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Abstract
Densification of networks through heterogeneous cells deployment is considered a key technology to satisfy the huge traffic
growth in future wireless systems. In addition to achieving the required communication capacity and efficiency, another
significant challenge arises from the broadcast nature ofwireless channels: vulnerability towiretapping. Physical-layer security
is envisaged as an additional level of security to provide confidentiality of radio communications. Typical characteristics of
the wireless channel (noise, interference) can be exploited to keep a message confidential from potential eavesdroppers.
In particular, heterogeneous networks (HetNet) have inherent security features: while the legitimate user can benefit of the
HetNet architecture, the eavesdropper is strongly affected by the inter-cell interference. This paper presents an overview
of HetNets intrinsic security benefits, mainly focusing on users association and resource allocation policies. In particular,
allocation of radio resources is a poorly investigated topic when related to information security. However, in systems with
a large radio resource reuse like HetNets, co-channel interference can be suitably exploited to resist to the eavesdropper.
This paper presents a new framework for radio resources allocation using reinforcement learning (Q-learning) to increase the
security level in HetNets. A coordinated scheduling among different cells using the same radio resources is proposed based on
the exploitation of the spatial information. The goal is to optimize the security at physical layer. The reinforcement learning
approach represents a feasible and efficient solution to the proposed problem.
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1 Introduction

Fifth generation (5G) wireless networks will accommodate
network densification and different radio access technologies
to satisfy the dramatic traffic growth and the huge connec-
tivity demand triggered by the massive diffusion of Internet
of Things (IoT), intelligent devices and multimedia contents.
Heterogeneous networks (HetNets), consisting of a conven-
tional macrocell coupled with dense low-power small cells,
are considered a key driver to enable ultra-high data rates,
high-reliability and ultra-low latency. Beside spectral and
energy efficiency, also physical layer security can benefit
from such heterogeneous dense architecture [1].

Due to the broadcast nature of wireless communications,
confidential data exchanged between transmitter and receiver
is vulnerable to eavesdropping, hence, one of driving aims
of the 5G design is to have secure wireless connections.
Toward this goal, physical layer security is a low-complexity
approach that exploits the randomness of the wireless chan-
nel for providing secure transmissions. An unauthorized
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eavesdropper cannot acquire confidential information if its
communication channel is a degraded version of the legit-
imate channel. In other words enhancing the legitimate
channel quality and/or exacerbating the wiretap channel it
is possible to have secure communications. In particular, the
secrecy capacity is the maximum transmission rate of the
legitimate User Equipment (UE) at which the eavesdrop-
per cannot decode the message. Thanks to their random and
changing environment HetNets have inherent security fea-
tures. While the legitimate UE can benefit of the HetNet
architecture and its close proximity to the serving base station
(BS), by exploiting suitable beamforming and interference
management schemes, the eavesdropper is strongly affected
by the inter-cell interference. Consequently, physical layer
security in HetNets depends on UE association policies as
well as on resource allocation policies. Different types of
resources have a significant impact on the quality of the
legitimate and wiretap links. In most of the physical-layer
security studies power, space and jamming/relay dimen-
sions are exploited, while radio resources (RR) dimension
is less investigated. This is mainly because previous studies
on physical-layer security mainly focus on scenarios where
the RR reuse is limited, while in HetNets there is a dense
RR reuse that results in significant intra and inter-tier inter-
ference. Indeed, radio resource allocation (RRA) has been
widely investigated in HetNets aiming at increasing spec-
trum/energy efficiency, fairness, throughput, but information
security is rarely considered. However, in HetNets the co-
channel interference arising from RR reuse can be exploited
to degrade the wiretap channel thus becoming a positive
effect. This brings newopportunities but also newchallenges.
Differently from the traditional RRA approaches where the
goal is to eliminate interference as much as possible, in this
context, it is needed to find a trade-off between the protec-
tion of the legitimate communications from interference and
jamming the eavesdropper. This paper focuses on a RRA
scheme for providing security in aHetNet. As better analysed
in Sec.3.2.1, in the literature, RRA problem for providing
security is investigated in a few papers focusing on underly-
ing device-to-device (D2D) communications, exploiting the
interference generated by the overlapping of primary and sec-
ondary transmissions. However, the complexity of a HetNet
is not captured and analysed. The few papers that focus on
HetNets are based on the knowledge of the eaversdropper
position, while this hypothesis is completely removed here.
Moreover, we propose a coordinated scheduling/coordinated
beamforming approach that has not been presented before in
this context.

RRA problems are generally formulated as non-convex
optimization problems, whose solution requires the use of
optimization tools with unmanageable computational com-
plexity. Sub-optimal solutions based on techniques such as
Lagrangian relaxations, iterative distributed optimization,

heuristic algorithms, and auction/game have been intensely
researched in the last two decades, since the seminal work [2]
published in 1999. Thereafter, despite the field of optimiza-
tion for wireless communications is greatly evolved in all
these years, the proposed solutions still suffer fromhigh com-
putational complexity. Compared to the optimization tools,
machine learning (ML)-basedRRA algorithms can be imple-
mented online with reduced complexity and can optimize
resource allocations in complicated networks [3]. In partic-
ular, reinforcement learning (RL) has been shown to be one
effective solution for RRA in communication and computing
systems that has attracted the attention of many researches
in the last years, e.g., see among the others [4, 5]. In the RL
framework, an RL agent can generate (near-)optimal con-
trol actions basing on the immediate reward feedback from
interactionswith the environment. Togetherwith simply opti-
mizing the current reward in a greedy manner, the RL agent
can take a long-term goal into account, which is essentially
important to time-variant dynamic systems.

This paper first introduces the HetNet intrinsic security
features and a new security metric for providing a security
measure independent on the eavesdropper position. Then a
focus on the RRA is provided. A new framework based on
a UE association and a RRA scheme specifically tailored to
increase the physical security level in HetNet is presented. A
possible solution is proposed using amachine learning (ML)-
based RRA algorithm that can be implemented online with
affordable complexity. More specifically, we consider a RL-
based scheme, where each cell can autonomously evaluate its
own rewards and deliver them to a central controller that is
in charge of establishing the best resource allocation policy.
To the best of our knowledge, this is the first case where a
RL solution is proposed for RRA problems in the context
of physical layer security. Finally, we want to underline that
the proposed approach is suitable for an actual context where
users need security in their communications. Indeed it does
not require the knowledge of the position of the eavesdropper
that is usually difficult to obtain, moreover, the proposed
framework needs only a limited amount of information that
is also usually available at the BS as detailed later.

The paper is organized as follow. First the physical-layer
security, and in particular an area-related security metric is
introduced. Then the inherent security features of HetNets
are described mainly focusing on UE association and radio
resource allocation. Finally, the proposed framework based
on secure UE association and RL-based RRA is presented.

2 Physical Layer Security

The amount of sensitive and confidential data transmitted via
wireless channels is continuously increasing, thus making
privacy and secrecy vital issues for future wireless com-
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munications. Traditional security is achieved by means of
cryptography techniques that have a certain level of com-
putational complexity, and may result in high latency and
communication failure in fast changing networks, due to
higher-layer key distribution and management especially in
dense networks.

Physical layer security is a low-complexity approach that
exploits the randomness of wireless channel along with
efficient resource management schemes to keep messages
confidential in the presence of malicious eavesdroppers. The
basic idea is of exacerbating the wiretap channel and/or
enhancing the legitimate link, so that the first one is a
degraded version of the second.

To evaluate the effectiveness of security schemes, met-
rics commonly used in literature are mainly secrecy capacity
and the secrecy outage probability. The former is the dis-
crepancy of information quantity between the legitimate
channel and wiretap channel, while the latter is the prob-
ability that the secrecy capacity goes below a previously
set target capacity C . These two metrics are very effective
to measure the secrecy of a communication link, but they
require that both the position and the channel state of the
eavesdropper are known. This assumption is unpractical in a
real context. For this reason, a different metric that measures
the level of security of an area is introduced to drop down this
assumption.

2.1 Secure Area

Let us call the transmitting BS as Alice and the receiving UE
as Bob. Positions of Alice and Bob in the area are known, dif-
ferently the position of the eavesdropper (Eve) is not known.
Alice wants to transmit a confidential message M to Bob,
and Bob tries to recover the message M from the received
vector ZB (Fig. 1). Analogously, Eve tries to recover asmuch
information as possible on the message M from the observed
vector ZE .

As known, the secrecy capacity is at least as large as the
difference between two channel capacities: the legitimate and
the eavesdropper [6]. Thus, the secrecy capacity depends on
channel state and position of Bob and Eve compared toAlice,
respectively. In other words, to compute the secrecy capacity
of a link, the position and the channel of Eve must be known.
To drop this unpractical assumption a different metric can be
considered.

Given the positions of Alice and Bob, the secrecy capacity
of each point (x; y) of the area A can be calculated as Eve is
located in that generic point. Thus, a secrecy map [7] show-
ing the different levels of security of the entire area A can
be obtained. From the secrecy map, a metric, called secure
area, can be derived. First, we make the assumption that Eve
could be located hypothetically in each point of the area A;
then, a binarymatrix is calculated, where each point (x, y) of
the overall area A is marked as "1" if in that point the secrecy
capacity is strictly positive (i.e., the legitimate BS-UE link
capacity is higher than BS-Eve link capacity supposing that
Eve is in (x, y)), and "0" otherwise. The secure area is cal-
culated by integrating over all the points of the matrix. In
other words, the secure area is the percentage of points in
the total area A which can provide positive secrecy rate to
the legitimate link. The secure area metric tells how much
secure is an area managed by a BS, given the position of the
legitimate user.

3 Physical Layer Security in HetNet

The basic idea of HetNets is deploying nodes to create a
multi-tier hierarchical architecture: high-power macro cells
are overlaid by a large number of heterogeneous small
cells characterized by different levels of transmit power,
antenna configurations and bandwidth. These characteristics,
togetherwith the randomdeployment of cells, make thewire-
less channels more diverse and random than ever before, and

Fig. 1 Scheme of the
transmission of the confidential
message M from Alice to Bob
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strongly affected by inter-cell interference. This propagation
environment offers new opportunities for achieving secu-
rity at physical layer. In fact, HetNets have an inherent high
secrecy capacity [8, 9].While for the legitimate user multiple
antenna and interference management systems enable densi-
fication benefits, the wiretap channel is degraded by the very
strong interference, thus resulting in an improved secrecy. In
particular, network densification allows to reduce commu-
nication distances and, hence, the path-loss. However, only
the authorized UE can achieve this benefit, while eavesdrop-
pers suffer of more interference generated from surrounding
cells. Moreover, usually in HetNets suitable interference
management schemes are used to avoid that severe inter-
ference affects the intended UE communications, while the
eavesdropper can only increase its receiving antenna gain.
Finally, differently from the eavesdropper, UE benefits of
transmit antenna gain, that also allows to reduce the trans-
mitting power, thus reducing the capacity of the eavesdropper
to intercept the communications.

3.1 User Association

UE is usually under the coverage of multiple cells in a Het-
Net, and the dense and random deployment of the network
infrastructure requires of rethinking the user association
strategies. The main problem is the different power level
of cells belonging to different tiers, that leads to ineffi-
ciency of the conventional UE association policy based on
maximum received signal to noise plus interference ratio
(SINR) (max-SINR association). For this reason, several
studies in the literature focus on UE association in HetNets
proposing strategies suitably designed to optimize specific
metrics that typically are load balancing, throughput, spec-
trum/energy efficiency. However, also physical layer security
can be improved. Even if, most of the paper focusing on
physical-layer security in HetNets assume a max-SINR UE
association, in [10, 11] it is shown that selecting a "non-best"
UE association criterion or the maximum secrecy capacity
criterion, the secrecy can improve. In fact, UE is associated
with the best cell, depending on specific association rules
and optimization metrics, and makes handover when condi-
tions change, conversely eavesdroppers have no choice but
to undergo arbitrarily varying channel conditions when inter-
cepting a specific UE.

In what follows we present a new UE association policy
whose goal is maximizing the secure area that has been pro-
posed in [12] and is used here only to distribute the users
among the BSs before performing the proposed RRA algo-
rithm.Wewant to underline that the proposedRRAalgorithm
could work also using a different association policy. UE-BS
association is used only for the system setting, to detectwhich
is the serving BS of each UE, but it does not impact on the
functioning of RRA algorithm proposed below.

3.2 Resource Allocation

Resource allocation in HetNet has been widely investigated
in the literature in order to improve energy/spectrum effi-
ciency, throughput, fairness, and it can be exploited also to
increase the physical layer security. In fact, there are different
types of resources that have a significant impact on the qual-
ity of legitimate and wiretap links. Thus, the communication
secrecy can be effectively achieved by suitably managing
resources with the goal of enhancing physical layer secu-
rity [13]. Different resource allocation strategies in different
domains have been investigated

– Power control - the co-channel interference can be used
as a friendly-jamming. The power must be suitably man-
aged and distributed among different jammers, in order
to jam the eavesdropper but without generating harmful
interference on the intended UE.

– Jammer/relay selection - the network can rely on
some nodes that act as relay or jammer to improve the
communication secrecy. These nodes have a different
impact on the eavesdropper and legitimate UE due to
their location and channel conditions. The UE has to
select proper relays or jamming nodes finding a trade-
off between enhancing its own communication link and
degrading the eavesdropper link. Moreover, the time-
optimization between the two slots in a relaying system,
can be beneficial due to asymmetry of the channels of
transmitter-eavesdropper and relay-eavesdropper links.

– Space - generallyBSs are equippedwithmultiple antenna
systems, hence, suitably selecting the antenna pre-coding
vectors it is possible to control the direction of transmitted
and jamming signals so that the former is directed toward
the legitimate UEwhile the latter falls in the null space of
the legitimate channel. As a result, the wiretap channel is
deteriorated while the legitimated channel is improved.

3.2.1 Radio Resources

Another resource dimension that indeed is less discussed and
investigated compared to the previous ones in the context
of the physical layer security, is the Radio Resource (i.e.,
time-frequency resources) dimension. This is the focus of
our paper. RRA has attracted less interest for improving
communication secrecy, because scenarios considered for
the physical layer security usually have no/limited resource
reuse. Most of the works in the literature are based on simple
scenarios with a source-destination link and an eavesdrop-
per whose position and channel state information is usually
assumed to be known even if it is unpractical in many con-
texts. Conversely, the study in actual and more complex
networks asHetNets is quite immature, and efforts are needed
to understand potentialities and limitations.
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In [14–16] a single cell scenario is considered, differently
from our case. In particular, in [14] RRA for an Orthogonal
Frequency Division Multiple Access system is considered,
where subcarriers are suitably assigned to secure and non-
secure users to maximize the aggregate information rate
while maintaining a secrecy rate for the secure users, but
interference arising form RRs reuse is not present. Differ-
ently [15, 16] consider underlying D2D communications,
hence a certain level of RRs reuse is present: concurrent
transmissions of primary and underlying users are used as a
friendly jammers to increase the resistance to eavesdropping.
Differently form our approach the focus is on D2D com-
munications where each D2D pair selects the channel that
maximizes the secrecy rate, while the complexity of inter-
ference coordination in a dense HetNet is not captured, as
well as the spatial information is not considered. Moreover,
these approaches assume to known the eavesdropper posi-
tion, while this assumption is completely removed in our
approach.

If HetNets are considered, a high-level of RR reuse is
present for increasing spectral efficiency and managing the
high number of links with limited radio resources. This
results in intra-layer and inter-layer interference that can be
beneficial to resist to eavesdroppers without the need of gen-
erating additional jamming signals. Consequently, RRA is a
crucial point in HetNet as it has a strong impact on the inter-
ference management. It would be optimum to have enough
interference to completely jam the eavesdropper link while
avoiding a severe degradation of the legitimate link. This is
different from the conventional approach where the goal is
only to eliminate as much as possible the interference. A few
papers in the literature focus on physical-layer security in
HetNet and in general these assume to know the eavesdrop-
per position. In [17] a location-based frequency allocation
schemes in a two-layer HetNet is proposed to enhance only
the macro-layer security exploiting the small-cell interfer-
ence. A potential-game is used to suitably select the sub-band
used by the small-cells. In order to relax the constraint on
the eavesdropper position knowledge, in [18] the RRA prob-
lem in a HetNet is considered when the position of Eve is
unknown to the considered BS but it can be localized by
surrounding BSs. Then joint power and subcarrier allocation
is performed taking into account security and fairness. The
solution is obtained by using the Lagrangian method.

The assumption of a specific position of the eavesdropper
means that previous approaches mainly focus on generating
inter-layer interference in Eve direction. This assumption is
removed in our paper, where the concept of secure area is
considered, hence, there is not a specific direction to protect,
but RRA must follow different criteria.

Hence, differently from previous approaches, we propose
aRRAscheme aiming at increasing the communication secu-
rity of the users in an area where different cells layers are

present and the position of Eve is unknown. The idea is to
exploit a coordinated scheduling/coordinated beamforming
approach. Transmissions of users served by neighbour cells,
can be accommodate on suitable RRs and spatial directions,
so that the interference generated by the allocation of differ-
ent users on the same resource block finds a good trade-off
between reducing the interference for the intended user and
increasing the resistance to the eavesdropping in the whole
area.

4 Proposed Framework

We focus on the physical layer security of the downlink of a
HetNet where several heterogeneous small-cells are densely
deployed in the macrocell area, A. The signal transmitted
by the BSs can be received by legitimate UEs but also by
eavesdroppers whose position is not known. Consequently,
we want to map the BS-UE link secrecy all over the area
A.

A reuse factor equal to 1 is considered1, hence all cells
share the same frequency band and use all available physical
resources to communicate with their associated UEs. Con-
sequently, the signal received by the legitimate UE and the
eavesdropper is affected by inter-cell interference in addition
to fading and path-loss.

4.1 Max-SA Association

The UE association policy we assume to use here is based
on secure area metric, and is named maximum secure area
(max-SA) [12]. It is used as starting point for the following
RRA scheme we propose here. A UE that has to connect
to the network listens the broadcast channel of surrounding
cells (i.e., those received with a SINR value over a given
threshold). Then themeasuredSINR is reported to these cells.
Each BS independently calculates the secure area for the
UE, that is the area in which a potential eavesdropper cannot
decode the signal. The secure area is then forwarded by each
BS to the UE that selects as serving cell the one that provides
the highest value. As an example Fig. 2 shows the area where
a potential eavesdropper cannot decode the signal (i.e., secure
area - green) and the insecure area (red) that a UE achieves
selecting as serving cell BS1 or BS3 following themax-SINR
and the max-SA criterium, respectively.

1 A reuse factor equal to 1 is challenging especially when BSs den-
sification increases, but it enables key benefits of HetNet deployment,
even if requires suitable strategies to manage interference as the one we
propose here.
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Fig. 2 Example of secure area
achieved with max-SINR and
max-SA association policies
[12]

4.2 Radio Resources Allocation Scheme

As stated before by suitably assigning the physical resource
blocks (PRBs) to UEs belonging to different neighbour cells
it is possible to jam the eavesdropper thus reducing its capac-
ity of decoding the signal. Toward this goal spatial dimension
can be exploited together with time-frequency dimensions.
We assume that each BS transmits data toward its associated
UEs using aMaximumGain beamforming, thus maximizing
theSINR in the direction of the intendedUE.Being the eaves-
dropper position unknown the selection of the PRBs is based
on the maximization of the secure area. In particular, BSs
perform a coordinated scheduling (CS) selecting the most
suitable group of UEs (i.e., each UE in the group is associ-
ated with a different BS) that sharing the same PRBs increase
the secure area. However, calculating the secure area for each
possible group of UEs in aHetNet is very complex, moreover
it requires a lot of information that cannot be available: for
all the possible PRBs allocations the SINR of the eavesdrop-
per should be known in every point of the considered area.
For this reason we propose to exploit only the knowledge
of the Direction of Arrival (DoA) of the signals. In partic-
ular, the secure area can be related to the DoA as shown in
Fig. 3. The figure represents two BSs and the associated UEs
that are paired, that means they use the same time-frequency
resources for communicating. There are three possible cases:
(i) irrelevant - the transmissions toward UEs do not interfere
each other, hence there is not influence on the determination
of the secure area, (ii) damaging - the transmission of the
paired UE interferes with the reception of the intended UE,

thus worsening its SINR while the eavesdropper (Eve) SINR
is not affected, thus the secure area is reduced, (iii) benefi-
cial - the transmission of the neighbour BS toward its UE
(i.e., the paired UE) creates interference in the critical area
(near to the serving BS) where Eve can intercept the signal
directed to the intended UE, this is a beneficial interference
that increases the secure area.

This is shown as an example in Figure 4 where the secure
area is represented as a function of the difference between
the DoA of the intended UE and the paired UE respect to the
neighbour BS, φ. In this figure we can see the three cases
described before.

Consequently, instead of maximizing the secure area that
can be unpractical, a pairing gain is defined, that is simply
based on DoA knowledge: the maximum gain is achieved
when the paired UEs satisfy the beneficial condition, while
no gain is achieved in the irrelevant case, and finally a neg-
ative gain (i.e., a cost) is obtained in the damaging case. The
goal is to maximize the sum of the pairing gains of all the
UEs. Fig. 5 shows the secure area as a function of the active
users per cell, achieved in a scenario with two cells using
an optimal matching approach to pair UEs belonging to the
two cells. In particular, the optimal matching is made using
as function to be optimized either the sum of the proposed
pairing gains and the sum of the effective secure area (this is
derived assuming to have the knowledge of the SINR of the
eavesdropper in any point of the area in any configuration).
Moreover, a greedy allocation is considered where each cell
selects the PRB where to allocate the UE based only on its
own pairing gain. It is possible to see that the proposed pair-

Fig. 3 UEs pairing effects for different DoA configurations
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Fig. 4 Secure area (%) as a function of the angle φ (deg) depicted in
Fig. 3. Angle φ is defined as the difference between the DoA of the
intended UE and the paired UE respect to the neighbour BS

ing gain allows to follow the optimal allocation behaviour
with a significant gain respect to the greedy approach. Users
are randomly distributed in the considered area, and we can
see that there is an increase of the secure area when the num-
ber of users per cell increases, this is because there are more
pairs of users with different positions in the area that can be
selected by the algorithm.

4.3 Rationale to Use RL in RRA

RL techniques can be used to solve a Markov Decision
Problem (MDP). An MDP is defined via a dynamic envi-
ronment, a state space S, an action space A, and a reward
function R(a, s) with a ∈ A, s ∈ S. In its basic setting, the

Fig. 5 Secure area vs number of users per cell

decision maker gets a reward from the environment upon
taking an action, and the environment changes its inter-
nal state. To take its actions, the decision maker follows
a policy π(s), i.e., a deterministic or stochastic action for
each possible state. The objective is to find a policy such
that the expected discounted reward is maximized. The dis-
count factor γ ∈ [0, 1) determines the length of the time
horizon, where γ =→ 1 means infinite horizon while
γ = 0 means optimizing the current reward in a greedy
manner. Hence, the goal of RL is to obtain an optimal pol-
icy to maximized the long-term weighted cumulative reward

T =
∞∑
t=0

γ t R (π(s), s), where t in general represents the time

instant. Give the above, RL appears to be particularly suited
for RRA problems when compared with supervised learn-
ing or model-bases solutions mainly in the following two
situations:

– the optimum is unknown or very difficult to know, and
only a reward associated to a given policy is available.

– The reward/loss function cannot be expressed in a closed-
form as a differentiable function of the allocation deci-
sions, i.e., the actions. Indeed, in this case the gradient
descent method to train a neural network in supervised
deep learning cannot be activated.

In the considered scenario, both the two conditions hold.
Indeed, as discussed in the next Section, finding an opti-
mal solution for the problem at hand is a very complex task
which becomes unfeasible for large networks. Moreover, the
reward, consisting in the sum of the pairing gains, cannot be
definitely expressed as a differentiable function of the allo-
cation decisions.

4.4 A Q-learning Framework for Optimizing Physical
Security in HetNets

In the considered scenario, the environment is represented by
an HetNet composed of C heterogeneous small-cells and a
given number of UEs associated to the BSs, according to the
max-SA association policy previously described [12]. In this
setting, the reward rt = R(at , st ) is the sum of the pairing
gainsdefinedbefore. It isworth noting that allocations among
cells are intrinsically intertwined, i.e, a PRB allocation in
cell t affects the rewards of each other cell. In this case, a
possible solution could be to cyclically re-allocate the PRBs
in each cell given the allocation of the other cells, mimicking
a case of (eventually) infinite time horizon. However, the
PRB allocation problem cannot be solved through distributed
approaches, since a cell cannot evaluate the effect that its
PRB allocations will have on the other cells. Accordingly,
we make the reasonable assumption that each cell is able
to evaluate its own reward simply knowing the DoA of its
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UEs, and that such an information is delivered to a central
controller that is in charge of PRB allocations of all cells.
Note that in the considered setting, the central controller will
perform PRB allocations without any other information apart
from the cells local reward. This limits also the exchange
of sensitive data (e.g. UEs positions) with the controller that
could arise privacy issues.Moreover, even assuming that such
an information is timely available, the centralized optimal
PRB allocation problem is hard, and becomes unfeasible for
large networks.

To sum up, in the considered scenario, the central con-
troller carries out the PRB allocation in an iterative way,
where the action at is the selection of the PRB to be allo-
cated to each UE in cell t , and the state st is represented by
the PRBs allocation of all users in the c-th cell, for all c �= t .
The procedure is cyclically repeated with a given pre-defined
time-horizon (episode length). Owing to inter-dependencies
among cells, a good policy should aim at maximizing a long-
term reward, where long-term reward in this case must be
intended as the weighted cumulative rewards of all cells in
the system. Hence, the above formulation of the resource
allocation problem for optimizing physical security natu-
rally fits the general framework of RL. The estimate of the
weighted cumulative reward for every state-action pair {s, a}
is obtained following a Q-learning approach where, at the
end, the agent is able to establish the optimal policy for each
state.

In particular, in Q-learning the Q-function is used to esti-
mate the weighted cumulative reward for every state-action
pair {s, a}. The Q function corresponding to the optimal
policy can be computed from the Bellmans equation or by
means of iterative approaches. In any case, the agent is able
to establish the optimal policy by simply taking the action
corresponding to the maximum Q for each possible state.
For a better insight into Q-learning, the reader can refer to
the broad literature on this topic.

In order to prove the effectiveness of the proposed
approach, we consider a simple scenario with C = 3, N = 4
and F = 4, where C and N are the number of cells and
UEs per cell,respectively, and F is the number of available
PRBs. In this scenario, the number of possible actions is
N ! = 24 and the number of all possible states is (N !)C−1×C
= 1728, corresponding to all the possible actions of the other
cells multiplied by the number of cells. Such a number can
be easily manageable by an iterative Q-learning approach
where the Q-function is a table of size 1728 × 24. To prove
the effectiveness of the Q learning solution we compare
it with an optimum exhaustive approach where the opti-
mum is evaluated computing the cumulative rewards for all
the possible allocations. Note that the optimum allocation
requires the knowledge of the DoAs of all users in a cell

Table 1 Comparison in terms of average reward among Optimum, Q-
learning and Greedy PRB allocations

Algorithm Average Reward

Optimum 0.6422

Q-learning 0.5343

Greedy −0.6550

respect to the other cells. Moreover, we consider a greedy
scheme where each cell optimize its own reward without
considering the effects on the other cells, corresponding to
a Q-learning scheme with γ = 0. In this case, the iterative
algorithm always failed to converge and, hence, we consider
the outcome obtained after a given number of iterations. The
comparisons are shown on Table 1, where we report the final
cumulative rewards (CR) averaged over 100 instances. Neg-
ative/positive values are obtained when the allocations of the
adjacent cells reduce/improve the pairing gain of a cell. It is
worth noting that the greedy approach on average lead to a
reduction of the pairing gain, while the Q-learning scheme
allows to approach the optimum where the PRB allocations
allow to increase the pairing gain.

Of course, in typical HetNet scenarios the number of cells
and the number of PRBs can be much higher than 3 and
4, respectively. In this case, the Q-function could be prop-
erly estimated by deep neural networks (DNNs) through
the establishment of a mapping between each state and
the corresponding Q-values of all actions. The application
of deep Q-learning (DQN) to the considered scenario is
a subject that is currently under investigation by the same
authors.

5 Conclusions

This paper presented an overview of the inherent physical-
layer security features of heterogeneous networks. The paper
mainly focused on exploiting the inter-cell interference to
provide additional secrecy by optimizing the users associa-
tions and the resource allocation. In HetNets, the inter-cell
interference arising from a strong radio resource reuse can
be limited toward the legitimate user by means of suitable
strategies, while it can be used to jam the eavesdropper
link.

The user association and the resource allocation policies
have been formulated so that the secure area is maximized.
The framework is based only on the knowledge of the direc-
tion of arrival of the users signals at the base station and
the optimization problem is efficiently solved resorting to
a reinforcement Q-learning approach. Our scheme provides
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near-optimum results with limited complexity and with lim-
ited knowledge of the network.
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