the overall
free-space communication system due to a QCL operated in different conditions of
attenuation (high attenuation regime and low attenuation regime) and in different points
of the LIV curve of the laser source, i.e. nearby threshold and well-above it. In the
second cited work [46], we proved the possibility of exploiting the intermodal beat
note of a QCL-comb to carry in parallel both an analog and a digital signal via FM and
AM, respectively. The next step will be a feasibility study and practical implementation
of QKD protocols in a QCL-based free-space communication link.
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A.1 BHD with losses

Here the calculations underpinning the equations of sec. 3.2 are reported.
Starting from Fig. 3.1a and knowing the BS rules (sec. 1.3 and sec. 1.6), it is possible
to retrieve the following relations for the annihilation operators associated to the field
at the inputs (â and v̂) and outputs (â3 and â4) of the BS18:

â3 = Râ+T v̂ , (A.1)

â4 = T â+Rv̂ (A.2)

where R and T are the complex reflection and transmission coefficient of the BS. In
particular, for a 50/50 BS they satisfy the relation: |R|= |T |= 1/

√
2. It is possible to

determine the following equation for the photo-number operators associated with the
two BS outputs:

n̂3 = â†
3â3 = |R|2n̂+R∗T â†v̂ +RT ∗v̂†â + |T |2n̂v , (A.3)

n̂4 = â†
4â4 = |T |2n̂+RT ∗â†v̂ +R∗T v̂†â + |R|2n̂v , (A.4)

where n̂ is the photon number operator defined for the LO state, and n̂v for the vacuum
state (section 3.2). In this way, we are able to calculate the expectation values on the
input states. In particular, in the case of vacuum state in the input 2, |0⟩, knowing
the commutation rules

[
âi , â

†
j

]
= δi, j

19 and that the expectation value of the photon

number operator is zero when evaluated on the vacuum state 20, the expectation value
18In this description, the input beams are monochromatic, at the same frequency and independent.

Furthermore, their propagating field is described via the annihilation operator referring to the part of the field
operator at positive frequency Ê+ ∝ â [100].

19In all the other cases is zero. This means that each operator of annihilation/creation commutes with
itself and with all the operators referring to a different field (i ̸= j) [100].

20v̂|0⟩= 0, where v̂ is the annihilation operator referring to the vacuum state.
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and the variance of the outputs’ photon-number operators are:

⟨n3⟩ = |R|2⟨n⟩, (∆n3)
2 = |R|4 (∆n1)

2 + |R|2|T |2⟨n1⟩ , (A.5)

⟨n4⟩ = |T |2⟨n⟩, (∆n4)
2 = |T |4 (∆n)2 + |R|2|T |2⟨n⟩ , (A.6)

where the expectation values ⟨·⟩ are calculated on the LO state, impinging onto the BS
via input 1.
Following the same strategy, it is possible to determine analogue relations for the
operators d̂3 and d̂4 describing the incident radiation onto the two photodetectors:

d̂3 =
√

η â3 + i(
√

1−η) v̂3, (A.7)

d̂4 =
√

η â4 + i(
√

1−η) v̂4 (A.8)

where η is the photodetectors’ quantum efficiency, assumed to be equal for both
the photodetectors (see 3.2 for a better explanation regarding this latter parameter).
Combining all the rules and equations mentioned above, it is possible to find the
following equations for the mean values and variances of the number of photons
impinging on the two detectors:

⟨n̂3D⟩ = η⟨n̂3⟩ , (A.9)

(∆n3D)
2 = ⟨(n̂3D)

2⟩− (⟨n̂3D⟩)2 = η
2(∆n3)

2 +η(1−η)⟨n̂3⟩ , (A.10)

⟨n̂4D⟩ = η⟨n̂4⟩ , (A.11)

(∆n4D)
2 = η

2(∆n4)
2 +η(1−η)⟨n̂4⟩ . (A.12)

The two quantities of interest for our measurements are the sum and the difference
measured between the two photodetectors’ output signals, which are:

N̂D
+ = n̂3D + n̂4D = d̂†

3 d̂3 + d̂†
4 d̂4 , (A.13)

N̂D
− = n̂3D − n̂4D = d̂†

3 d̂3 − d̂†
4 d̂4 . (A.14)

Their mean values and variance are therefore:

⟨N̂D
+⟩ = ⟨n̂3D⟩+ ⟨n̂4D⟩ , (A.15)(

∆ND
+

)2
= (∆n3D)

2 +(∆n4D)
2 +2 [⟨n̂3Dn̂4D⟩−⟨n̂3D⟩⟨n̂4D⟩] , (A.16)

⟨N̂D
−⟩ = ⟨n̂3D⟩−⟨n̂4D⟩ , (A.17)(

∆ND
−
)2

= (∆n3D)
2 +(∆n4D)

2 −2 [⟨n̂3Dn̂4D⟩−⟨n̂3D⟩⟨n̂4D⟩] . (A.18)

(A.19)

At this point, combining all the here presented results regarding the variances and the
expectation values, and knowing from [100] (see the Hambury-Twiss calculations) that
⟨n̂3Dn̂4D⟩= ⟨n̂3n̂4⟩= ⟨n̂(n̂−1))⟩, the results presented in sec. 3.2 are obtained with
basic calculations..
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A.2 QCL intermodal beat note measurement

To demonstrate that a QCL multimodal emission is realistically a frequency comb,
the simplest and most immediate measurement consists in measuring the intermodal
beat note among its spectral modes [32, 51]. This beat note corresponds to the
amplitude modulation resulting from the interference among the frequency comb
modes: its frequency coincides with the mode spacing, i.e. the FSR, while its width
gives information on the phase coherence between the modes of the comb under
examination. In general, a narrow beat note, i.e. characterized by a width much smaller
than the modes’ linewidth21, is a symptom of a high coherence between the modes
themselves. The intermodal beat note is usually detected with a fast photodetector
and observed with a radio frequency spectrum analyzer [32]. However, in QCLs, it is
possible to detect such quantity directly as a modulation of the bias current used to
drive the laser. Indeed, the fast lifetime of such devices (chapter 2) results in a very
strong coupling between the light intensity in the cavity and the population of the levels.
As a consequence, the intermodal modulation of the laser intensity can be measured
as voltage modulation in the carrier flux directly at QCL circuital terminals [15, 32].
However, the observation of a narrow intermodal beat note does not guarantee, a priori,
the phase-coherence among the QCL-comb spectral modes. To demonstrate that the
QCL multimodal emission is actually a coherent frequency comb, more advanced
techniques are required, such as the SWIFTS [131–133] and the FACE [137]. However,

Figure A.1: FITR setup depicted in Fig. 4.1, where the part of detection relative to the beat note has been
added. As already described, the optical spectral emission of QCLs is measured via a FTIR
Optical spectrum analyzer produced by Bristol using the dedicated software that transforms, via
a Fourier Transform process, the temporal interferogram in the spectrum, as shown in the PC
depicted in the figure. Instead, The intermodal beat note is measured as modulation in the bias
current of the laser directly with a radio-frequency spectrum analyzer.

the measurements performed with such techniques have shown that only in the high
coherence regime a QCL frequency comb shows narrow intermodal beat notes ( kHz).
In practice, we can consider the presence of a narrow beat note as a sufficient clue for
the presence of a comb emission. For the purposes of this thesis work, therefore, the
detection of the beat note has been utilized for a preliminary study of the characteristics

21In general, the modes of QCL-combs have linewidths equivalent to those of a single-mode QCL, so
they are affected by technical noises impacting the QCL (thermal fluctuations, driving current noise etc.)
Their linewidth typically ranges from hundreds of kHz to a few MHz, according to [15].
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of the frequency comb emitted by the QCL. An example of the setup commonly used in
my lab for monitoring both the spectral emission via a FTIR optical spectrum analyzer
and the intermodal beat note via the driving current of the device is depicted in Fig.
A.1.

124



Abbreviations

BHD Balanced Homodyne Detector

BS Beam Splitter

CV Continuous Variable

CW Continuous Wave

DFG Difference-Frequency Generation

EOM Electro-optic modulator

FACE Fourier-transform Analysis of Comb Emission

FFT Fast Fourier Transform

FIR Far Infrared

FNPSD Frequency Noise Power Spectral Density

FSR Free Spectral Range

FTIR Fourier Transform Infrared spectroscopy

FWHM Full Width at Half Maximum

FWM Four-Wave Mixing

HD Homodyne Detector

ICL Interband Cascade Laser

LIV Light power (L) - current (I) - voltage (V) curve

LO Local Oscillator

MBE Molecular Beam Epitaxy

MCT Mercurium Cadium Telluride

MIR Mid Infrared

NIR Near Infrared

NPSD Noise Power Spectral Density

OFC Optical Frequency Comb

OPA Optical Parametric Amplifier
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Abbreviations

OPO Optical Parametric Oscillator

PDH Pound-Drever-Hall

PID (Proportional-Integral-Derivative

PLL Phase-Locked Loop

PPLN Periodically-Poled Lithium Niobate (LiNbO3)

PPLN/RW
Periodically-Poled Lithium Niobate (LiNbO3) Ridge Wave-
guide

PZ Piezo

QCL Quantum Cascade Laser

QCL-comb Quantum Cascade Laser emitting frequency comb

PDH Pound-Drever-Hall

RBW Radio BandWidth

RF Radio Frequency

RIN Relative Intensity Noise

RMS Root Mean Square

SFG Sum-Frequency Generation

SHG Second-Harmonic Generation

SPDC Spontaneous Parametric Down Conversion

SNR Signal-to-Noise ratio

SNSPD Superconducting Nanowire Single-Photon Detector

SWIFTS Shifted Wave Interference Fourier Transform Spectroscopy

TDC Time Digital Converter

TDG Time Delay Generator

VOA Variable Optical Attenuator
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