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A B S T R A C T

We study the evolution of behavior under reinforcement learning in a Prisoner’s Dilemma where agents
interact in a regular network and can learn about whether they play one-shot or repeatedly by incurring
a cost of deliberation. With respect to other behavioral rules used in the literature, (i) we confirm the
existence of a threshold value of the probability of repeated interaction, switching the emergent behavior
from intuitive defector to dual-process cooperator; (ii) we find a different role of the node degree, with smaller
degrees reducing the evolutionary success of dual-process cooperators; (iii) we observe a higher frequency of
deliberation.
1. Introduction

The evolution of cooperation has been investigated intensely in var-
ious disciplines, such as biology, economics, computer science, physics
and psychology. There are two important dimensions, among many [1–
3], that have been shown to affect the evolution of cooperation: the
interaction structure, i.e., who interacts with whom [4], and the mode
of cognition, i.e., the extent of deliberation as opposed to intuition [5].
While for the interaction structure there is a substantial consensus
that sparse and heavily clustered networks help the spread of cooper-
ation [1,6], for the mode of cognition results are more articulated and
depend on specific features of the social dilemma [7,8] and of the cost
of deliberation [9].

An important aspect in evolutionary models is the behavioral rule
adopted by agents, which heavily contributes to determining the tra-
jectories of the dynamic adjustment. The literature on evolutionary
dynamics of cooperation and interaction has extensively considered
behavioral rules encompassing best reply [10], imitation [11] and
processes of the type death–birth or birth–death [6]. More recently,
reinforcement learning has also been considered [12–15]. Reinforce-
ment learning is indeed a prominent behavioral rule originated in
behavioral sciences [16,17] and recently become extremely popular in
computer and social sciences, with many different applications [18,19].
Reinforcement learning, which is a particular type of Q-learning [20],
is known for its capacity to solve complex problems, at least those
with a fixed environment [21], in a very parsimonious way in terms
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of informational requirements. However, reinforcement learning per-
forms poorly to attain cooperation in a system with many interacting
agents [12], unless the interaction structure is endogenous [22].

We contribute to the literature by addressing the effects of inserting
reinforcement learning into the model of Mosleh and Rand [23], which
is basically the same model of Bear and Rand [7] with the addition
of an interaction structure in the form of a 𝑘-regular lattice. In their
model, agents accumulate over time payoffs across games played with
all of their neighbors, and the agents who are randomly selected to
update behavior copy the strategy of a neighbor with a probability that
is increasing in the neighbor’s accumulated payoff. In particular, agents
are involved in either a one-shot prisoner dilemma or in a repeated
prisoner dilemma; the latter interaction is represented in a reduced
form as a coordination game, with an efficient Nash equilibrium where
cooperation is sustained through conditional strategies and an ineffi-
cient (but possibly risk-dominant) Nash equilibrium where defection
occurs ([24,25]; for a survey, see [26]). In our model, when behavior
is updated an agent increases the probability of choices that have best
performed in the past, regarding the cognitive mode and the action in
the Prisoner’s Dilemma conditional on the information acquired.

We provide three main results. First, we confirm previous findings,
obtained with other behavioral rules [7,23], that for low probabilities
of repeated interaction the intuitive defector behavior (i.e., always
defect, never deliberate) is favored by evolution, while for higher
probabilities it is the dual-process cooperator behavior (i.e., cooperate
if not deliberating, deliberate to switch to defection when payoff-
maximizing) to be favored. The intuition is similar to the one of the
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previous literature [7–9,23]: when the probability of repeated interac-
tion is very low, it is not worth incurring the cost of deliberating to
learn if the current interaction is actually repeated or one-shot, with
the result that agents always expect the interaction to be mostly one-
shot and systematic defection becomes very attractive. In this respect,
reinforcement learning does not change the quality of results.

Second, in contrast with specific [23] and general [1,6] findings of
the previous literature that fewer connections help the spread of coop-
eration, we find that a lower degree in the regular network hampers
the adoption of dual-process cooperation, making intuitive defection
more likely to be adopted. Therefore, reinforcement learning drastically
changes the effects of a higher number of connections, which here
becomes a factor promoting cooperation.

Third, we find that reinforcement learning increases the observed
frequency of deliberation, for every probability of repeated interaction,
comparing our results with those of Mosleh and Rand [23]. It can
be interesting to notice that a cognitively cheap behavioral rule, as
reinforcement learning is, is associated with a higher reliance of the
more demanding cognitive mode of deliberation. In turn, this greater
reliance on deliberation has an impact on cooperation rates, depending
on whether deliberation is more cooperative than intuition (which hap-
pens for low probabilities of repeated interaction) or less cooperative
(which happens for high probabilities of repeated interaction).

Overall, reinforcement learning does not change the conclusion that
there exists a threshold value of the probability of repeated interaction
switching the emergent behavior from intuitive defector to dual-process
cooperator. At the same time, we can conclude that the role of the
number of connections for the spread of cooperation is moderated by
the behavioral rule, with a higher network degree favoring cooperation
under reinforcement learning. Finally, we observe that reinforcement
learning increases the observes frequency of deliberation.

2. Methods

In this section we introduce the model, the dynamics and simula-
tions setup, highlighting similarities and differences with [23].

2.1. The model

Our results are based on agent based simulations. Here, we describe
the model setup.

Population. The representative population consists of 𝑁 = 100 agents
imultaneously playing a modified version of the Prisoner’s Dilemma
PD). At each iteration, the two interacting agents can play Tit-for-Tat
TFT) or always defect (AllD) in a one-shot or repeated game. In the
ne-shot game, 𝑇𝐹𝑇 corresponds to cooperation, while 𝐴𝑙𝑙𝐷 stands for
efection. From now on, we will use for simplicity 𝐶 or 𝐷 to indicate

the two choices in both scenarios.

Stage game. With probability 𝑝𝐺 the stage game is a repeated PD which,
iven the restriction to strategies TFT and AllD, can be represented
s a one-shot symmetric coordination game with the following payoff
atrix (for the row player)

𝑇𝐹𝑇 𝐴𝑙𝑙𝐷
𝑇𝐹𝑇 𝑏 − 𝑐 0
𝐴𝑙𝑙𝐷 0 0

With probability 1− 𝑝𝐺 the stage game agents is a one-shot symmetric
PD with the following payoff matrix (for the row player)

𝑇𝐹𝑇 𝐴𝑙𝑙𝐷
𝑇𝐹𝑇 𝑏 − 𝑐 −𝑐
𝐴𝑙𝑙𝐷 𝑏 0

The parameter 𝑏 represents the benefits of cooperation generated for
he other agent while 𝑐 is the cost of cooperation incurred by the

cooperating agent. In our simulations we set 𝑏 = 4 and 𝑐 = 1.
2

Deliberation. At each round, a deliberation cost 𝑑∗ is randomly drawn
from a uniform distribution in [0, 1]. Each agent has her own individual
threshold cost for deliberation, 𝑑𝑖, 𝑖 ∈ {1,… , 𝑁} : if 𝑑𝑖 ≤ 𝑑 ∗, the
agent will deliberate acquiring information about the game type (one-
shot/repeated); if 𝑑𝑖 > 𝑑 ∗, she will act under intuition ignoring the
type of game.

Interaction network. All agents are placed on a regular lattice with
fixed number of neighbors for each agent, i.e. fixed node degree 𝑘.
We consider different degree values: 𝑘 ∈ {2, 4, 8, 20, 40}. The graph is
mathematically represented by an adjacency matrix 𝐴 ≡ (𝑎𝑖𝑗 )1≤𝑖,𝑗≤𝑁 ,
where 𝑎𝑖𝑗 = 1 means that agent 𝑖 is linked to agent 𝑗, while 𝑎𝑖𝑗 = 0
represents the absence of agents connection.

Each agent is characterized by a vector of parameters, completely
defining her strategy:

(𝑝𝑖,𝑖𝑛𝑡, 𝑝1𝑠𝑖,𝑑𝑒𝑙 , 𝑝
𝑟𝑒𝑝
𝑖,𝑑𝑒𝑙 , 𝑑𝑖) 𝑖 ∈ {1,… , 𝑁} (1)

where 𝑝𝑖,𝑖𝑛𝑡 is the probability to play 𝐶 under intuition (i.e., inde-
pendently on the type of game); 𝑝1𝑠𝑖,𝑑𝑒𝑙 is the probability to play 𝐶
under deliberation in a one-shot PD; 𝑝𝑟𝑒𝑝𝑖,𝑑𝑒𝑙 is the probability to play 𝐶
under deliberation in a repeated PD; 𝑑𝑖 is the agent deliberation cost
threshold.

At each round, all pairs of connected agents are selected to play the
game. The random cost 𝑑∗ ∼ 𝑈 [0, 1] is drawn at the beginning of each
round and kept fixed for all playing agents.

2.2. Dynamics

When all agents have played, the reinforcement learning rule is ap-
plied to update the strategy of each agent, both in terms of actions taken
and deliberation cost threshold. At the end of the game, each agent
compares the average payoffs of each choice and game-type and decide
to increase/decrease the related probabilities accordingly. We want to
stress that each agent can play different strategies (cooperate/defect
or decide intuitively/deliberately) with different neighbors in the same
round, but according to the same strategy vector (1) kept fixed. Indeed,
the update of the probabilities/cost is done only when all agents have
played with all neighbors.

Deliberation cost. At each round and for each agent, we compute the
experiences payoffs of playing under intuition and under deliberation
at that time, averaged over the two possible choices 𝐶 or 𝐷: 𝜋𝑖,𝑖𝑛𝑡,
𝜋𝑖,𝑑𝑒𝑙. Then, the individual deliberation cost is updated according to the
following rule:

𝑑𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑑𝑖 + 𝜆 if 𝜋𝑖,𝑖𝑛𝑡 < 𝜋𝑖,𝑑𝑒𝑙 − 𝑑𝑖

𝑑𝑖 − 𝜆 if 𝜋𝑖,𝑖𝑛𝑡 > 𝜋𝑖,𝑑𝑒𝑙 − 𝑑𝑖
(2)

with 𝜆 = 0.1.
In other terms, the agent increases (decreases) her deliberation cost

of a small amount, 𝜆, if the average payoff obtained under deliberation
– net of the deliberation cost – is greater (smaller) than the average
payoff obtained acting under intuition. If 𝜋𝑖,𝑖𝑛𝑡 = 𝜋𝑖,𝑑𝑒𝑙 − 𝑑𝑖 there is
no update of the threshold cost. We set 0 and 1 respectively as the
maximum and minimum values for the deliberation cost threshold,
therefore if 𝑑𝑖 < 0 we approximate it with 0 and if 𝑑𝑖 > 1 we
approximate it with 1. This choice avoids meaningless outcomes, such
as a negative or extremely high deliberation cost threshold, without
loss of generality. Indeed, the effect of having a deliberation threshold
cost equal to 0 (1) is exactly the same of having a negative (greater
than 1) one, but speeding up the process avoiding to reach very small
(high) threshold values. Finally, it is worth noting that the update is
done only when both payoffs are observed (i.e., the agent acts both

under deliberation and under intuition at least once in the same round).
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Action strategy. At the end of each round, the following average payoffs
are computed: (i) the payoffs resulting from cooperation, 𝜋𝐶

𝑖,𝑖𝑛𝑡, and
defection, 𝜋𝐷

𝑖,𝑖𝑛𝑡, under intuition; (ii) the payoffs resulting from coopera-
tion, 𝜋𝐶

𝑖,𝑑𝑒𝑙,1𝑠, and defection, 𝜋𝐷
𝑖,𝑑𝑒𝑙,1𝑠, under deliberation when the game

is one-shot; (iii) the payoffs resulting from cooperation, 𝜋𝐶
𝑖,𝑑𝑒𝑙,𝑟𝑒𝑝, and

defection, 𝜋𝐷
𝑖,𝑑𝑒𝑙,𝑟𝑒𝑝, under deliberation when the game is repeated.

Then, the strategy played by every agent 𝑖 is updated according to
the following rules:

𝑝𝑖,𝑖𝑛𝑡 =

⎧

⎪

⎨

⎪

⎩

𝑝𝑖,𝑖𝑛𝑡 + 𝜖 if 𝜋𝐶
𝑖,𝑖𝑛𝑡 > 𝜋𝐷

𝑖,𝑖𝑛𝑡

𝑝𝑖,𝑖𝑛𝑡 − 𝜖 if 𝜋𝐶
𝑖,𝑖𝑛𝑡 < 𝜋𝐷

𝑖,𝑖𝑛𝑡

(3)

𝑝𝑖,𝑑𝑒𝑙,1𝑠 =

⎧

⎪

⎨

⎪

⎩

𝑝𝑖,𝑑𝑒𝑙,1𝑠 + 𝜖 if 𝜋𝐶
𝑖,𝑑𝑒𝑙,1𝑠 > 𝜋𝐷

𝑖,𝑑𝑒𝑙,1𝑠

𝑝𝑖,𝑑𝑒𝑙,1𝑠 + 𝜖 if 𝜋𝐶
𝑖,𝑑𝑒𝑙,1𝑠 < 𝜋𝐷

𝑖,𝑑𝑒𝑙,1𝑠

(4)

𝑝𝑖,𝑑𝑒𝑙,𝑟𝑒𝑝 =

⎧

⎪

⎨

⎪

⎩

𝑝𝑖,𝑑𝑒𝑙,𝑟𝑒𝑝 + 𝜖 if 𝜋𝐶
𝑖,𝑑𝑒𝑙,𝑟𝑒𝑝 > 𝜋𝐷

𝑖,𝑑𝑒𝑙,𝑟𝑒𝑝

𝑝𝑖,𝑑𝑒𝑙,𝑟𝑒𝑝 + 𝜖 if 𝜋𝐶
𝑖,𝑑𝑒𝑙,𝑟𝑒𝑝 < 𝜋𝐷

𝑖,𝑑𝑒𝑙,𝑟𝑒𝑝

(5)

with 𝜖 = 0.1.
The probability of cooperating in the three cases (under intuition,

under deliberation when the game is one-shot, under deliberation when
the game is repeated) is increased (decreased) by a small amount, 𝜖, if
the related payoff averaged over all games played by the agent in that
round (i.e., its number of neighbors or node degree) is greater (smaller)
than the average defection payoff obtained respectively in the same
three scenarios. No update takes place in the above thresholds in case
of equality or if one of the payoffs to be compared is absent.

Perturbations. We assume that with probability 𝜇 = 0.05 a mutation
occurs: the agent updates her action strategy or her deliberation cost
inverting the inequalities in (2), (3), (4), (5). This choice introduce the
possibility of a random mistake in the update process at each decision
level.

2.3. Simulations

We considered a discrete range of variability for the probability to
have a repeated game with step equal to 0.1: 𝑝𝐺 ∈ {0, 0.1, 0.2,… , 1}.
At the beginning of each simulation run, all strategy vectors are inde-
pendently initialized from a uniform distribution. Each simulation run
continued over a number of generations until no more than one agent
updates its strategy for 102 generations. All results are averaged over
1000 initializations.

3. Results

In this work the same setting proposed by [23] has been em-
ployed, except for the behavioral rule used by agents for updating
their strategy. Hence, the comparison between our and their outcomes
allows us to focus on the effect of reinforcement learning. In the
following sections, we highlight three main results standing out from
this comparison.

Emergence of dual-process cooperation. Fig. 1(a) shows that as
the probability of repeated interaction, 𝑝𝐺, increases, the observed
frequency of cooperation under intuition gets larger and larger, starting
from values close to 0.1 and reaching almost 1. These S-shaped curves
correspond to the switch from situations mainly characterized by intu-
itive defection (for low values of 𝑝𝐺) to situations where dual-process
cooperation prevails (for high values of 𝑝𝐺). This is qualitatively the
same result as in Mosleh and Rand [23].

However, a difference emerges for small values of 𝑝𝐺: while the
observed frequency of cooperation under intuition in Mosleh and Rand
[23] is low for large values of 𝑘 and high for small values of 𝑘, we
find a low frequency of cooperation irrespective of 𝑘. This outcome
3

suggests that when a reinforcement learning update rule is employed,
the network structure/number of neighbors becomes negligible for the
emergence of cooperation under intuition when the game is mainly
one-shot, remaining its value around 0.1 independently on the number
of games played by each agent.

Dual-process cooperation and node degree. In contrast with Mosleh
and Rand, we find that the curves associated with a smaller 𝑘 are
located further down, as shown in Fig. 1(a). Our results suggest that
a higher number of neighbors favors the adoption of dual-process
cooperator behavior, while the opposite is true for Mosleh and Rand
[23]. This outcome highlights the role played by the reinforcement
learning update rule: by increasing the number of games played by each
agent in each round, the probability to move from intuitive defection
to dual-process cooperation rapidly increases; on the contrary for 𝑘 = 2
this passage arrives at high value of 𝑝𝐺 (> 0.5). Fig. 1(b) summarizes
this effect, showing a negative slope curve representing the relation
between the node degree and the probability 𝑝𝐺 (the analogous figure
in Mosleh and Rand [23] exhibits instead a positive slope).

Furthermore, by looking at Figs. 1(c) and 1(d), we recognize that the
frequency of cooperation under deliberation when the game is repeated
rises rapidly as 𝑝𝐺 increases, at least when the node degree is rather
large, and they never go down. In our case, hence, we do not observe
the frequency get pulled back towards 0.5 as in Mosleh and Rand [23],
figure 3.

Frequency of deliberation. Fig. 1(e) shows the maximum threshold
cost for deliberation averaged over all agents and for all values of the
probability 𝑝𝐺. Even if the curves shapes (inverted V) are quite similar
to the analogous graph of Mosleh and Rand, in our setting two main
differences occur: (i) for all values of 𝑘, except for 𝑘 = 2, we observe
very close trends of the maximum deliberating cost with respect to the
probability 𝑝𝐺 with a slight leftward shift of the peak as 𝑘 increases
(exactly the opposite tendency exhibiting in the analogous figure of
Mosleh’s paper Mosleh and Rand [23]; (ii) the maximum threshold
costs of deliberation double that shown in the paper by Mosleh and
Rand Mosleh and Rand [23] for almost all values of 𝑝𝐺. Both outcomes,
summarized in Fig. 1(f), suggest a higher frequency of deliberation
when a reinforcement learning update rule is used.

The heat-maps in Fig. 2 provide a graphical summary of our main
results showing the variation of the probability of cooperating under
intuition, in Fig. 2(a), and the maximum threshold cost, in Fig. 2(b),
with respect to the node degree, 𝑘, and the probability to have a re-
peated game, 𝑝𝐺. This is particularly useful to highlight the differences
with the setup proposed by Mosleh [23], hence, to evaluate the effect
of a reinforcement learning update rule.

Finally, we have repeated the same analysis with different network
structures: Erdös–Rényi random graph, Watt–Strogatz and Barabasi–
Albert model with varying node degree (𝑘 ∈ {2, 6, 8, 20, 40}). These
findings show high similarity to the case of agents placed on regular
lattices, (i) confirming that the observed outcomes are related to the
network density rather then to other specific network features as al-
ready pointed out by Mosleh and Rand; (ii) stressing that the differences
observed with respect to their setup are due to the introduction of a
reinforcement learning update rule (figures available upon request).

4. Discussion

The debate in the literature whether people are more cooperative
under intuition or deliberation has not focused much so far on the
specific rule adopted by agents when updating behavior. In this paper
we have shown that the main qualitative conclusion obtained in Mosleh
and Rand [23] is robust to agents following a reinforcement learning
rule: for a low probability of repeated interaction the prevailing be-
havior is intuitive defection, while dual-process cooperation spreads as
such probability increases until it becomes prevalent for high proba-
bilities. This pattern holds for every number of interacting partners. In
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Fig. 1. Strategy evolution and network structure. (a) Probability of cooperating under intuition, 𝑝𝑖𝑛𝑡, as function of the probability to have a repeated game, 𝑝𝐺 . (b) Critical
value of the probability that the interaction is repeated, 𝑝𝐺 , for which 𝑝𝑖𝑛𝑡 = 0.5 across the different values of 𝑘 ∈ {2, 4, 6, 8, 20, 40}. (c) Probability of cooperating under deliberation
when the game is repeated, 𝑝𝑟𝑒𝑝𝑑𝑒𝑙 , as function of the probability that the game is repeated, 𝑝𝐺 . (d) Probability of cooperating under deliberation if the game is one-shot, 𝑝1𝑠𝑑𝑒𝑙 , as
function of the probability that the game is repeated, 𝑝𝐺 . (e) Maximum threshold cost of deliberation, 𝑑 ∗, as function of the probability that the game is repeated, 𝑝𝐺 . (f) Maximum
value of the deliberation cost across the whole discrete range of variability of the probability to have a repeated game, 𝑝𝐺 ∈ {0, 0.1,… , 1}. In all panels the number of each node’s
neighbors is fixed, 𝑘 ∈ {2, 4, 6, 8, 20, 40}.
this respect we differ from Mosleh and Rand [23], where dual-process
cooperation is quite common also for low probabilities of repeated
interaction when the number of interacting partners is small. Fig. 2
summarizes our main findings.

At the same time, there are important qualitative differences brought
about by reinforcement learning. The most important one concerns the
widespread belief in literature that a smaller number of interacting
partners promotes the spread of cooperation. With reinforcement learn-
ing, we find the opposite: the smaller the number of partners, the more
4

difficult it is for the dual-process cooperation to prevail. The reasons
for this result could be fruitfully investigated in future research.

Another interesting observation concerns the observed frequency of
deliberation. The use of reinforcement learning, which is a behavioral
rule that consumes few cognitive resources, increases the frequency of
deliberation, which is more cognitively costly than intuition.

To explore potential avenues for future research, it is important to
recognize that the dual-process approach has been applied in the litera-
ture beyond cooperation to a wide array of social decisions as reviewed
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Fig. 2. Dual-process cooperation and network structure. Heat-maps of the (a) probability of cooperating under intuition, 𝑝𝑖𝑛𝑡, and (b) the maximum threshold cost of deliberation,
𝑑∗, as a function of the number of neighbors (i.e., the number of games played by each agent in each round), 𝑘, and the probability to have a repeated game, 𝑝𝐺 .
in a recent meta-analysis by Capraro [27]. This observations opens up a
fertile ground for computational research aimed at unraveling the evo-
lution of social behaviors from a dual-process standpoint. While there
have been studies focusing on the evolution of trust, trustworthiness,
and deceit, as highlighted by Kumar et al. [28] and Capraro et al.
[29], a gap remains in applying a dual-process approach to these areas
of investigation. The only contribution in this regard, to best of our
knowledge, comes from the attempt by Zucchiatti [30] to investigate
the coevolution of cognition and behaviors in the Ultimatum Game.
Addressing this gap holds the promise of enriching our understanding
of the dynamics underpinning these fundamental social behaviors.

In general, the results of our study call for further investigation
into the role played by behavioral rules in explaining the prevalence of
cooperation and intuition within models of dual-process theory. Along
this research line, it would be interesting to explore cases where the
behavioral rules differs between deliberation and intuition, while in
this paper, and in related studies in the literature, only the available
information changes between one cognitive mode and the other.

Finally, we aim to study how the network of interactions evolves
over time in response to the payoffs earned. This would require a model
where cognition and cooperation coevolve over a dynamic network,
which we leave for further research.
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