
PHD PROGRAM IN SMART COMPUTING
DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE (DINFO)

Deep Reinforcement Learning
for the Design and Validation of
Modern Computer Games

Alessandro Sestini

Dissertation presented in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Smart Computing



PhD Program in Smart Computing
University of Florence, University of Pisa, University of Siena

Deep Reinforcement Learning
for the Design and Validation
of Modern Computer Games

Alessandro Sestini

Advisor:

Prof. Andrew D. Bagdanov

Head of the PhD Program:

Prof. Stefano Berretti

Evaluation Committee:
Prof. Julian Togelius, New York University
Dr. Sam Devlin, Microsoft Research

XXXV ciclo — October 2023



Abstract

Modern video games are one of the most important forms of entertainment today.
Their importance in popular culture is demonstrated by the ever-increasing number of
gamers and video games. Today’s games are complex environments, with photo-realistic
graphics, advanced avatar animations, and they are full of disparate interactions. One
of the crucial aspects of the quality of a video game is non-player character behavior:
the interactions between players and characters in the game is a vital factor, with the
potential to elevate or ruin the player experience. However, the technological progress
in game AI techniques has not followed that of other game design aspects - for instance
advancements in game graphics. For this reason modern non-player character behaviors
suffer from problems inherited from the use of stale techniques. At the same time, recent
advances in deep reinforcement learning have had significant impact in training super-
human autonomous agents. As a result, now it is possible to train agents that can beat
professional players in modern and complex video games. Deep reinforcement learning
offers the promise of creating non-player characters that are alive, smart, adaptive and
challenging. From a game developer point of view, a fair question that arises looking at
these successes is: could I use these techniques to bring my game characters to life? We
argue that the answer is no, and for many reasons.

This thesis discusses the issues that arise from an inappropriate, if direct, application
of deep reinforcement learning techniques as game design tools. In order to understand
these problems, we first provide an extensive and detailed survey of the state-of-the-art in
both game AI and deep reinforcement learning. This analysis defines the foundation on
which this thesis builds. Then we propose a list of desiderata that each machine learning
system should satisfy in order to create enjoyable non-player characters. Alongside these
desiderata, we introduce a new environment and free-to-play game that serves as one
of our main testbeds for this domain. Based on the proposed requirements, we design
several improvements and novel algorithms that can help video game designers in the use
of deep reinforcement learning as an effective design tool. These improvements focus
on: the adaptability of trained agents, the problem of faulty reward functions and how to
replace them, the low-level usability of current reinforcement learning algorithms, the
poor quality of trained behaviors and the problem of model interpretation. For each of
the proposed algorithms, we provide a detailed experimental analysis showing that these
methods are indeed useful for solving the cited issues. Finally, a list of open challenges
illustrates the problems that currently still exist even after the improvements proposed in
this manuscript. We strongly believe that solving these challenges will represent a huge
leap forward in the creation of better quality video games.
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Chapter 1

Introduction

The video game industry has experienced consistent improvement in the production of quality
games. Today it competes economically with the most important multimedia industries and
the revenue of the video game companies in 2018 was estimated to be more than twice that
of the international film and music industries combined (Statista, 2022). Compared to the
not so distant past when gaming consoles and computer gaming were not ubiquitous, video
games are no longer a niche but are transversal across ages, genders and devices. Today
there are more than 3 billion estimated video gamers worldwide. This is especially thanks
to mobile games and more accessible consoles (Finances Online, 2022). The histograms in
Figures 1.1 and 1.2 illustrate respectively the revenue of the global video games market and
the number of players worldwide in recent years.

However, the arrival of new technologies has increased the complexity of software
development and modern games require increasing amounts of manpower and equipment.
In particular, the AI systems – e.g. systems that control non-player characters – are still
a critical element in the creative process that affects the quality of finished games. These
systems play different roles in the development (Figure 1.3) and are one of the most important
quality factors for a finished video game. Developers need to answer the demand for complex,
expressive non-player character behaviors that are natural while at the same time challenging
and enjoyable. The non-player characters must provide the right balance between being
beatable and being convincingly competitive. The challenge that these agents offer to the
player is the core element in the majority of video games.

On the other hand, AI systems help designers develop better games. A prime example
of this is playtesting (Politowski et al., 2022), which plays a crucial role in the production
of modern video games. The presence of gameplay issues and bugs can greatly deteriorate
the overall player experience and it is therefore crucial they be minimized. However, since
modern video games have grown both in size and complexity, thorough coverage is often not
feasible using manual human playtesting. For this reason, automated testing approaches have
been proposed to mitigate total reliance on human testers by developing AI-based agents to
automatically explore large game scenes.
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4 Introduction

Figure 1.1: Value of the global video games market from 2012 to 2021 in billions of U.S.
dollars. Revenues in the gaming industry are based on two major sources, namely hardware,
such as consoles, processors, screens, controllers and other accessories, and software – the
actual games (Statista, 2022).

Figure 1.2: Number of active video game players worldwide from 2015 to 2023. There were
2.69 billion video game players worldwide in 2020. The figure will rise to 3.07 billion in
2023 based on a 5.6% year-on-year growth forecast (Finances Online, 2022).
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Figure 1.3: Summary of AI applications in video game development. These systems play
different roles and have different meanings throughout the development process. In this
dissertation we focus on the two main applications: game AI and playtesting.

For both game AI and automated playtesting, many of the current state-of-the-art algo-
rithms are shaped by “classical” systems like finite state machines, behavioral trees, and
utility based AI (Yannakakis and Togelius, 2018). These traditional techniques, although
tried-and-true, can result in rather predictable and brittle performance in the face of increasing
game complexity and changing designs. Moreover, the use of these traditional AI systems
typically results in predictable, static and not very convincing behaviors. These techniques
are not suitable when faced with the current scope of modern gaming technologies. Scaling
these systems to such an open context is still an open problem.

At the same time, recent advances in deep reinforcement learning have shown it is possible
to create agents with super-human capabilities for a variety of game environments. The main
objective of deep reinforcement learning for games has been training agents to mimic or
surpass human players in either classical games like Go (Silver et al., 2016), old-fashioned
video games like the Atari 2600 suite (Bellemare et al., 2013), or in modern games like
StarCraft II (shown in Figure 1.4), DOTA, and Gran Turismo (Vinyals et al., 2019; OpenAI
et al., 2019; Wurman et al., 2022). Recent literature shows it is possible to train agents at
super-human levels that can win against professional players. Our ideal objective, however,
is not to create new AI systems with super-human capabilities, but rather to create ones
that constitute an active part of the game design. We emphasize that our goals are different
from those currently covered by most of the literature: for us it is essential to create scalable
models that allow agents to have human-like behavior.

Deep reinforcement learning can bring to the creative process of non-player character
generation many advantages over classical techniques. It could be possible to have more
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Figure 1.4: A graphical representation of AlphaStar agent processing. This work represents
a watershed in the history of deep reinforcement learning applied to video games as it
successfully trained super-human agents that could beat professional players at StarCraft
II (Vinyals et al., 2019).

various and complex behaviors without the use of hand-crafted agents and unmaintainable
scripts that dominate the industry. However, due to many problems yet to be solved, these
types of models are far from being widely used in video game production. This dissertation
is motivated by the many current problems that exist in order to scale deep reinforcement
learning techniques for game design. Our aim is to move from creating super-human agents to
developing enjoyable, adaptable, and human-like behaviors. In summary, in this dissertation
we will see whether it is possible and how to create active game design tools through deep
reinforcement learning, usable not only by machine learning experts but also – and above all
– by game designers and developers.

1.1 Dissertation Outline

The rest of the dissertation is organized as follows:

• in Chapter 2 we substantiate the argument that recent deep reinforcement learning
techniques are not readily applicable to video game development, although these
technologies were created by solving the latter. As part of this, we review and categorize
recent literature useful to understand the theory of this dissertation;
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• in Chapter 3 we talk about the requirements we identified for creating deep reinforce-
ment learning agents suitable for video game non-player characters. At the same time,
we talk about DeepCrawl: one of the most important testbeds used in this disserta-
tion. Most of the experiments and concepts developed in the document are tested and
evaluated in this novel open-source environment;

• in Chapter 4 we look at the problem of generalization in deep reinforcement learning.
In particular, how we can exploit procedural content generation to train general agents
that abstract the rule of the games;

• In Chapter 5 we discuss the problem of engineering a good reward function, and how
inverse reinforcement learning can solve the problem by automatically inferring a
reward function from expert demonstrations. However, inverse reinforcement learn-
ing and procedural content generation do not play well together and we see how to
overcome this problem with specific techniques.

• In Chapter 6 we show how to combine different inverse reinforcement learning-based
policies. Our aim is to create complex behaviors composed of different sub-policies
trained with procedural content generation and inverse reinforcement learning.

• in Chapter 7 we discuss how to combine previous concepts and techniques to obtain
autonomous agents for a real video game development use case. We test and validate
using new, complex 3D scenario with a novel algorithm that combines imitation
learning and curiosity-driven learning.

• in Chapter 8 we show how deep reinforcement learning, and in particular imitation
learning, can be used as a real game design tool. We delineate the final requirements
that an imitation learning-based tool should have, and support our conclusion with input
from professional video game developers. Furthermore, we propose future research
directions suitable for maximizing the utility of this dissertation; and

• Finally, in Chapter 9 we summarize our contributions and highlight some higher-level
aspects where we see this dissertation contributing to machine learning research applied
to video game development.

1.2 Key Contributions
Here we list our key contributions proposed with this dissertation:

• first, we provide an extensive survey and categorisation of problems and their potential
solutions related to deep reinforcement learning in video games;

• second, we delineate a list of requirements that both deep reinforcement learning based
tools and agents should have to be practically applicable in video game development;
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• third, we introduce two different open source environments suitable for anyone wanting
to contribute and expand our lines of research;

• fourth, we propose novel algorithms and neural network architectures for solving the
cited problems;

• fifth, we conduct extensive and motivated experiments evaluating our algorithms with
respect to the current state-of-the-art and we demonstrate their usefulness to video
game development; and

• sixth and finally, along with each major contribution we provide links to open source
repositories allowing anyone from the research community to replicate the experiments
described in this dissertation and to build upon its contributions.



Chapter 2

Background

In Chapter 1 we described the motivations and main contributions of this dissertation. Here
we outline the relevant literature and the background theory that will help the reader fully
understand our proposed problems, ideas, and solutions. As we have already cited, there exist
many different contexts where AI can help video game development, however this dissertation
only focuses on agent behaviors. We start by describing basic AI systems commonly used
today in the game industry and we then describe the relevant theory used by the algorithms
developed in this dissertation, theory related to techniques like deep reinforcement learning,
imitation learning, inverse reinforcement learning, and others. Along with the description, we
also highlight problems that arise in the classical literature and why these problems inhibit
the adoption of such techniques in video games development.

2.1 Definitions

Before getting into details, several terms are used extensively in this dissertation and need to
be defined. In this section we describe a list of the most used terms.

First of all, by Non-Player Character (NPC) we mean an entity with a behavior that
interacts with the game environment – and eventually, but not necessarily, with the player –
that is not controlled by humans, but has some form of artificial control. Typically an NPC
has the same action space of the player. In any case, the quality of the behavior of the NPC
system has the potential to break or elevate the quality of a finished video game.

By behavior or policy we mean the way in which an NPC behaves in response to a
particular situation or stimulus. An NPC policy takes as input a representation of the current
observable state of the game environment, and outputs an action based on what it sees.

Finally, by agent we mean an NPC that is trained via machine learning, which can
be either through deep reinforcement learning, imitation learning, inverse reinforcement
learning, or any other techniques not necessarily covered by this dissertation.

9



10 Background

2.2 Ad Hoc and Classical Game AI Systems
In this section we briefly describe the most commonly used ad hoc techniques for NPC
behaviors. This class contains, among others, finite state machines, behavior trees, and
utility-based AI. Most of the subsequent sections are a summary of work from Yannakakis
and Togelius (2018).

Finite State Machines

Finite State Machines (FSMs), and their variations, are one of the most commonly used
AI techniques for AI behaviors. They represent graph-based algorithms, and are formally
defined by three entities:

• A set S of states, that represent the information about the task. These are the nodes of
the graph. All states in the graph are connected to at least one state and can be reached
from at least one other state.

• A set T of transitions between nodes that define the conditions in which an NPC
changes from one state to another.

• A set A of actions that must be executed when the NPC is in a particular state.

We illustrate an example FSM architecture in Figure 2.1. FSMs are nowadays the most
used ad hoc systems in video games mainly due to their simplicity to design, implement,
and debug. But at the same time FSMs can be extremely complex to implement when faced
with large scale video games. Moreover they provide limited flexibility and adaptability – a
limitation shared with other ad hoc methods. After they are implemented and debugged for a
specific use-case, if not purposely designed they usually require major revisions to be adapted
to different games. As a result, FSMs end up implementing very predictable behaviors.

Behavior Trees

Behavior Trees (BTs) are the second most used AI system in the video games industry. BTs
make it possible to control NPCs and to define hierarchies of decisions and actions. A BT is
formally defined as a directed tree including a set of nodes and edges. The root of a BT is a
node without parents. On the other hand, nodes without children are the leaves of this tree.
In a basic BT, a non-leaf node can be one of two types:

• Selector node - selectors are used when we aim to find and execute the first possible
child that can run without failure. A selector node succeeds once any child is performed
successfully.

• Sequence node - with a sequence node, all children nodes are evaluated sequentially. A
sequence node succeeds only if all children are performed successfully.
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Figure 2.1: Example of finite state machine for a fictional video game.

At the same time, a leaf node can be either an action or a condition node:

• Action node - examples of action nodes include playing an animation, changing the
state of a character, or any activity that changes the state of the game.

• Condition node - a condition node is generally used to test some values. Tests for
proximity, testing the state of a character and testing the line of sight are examples
of condition nodes. A condition returns success if the condition is met; otherwise, it
returns failure.

In addition to the basic nodes, BTs can be extended with decorator and parallel nodes:

• Decorator node - a decorator has a single child task. It can be used to increase the
conditions for which a child node is executed. A decorator node can be used for filtering
which makes a decision to allow a child behavior to run “until fail”. A decorator node
may also be used to limit the number of runs.

• Parallel node - parallel nodes provide concurrency in BTs. A parallel node is used
when there are actions that must be run concurrently with others.

An important aspect of BTs is data sharing. To enable complex behaviors, BTs need to
share data between each other. The best approach is to decouple execution from data and use
an external blackboard. A blackboard can store data that can be queried by any task node.
Once a BT is instantiated, the root of the tree is ticked at each timestep. Every time a node is
executed, it can return one of three result: success, failure, or run if it is still active.

An example BT for a fictional game is shown in Figure 2.2. BTs are in general simpler
to design and implement than FSMs, however they suffer from the same drawbacks. Their
dynamicity and adaptability is rather low given that they are static knowledge representations.
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Figure 2.2: An example behavior tree for a fictional video game.

Utility-based AI

Utility-based AI (UBA) is another commonly used approach in the video games industry. It
provides a combination of authorial control, reactivity, and believability that can be difficult
to match using other ad hoc architectures.

UBAs refer to a class of techniques in which decisions are made on the basis of heuristic
functions that represent the relative value of each option under consideration. Thus, utility-
based approaches typically have three general steps:

1. build a list of options, which are the choices from which we will get the behaviors;

2. evaluate each option and calculate one or more values that describe how attractive the
option is given the current situation; and

3. select an option (or set of options) for execution on the basis of the values calculated in
step 2.

A utility can measure anything from observable objective data – e.g. enemy health – to
subjective notions such as emotions, mood and threat. The various utilities about possible
actions or decisions can be aggregated into linear or non-linear formulas and guide the agent
to take decisions based on the aggregated utility. When an NPC must make a decision, the
UBA will gather data on the current situation and tell the NPC the best action to take at this
exact moment. There are three common approaches to UBA selection:

• absolute utility - we evaluate every option and take the one with the highest utility;

• relative utility - we select an option at random, using the utility score of each option to
define the probability that it will be selected; and
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Figure 2.3: Example of utility-based AI for a fictional video game.

• dual utility reasoner - we combine both of the previous approaches. It assigns two
utility values to each option: a rank (absolute utility) and a weight (relative utility).
The rank is used to divide the options into categories, where we only select options
that are in the best category. Weight is used to evaluate options within the context of
their category.

An example UBA system is shown in Figure 2.3. UBA systems are more dynamic and
modular with respect to both FSMs and BTs, and the NPC behaviors are dependent on a
number of different factors and thus UBAs allow more complex behaviors. UBA is also
extensible as we can easily define new qualitative behaviors and conditions when we need to.
It is also more general with respect to FSMs and BTs as the conditions and functions, as well
as the entire system, can be used in different use-cases. However, these advantages come at a
cost. Defining UBA utility functions requires the designer to express qualitative behaviors
and decisions in terms of numbers, which is somewhat unnatural. However, as we will see,
this is a problem that exists also with reinforcement learning. Moreover, as for FSMs, UBAs
suffer from predictability in their behaviors.

In this section we have briefly detailed the techniques most commonly used to develop
NPC behaviors in today’s video games, with a focus on the problems that arise using them.
In this dissertation we support the hypothesis that DRL can mitigate and overcome problems
such as inflexibility, predictability and unsuitability that are intrinsic to the aforementioned
algorithms. In the next section we will give an extensive description of the background theory
for DRL.
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Figure 2.4: A schematic view of a DRL model.

2.3 Survey of Deep Reinforcement Learning Algorithms

In this section we describe the main background theory of deep reinforcement learning
and its sub-branches. This section will help the reader better understand all the subsequent
algorithms, techniques and experiments we report on in this dissertation. We start by detailing
the general deep reinforcement learning problem, and then continue to its sub-branches
such as imitation learning, inverse reinforcement learning, and curiosity-driven exploration.
The section treats only the theory and literature on DRL useful to fully comprehend the
contributions of this dissertation.

Deep Reinforcement Learning

This section is a summary of the work described in Arulkumaran et al. (2017). Before diving
into the advent of neural networks to the field, we first introduce the general problem of
Reinforcement Learning (RL). The essence of RL is learning through interactions. At each
timestep t, an RL agent observes a state st and interacts within an environment by taking
an action at based on st. The state is defined as the observable current representation of the
environment. The environment then replies to the agent with the next state st+1 which is the
consequence of the action made by the agent in the previous timestep, and a reward rt. The
reward evaluates the consequence of the action at in the environment. The agent learns its
own behavior in response to the reward received. Figure 2.4 gives a schematic view of the
agent interaction within the environment.

Formally, RL can be described in terms of a Markov Decision Process (MDP) consisting
of:

• a set of states S and a distribution of starting states p(s0);

• a set of actions A;
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• transition dynamics d(st+1|st, at) that map a state-action pair at time t onto a distribu-
tion of states a time t + 1;

• a reward function R : S× A× S→ R; and

• a discount factor γ ∈ [0, 1], where lower values place more emphasis to the more
recent rewards.

In addition to this, RL models are based on the use of a policy π:

π : S → p(A = a|S), (2.1)

which is a function that maps states to a probability distribution over the set A of actions
and determines the behavior of the agent its choice of actions. In the remainder we consider
episodic MDP in which the agent interacts with the environment repeatedly in episodes
of fixed length T. Each episode is characterized by a sequence of states and actions τ =

(st, at)
T−1
t=0 , usually called a trajectory or rollout.

The accumulated return G(τ) for a trajectory is given as:

G(τ) =
T−1

∑
t=0

γtrt+1. (2.2)

It is also possible to compute the cumulative return from a particular timestep t – i.e. with
τst→sT starting from state st to final state sT, defined as:

Gt(τst→sT) =
T−t−1

∑
k=0

γkrk+t+1. (2.3)

The goal of RL is to find the optimal policy π∗ that maximizes the expected return from all
states:

π∗ = argmax
π

Est∼d,at∼π[Gt|π]. (2.4)

A key concept underlying RL is the Markov property, which states that only the current state
affects the next one and so any decisions made at step st can be based only on st−1, rather
than the entire trajectory s0, s1, ..., st−1 up to that point. As Sutton et al. (1998) stated, for the
reinforcement learning problem with a reward function R and a set of actions A, the state
signal has the Markov property if the environment’s response at time t + 1 is only dependent
on the state and action representations at time t. In other words:

p(st, rt−1|st−1, at−1) = p(st, rt−1|st−1, at−1, ..., s0, a0) (2.5)

In the next section we describe the two main approaches to solving RL problems: those based
on value functions and those based on policy search.
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Value Functions

Value function methods are based on estimating the expected return of being in a given state.
The state-value function is the expected return when starting in the state s and following the
policy π:

Vπ(s) = Eπ[G|s, π]. (2.6)

The optimal state-value function can be defined as:

V∗(s) = max
π

Vπ(s) ∀s ∈ S. (2.7)

Computing the optimal value function requires an environment model. However, in a
standard RL setting the set of transition dynamics D are unknown. Therefore, instead of
using a state-value function we consider another function called state-action value function:

Qπ(s, a) = Eπ[G|s, a, π]. (2.8)

The best policy can thus be found choosing action a greedily at every state:

π(s) = argmax
a

Qπ(s, a). (2.9)

To learn Qπ we exploit the Markov property and define the function as a Bellman
equation (Bellman, 1954):

Qπ(st, at) = Est+1 [rt+1 + γQπ(st+1, π(st+1))]. (2.10)

This means that we can use the values of our current estimate Qπ to improve our estimate:

Qπ(st, at)← Qπ(st, at) + αδ, (2.11)

where α is the learning rate and δ = Y − Qπ(st, at) the Temporal Difference (TD) error.
This is the foundation of two basic value-based algorithms: Q-learning, which is an off-policy
algorithm as it updates Qπ by transitions not necessarily generated by the current policy;
in this case Y = rt + γ maxa Qπ(st+1, a) (Watkins and Dayan, 1992). And State-Action-
Reward-State-Action (SARSA), an on-policy algorithm that uses transitions generated by the
behavioral policy; in this case Y = rt + γQπ(st+1, at+1) (Rummery and Niranjan, 1994).

Another important value-function based method relies on learning the advantage function
Aπ(s, a). Unlike producing absolute state-action values, Aπ instead represents a relative
advantage of actions through the simple relationship Aπ = Qπ −Vπ.

Policy Search

Policy search methods directly search for an optimal policy without maintaining a value
function model. Typically, a parametrised policy πθ is chosen, whose parameters are updated
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to maximise the expected return G(τ) using gradient-based optimization. The REINFORCE
algorithm can be used to compute the gradient of an expectation over a function f of a
random variable X with respect to parameters θ (Williams, 1992):

∇θEX[ f (X; θ)] = EX[ f (X; θ)∇θ log p(X)]. (2.12)

As this computation relies on the empirical return of a trajectory, the resulting gradients
possess high variance. By introducing unbiased estimates that are less noisy it is possible to
reduce the variance. The general methodology for performing this is to subtract a baseline,
which means weighting updates by an advantage rather than the pure return:

At = Gt − bt, (2.13)

where b is the baseline. An example of simple baseline is the average return taken over
several episodes.

For the latter problem, it is possible to combine value functions with explicit representa-
tion of the policy, resulting in actor-critic methods. The policy represents the actor, that learns
by using the feedback of a value function that represents the critic. Actor-critic methods
use the value function as a baseline for policy gradients, with the only difference between
actor-critic methods and other baseline methods is that actor-critic methods use a learned
value function. An example of actor-critic method mostly used in this dissertation is Proximal
Policy Optimization.

Proximal Policy Optimization

Proximal Policy Optimization (PPO) is an actor-critic policy search method. The policy is
represented by a neural network with parameters θ, updating its weights through backpropa-
gation defining policy gradient loss per timestep as:

LPG(θ) = Et[log πθ(at|st)At)], (2.14)

where At = Gt − b and b is the baseline. PPO is based on clipping the gradient between the
current and the previous policy. We define:

rt(θ) =
πθ(at|st)

πθold(at|st)
, (2.15)

with r(θold) = 1. The policy gradient loss for PPO is then defined as:

LCLIP(θ) = Et[min(rt(θ)At, clip(rt(θ, 1− ϵ, +ϵ)At)], (2.16)

where ϵ represents an hyper-parameter of the algorithm. Figure 2.5 shows a single term
(i.e., a single timestep t) in LCLIP. During the optimization phase, the method also learns a
baseline and maximizes the entropy. We then define the complete joint loss as:

LPPO(θ) = LCLIP(θ)− c1LVF + c2S[πθb ], (2.17)

where c1, c2 are coefficients, S is an entropy bonus, and LVF is a squared error loss for the
value function associated with πθ.
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Figure 2.5: Plots showing one term (i.e., a single timestep) of the surrogate function LCLIP as
a function of the probability ratio r, for positive advantages (left) and negative advantages
(right). The red circle on each plot shows the starting point for the optimization, r = 1. The
figure is adapted from Schulman et al. (2017).

Imitation and Inverse Reinforcement Learning

One important aspect of DRL is the quality of the reward function. Since the agent goal is
to maximize the reward given by the environment, this is one of the most important aspects
that determines the final qualitative behavior. However, designing and engineering good
hard-coded reward functions is difficult in many domains. In other settings, a badly-designed
reward function can lead to agents which receive high rewards in unintended ways. The
negative effect of this problem has been demonstrated in works by Randløv and Alstrøm
(1998) and Yaeger et al. (1994), and more recent studies such as those by Amodei et al.
(2016), Open AI (2016), and Zhang et al. (2021) have further supported these findings.

Inverse Reinforcement Learning (IRL) algorithms attempt to infer a reward function from
expert demonstrations (Ng and Russell, 2000). This reward function can then be used to
train agents which thus learn to mimic the policy implicitly executed by human experts. IRL
offers the promise of solving many of the problems entailed by reward engineering. These
approaches have achieved good performance both on continuous control tasks (Fu et al.,
2018; Finn et al., 2016b) and on Atari games (Tucker et al., 2018).

Similarly to IRL, Imitation Learning (IL) is a specific case of IRL that aims to directly
find a policy that mimics the expert behavior from a dataset of demonstrations, instead of
inferring a reward function. Standard approaches are based on Behavioral Cloning that
mainly use supervised learning (Bain and Sammut, 1995; Syed and Schapire, 2008; Ross
et al., 2011; Reddy et al., 2019; Cai et al., 2019; Knox and Stone, 2009).

Formally speaking, IRL attempts to infer the reward function R(s, a) given a set of
demonstrations E = (τ0, τ1, ..., τN), where τi is a trajectory. We assume that E comes from
an optimal policy π∗(a|s). We can interpret the IRL problem as solving the maximum
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likelihood problem:
max

θ
Eτ∼E[log pθ(τ)], (2.18)

where pθ(τ) ∝ p(s0)∏T
t=0 p(st+1|st, at)eγtrθ(st,at) parameterises the reward function rθ(s, a)

but fixes the dynamics and initial state distribution to that of the MDP. In the case of IL, since
the aim is to directly find a policy that mimics the expert behavior, our aim is to update a
parameterised policy πθ to maximize its likelihood based on the expert dataset. Equation 2.18
thus becomes:

max
θ

Eτ∼D[log πθ(τ)], (2.19)

and IRL is reduced to a supervised learning problem.

Generative Adversarial Imitation Learning

Ho and Ermon (2016) propose to cast optimization of Equation 2.19 as a Generative Adver-
sarial Network (GAN) (Goodfellow et al., 2014) optimization problem. They derived an IL
algorithm called Generative Adversarial Imitation Learning (GAIL). The objective of the
discriminator D is to distinguish between the distribution of data generated by the policy
G and the expert distribution. In this case, the policy G is the generator. When D cannot
distinguish data generated by G from the true data, it means that G can successfully match
the expert behavior. The discriminator D is trained by maximizing:

Eπ[log(D(s, a))] + EπE [log(1− D(s, a))]. (2.20)

The policy is instead optimized maximizing the cost:

c(s, a) = log D(s, a). (2.21)

However, GAIL does not impose any special structure on the discriminator. This means that
it does not recover a proper reward function, but rather directly recovers a policy that mimics
the expert behavior.

Adversarial Inverse Reinforcement Learning

Fu et al. (2018) propose a similar approach to GAIL. They add structure to the discriminator
in order to recover a reward function. This IRL approach is called Adversarial Inverse
Reinforcement Learning (AIRL). AIRL takes inspiration from GANs by alternating between
training a discriminator Dθ(s, a) to distinguish between policy and expert trajectories and
optimizing the trajectory-generating policy π(a|s). The AIRL discriminator is given by:

Dθ(s, a) =
exp{ fθ,ω(s, a, s′)}

exp{ fθ,ω(s, a, s′)}+ π(a|s) , (2.22)
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where π(a|s) is the generator policy and fθ,ω(s, a, s′) = rθ(s, a) + γϕω(s′)− ϕω(s) is a
potential base reward function which combines a reward function approximator r(s, a) and a
reward shaping term ϕω. For deterministic environment dynamics, the AIRL authors show
that there is a state-only reward approximator f ∗(s, a, s′) = r∗(s) + γV∗(s′)− V∗(s) =
A∗(s, a) which is invariant to transition dynamics and hence “disentangled”.

The objective of the discriminator is to minimize the cross-entropy between expert
demonstrations τE = (sE

0 , aE
0 , . . . ) and generated trajectories τπ = (sπ

0 , aπ
0 , . . . ):

L(θ) =− EτE

[
T

∑
t=0

log Dθ(sE
t , aE

t )

]

− Eτπ∼π

[
T

∑
t=0

log
(
1− Dθ(sπ

t , aπ
t )

)]
. (2.23)

The authors show that, at optimality, f ∗(s, a) = log π∗(a|s) = A∗(s, a), which is
the advantage function of the optimal policy. The learned reward function is based on the
discriminator:

r̂(s, a) = log(Dθ(s, a))− log(1− Dθ(s, a)), (2.24)

and the generator policy is optimized with respect to a maximum entropy objective (using
Equations 2.24 and 2.22):

J(π) = Eτ∼π

[
T

∑
t=0

r̂t(st, at)

]

= Eτ∼π

[
T

∑
t=0

fθ(st, at)− log(π(at|st))

]
. (2.25)

Intrinsic Motivation

One of the greatest difficulties in DRL is the fundamental dilemma between exploitation vs
exploration. By exploitation we usually mean that the agent exploits the optimal action in
order to make progress, while by exploration the agent tries non-optimal actions in order to
explore the environment and reduce the risk of getting stuck in a local maximum.

There are several ways to perform exploration in DRL, and most of them rely on intrinsic
motivation. Intrinsic motivation aims to encourage agents to explore the states of the environ-
ment. Count-based exploration is a natural way to explore, although for high-dimensional
state spaces it can be infeasible (Strehl and Littman, 2008; Bellemare et al., 2016).

A classical way to perform count-based exploration is to discretize the state space with a
hash function h : S→ Z and add an exploration bonus to the reward function, defined as:

r+(s) =
β√

n(h(s))
, (2.26)
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where β is the bonus coefficient. Initially, the counts n(s) are set to zero for the whole range
of h. For every state st encountered at timestep t, n(h(st)) is increased by one. An alternative
version is to use a state-action count n(h(s), a) instead of using only the state n(h(s)).

Several other exploration algorithms have been proposed to manage complex and high-
dimensional state spaces. Techniques like curiosity and random network distillation rely
on errors in predicting dynamics to push agents to explore never or less-encountered states
during training (Pathak et al., 2017; Burda et al., 2018). Stadie et al. (2015) proposed to
assign exploration bonuses from a concurrently learned model of the system dynamics, while
Sun et al. (2011) showed that the optimal exploration strategy can be effectively approximated
by solving a sequence of dynamic programming problems. The interested reader should
consult Aubret et al. (2019) work for a detailed survey of the state-of-the-art in intrinsic
motivation. An intrinsic motivation algorithm used in this dissertation is Random Network
Distillation.

Random Network Distillation

The already cited count-based exploration can be extremely difficult to use with high-
dimensional state spaces. The Random Network Distillation (RND) algorithm by Burda et al.
(2018) offers a solution to this problem. In general, like count-based exploration methods,
RND gives an intrinsic reward that is higher for novel and less-encountered states.

The RND algorithm uses two neural networks: a fixed and randomly initialized target
network ϕ̂ which establishes the prediction problem, and a predictor network ϕ trained on
data collected by the agent. The predictor network is trained by gradient descent to minimize
the expected MSE:

LRND = (ϕ̂(s)− ϕ(s))2, (2.27)

with respect to its parameters. This process distills a randomly initialized neural network into
a trained one. The reward rc is the same MSE used to train the network:

rc(st) = (ϕ̂(st+1)− ϕ(st+1))
2. (2.28)

The more a state is visited by agents, the closer the output of the predictor network will be
to that of the target network for that particular state, lowering the prediction error and thus
the reward signal for exploration. States encountered many times will produce low reward
values, while for states encountered less frequently the predictor will not be able to perfectly
replicate the target, increasing the reward signal and guiding agents toward undiscovered
paths.

2.4 Limitations of Deep Reinforcement Learning
Up to this point we have mainly focused on the underlying theory upon which the con-
tributions of this dissertation are built. DRL has been used recently to train agents with
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Figure 2.6: Examples of super-human agents train in classical games as well as popular
video games. Starting from the upper left image, we have the DQN algorithm (Mnih et al.,
2015), AlphaStar (Vinyals et al., 2019), OpenAI Five (OpenAI et al., 2019), and GT Sophy
(Wurman et al., 2022).

super-human capabilities in many video games. Starting from the Deep-Q Network (DQN)
algorithm used by Mnih et al. (2015) to train agents with super-human capabilities to play
games from the Atari 2600 suite (Bellemare et al., 2013), there have been many successful
examples of using video games as testbeds for DRL. Vinyals et al. (2019) trained agents with
that can beat professional players at StarCraft II by combining DRL and IL, while OpenAI
(2019) developed a complex DRL system to train five agents to beat professional players at
DOTA 2. More recently, Wurman et al. (2022) trained agents with super-human performance
that can play Gran Turismo 7. In Figure 2.6 we summarize these examples.

However, the recent and highly publicized successes of DRL in mimicking or even
surpassing human-level play in video games have not yet been translated into effective tools
for use in developing game AI. In this dissertation we show that DRL can be used to develop
credible agents that are prior-free and that can add variety to gameplay. We believe that DRL
can help developers build more varied, complex and useful agents, overcoming the critical
aspects of classical ad hoc video game AI techniques. The surprising performance achieved
by the research community might make it seem that DRL can solve most of these critical
aspects, but we argue that there are still many issues related to the inappropriate application
of DRL techniques used as game design tools. Here we highlight some of the main issues
preventing broad application of the aforementioned techniques for video game development.
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Generalization. Even though DRL algorithms can process high-dimensional state spaces,
their ability to generalize is somewhat low with respect to other machine learning algorithms.
This is mainly due to the tendency of DRL policies to overfit to the environment on which
they are trained. An example is GT Sophy (Wurman et al., 2022), where the authors train a
different model for each track of the racing game Gran Turismo. However, this is problematic
from a game development perspective. During development, the game, the environments, the
assets, and in general all components that define a game can change on a day-to-day basis.
Developers can not afford to train new agents every time a design change is made.

Reward Function. As we already cited, engineering a good qualitative reward function is
very difficult, even for DRL experts. Translating a qualitative behavior to a mathematical
function is somewhat unnatural. The difficulty increases if the user of a plausible DRL tool
is a game designer and/or developer, that typically is not an expert in machine learning.
IL and IRL can mitigate the problem, but they require very many expert demonstrations.
Moreover, the majority of IL and IRL techniques also suffer from overfitting, especially when
the environment changes many times.

Behavior Quality and Novel Testbeds. Video games do not need super-human agents.
Whether we are talking about game AI or agents for different aspects of video game develop-
ment like playtesting, having super-human agents is as counterproductive as having random
NPCs. NPC agents have different requirements that we must formally define to advance the
state-of-the-art in this direction. For the same reason, we need testbeds different from those
in the literature that focus only performance.

Interpretability. Whether we are talking about game AI or playtesting, we need agents
with meaningful behavior. DRL agents can learn very high-quality strategies, but these
models exhibit an important negative characteristic: a performance-transparency trade-off.
Understanding the reasoning behind their behavior becomes a necessity when these results
drive design decisions.

Usability. Works like AlphaStar and OpenAI Five (Vinyals et al., 2019; OpenAI et al., 2019)
are very complex systems consisting of many interrelated components. Such complicated
systems require a long time not only to define, but also to run. Both the number of weights in
such neural networks and the number of hyperparameters in such systems are huge. This
limits the usability of the system for two main reasons: on one hand developers can not wait
for days to train agents as they must continue with development, and on the other hand they
must ship agents to low power devices such as mobile phones or old-generation consoles.

In Figure 2.7 we give a summary of the aforementioned challenges. In the rest of this
dissertation we describe a number of solutions aimed at mitigating specific aspects of these
challenges.
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Figure 2.7: List of challenges that interfere with the wide application of DRL in video game
development. In this dissertation we try to bridge the gap between challenges and solutions.



Chapter 3

Deep Reinforcement Learning for
Turn-based Strategy Games†

In Chapter 2 we outlined the relevant literature and background theory upon which the
contributions of this dissertation are built. More importantly, we highlighted problems
and challenges that limit the wide spread of deep reinforcement learning in video game
development. In this chapter we introduce DeepCrawl, a fully-playable Roguelike prototype
for iOS and Android in which all agents are controlled by policy networks trained using DRL.
Our aim is to understand whether recent advances in such techniques can be used to develop
convincing behavioral models for non-player characters in videogames. We begin with an
analysis of requirements that such an AI system should satisfy in order to be practically
applicable in video game development, and identify the elements of the deep reinforcement
learning model used in the DeepCrawl prototype. The successes and limitations of DeepCrawl
are documented through a series of playability tests performed on the final game. This chapter
offers an initial insight into innovative new avenues for the development of behaviors for
non-player characters in video games, as they offer the potential to overcome critical issues
with classical approaches.

3.1 Introduction

Technological advances in gaming industry have resulted in the production of increasingly
complex and immersive gaming environments. However, the creation of AI systems that
control Non-Player Characters (NPCs) is still a critical element in the creative process that
affects the quality of finished games. This problem is often due to the use of classical
AI techniques that result in predictable, static, and not very convincing NPC strategies.
Reinforcement Learning (RL) can help overcome these issues providing an efficient and

†Portions of this chapter appeared in: A. Sestini, A. Kuhnle, and A. D. Bagdanov, “DeepCrawl: Deep
Reinforcement Learning for Turn-Based Strategy Games”, published in the Experimental AI in Games (EXAG)
Workshop at Artificial Intelligence and Interactive Digital Entertainment (AIIDE), 2019.
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practical way to define NPC behaviors, but its real application in production processes has
issues that can be orthogonal to those considered to date in the academic field: how can we
improve the gaming experience? How can we build credible and enjoyable agents? How can
RL improve over classical algorithms for game AI? How can we build an efficient ML model
that is also usable on all platforms, including mobile systems?

At the same time, recent advances in Deep Reinforcement Learning (DRL) have shown it
is possible to train agents with super-human skills able to solve a variety of environments.
However the main objective of DRL of this type is training agents to surpass human players
in competitive play in classical games like Go (Silver et al., 2016) and video games like
DOTA 2 (OpenAI et al., 2019). The resulting, however, agents clearly run the risk of being
too strong, of exhibiting artificial behavior, and in the end not being a fun gameplay element.

Video games have become an integral part of our entertainment experience, and our goal
in this chapter is to demonstrate that DRL techniques can be used as an effective game design
tool for learning compelling and convincing NPC behaviors that are natural, though not
superhuman, while at the same time provide challenging and enjoyable gameplay experience.
As a testbed for this work we developed the DeepCrawl Roguelike prototype, which is a
turn-based strategy game in which the player must seek to overcome NPC opponents and
NPC agents must learn to prevent the player from succeeding. We emphasize that our goals
are different than those of AlphaGo and similar DRL systems applied to gameplay: for us it
is essential to limit agents so they are beatable, while at the same time training them to be
convincingly competitive. In the end, playing against superhuman opponents is not fun, and
neither is playing against trivial ones. This is the balance we try to strike.

With this chapter we propose some requirements that a Machine Learning (ML) system
should satisfy in order to be practically applied in videogame production as an active part
of game design. We also propose an efficient DRL system that is able to create a variety
of NPC behaviors for Roguelike games only by changing some parameters in the training
set-up; moreover the reduced complexity of the system and the particular net architecture
make it easy to use and to deploy to systems like mobile devices. Finally we introduce a new
game prototype, tested with a series of playability tests, that can be a future benchmark for
DRL for videogame production.

3.2 Related Work
Here we review the recent works most related to this chapter.

Game AI. Game AI has been a critical element in video game production since the dawn
of this industry; agents have to be more and more realistic and intelligent to provide the
right challenge and level of enjoyment to the user. However, as stated in Chapter 2, as game
environments have grown in complexity over the years, scaling traditional AI solutions like
Behavior Trees (BT) and finite state machines (FSM) for such complex contexts is an open
problem Yannakakis and Togelius (2018).
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Reinforcement Learning. Reinforcement Learning (RL) (Sutton et al., 1998) is directly
concerned with the interaction of agents in an environment. RL methods have been widely
used in many disciplines, such as robotics and operational research, and games. The break-
through of applying DRL by DeepMind in 2015 (Mnih et al., 2015) brought techniques from
supervised deep learning (such as image classification and convolutional neural networks)
to overcome core problems of classical RL. This combination of RL and neural networks
has led to successful application in games. In the last few years several researchers have
improved upon the results obtained by DeepMind. For instance, OpenAI researchers showed
that with an Actor Critic (Konda and Tsitsiklis, 2003) algorithm such as Proximal Policy
Optimization (PPO) (Schulman et al., 2017) it is possible to train agents to superhuman
levels that can win against professional players in complex and competitive games such as
DOTA 2 (OpenAI et al., 2019). For a detailed description of these examples, see Chapter 2.

As already discussed in the introduction, most of the works in DRL aim to build agents
replacing human players either in old-fashioned games like Go or chess (Silver et al., 2016;
Asperti et al., 2018) or in more recent games such as Doom or new mobiles games (OpenAI
et al., 2019; Vinyals et al., 2019; Oh et al., 2019; Kempka et al., 2016; Juliani et al., 2019).
Our objective, however, is not to create a new AI system with superhuman capabilities, but
rather to create ones that constitute an active part of the game design.

Reinforcement Learning Environments. There has been a significant amount of work
in the field of open-source reinforcement learning environments in the past decade. Prior
environments, such as the classic OpenAI Gym (Brockman et al., 2016) and the DeepMind
Lab (Beattie et al., 2016), have provided valuable platforms for researchers to test and
compare the performance of various reinforcement learning algorithms. However, these
environments have mainly focused on providing simple, low-dimensional tasks such as
balance beam walking and cart-pole balancing. In recent years, there has been a growing
interest in using game-based environments to study and train autonomous agents. Popular
open-source examples are MineRL (Guss et al., 2019), Nethack (Küttler et al., 2020) and
Obstacle Tower (Juliani et al., 2019). However, the focus of these environments is often to
replace the human player and create the super-human agent, which can result in NPC agents
that behave in unrealistic or “cheaty” way. Moreover, environments like Nethack may not
provide the necessary level of realism or control to effectively study NPC behavior.

The environment presented in this paper is a roguelike game specifically designed for
studying and training NPC agents via deep reinforcement learning. It offers a realistic and
controllable environment for studying NPC behavior, while also avoiding the frustrating
experience of playing against a super-human agent. This makes it a unique and valuable tool
for research on NPC behavior.
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Figure 3.1: Screenshot of the final version of DeepCrawl. Each level of the game consists of
one or more rooms, in each of which there is one or more agents. To clear a level the player
must fight and win against all the enemies in the dungeon. The game is won if the player
completes ten dungeon levels.

3.3 Game Design and Desiderata

In this section we describe the main gameplay mechanics of DeepCrawl and the requirements
that the system should satisfy in order to be used in a playable product. The DeepCrawl
prototype is a fully playable Roguelike game and can be downloaded for Android and iOS *.
In Figure 3.1 we give a screenshot of the final game.

Gameplay mechanics

We decided to build a Roguelike as there are several aspects of this type of games that make
them an interesting testbed for DRL as a game design tool, such as the procedurally created
environment, the turn-based system and the non-modal characteristic that makes available
every action for actors regardless the level of the game. In fact, Roguelikes are often used
as a proving ground game genre specifically because they involve a limited set of game
mechanics, which allows game designers to concentrate on emergent complexity of gameplay
as a combination of the relatively simple set of possibilities given to the player.

*Android Play: https://play.google.com/store/apps/details?id=com.miccgame.alessandrosestini&hl=
en_CA&gl=US, App Store: https://apps.apple.com/it/app/deepcrawl/id1461452000

https://play.google.com/store/apps/details?id=com.miccgame.alessandrosestini&hl=en_CA&gl=US
https://play.google.com/store/apps/details?id=com.miccgame.alessandrosestini&hl=en_CA&gl=US
https://apps.apple.com/it/app/deepcrawl/id1461452000
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Figure 3.2: The policy network used for NPCs in DeepCrawl. See Section 3.4 for a detailed
description.

The primary gameplay mechanics in DeepCrawl are defined in terms of several distinct,
yet interrelated elements.

Actors. Success and failure in DeepCrawl is based on direct competition between the
player and one or more agents guided by a deep policy network trained using DRL. Player
and agents act in procedurally generated rooms, and player and agents have exactly the same
characteristics, can perform the same actions, and have access to the same information about
the world around them.

Environment. The environment visible at any instant in time is represented by a random
grid with maximum size of 10× 10 tiles. Each tile can contain either an agent or player, an
impassible object, or collectible loot. Loot can be of three types: melee weapons, ranged
weapons, or potions. Moreover, player and agent are aware of a fixed number of personal
characteristics such as HP, ATK, DEX, and DEF. Agents and player are also aware of their
inventory in which loot found on the map is collected. The inventory can contain at most
one object per type at a time, and a new collected item replaces the previous one. The
whole dungeon is composed of multiple rooms, where in each of them there are one or more
enemies. The range of action of each NPC agent is limited to the room where it spawned,
while the player is free to move from room to room.

Action space. Each character can perform 17 different discrete actions:

• 8 movement actions in the horizontal, vertical and diagonal directions; if the movement
ends in a tile containing another agent or player, the actor will perform a melee attack:
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this type of assault deals random damage based on the melee weapon equipped, the
ATK of the attacker, and the DEF of the defender;

• 1 use potion action, which is the only action that does not end the actor’s turn.
DeepCrawl has two buff potions available, one that increases ATK and DEF for a fixed
number of turns, and heal potion that heals a fixed number of HP; and

• 8 ranged attack actions, one for each possible direction. If there is another actor in
selected direction, a ranged attack is performed using the currently equipped ranged
weapon. The attack deals a random amount of damage based on the ranged weapon
equipped, the DEX of the attacker, and the DEF of the defender.

Desiderata

As defined above, our goals were to create a playable game, and in order to do this the game
must be enjoyable from the player’s perspective. Therefore, in the design phase of this work it
was fundamental to define the requirements that AI systems controlling NPCs should satisfy
in order to be generally applicable in videogame design:

Credibility. NPCs must be credible, that is they should act in ways that are predictable and
that can be interpreted as intelligent. The agents must offer the right challenge to the player
and should not make counterintuitive moves. The user should not notice that he is playing
against an AI.

Imperfection. At the same time, the agents must be imperfect because a superhuman agent
is not suitable in a playable product. In early experiments we realized that it was relatively
easy to train unbeatable agents that were, frankly, no fun to play against. It is important that
the player always have the chance to win the game, and thus agents must be beatable.

Prior-free. Enemy agents must be prior-free in that developers do not have to manually
specify strategies – neither by hard-coding nor by carefully crafting specific rewards – specific
to the game context prior the training. The system should extrapolate strategies independently
through the trial-and-error mechanism of DRL. Moreover, this prior-free system should
generalize to other Roguelike games sharing the same general gameplay mechanics.

Variety. It is necessary to have a certain level of variety in the gameplay dynamics. Thus,
it is necessary to support multiple agents during play, each having different behaviors. The
system must provide simple techniques to allow agents to extrapolate different strategies in
the training phase.

3.4 Proposed Model
Here we describe in detail the main elements of the DRL model that controls the agent
in DeepCrawl, with particular attention to the neural network architecture and the reward
function.
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Policy network and state representation

We used a policy-based method to learn the best strategy for agents controlling NPCs. For
these methods, the network must approximate the best policy. The neural network architecture
we used to model the policy for NPC behavior is shown in Figure 3.2. The network consists
of four input branches:

• the first branch takes as input the whole map of size 10× 10, with the discrete map
contents encoded as integers:

– 0 = impassable tile or other agent;

– 1 = empty tile;

– 2 = agent;

– 3 = player; and

– 4+ = collectible items.

This input layer is then followed by an embedding layer which transforms the 10×
10× 1 integer input array into a continuous representation of size 10× 10× 32, a
convolutional layer with 32 filters of size 3× 3, and another 3× 3 convolutional layer
with 64 filters.

• The second branch takes as input a local map with size 5× 5 centered around the
agent’s position. The map encoding is the same as for the first branch and an embedding
layer is followed by convolutional layers with the same structure as the previous ones.

• The third branch is structured like the second, but with a local map of size 3× 3.

• The final branch takes as input an array of 11 discrete values containing information
about the agent and the player:

– agent HP in the range [0,20];

– the potion currently in the agent’s inventory;

– the melee weapon currently in the agent’s inventory;

– ranged weapon in the agent’s inventory;

– a value indicating whether the agent has an active buff;

– a value indicating whether the agent can perform a ranged attack and in which
direction;

– player HP in the range [0,20];

– the potion currently in the player’s inventory;

– the melee weapon in the player’s inventory;

– the ranged weapon in the player’s inventory; and

– a value indicating whether the player has an active buff.
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This layer is followed by an embedding layer of size 64 and a Fully-Connected (FC)
layer of size 256.

The outputs of all branches are concatenated to form a single vector which is passed through
an FC layer of size 256; we add a one-hot representation of the action taken at the previous
step, and the resulting vector is passed through an LSTM layer. The final output of the net is
a probability distribution over the action space (like all policy-based methods such as PPO).

With this model we also propose some novel solutions that have improved the quality of
agents behavior, overcoming some of the challenges of DRL in real applications:

• Global vs local view: we discovered that the use of both global and local map
representations improves the score achieved by the agent and the overall quality of its
behavior. The combination of the two representations helps the agent evaluate both
the general situation of the environment and the local details close to it; we use only
two levels of local maps, but for a more complex situation game developers could
potentially use more views at different scales;

• Embeddings: the embedding layers make it possible for the network to learn continu-
ous vector representations for the meaning of and differences between integer inputs.
Of particular note is the embedding of the last branch of the network, whose inputs
have their own ranges distinct from each other, which helps the agent distinguish the
contents of two equal but semantically different integer values. For instance:

– agent HP ∈ [0, 20];

– potion ∈ [21, 23];

– etc.

• Sampling the output: instead of taking the action with the highest probability, we
sample the output, thus randomly taking one of the most probable actions. This
behavior lets the agent make some mistakes during its interaction with the environment,
guaranteeing imperfection and avoids the agent getting stuck in repetitive loops of the
same moves.

Reward function

When defining the reward function for training policy networks, to satisfy the prior-free
requirement we used an extremely sparse function:

R(t) = −0.01 +

{
−0.1 for an impossible move

+10.0 ∗HP for the win
, (3.1)
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where HP refers to the normalized agent HPs remaining at the moment of defeating an
opponent. This factor helps the system to learn as fast as possible the importance of HP:
winning with as many HP as possible is the implicit goal of a general Roguelike game.

Network and training complexity

All training was done on an NVIDIA 1050ti GPU with 4GB of RAM. On this modest GPU
configuration, complete training of one agent takes about two days. However, the reduced
size of our policy networks (only about 5.5M parameters in the policy and baseline networks
combined) allowed us to train multiple agents in parallel. Finally, the trained system needs
about 12MB to be stored. We remind though that more agents of the same type can use the
same model: therefore this system does not scale with the number of enemies, but only with
the number of different classes.

3.5 Implementation
In this chapter we describe how the DeepCrawl policy networks were trained. We used two
type of technologies to build both the DRL system and the game:

Tensorforce. Tensorforce (Kuhnle et al., 2017; Schaarschmidt et al., 2018) is an open-
source DRL framework built on top of Google’s TensorFlow framework, with an emphasis
on modular, flexible library design and straightforward usability for applications in research
and practice. Tensorforce is agnostic to the application context or simulation, but offers an
expressive state- and action-space specification API. In particular, it supports and facilitates
working with multiple state components, like our global/local map plus property vector,
via a generic network configuration interface which is not restricted to simple sequential
architectures only. Moreover, the fact that Tensorforce implements the entire RL logic,
including control flow, in portable TensorFlow computation graphs makes it possible to
export and deploy the model in other programming languages, like C# as described in the
next section.

Unity and Unity ML-Agents. The DeepCrawl prototype was developed with Unity (Unity,
2019) and Unity Machine Learning Agents Toolkit (Unity ML-Agents) (Juliani et al., 2018),
that is an open source plugin available for the game engine that enables games and simulations
to serve as environments for training intelligent agents. This framework allows external
Python libraries to interact with the game code and provides the ability to use pre-trained
graph directly within the game build thanks to the TensorFlowSharp plugin (Icaza, 2019).

Training setup

To create agents able to manage all possible situations that can occur when playing against
a human player, a certain degress of randomness is required in the procedurally-generated
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agent HPs enemy HP loot quantity

Phase 1 20 1 20%
Phase 2 [5, 20] 10 20%
Phase 3 [5, 20] [10, 20] 20%
Phase 4 [5, 20] [10, 20] [10%, 20%]
Phase 5 [5, 20] [10, 20] [5%, 20%]

Figure 3.3: Curriculum used for training all agents. Left: a training timeline showing how
long each curriculum phase lasts as a percentage of total training steps. Right: the changing
generation parameters of all the curriculum phases. The numbers in parentheses refer to a
random number in that range; the loot quantity depends on the number of empty tiles in the
room (e.g. 20% loot quantity indicates that the number of items in the room is equal to the
20% of empty tiles in that).

environments: the shape and the orientation of the map, as well as the number of impassable
and collectible objects and their positions are random; the initial position of the player and
the agent is random; and the initial equipment of both the agent and the player is random.

In preliminary experiments we noticed that agents learned very slowly, and so to aid
the training and overcome the problem of the sparse reward function, we use curriculum
learning (Bengio et al., 2009) with phases shown in Figure 3.3. This technique lets the agent
gradually learn the best moves to obtain victory: for instance, in the first phase it is very
easy to win the game, as the enemy has only 1 HP and only one attack is needed to defeat
it; in this way the model can learn to reach its objective without worrying too much about
other variables. As training proceeds, the environment becomes more and more difficult to
solve, and the “greedy” strategy will no longer suffice: the agent HP will vary within a range
of values, and the enemy will be more difficult to defeat, so it must learn how to use the
collectible items correctly and which attack is the best for every situation. In the final phases
loot can be difficult to find and the HP, of both agent enemy, can be within a large range of
values: the system must develop a high level of strategy to reach the end of the game with
the highest score possible.

Agents opponent. The behavior of the enemies agents are pitted against is of great
importance. To satisfy requirements defined in Section 3.3, during training the agents fight
against an opponent that always makes random moves. In this way, the agent sees all the
possible actions that a user might perform, and at the same time it can be trained against a
limited enemy with respect of human capabilities. This makes the agent beatable in the long
run, but still capable of offering a tough and unpredictable challenge to the human player.

Training results

The intrinsic characteristic values for NPCs must be chosen before training. These parameters
are not observed by the system, but offer an easy method to create different types of agents.
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(a) (b) (c)

Figure 3.4: Plots showing metrics during the training phase for the warrior class as a function
of the number of episodes. From left to right: (a) the evolution of the mean reward, (b)
the evolution of the entropy, and (c) the difference between the training with and without
curriculum. The dashed vertical lines on the plots delineate the different curriculum phases.

Changing the agent’s ATK, DEF or DEX obliges that agent to extrapolate the best strategy
based on its own characteristics. For DeepCrawl we trained three different combinations:

• Archer: ATK = 0, DEX = 4 and DEF = 3;

• Warrior: ATK = 4, DEX = 0 and DEF = 3; and

• Ranger: ATK = 3, DEX = 3 and DEF = 3.

For simplicity, the opponent has always the same characteristics: ATK = 3, DEX = 3 and
DEF = 3.

To evaluate training progress and quality, we performed some quantitative analysis
of the evolution of agent policies. In Figure 3.4 we show the progression of the mean
reward and entropy for the warrior class as a function of the number of training episodes,
while in Figure 3.5 and Figure 3.6 we show the other two types of agents following the
same trend. In the same figure we show the difference between training with and without
curriculum learning. Without curriculum, the agent learns much slower compared to multi-
phase curriculum training. With a curriculum the agent achieves a significantly higher
average reward at the end of training. While it is generally accepted best practice to repeat
experiments multiple times and report the mean and standard deviation of the results, we
were unable to do so in this work due to limited computational resources. This limitation
should be taken into consideration when interpreting the results of this study. We suggest
that future researchers who wish to replicate these results or continue this line of research
conduct multiple experimental runs to accurately capture the variability of the measurements.

PPO and hyperparameters

To optimize the policy networks we used the PPO algorithm, the detailed description of
which is provided in Chapter 2. One agent rollout is made of 10 episodes, each of which
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(a) (b)

Figure 3.5: Plots showing metrics during the training phase for the archer class as a function
of the number of episodes. From left to right: (a) the evolution of the mean reward and (b)
the evolution of the entropy. The dashed vertical lines on the plots delineate the different
curriculum phases.

(a) (b)

Figure 3.6: Plots showing metrics during the training phase for the ranger class as a function
of the number of episodes. From left to right: (a) the evolution of the mean reward and (b)
the evolution of the entropy. The dashed vertical lines on the plots delineate the different
curriculum phases.

lasts at most 100 steps, and it may end either achieving success (i.e. agent victory), a failure
(i.e. agent death) or reaching the maximum steps limit. At the end of 10 episodes, the system
updates its weights with the episodes just experienced. PPO is an Actor-Critic algorithm with
two functions that must be learned: the policy and the baseline. The latter has the goal of
a normal state value function and, in this case, has the exactly same structure as the policy
network show in Figure 3.4.

Most of the remaining hyper-parameters values were chosen after many preliminary
experiments made with different configurations: the policy learning rate lrp = 10−6, the
baseline learning rate lrb = 10−4, the agent exploration rate ϵ = 0.2, and the discount factor
γ = 0.99.
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3.6 Playability Evaluation

To evaluate the DeepCrawl prototype with respect to our desiderata, we conducted playability
test as a form of qualitative analysis. The tests were administered to 10 candidates, all
passionate videogamers with knowledge of the domain; each played DeepCrawl for sessions
lasting about 60 minutes. Then, each player was asked to answer a Single Ease Question
(SEQ) questionnaire. All the questions were designed to understand if the requirements laid
out in Section 3.3 had been met and to evaluate the general quality of DeepCrawl. Table 3.1
summarizes the results.

Table 3.1: Results of the SEQ questionnaire. Players answered with a value between 1
(strongly disagree) and 7 (strongly agree).

N° Question µ Mo Md σ

1 Would you feel able to get to the end of the game? 5.54 6 6 1.03
2 As the level increases, have the enemies seemed too strong? 4.63 4 5 0.67
3 Do you think that the enemies are smart? 5.72 5 6 0.78
4 Do you think that the enemies follow a strategy? 6.18 6 6 0.40
5 Do you think that the enemies do counterintuitive moves? 2.00 2 2 0.63
6 Do the different classes of enemies have the same behavior? 1.27 1 1 0.46
7 Are the meaning of the icons and writing understandable? 5.72 6 6 1.67
8 Are the information given by the User Interface clear and enough? 5.54 6 6 1.21
9 Are the level too big and chaotic? 2.00 1 2 1.34

10 Are the objects in the map clearly visible? 5.81 7 7 1.66
11 Do you think that is useful to read the enemy’s characteristics? 6.90 7 7 0.30
12 How much is important to have a good strategy? 6.90 7 7 0.30
13 Give a general value to enemy abilities compared to other Roguelike games 6.00 6 6 0.77
14 Is the game enjoyable and fun? 5.80 6 6 0.87
15 Does the application have bugs? 1.09 1 1 0.30

We reconsider here each of the main requirements we discussed above in Section 3.3 in
light of the player responses:

• Credibility: as shown by questions 3, 4, and 5, the agents defined with this model offer
a tough challenge to players; the testers perceived the enemies as intelligent agents that
follow a specific strategy based on their properties.

• Imperfection: at the same time, questions 1 and 2 demonstrate that players are
confident they can finish the game with the proper attention and time. So, the agents
we have trained seem far from being superhuman, but they rather offer the right amount
of challenge and result in a fun gameplay experience (question 14).

• Prior-free: questions 5 and 12 show that, even with a highly sparse reward, the model is
able to learn a strategy without requiring developers to define specific behaviors. More-
over, question 13 indicates that the agents implemented using DRL are comparable to
others in other Roguelikes, if not better.
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• Variety: the testers stated that the differences between the behaviors of the distinct
types of agents were very evident, as shown by question 6. This gameplay element was
much appreciated as it increased the level of variety and fun of the game, and improved
the general quality of DeepCrawl.

3.7 Conclusions
In this chapter we presented a new initial DRL framework for development of NPC agents in
video games. To demonstrate the potential of DRL in video game production, we designed
and implemented a new Roguelike game called DeepCrawl that uses the model defined in
this chapter with excellent results. These versions of the agents work very well, and the
model supports numerous agents types only by changing a few parameters before starting
training. We feel that DRL brings many advantages to the commonly used techniques like
finite state machines or behavior trees.

The DeepCrawl prototype is a step towards the creation of effective game design tools
based on DRL. It shows that such techniques can be used to develop credible – yet imperfect
– agents that are prior-free and offer variety to gameplay in turn-based strategy games. We
feel that DRL, with some more work towards rendering training scalable and flexible, can
offer great benefits over the classical, hand-crafted agent design that dominates the industry.
One of the most critical aspects we discovered in developing the DeepCrawl framework is
the fundamental importance of PCG environments. Our experiments show that training an
agent with PCG allows it to avoid memorizing the trajectory to achieve goals, but rather it
creates an abstract representation that helps the agent generalize to unseen situations and
levels. This will not only lead to more capable agents, but also ones able to handle the many
possible situations that can happen when playing against human players. In the next chapter
we further develop these concepts via a thorough study of DRL, PCG, and generalization and
how these elements can be combined together to improve scalability in DRL.



Chapter 4

Behaviors that Adapt to Changes in
Design Parameters†

In Chapter 3 we defined requirements for training believable Non-Player Characters (NPCs)
and introduced the DeepCrawl environment, an open source testbed that from now on will
be a fundamental part of our experiments. Together with these two contributions, we also
discovered that Procedural Content Generation (PCG) can greatly increase the quality and
generalization ability of trained agents. The ability to manage all the possible situations that
can happen when a trained NPC plays against a human player is of fundamental importance.

We also saw that turn-based strategy games like Roguelikes, for example, present unique
challenges to DRL. In particular, the categorical nature of their complex game state, composed
of many entities with different attributes, requires agents able to learn how to compare and
prioritize these entities. Moreover, this complexity often leads to agents that overfit to
states seen during training and that are unable to generalize in the face of design changes
made during development. In this chapter we propose two network architectures which,
when combined with a procedural loot generation system, are able to better handle complex
categorical state spaces and to mitigate the need for retraining forced by design decisions.
The first is based on a dense embedding of the categorical input space that abstracts the
discrete observation model and renders trained agents more able to generalize. The second
proposed architecture is more general and is based on a Transformer network able to reason
relationally about input and input attributes. Our experimental evaluation demonstrates that
new agents have better adaptation capacity with respect to a baseline architecture, making
this framework more robust to dynamic gameplay changes during development.

†Portions of this chapter appeared in: A. Sestini, A. Kuhnle, and A. D. Bagdanov, “Deep policy networks for
NPC behaviors that adapt to changing design parameters in Roguelike games”, published in the Reinforcement
Learning in Games (RLG) Workshop at Association for the Advancement of Artificial Intelligence (AAAI)
conference, 2020.

39
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Figure 4.1: A summary of our approach. The left side illustrates the original DeepCrawl
framework defined in Chapter 3 in which the agent must be retrained every time the loot
distribution changes (e.g. for balancing the overall game). Our approach is shown on the
right: with the new adaptive architectures we can create agents which can learn from a new
procedural loot system. Agents trained in this way are able to adapt to a changing loot
distribution without the need to retrain.

4.1 Introduction

In this chapter we address the challenges of adaptation and scaling encountered in DeepCrawl.
Deep Reinforcement Learning (DRL) algorithms are extremely sensitive to design changes
in the environment, since they fundamentally change the way agents “see” the game world
around them. Even seemingly minor changes can force a complete retraining of all agents.
This is mostly due to the categorical nature of the input state space which makes the network
overfit to the specific entities seen during training, leaving it without the capacity to generalize
to unseen states. Collectible objects in DeepCrawl and their effect on the game, for example,
must be predefined by developers, and are represented by unique integer IDs and not by
their effect on the player. This can be an important problem during game development: if
developers want to change parameters, for example to balance gameplay, they require agents
which can handle these modifications and do not require retraining. This makes it difficult
to adapt an existing agent to new scenarios, resulting in inappropriate agent behavior when
NPC agents are used in environments for which they were not designed.

Moreover, with the NPC model architecture of the DeepCrawl framework it is not possible
to extend the set of available loot or loot types without completely retraining agents from
scratch. This is largely due to specific DeepCrawl network architecture: the policy network
contains initial embedding layers that make it possible for the network to learn a continuous
vectorial representation encoding the meaning of and differences between categorical inputs.



4.2 Related Work 41

As mentioned above, in this setting each loot item must be identified by a unique ID in
order to be understandable by agents. For this reason, if designers want to add new loot
types, for example changing the object definition in order to have a different number of
attribute bonuses, it is difficult or impossible to define a unique ID for each object a priori –
particularly if the attribute bonuses are determined randomly during game play.

To mitigate these problems we implemented a new procedural loot generation system
and incorporated it into the training protocol: instead of a fixed list of discrete items, in our
new system an item is parametrized by a fixed set of attributes, potentially even an extensible
set of attributes. These values are drawn from a uniform distribution when generating a
new training episode and increase the intrinsic properties of actors when collected. We
also propose two alternative policy network architectures that are able to handle the new
procedural loot system. As we illustrate in Figure 4.1, the new system combined with
procedural loot generation during training renders trained NPCs more adaptive and scalable
from a game developer’s perspective. This new AI system helps in the design of NPC agents
while being robust to iterative design changes across the loot distribution that can happen
during video game development. As our experiments show, these new agents are perfectly
capable of adapting to loot distributions they have never seen during training, without the
need to retrain.

4.2 Related Work

As already mentioned, the potential of DRL in video games has been steadily gaining interest
from the research community. Here we review recent works most related to this chapter.

Procedurally Generated Environments. There is a growing interest in DRL algorithms
applied in environments with Procedural Content Generation (PCG) systems: Cobbe et al.
(2019) demonstrated that diverse environment distributions are essential to adequately train
and evaluate RL agents, as they observed that agents can overfit to exceptionally large training
sets. On the same page are Risi and Togelius (2019), who stated that often an algorithm
will not learn a general policy, but instead a policy that only works for a particular version
of a particular task with specific initial parameters. Justesen et al. (2018) explored how
procedurally generated levels during training can increase generalization, showing that for
some games procedural level generation enables generalization to new levels within the same
distribution. Subsequently, the growing need for a PCG environments was also demonstrated
by Küttler et al. (2020), Chevalier-Boisvert et al. (2019), and Juliani et al. (2019).

DRL in video games. Modern video games are environments with complex dynamics, and
these environments are useful testbeds for testing complex DRL algorithms. Some notable
examples are: Vinyals et al. (2019) that use a specific deep neural network architecture based
on Transformers (Vaswani et al., 2017) able to create super-human agents for StarCraft, and
OpenAI (2019) that uses embedding layers similar to the one used in Chapter 3 to manage
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the inner attributes of the agent and other heroes in DOTA 2 in order to train agents that
outperform human players.

DRL for video games. At the same time, there is an increasing interest from the game
development community on how to properly use DRL for video game development. Zhao
et al. (2020) argued that the industry does not need agents built to “beat the game”, but rather
to produce human-like behavior to help with game evaluation and balance. Delalleau et al.
(2019) dealt with the importance of having an easy-to-train neural network and how it is
important to have a framework that enriches the expressiveness of the policy. Pleines et al.
(2019) studied different action-space representations in order to create agents that mimic
human input, without being super-human. As already discussed, in Chapter 3 we contributed
to this aim, defining a DRL framework suited for the production of turn-based strategy games.
Our aim is to improve on the latter framework in order to render it more robust to changes to
gameplay mechanics during development – i.e. to render DRL agents more mechanics-free.

4.3 Proposed Models

Our work builds upon the DeepCrawl framework (Chapter 3). Our overarching goal is to
make the system as independent as possible from dynamic changes during the development
phase, and we argue that a crucial step in this direction is a procedural loot generation system
which helps encourage generalizing agent behavior in a fully procedural environment. In
particular, in this chapter we define three new desiderata, complementary to those previously
defined:

• Performance. We desire agents able to properly handle a procedural loot system, so
they must understand which object is most useful for defeating the game;

• Adaptation. Agents must adapt to changes in gameplay mechanics, in particular
changes to the loot generation system during playtesting and rebalancing, without the
need of retraining; and

• Scalability. We desire a framework that can scale in both the number of possible
objects and in the number of attribute bonuses of each object type. Moreover, the
framework must have limited complexity to facilitating targeting of systems like mobile
devices.

With these three new desiderata in mind, we now describe two architectural solutions that
satisfy them. Both are significant modifications of the early, frontend layers of the DeepCrawl
network that allow it to better manage our new procedural loot system. We begin with a brief
introduction of the original DeepCrawl environment and network, and then continue with the
description of two different architectures that address the problems defined above.
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(a) Dense Embedding module (b) Transformer Embedding module

Figure 4.2: The two new architectures proposed in this chapter: (a) The Dense Embedding
module, and (b) the Transformer Embedding module. These modules replace the State
Embedding Module in the original architecture shown in Figure 3.2, while the rest of the
policy network is left unchanged. See Section 3.2 for a detailed description.

Procedural Loot System

In this chapter we focus mainly on the State Embedding module of the cited architecture,
shown in Figure 3.2. For complete details of the DeepCrawl framework and the neural
network used by its NPCs, we refer the reader to Chapter 3. As discussed above, the input
structure of the DeepCrawl framework defined in Chapter 3 limits the adaptation nature of
the trained agents. We overcome this limitation by first defining and implementing a different
way to generate collectible items in the environment.

In our proposed parametric loot system, each object has a number of attributes whose
values during training are drawn from a uniform distribution when generating an environment
for a new training episode. When an actor collects an item, the actor characteristics will
increase or decrease according to the attributes of the instance of the looted object. In our
current implementation, each object has the same four attributes corresponding to the four
characteristics of the actors. This is not a requirement, however, rather it reflects the original
design and implementation of categorical loot system in the DeepCrawl game.

This system brings a lot of benefits to DeepCrawl: it makes the game more complex and
varied, with the corresponding possibility of creating more convincing NPCs and player/envi-
ronment interactions. The environment is now fully procedural, which should increase the
generalization of the agents. Moreover, during playtesting developers can choose either to
use random objects or to define a set of fixed objects with fixed attributes in order to balance
the game.

However, to enjoy these benefits the policy networks trained for agent behaviors must be
able to accommodate this new procedural loot system. The network described above cannot
easily do this due to the categorical nature of its input space. Thus we propose two new
solutions.
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Dense Embedding Policy Network

Our first model is a straightforward extension of the one used in the previous chapter. We
were inspired by the ideas of OpenAI (2019) and DeepCrawl to treat the map of categorical
inputs via embedding layers. In contrast to these approaches, however, we use multi-channel
maps where each channel represents a different categorical value:

• The first channel represents the type of entity in that position:

– 0 = impassable object;

– 1 = empty tile;

– 2 = agent;

– 3 = player;

– 4 = melee weapon;

– 5 = range weapon; and

– 6 = potion item.

• The other channels each contain an attribute of the object in that tile, represented
by a categorical value. For instance, if a tile contains a melee weapon, its attribute
bonuses like health points (HP), attack (ATK), defense (DEF), and dexterity (DEX)
are represented by an array of all attributes (plus tile type): [TYPE, HP, ATK,

DEF, DEX]. If the tile does not contain loot (like an impassable object), this array
is filled with the special value no-attribute: [TYPE, NONE, NONE, NONE,

NONE].

This multi-channel map input, which like the original DeepCrawl network as shown
in Figure 3.2, is divided in global and local views and passed through what we refer to as

“dense embedding” layers: multiple categorical values are combined together and mapped
to their corresponding fixed-size continuous representation by a single dense embedding
operation. To implement the dense embedding operation, we simply convert each channel
into a one-hot representation and apply a 1× 1 convolution with stride 1 and tanh activation
through all channels. In the special case of a single channel, the operation is equivalent to
standard embedding layers. The full model architecture is shown in Figure 4.2(a).

This architecture satisfies the requirements we are looking for: the framework is inde-
pendent from attribute changes to the loot system as long as the types of character attributes
remain the same. Moreover, if developers want to change the set of attributes during produc-
tion, it is no longer necessary to change the entire agent architecture, only the corresponding
channels of the dense embedding layer need to be added or removed. As an additional benefit,
the network size remains relatively small. A detailed analysis of experimental results for this
architecture are given in Section 4.4.
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(a) (b) (c)

Figure 4.3: Mean reward during the training phase for all classes as a function of timestep.
From left to right: (a) archer, (b) warrior, and (c) ranger. The dashed vertical lines on the
plots delineate the different curriculum phases, which are the same as in Chapter 3.

Transformer-based Policy Network

We propose an alternative model based on the recently popular Transformer architec-
ture (Vaswani et al., 2017), and particularly its self-attention layer which has also been
successfully applied as state encoder in RL applications (Baker et al., 2019; Vinyals et al.,
2019; Zambaldi et al., 2018). This model uses self-attention to iteratively reason about
the relations between entities in a scene, and is expected to improve upon the efficiency
and generalization capacity over convolutions by more explicitly focusing on entity-entity
relations.

Concretely, the self-attention layer takes as input the set of entities ei for which we want to
compute interactions (not including auxiliary no-attribute objects), and then computes
a multi-head dot-product attention (Vaswani et al., 2017): given N entities, each is projected
to a query qi, a key ki and a value vi embedding, and the self-attention values are computed
as

A = softmax
(

QKt
√

d

)
V, (4.1)

where A, Q, K, and V represent the cumulative interactions, queries, keys and values as
matrices, and d is the dimensionality of the key vectors. As in the original paper, we use
4 independent such self-attention heads. Subsequently, the output vectors per head are
concatenated and passed on to a fully-connected layer, and finally added to the entity vector
ei via residual connection to yield a fixed-size embedding vector per entity.

The Transformer operation thus produces embeddings which encode relations between
loot in the environment. In this case we represent each object by an array of its attribute
bonuses, normalized between 0 and 1, which are further processed by fully connected layers
with shared weights across loot types. Based on these representations, a Transformer layer
is applied to reason about loot-loot relations, resulting in a fixed-size embedding per entity.
Following the concept of spatial encoders from AlphaStar, all entity representations are then
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scattered into a spatial map so that the embedding at a specific location corresponds to the
unit/object placed there.

More specifically, we create an empty map and place the embeddings returned by the
Transformer at the corresponding positions where the loot is located in the game. We produce
such scattered maps for both global and local views which, as before, are concatenated with
the embedding map of categorical tile type and then passed on to the remaining convolutional
layers. The full network is shown in Figure 4.2(b). This model is, again, independent
from changes to the loot generation system, and even if developers change the number of
attributes during production, this architecture does not require any adaptation, but can simply
be retrained on the new game. The biggest weakness is that this architecture is quite complex
and requires more computational resources, which goes against the last desideratum defined
in Section 4.3.

4.4 Experimental Results

In this section we report on experiments performed to evaluate differences, advantages, and
disadvantages of the two new architectures with respect of the Categorical network. All of
our policy networks were implemented using the Tensorforce library (Kuhnle et al., 2017).*

We follow the same training setup of Chapter 3. At the beginning of each episode, the
shape and the orientation of the map, as well as the number of impassable and collectible
objects and their positions are randomly generated; the initial position of the player and the
agent is random, as well as their initial equipment. We also use curriculum learning (Bengio
et al., 2009) with the same phases as the previous chapter and during training the agents fight
against an opponent that always makes random moves. The only difference is the addition
of the loot generation system described in Section 4.3: each collectible item now has four
attributes which correspond to and modify the actor properties (HP, DEX, ATK, DEF). At
the beginning of each episode these values are drawn randomly from a uniform distribution
for each loot object on the map.

We trained three NPC classes (Archer, Warrior, and Ranger (the same as those from the
DeepCrawl framework defined in Chapter 3) using the Transformer, Dense Embedding, and
the original Categorical deep policy networks. The NPC classes are distinguished from one
another by their character attributes – see Chapter 3 for a complete description of the training
procedure. In the following, we assess each of the main requirements discussed above in
Section 4.3 in light of our experimental results.

Performance. Figure 4.3 shows the training curves for our two proposed policy networks.
The two architectures achieve the same reward, demonstrating that both are able to properly
handle the new version of the environment. Table 4.1 shows that, if two agents of the same
class fight each other in the testing configuration (where they start with the max amount of HP

*Code available at https://github.com/SestoAle/Adaptive-NPCs-with-procedural-entities

https://github.com/SestoAle/Adaptive-NPCs-with-procedural-entities
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and their initial equipment are neutral weapons, while the loot in the map is still procedural),
the Transformer based policy has a slight advantage against the Dense Embedding network.

Table 4.1: Success rates averaged over 100 episodes for pairs of policy networks playing
against each other in different testing environments. Procedural Loot refers to the envi-
ronment with fully procedural loot, where each item attribute is drawn randomly at the
beginning of an episode. Uniform loot refers to the variant with a fixed set of only three
types of weapons (low, medium and high power ones). Skewed Loot refers to another another
such variant, one in which the strongest weapons are far more powerful than the other two.
For more details about the experimental setup and loot distributions, see Section 4.4. The
proposed network architectures generalize better across distributional loot changes compared
to the original categorical architecture.

Transformer vs Dense Embedding Dense Embedding vs Categorical Transformer vs Categorical

Procedural
loot

Uniform
loot

Skewed
loot

Procedural
loot

Uniform
loot

Skewed
loot

Procedural
loot

Uniform
loot

Skewed
loot

Archer 55% 56% 52% 62% 58% 67% 60% 57% 66%

Warrior 50% 52% 50% 60% 56% 66% 60% 58% 66%

Ranger 52% 50% 49% 58% 56% 63% 56% 58% 64%

We cannot compare these training curves with those in the original work because of the
dynamic nature of the environment introduced by the procedural loot system. The only way
to compare with the Categorical network is to train agents with it in the new environment
after discretizing the loot attributes into potentially very many unique object IDs. We can,
however, have agents of the same class but with different policy fight each other in this new
environment. As Table 4.1 shows, the proposed policies have higher average success rate
with respect to the Categorical policy network. This demonstrates that these solutions better
capture the differences between loot objects.

Adaptation. To demonstrate the improved generalization capacity of our proposed network
architectures, we tested them by changing the loot distribution from the fully procedural one
used during training to a fixed distribution. This new environment has only three different
type of weapons: low, medium and high power (both ranged and melee) that have clear
differences between each other – similar to the fixed weapons in the original DeepCrawl. For
high power weapons we mean loot that gives high value bonuses for all attributes, and so forth
for medium and low power ones. Based on the four attributes in DeepCrawl, in this variant a
high power sword has attribute bonuses of [+2, +2, +2, +2], a medium power sword
has [+0, +0, +0, +0], and a low power sword [-2, -2, -2, -2]. We refer to
this distribution as the uniform loot distribution. We then compare the agents, which have
been trained with the full procedural loot, in this testing environment. As Table 4.1 shows,
our proposed models have a small advantage compared to the original Categorical framework.
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In a subsequent experiment, we change the distribution of fixed loot power: there are
still three weapon types, low, medium and high power, but the high power weapons are
far more powerful than the medium and low power ones, which are comparatively similar.
More concretely, a high power sword here has attribute bonuses of [+5, +5, +5, +5],
a medium sword [-2, -2, -2, -2] and a low power sword [-3, -3, -3, -3].
We call this distribution the skewed loot distribution. As shown in Table 4.1, with this
configuration the success rate for our proposed architectures is much higher, outperforming
agents trained with the previous framework and hence showing better adaptation than the
Categorical architecture to such a change in the balance of the game.

Scalability. To handle the procedural loot system with the Categorical architecture
developers must define a fixed set of class IDs prior to training. This is not a trivial task
and can quickly become intractable when the number of attributes for each object increases.
Moreover, since the Categorical framework does not generalize (see Table 4.1), if developers
want to change loot generation they must define a new set of classes, and that forces retraining
of agents. Instead, with our proposed solutions developers simply train their agents with
procedurally generated loot and can decide after training whether to use, in the final game,
random objects or a fixed set of weapons for balancing the game: our agents will manage
both situations without the need of retraining.

Both the proposed frameworks properly handle changes in the number of attributes.
In this case retraining is mandatory, but developers need not to worry about changing the
network architectures: with the Dense Embedding network they need only to add a new
channel for each new attribute, while the Transformer based does not require any changes
since it is completely independent of loot parameterization. The Transformer embedding can
even handle loot with various number of attributes per type, providing a big advantage with
respect to Dense Embedding which requires loot with the same number of attributes.

The biggest drawback of the Transformer network is its complexity. While the Dense
and Categorical embedding networks require about 1.3 minutes to train 100 episodes, the
Transformer network takes twice as long. The average training times for 100 episodes are
3.31 minutes, 1.36 minutes and 1.10 minutes for the Transformer, Dense Embedding and
Categorical networks, respectively. Training was performed on an NVIDIA RTX 2080
SUPER GPU with 8GB of RAM.

In a video game design and development context, this is an important aspect to consider:
the continuous changes in the gameplay mechanics require many retrainings, and having
a small network is essential. In addition, these frameworks must be implemented to target
devices with reduced performance, increasing the need for small and efficient models.

PPO and Hyperparameters

As in Chapter 3, we use the PPO algorithm to optimize the agent model. The agent is trained
over the course of multiple episodes, each of which lasts at most 100 steps. An episode
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may end with the agent achieving success (i.e. agent victory), failure (i.e. agent death) or
reaching the maximum step limit. After every fifth episode, an update of the agent weights is
performed based on the previous five episodes. PPO is an Actor-Critic algorithm with two
networks to be learned: the actor policy and the critic state-value function. For both the dense
embedding and transformer variant, the critic uses the same structure as the policy network.

Hyperparameter values are the same in all experiments and were chosen after a prelimi-
nary set of experiments with different configurations: the policy learning rate lrp = 5 · 10−6,
the baseline learning rate lrb = 5 · 10−4, the agent exploration rate ϵ = 0.2, and the discount
factor γ = 0.99. For the transformer architecture, we used a two-headed self-attention layer,
with queries, keys and values of size 32 and a two-layers MLP with size 128 and 32.

Similar to the results of Chapter 3, this research was limited by insufficient computational
resources, thus it was not possible to repeat experiments multiple times and report the mean
and standard deviation of the results as recommended in best practice. To accurately interpret
the results of this study and to facilitate replication, future researchers should run multiple
experiments and measure the variability of the measurements.

4.5 Conclusions

In this chapter, we described several extensions to our DeepCrawl framework. First, we
implemented a procedural loot generation system which augments the game with a degree
of complexity that makes the game more compelling as benchmark for DRL algorithms,
particularly in the context of game development. Moreover, we proposed two neural network
architectures, one based on Dense Embeddings and one based on Transformers, which both
show substantially improved performance due to their capabilities to reason about loot and
attribute bonuses. Overall, our experimental analysis slightly favors the Dense Embedding
approach due to its reduced complexity and computational requirements.

The advantages for game development are twofold. On the one hand, Roguelikes such
as DeepCrawl may contain a large number of items, or indeed employ a procedural loot
generation system, so the ability to effectively learn how to compare and prioritize loot is
important for NPCs. On the other hand, this ability makes NPCs robust to modifications
to the loot system during development, without the need to retrain the behavioral models
from scratch every time. This is important, first, for the balancing process during playtesting
which is crucial to final quality; and second, both our proposed architectures can easily be
adapted in the face of major changes to the loot system which may occur during production.

There is another major challenge in DRL for video game development: the reward
function. The “prior-free” desiderata defined in Chapter 3 requires us to non manually
specify strategies. Nonetheless, designers may want to have some form of control over the
final behavior of agents. This is especially evident when it comes to defining qualitative
behaviors, e.g. training an agent to act more “sneaky”. However translating a qualitative
behavior into a mathematical function is somewhat unnatural for humans. As discussed in
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Chapter 2, inverse reinforcement learning and imitation learning can mitigate this problem
and still satisfy the “prior-free” requirement. In the next chapter we see how we can leverage
both PCG and inverse reinforcement learning to create agents that follow designer guidance
provided via demonstrations.



Chapter 5

Inverse Reinforcement Learning in PCG
Environments†

In the previous chapters we saw that deep reinforcement learning achieves very good results
in domains where reward functions can be manually engineered. At the same time, there
is a growing interest within the community in using games based on Procedurally Content
Generation (PCG) as benchmark environments. This type of environment is perfect to study
overfitting and generalization of agents under domain shifts. Inverse Reinforcement Learning
(IRL) can instead extrapolate reward functions from expert demonstrations, with good results
even on high-dimensional problems, however there are no examples in literature on how to
apply these techniques to procedurally-generated environments. This is mostly due to the
number of demonstrations needed to find a good reward model.

In this chapter we propose a technique based on the state-of-the-art adversarial inverse
reinforcement learning algorithm which can significantly decrease the need for expert demon-
strations in PCG games. Through the use of an environment with a limited set of initial seed
levels, plus some modifications to stabilize training, we show that our proposed approach
is demonstration-efficient and still able to extrapolate reward functions which generalize
to the fully procedural domain. We demonstrate the effectiveness of our technique on two
procedural environments, MiniGrid and DeepCrawl, for a variety of tasks.

5.1 Introduction

Despite the cited success of Deep Reinforcement Learning (DRL) in environments where the
reward function is known, designing and engineering good hard-coded reward functions is
difficult in some domains. In other settings, a badly-designed reward function can lead to
agents which receive high rewards in unintended ways (Amodei et al., 2016).

†Portions of this chapter appeared in: A. Sestini, A. Kuhnle, and A. D. Bagdanov, “Demonstration-Efficient
Inverse Reinforcement Learning in Procedurally Generated Environments”, published in the Conference on
Games (CoG), 2021.
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Figure 5.1: Demonstration-efficient AIRL. The left part of the image illustrates the AIRL
baseline, which extrapolates a reward function from expert demonstrations directly on the
fully procedural environment. This naive application of AIRL requires a large number of
expert demonstrations. Our demonstration-efficient AIRL approach is shown in the right part
of the image. DE-AIRL extrapolates the reward function on a subset of all possible game
levels, referred to as SeedEnv, and is applied in the fully procedural environment, ProcEnv,
only after training. This approach enables an RL policy to achieve near-expert performance
while requiring only a few expert demonstrations.

Inverse Reinforcement Learning (IRL) algorithms attempt to infer a reward function from
expert demonstrations (Ng and Russell, 2000). This reward function can then be used to
train agents which thus learn to mimic the policy implicitly executed by human experts. IRL
offers the promise of solving many of the problems entailed by reward engineering. These
approaches have achieved good performance both in continuous control tasks (Fu et al., 2018;
Finn et al., 2016b) and in Atari games (Tucker et al., 2018).

At the same time, there is increasing interest from the DRL community in procedurally-
generated environments. In the video game domain, Procedural Content Generation (PCG)
refers to the programmatic generation of environments using random processes that result
in an unpredictable and near-infinite range of possible states. PCG controls the layout of
game levels, the generation of entities and objects, and other game-specific details. Cobbe
et al. (2019) noted that in classical benchmarks like the Arcade Learning Environment (ALE)
(Bellemare et al., 2013), agents can memorize specific trajectories instead of learning relevant
skills, since agents perpetually encounter near-identical states. In Chapter 4 we saw how
we can leverage PCG and a set of procedurally-generated rules to increase generalization
of trained agents in face of design changes, thus helping the usability of such agents in
video game development. Because of this, PCG environments are a promising path towards
addressing the need for generalization in RL. For an agent to do well in a PCG environment,
it has to learn policies robust to ever-changing levels and a general representation of the state
space.

Most IRL benchmarks focus on finding reward functions in simple and static environments
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like MuJoCo (Todorov et al., 2012) and comparatively simple video games like Atari (Tucker
et al., 2018). None of these RL problems incorporate levels generated randomly at the
beginning of each new episode. The main challenges with procedurally-generated games is
the dependence of IRL approaches on the number of demonstrations: due to the variability in
the distribution of levels, if a not sufficiently large number of demonstrations is provided,
the reward function will overfit to the trajectories in the expert dataset. This leads to an
unsuitable reward function and consequently poorly performing RL agents. Moreover, in
most domains, providing a large number of expert demonstrations is expensive in terms of
human effort.

To mitigate the need for very many expert demonstrations in PCG games, we propose a
novel inverse reinforcement learning technique for such environments. Our work is based
on Adversarial Inverse Reinforcement Learning (AIRL) (Fu et al., 2018) and substantially
reduces the required number of expert trajectories (see Figure 5.1). We propose specific
changes to AIRL in order to decrease overfitting in the discriminator, to increase training
stability, and to help achieve better performance in agents trained using the learned reward.
Additionally, instead of using a fully procedural environment for training, we “under-sample”
the full distribution of levels into a small, fixed set of seed levels, and experts need only
provide demonstrations for this reduced set of procedurally-generated levels. We show that
the disentangled reward functions learned by AIRL generalize enough such that, subsequently,
they enable us to find near-expert policy even on the full distribution of all possible levels.
We test our approach in two different PCG environments for various tasks.

5.2 Related Work

Here we review the recent works most related to this chapter.

Inverse Reinforcement Learning. Inverse Reinforcement Learning (IRL) refers to
techniques that infer a reward function from human demonstrations, which can subsequently
be used to train an RL policy. It is often assumed that demonstrations come from an expert
who is behaving near-optimally. IRL was first described by Ng and Russell (2000), and one of
its first successes was Maximum Entropy IRL (Ziebart et al., 2008), a probabilistic approach
based on the principle of maximum entropy favoring rewards that lead to a high-entropy
stochastic policy. However, this approach assumes known transition dynamics and a finite
state space, and can retrieve only a linear reward function. Guided Cost Learning (Finn et al.,
2016b) relaxed these limitations and was one of the first algorithm able to estimate non-linear
reward functions over infinite state spaces in environments with unknown dynamics. Recently,
Finn et al. (2016a) noticed that GCL is closely related to GAN training, and this idea led to
the development of Adversarial Inverse Reinforcement Learning (AIRL) (Fu et al., 2018).
This method is able to recover reward functions robust to changes in dynamics and can learn
policies even under significant variations in the environment.
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Imitation Learning. Similarly to IRL, Imitation Learning (IL) aims to directly find a
policy that mimics the expert behavior from a dataset of demonstrations, instead of inferring
a reward function which can subsequently be used to train an RL policy. Standard approaches
are based on Behavioral Cloning that mainly use supervised learning (Bain and Sammut,
1995; Syed and Schapire, 2008; Ross et al., 2011; Reddy et al., 2019; Cai et al., 2019; Knox
and Stone, 2009). Generative Adversarial Imitation Learning (GAIL) (Ho and Ermon, 2016)
is a recent IL approach which is based on a generator-discriminator approach similar to AIRL.
However, since our goal is to operate in PCG environments, we require IRL methods able to
learn a reward function which generalizes to different levels rather than a policy which tends
to overfit to levels seen in expert demonstrations.

Other approaches combine IL and IRL (Ibarz et al., 2018): they first do an iteration of
Behavioral Cloning, and then apply active preference learning (Christiano et al., 2017) in
which they ask humans to choose the best of two trajectories generated by the policy. With
these preferences they obtain a reward function, which the policy tries to optimize in an
iterative process.

Procedural Content Generation. Procedural Content Generation (PCG) refers to algorith-
mic generation of level content, such as map layout or entity attributes in video games. A
detailed description of the most recent and related papers regarding PCG is given in Chapter 4.
Some examples of the growing interest in PCG environments from the DRL community are
the works by Risi and Togelius (2019), Justesen et al. (2018), Küttler et al. (2020), Guss et al.
(2019), Chevalier-Boisvert et al. (2019) and Juliani et al. (2019). Notably for this chapter,
Guss et al. (2019) applied imitation learning in the form of behavioral cloning over a large
set of human demonstrations in order to improve the sample efficiency of DRL.

5.3 Modifications to AIRL

In the following we present three extensions to the original AIRL algorithm which increase
stability and performance, while decreasing the tendency of the discriminator to overfit to
expert demonstrations. For complete details on the AIRL algorithm, we refer the reader to
Chapter 2.

• Reward standardization. Adversarial training alternates between discriminator train-
ing and policy optimization, and the latter is conditioned on the reward which is
updated with the discriminator. However, forward RL assumes a stationary reward
function, which is not true in adversarial IRL training. Moreover, policy-based DRL
algorithms usually learn a value function based on rewards from previous iterations,
which consequently may have a different scale from the currently observed rewards
due to discriminator updates. Generally, forward RL is very sensitive to reward scale
which can affect the stability of training. For these reasons, as suggested by Tucker
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et al. (2018) and Ibarz et al. (2018), we standardize the reward to have zero mean and
some standard deviation.

• Policy dataset expansion. In the original AIRL algorithm, each discriminator training
step is followed by only one policy optimization step. The experience collected in
this policy step is then used for the subsequent discriminator update. However, a
single trajectory may not offer enough data diversity to prevent the discriminator from
overfitting. Hence, instead of just one policy step, we perform K iterations of forward
RL for every discriminator step as suggested by Tucker et al. (2018).

Moreover, as already noted by Fu et al. (2018) and Reddy et al. (2019), IRL methods
tend to learn rewards which explain behavior locally for the current policy, because the
reward can forget the signal that it gave to an earlier policy. To mitigate this effect we
follow their practice of using experience replay over the previous iterations as policy
experience dataset. For the same reason, when we apply the learned reward function,
we do not re-use the final, possibly overfitted reward model, but rather one from an
earlier training iteration.

• Fixed number of timesteps. Many environments have a terminal condition which can
be triggered by agent behavior. Christiano et al. (2017) observed that these conditions
can encode information about the environment even when the reward function is not
observable, thus making the policy task easier. Moreover, since the range of the learned
reward model is arbitrary, rewards may be mostly negative in some situations, which
encourages the agent to meet the terminal conditions as early as possible to avoid
more negative rewards (the so-called “RL suicide bug”). For these reasons we do not
terminate an episode in a terminal state, but artificially extend it to a fixed number of
timesteps by repeating the last timestep.

5.4 Demonstration-efficient AIRL in Procedural
Environments

In PCG game environments, the configuration of the level as well as its entities are determined
algorithmically. Unless the game is very simplistic, this means it is unlikely to see the exact
same level configuration twice. Forward RL benefits from such environmental diversity
by increasing the level of generalization and credibility of agent behavior. However, as a
consequence of this diversity, many expert demonstrations may be required for IRL to learn
useful behavior. This is especially challenging for an adversarial techniques like AIRL as it
is known that GANs require many positive examples (Lučić et al., 2019).

In the following, we call the fully procedural environment ProcEnv. Levels Li ∼ ProcEnv
are sampled from this environment, and sample trajectories τLi ∼ Li from each level, where
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(a) Minigrid (b) Potions task

(c) Maze task (d) Ranged task

Figure 5.2: Screenshots of the various environments and tasks.

trajectories τLi = (s0, a0, . . . , aT−1, sT) are sequences of alternating states and actions.
Consequently, if we have two trajectories τLi and τLj , in most cases (unless Li = Lj) they
differ not only in their state-action sequences, i.e. the behavior, but also in their level content
Li vs Lj from which they are sampled.

To illustrate this, suppose we have a simple ProcEnv with two generation parameters: the
number of objects o ∈ [1, 10] and the number of enemies e ∈ [1, 6], so overall |ProcEnv| =
10 · 6 = 60 level configurations. Sampling expert demonstrations is a two-stage process: first,
we sample levels L1 = (3, 4), L2 = (5, 1), L3 = (7, 2) ∼ ProcEnv, where (o, e) denotes the
number of objects and enemies, respectively, and next we sample corresponding trajectories
τ
(3,4)
1 , τ

(5,1)
2 , τ

(7,2)
3 , which form our expert dataset. When faced with another trajectory

sample based on a random level, say, τ(1,4), the discriminator can simply distinguish expert
and non-expert trajectories by counting objects and enemies in the levels as observed in
the states of the trajectories and ignoring agent behavior entirely. Sampling more expert
trajectories increases the probability of levels being equal (or at least similar), and thus
makes it harder to memorize level configurations. However, collecting a large number of
demonstrations can be very expensive, and cannot not ultimately solve the problem for rich
enough PCG environments.

Our objective is to make AIRL effective and data-efficient when working with PCG
environments. Our main idea is to introduce an artificially reduced environment, which we
call a SeedEnv, that consists of n ≪ N levels sampled from the fully procedural ProcEnv.
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These levels are then used to obtain n randomly sampled expert demonstrations:

SeedEnv(n) = {L1, ..., Ln | Li ∼ ProcEnv}
Demos = {τLi | Li ∈ SeedEnv(n)}

Using the simplified example from before, this would mean that SeedEnv(3) = {L1, L2, L3}
and Demos = {τL1

1 , τL2
2 , τL3

3 }. In the following, we refer to each Li ∈ SeedEnv(n) as seed
level.

The reward function is learned via AIRL on the reduced SeedEnv environment instead of
the fully-procedural ProcEnv. To distinguish expert from non-expert trajectories, the discrim-
inator thus cannot rely on memorized level characteristics seen in expert demonstrations, but
instead must consider the behavior represented by the state-action sequence of the trajectory.

Once the discriminator is trained on SeedEnv, the learned reward function can be used to
train a new agent on the full ProcEnv environment. The disentanglement property of AIRL
encourages the reward function to be robust to the change of dynamics between different
levels, assuming a minimum number of seed levels necessary to generalize across level
configurations.

In summary, we observe that there are two sources of discriminative features in expert
trajectories: those related to the level, and those related to agent behavior. If AIRL is applied
naively to PCG environments, the discriminator is prone to overfitting to level characteristics
seen during expert demonstrations instead of focusing on the expert behavior itself. On the
one hand, by reducing discriminator training to the SeedEnv – the set of expert demonstration
levels – we force the discriminator to focus on trajectories and to avoid overfitting to level
characteristics. On the other hand, SeedEnv must contain enough levels to enable the
resulting reward function to generalize beyond levels in the reduced ProcEnv sample. We
show empirically in the next section that the number of levels required to generalize beyond
levels sampled in ProcEnv is much smaller than the number required to avoid overfitting,
which may be infeasibly large for PCG environments with many configuration options.

5.5 Experimental Results
We evaluate our method on two different PCG environments: Minigrid (Chevalier-Boisvert
et al., 2019) and DeepCrawl. For all experiments, we train an agent with PPO algorithm on
the ground-truth, hard-coded reward function and then generate trajectories from this trained
expert policy to use as demonstrations for IRL. The apprenticeship learning metric is used
for IRL evaluation: agent performance is measured based on the ground-truth reward after
having been trained on the learned IRL reward model.

We use the state-only AIRL algorithm with all modifications described in Section 5.3 to
learn a reward function in all experiments. We also trained policies with state-only GAIL but,
as it is not an IRL method, we cannot re-optimize the obtained model, so we instead transfer
the learned policy from the SeedEnv to ProcEnv.
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(a) (b)

Figure 5.3: Experimental results on MiniGrid. (a) mean reward during training for: our
DE-AIRL with different numbers of seed levels on both SeedEnv and ProcEnv, naive AIRL
with different numbers of demonstrations on ProcEnv, and expert performance on ProcEnv.
(b) discriminator loss during training on either SeedEnv (our approach) or ProcEnv (naive
AIRL).

To highlight the importance of our SeedEnv approach for learning good rewards in the
context of PCG environments, we perform the following ablations for each task:

• DE-AIRL (ours): We train a reward function on SeedEnv and use it to train a
PPO agent on ProcEnv. We show results for a varying number n of seed levels
in SeedEnv(n).

• AIRL without disentanglement: We train a reward function on SeedEnv, but without
the shaping term ϕω(s) which encourages robustness to level variation.

• Naive AIRL: We apply AIRL directly on ProcEnv and show results for a varying
number n of demonstrations.

• GAIL: We train a policy with GAIL on SeedEnv and then evaluate it on ProcEnv.

The code for replicating all experiments is open source and available online*.

Performance on Minigrid

Minigrid is a grid world environment with multiple variants. For our experiments, we use
the MultiRoom task: a PCG environment consisting of a 15× 15 grid, where each tile can
contain either the agent, a door, a wall, or the goal. See Figure 5.2 for an example screenshot
of the environment. The aim of the agent is to explore the level and arrive at the goal tile by
navigating through 2 or 3 rooms connected via doors. The shape and position of the rooms,
as well as the position of the goal and the initial location of the agent, are random. Each
episode lasts a maximum of 30 steps. The ground-truth reward function gives +1.0 for each

*Code available at https://github.com/SestoAle/Demonstration-Efficient-AIRL

https://github.com/SestoAle/Demonstration-Efficient-AIRL
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Figure 5.4: Experimental results on DeepCrawl tasks. Mean reward during training for: our
DE-AIRL with different numbers of seed levels on both SeedEnv and ProcEnv, naive AIRL
with different numbers of demonstrations on ProcEnv, and expert performance on ProcEnv.

Figure 5.5: Mean reward on SeedEnv throughout training for AIRL without the shaping term,
and for GAIL, plus expert performance on ProcEnv for comparison. SeedEnvs consist of 40
levels for Minigrid, and 20 levels for the DeepCrawl tasks.

step the agent stays at the goal location. The action space consist of 4 discrete actions: move
forward, turn left, turn right and open door.

As the results in Figure 5.3 show, using a SeedEnv with only 40 levels and the associated
40 demonstrations, AIRL is able to extrapolate a good reward function enabling the agent to
achieve near-expert performance in ProcEnv. However, if we train a reward model with only
40 demonstrations directly on the full PCG environment, we obtain an inadequate reward
function and consequently a poor agent policy. This is also demonstrated by the loss curves:
the loss of the discriminator with 40 demonstrations on ProcEnv converges to zero very
quickly, indicating the overfitting to level characteristics we discussed in Section 5.4. The
results also show that 40 is a good number of seed levels for SeedEnv: whereas we find a
good policy for SeedEnv with only 30 seed levels, the reward function does not generalize
beyond the expert levels to be useful on ProcEnv. Moreover, the plots show that naive AIRL
is not successful on ProcEnv with even 100 – so more than twice as many – expert trajectories.
Only with 1000 demonstrations does naive AIRL achieve near-expert performance, showing
that our DE-AIRL is much more demonstration-efficient.
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Figure 5.6: Discriminator loss during training on either SeedEnv (our approach) or ProcEnv
(naive AIRL) in the DeepCrawl tasks.

Performance on DeepCrawl

For a complete description of the environment, see Chapter 3. However, for this chapter we
do not use the original DeepCrawl game, but three rather different sub-games defined within
the game itself (see Figure 5.2):

• Potions: The agent must collect red potions while avoiding all other collectible objects.
The ground-truth reward function gives +1.0 for collecting a red potion and −0.5 for
collecting any other item. An episode ends within 20 steps.

• Maze: In this variant, the agent must reach a randomly located goal in an environment
with many impassable obstacles forming a maze. The goal is a static enemy and there
are no collectible objects. The reward function gives +10.0 for each step the agent
stays in proximity to the goal. Episodes end after 20 timesteps.

• Ranged Attack: For this task, the agent has the two attack actions: melee attack and
ranged attack. The goal of the agent is to hit a static enemy with only ranged attacks
until the enemy is defeated. The ground-truth reward function gives +1.0 for each
ranged attack made by the agent. The levels are the same as for the Potions task, plus a
randomly located enemy. Episodes end after 20 timesteps.

Even for the more complex DeepCrawl tasks, the results in Figure 5.4 show that our
demonstration-efficient AIRL approach allows agents to learn a near-expert policy for Pro-
cEnv with few demonstrations: in two of the three tasks only 20 demonstrations are necessary,
while for the Ranged Attack task 10 already suffice. Similar to Minigrid, the naive AIRL
approach directly applied on ProcEnv does not achieve good performance even with 100
demonstrations – so with more than five times as many demonstrations. With 1000 demon-
strations, naive AIRL reaches similar performance on Potions and Maze, but still not on the
Ranged Attack task. Figure 5.6 shows the evolution of discriminator losses which behave
consistently with what we have observed for the Minigrid environment.
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Table 5.1: Average ground-truth episode reward over 100 episodes on ProcEnv. Our AIRL
approach trains an agent directly on ProcEnv using the reward model learned on SeedEnv,
whereas this is not possible for GAIL, hence the GAIL policy is trained on SeedEnv and then
transferred to ProcEnv.

Minigrid DeepCrawl

Seed levels MultiRoom Seed levels Potions Maze Ranged Attack

DE-AIRL (ours) 40 12.19 20 3.78 141.87 2.30

GAIL
40 9.00 20 1.71 33.77 1.01

100 9.21 100 2.38 66.00 1.11

Importance of disentanglement

We claimed above that the use of a disentangling IRL algorithm like AIRL is fundamental
for PCG games. We test this experimentally by training an AIRL reward function without
the shaping term ϕ(s) on a SeedEnv. As the plots in Figure 5.5 show, this modified version
does not achieve the same level of performance as the full disentangling AIRL on all tasks.
We believe this is due to the variability of levels in SeedEnv: removing ϕ(s) takes away
the disentanglement property, which results in the reward function no longer being able
to generalize, even for the small set of fixed seed levels. Similar results were observed by
(Roa-Vicens et al., 2019).

We also train a state-only GAIL model on a SeedEnv. On Minigrid and Maze the policy
reaches near-expert performance, while on Potions and Ranged Attack it resembles the
performance of AIRL without ϕ(s). We believe that this discrepancy is caused by the
different degree of “procedurality” of these tasks: for Potions and Ranged Attack, there are
many different collectible objects with procedural parameters – in fact, all entities and their
attributes are chosen randomly at the beginning of each episode. For the other two tasks,
the number of procedural choices is smaller, consisting only of the static obstacles and no
attributes. The degree of procedurality presumably allows GAIL to achieve good results
on SeedEnv for Minigrid and Maze, but not for Potions and Ranged Attack. However, on
none of the tasks does GAIL reach the level of performance of our demonstration-efficient
AIRL approach when transferring policies from SeedEnv to ProcEnv, as shown in Table 5.1.
Note that, as we have mentioned before, GAIL is not an IRL method and hence cannot be
re-optimized on the ProcEnv environment, contrary to AIRL, so this shortcoming is not
unexpected.
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SeedEnv

ProcEnv

Figure 5.7: Ablation study of the modifications described in section 4 of the main text. The
first row represents training in a SeedEnv, while the last row represents training in a ProcEnv.
For all the DeepCrawl tasks we used 20 seed levels and 20 demonstrations, while for Minigrid
we used 40 seed levels and 40 demonstrations.

Effects of modifications to AIRL

In Figure 5.7 we give an ablation study on both SeedEnv and ProcEnv for the modifications
to AIRL proposed in section 4 of the main text. The plots show how the use of both reward
standardization and policy dataset expansion yield more stable and better results for the
majority of the tasks on both the environment types.

5.6 Implementation Details

In this section we give additional details on the network architectures used for DE-AIRL on
the Minigrid and DeepCrawl environments. In Table 5.2 we detail the hyperparameters used
for all tasks for both policy and reward optimization.

Similar to Chapter 3 and Chapter 4, limited computational resources prevented this
research from repeating experiments multiple times and reporting the mean and standard
deviation of the results.

Network Structures

The original authors of AIRL (Fu et al., 2018) use a multilayer perceptron for reward
and policy models, however we use Convolutional Neural Networks (CNNs) like (Tucker
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et al., 2018). Moreover, we use PPO instead of Trust-Region Policy Optimization (TRPO)
(Schulman et al., 2015) as in the original paper.

• Minigrid. The policy architecture consists of two branches. The first branch takes
the global view of the 15× 15 grid, and each tile is represented by a categorical value
that describes the type of element in that tile. This input is fed to an embedding layer
and then to a convolutional layer with 3 × 3 filters and 32 channels. The second
branch is like the first, but receives as input the 7× 7 categorical local view of what
the agent sees in front of it. The outputs of the convolutional layers are flattened and
concatenated together before being passed through a fully-connected layer of size
256. The last layer is a fully connected layer of size 4 that represents the probability
distribution over actions.

The reward model and the shaping term ϕω have the same architecture. Unlike
the policy network, they take only the global categorical map and pass it through
an embedding layer, two convolutional layers with 3 × 3 filters and 32 channels
followed by a maxpool, and then two fully-connected layers of size 32 and a final
fully-connected layer with a single output. All other layers except the last one use
leaky-ReLu activations.

• Potions and Maze. The convolutional structure of the policy of the Potions and Maze
tasks are the same defined in Chapter 3 without the “property module” and the LSTM
layer. The reward model takes as input only the global view, then it is followed by a
convolutional layer with 1× 1 filters and size 32, by two convolutional layers with
3× 3 filters and 32 filters, two fully-connected layers of size 32, and a final fully-
connected layer with a single output and no activation. The shaping term ϕω shares the
same architecture. We used leaky ReLu instead of simple ReLu as used in DCGAN
(Radford et al., 2016).

• Ranged Attacks. In this case the policy has the complete structure defined in Chapter 3
without LSTM, and the reward model is the same of the previous tasks with the addition
of other two input branches that take as input two lists of properties of the agent and
the enemy. Both are followed by embedding layers and two fully connected layers of
size 32. The resulting outputs are concatenated together with the flattened result of the
convolutional layer of the first branch. This vector is then passed to the same 3 fully
connected layers of the potion task. The shaping term shares the same architecture.

5.7 Conclusions

In this chapter we have presented an IRL approach, DE-AIRL, which is based on AIRL
with a few modifications to stabilize performance, and is able to find a good reward function
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Table 5.2: Hyper-parameters for all the tasks. Most of the values were chosen after many
preliminary experiments made with different configurations

Parameter Minigrid Potions Maze Ranged Attack

lrpolicy 5e−5 5e−5 5e−6 5e−5

lrreward 5e−6 5e−4 5e−4 5e−4

lrbaseline 5e−4 5e−4 5e−4 5e−4

entropy coefficient 0.5 0.1 0.1 0.1

exploration rate 0.5 0.2 0.2 0.2

K 3 3 5 3

γ 0.9 0.9 0.9 0.9

max timesteps 30 20 20 20

stdreward 0.05 0.05 0.05 0.05

for PCG environments with only few demonstrations. Our method introduces a SeedEnv
which consists of only a few levels sampled from the PCG level distribution, and which
is used to train the reward model instead of the full fully-procedural environment. In
doing so, the learned reward model is able to generalize beyond the SeedEnv levels to
the fully-procedural environment, while it simultaneously avoids overfitting to the expert
demonstration levels. We have shown that DE-AIRL substantially reduces the number of
required expert demonstrations as compared to AIRL when directly applied on the PCG
environment. Moreover, the experiments illustrated that the success of our approach derives
from the disentanglement property of the reward function extrapolated by AIRL. Finally, we
compared to an imitation learning approach, GAIL, and observed that DE-AIRL generalizes
better than the GAIL policy when transferring from the expert demonstration levels to the
fully-procedural environment.

With DE-AIRL, game designers can use IRL to create qualitative behaviors without
engineering reward functions, thus maintaining the “prior-free” desiderata and augmenting
“variety”. Moreover, DE-AIRL works specifically with PCG environments and hence we
can take advantage of games such as those described in Chapter 4. This greatly improves
the general usability of DRL-based tools for non-experts in machine learning. However, in
this chapter we demonstrated the effectiveness of DE-AIRL on simple behaviors in simple
tasks. Training a complex policy with only IRL is challenging and time consuming. In the
next chapter we see how to leverage DE-AIRL to train simple qualitative sub-policies and
how to combine them together in order to mitigate these problems while still satisfying our
desiderata.



Chapter 6

Policy Fusion Methods†

In the last two chapters we first introduced the importance of using procedural content
generated environments to avoid retraining in the face of design changes, and subsequently
we described a new algorithm that combines inverse reinforcement learning and procedural
content generation. The purpose of the latter is to train agents that generalize but at the same
time that follow expert guidance without requiring designers to engineer a reward function.
However, it has two main drawbacks: on one hand, policies described in Chapter 5 reflect
simple behaviors and training on complex, long-time horizons with just inverse reinforcement
learning is still a difficult challenge. On the other, in some cases design changes can be
significant enough to require an adjustment in the strategy of NPCs, thus requiring some new
training.

In this chapter we show how to combine distinct behavioral policies as desired by
game designers to obtain a meaningful “fusion” policy which comprises all these behaviors.
To this end, we propose four different policy fusion methods for combining pre-trained
policies. We further demonstrate how these methods can be used in combination with inverse
reinforcement learning in order to create intelligent agents with specific behavioral styles
as chosen by game designers, without having to define many and possibly poorly-designed
reward functions. Experiments on DeepCrawl and another environment indicate that our
proposed entropy-weighted policy fusion significantly outperforms all others. We provide
several practical examples and use-cases for how these methods are indeed useful for video
game production and designers.

6.1 Introduction

In this chapter we are interested in training Non-Player Characters (NPCs) that exhibit
specific behavioral styles or attitudes chosen by designers. However, achieving this using

†Portions of this chapter appeared in: A. Sestini, A. Kuhnle, and A. D. Bagdanov, “Policy Fusion for
Adaptive and Customizable Reinforcement Learning Agents”, published in the Conference on Games (CoG),
2021.
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Figure 6.1: Summary of our approach: by combining a previously-trained main policy with
with one or more sub-policies, we can add local behaviors to the overall agent behavior,
adapting it to evolving game design instead of discarding the previously trained agent policy
and training a novel one from scratch. In this way, designers can create agents that reflect
specific choices in easy and understandable ways.

standard Deep Reinforcement Learning (DRL) training – i.e. via definition and shaping of a
complex reward function – can be impractical (Amodei et al., 2016) and expensive since it can
require hundreds of thousands of episodes to learn useful policies from scratch. Techniques
like Imitation Learning (IL) (Bain and Sammut, 1995) and Inverse Reinforcement Learning
(IRL) (Ng and Russell, 2000) can help game designers on the first point, by providing tools
to articulate behaviors without requiring handcrafted rewards, however they do not address
the sample efficiency problem inherent in DRL training. The policy fusion approaches we
propose in this chapter pair well in particular with inverse reinforcement learning in that it is
possible to train self-contained, micro-behaviors from expert (designer) demonstrations that
are then fused with the main agent policy to adapt it with the new behavior.

We identify three situations that designers face when training game agents with DRL. In
all of the following, we assume the existence of an agent trained with standard DRL which,
however, does not reflect designer intent – and which therefore requires adaptation to:

• Enhance performance, when the agent trained with standard RL does not meet
performance requirements – often due to a sparse or poorly crafted reward function.
In standard RL, addressing this usually means tuning hyperparameters, modifying the
training setup, adjusting the reward function, and then re-training the agent;

• Add style, when the agent does not reflect the qualitative behavior desired by designers.
For example, an agent might be supposed to act more “sneaky” or more “aggressive”
relative to the current agent behavior. In standard RL, this usually means adapting the
reward function accordingly and re-train the agent; and
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• Adapt to new features, when designers change a detail in the game mechanics such
as adding a new object/ability/property/etc. Again, this typically requires re-training a
previously trained agent from scratch. Moreover, one cannot rely on the fact that the
previous training procedure and hyperparameters will continue to work well in this
new version of the environment.

In this chapter we tackle the aforementioned problems and propose methods to combine
diversified policies in ways that avoid re-training. As illustrated in Figure 6.1, instead of
discarding the previously trained agent policy and training a novel one from scratch, we
instead train a sub-policy to handle the intended behaviour aspect. For example, a sub-policy
may be trained only to learn how to handle a novel object added by a designer. We then
merge the main policy with the sub-policy via policy fusion, which requires no re-training
and ideally results in an agent able to properly handle this new object while maintaining
the overall skills of the main game policy. We also demonstrate how these approaches can
efficiently be used in combination with IRL in order to train agents which reflect the intention
of designers without requiring hand-crafted reward shaping. Experiments on two game
environments show that our policy fusion approaches outperform fusion methods from the
literature and that fused policies achieve the same – in some cases even better – results than
re-training the main policy from scratch using engineered reward functions.

6.2 Related Work

Here we review recent work most related to this chapter.

DRL in video games. The already cited results from AlphaStar (Vinyals et al., 2019) and
OpenAI 5 (OpenAI et al., 2019) demonstrated how DRL can be used to create super-human
agents in modern complex video-games, while results such as the work by Ecoffet et al.
(2021) show that we can create super-human agents able to surpass human players in the
ATARI games of the Arcade Learning Environment (ALE) (Bellemare et al., 2013). However,
our motivation is different in that we do not aim to create super-human agents, but rather to
facilitate the use of DRL for NPCs as part of game design.

DRL for video games. Our goal is to demonstrated how properly use DRL for video game
production. As stated in the introduction, Jacob et al. (2020) argued that industry does not
need agents build to “beat the game”, but rather to produce credible and human-like behaviors.
Results such as the work by Delalleau et al. (2019), Alonso et al. (2021), and Pleines et al.
(2019) are other notable examples of applying DRL to commercial video games. Within
this context, Procedural Content Generation (PCG) has recently gained a lot of attention: in
Chapter 4 we noticed that diverse environment distributions are essential to adequately train
and evaluate RL agents for video game production, as these kinds of environments enable
generalization of agents when faced with design changes.
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Inverse Reinforcement Learning. IRL refers to techniques that infer a reward function
from human demonstrations, which can subsequently be used to train an RL policy. Ad-
versarial Inverse Reinforcement Learning (AIRL) (Fu et al., 2018) is a state-of-the-art IRL
method, which is enhanced by DE-AIRL (Chapter 5) to work with PCG environments. Other
IRL methods different from AIRL, which were tested on simple and static environments, are
the works by Brown et al. (2019), Christiano et al. (2017), and Ibarz et al. (2018). There are
only few examples of applying IRL for video game agents: Tucker et al. (2018) try to use
AIRL on ALE without success, while Source of Madness used imitation learning to create
diverse game agents in a commercial video game (Carry Castle Studio, 2022).

Ensemble methods for RL. The use of ensemble methods in RL refers to the practice
of combining two or more RL algorithms to increase their performance. Wiering and
Van Hasselt (2008) survey different methods to combine multiple RL algorithms. Other
examples of ensemble methods in RL are the works from Faußer and Schwenker (2011),
Hans and Udluft (2010), Peng et al. (2016), Xu et al. (2020), and Peng et al. (2019). However,
all of these techniques combine models but with the same goal, instead our aim is to combine
policies with different objectives, possibly even orthogonal ones.

Multi-objective learning is motivated by a similar goal, and attempts to combine differ-
ent reward functions during training to create a complex agent (Vithayathil Varghese and
Mahmoud, 2020; Huang and Ontañón, 2020; Brys et al., 2014b,a). Concurrently to our
work, Aytemiz et al. (2021) started to tackle a similar problem to ours with a multi-objective
approach. These approaches, however, try to combine different objectives during training.
Instead, our aim is to combine various policies without re-training of agents.

The policy fusion approaches we describe in this chapter are distinct from ensemble
methods and multi-objective learning. Our objective is to combine distributions of different
policies after training, while ensemble methods combine decisions and multi-objective
learning combine reward functions.

6.3 Policy Fusion Methods
This section relies heavily on our DE-AIRL algorithm, and for more details we refer the
reader to in Chapter 5.

When game designers want to create game agents with DRL for commercial video games,
they must face a large number of challenges. For example, they go through many iterative
design choices that change the environment and force agents to adapt with it (Zhao et al.,
2020); or they need to adapt the final agent behavior because it does not reflect the designers
intention (Jacob et al., 2020); or they need to test new features added to the game under time
constraints.

Suppose designers have an agent previously trained with DRL and it must be adapted
to a game change. The simplest but most expensive solution is to change something in the
training set-up – like reward function or environmental dynamics – and restart the training
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Figure 6.2: Training time for different adaptation methods. The easiest approach is to simply
re-train all agents from scratch, but this also requires the most time and assumes the training
procedure and hyperparameters remain valid after design changes. Instead, with our policy
fusion methods we need to only train a single sub-policy without touching the already-trained
agents, requiring about a tenth of the time compared to re-training (see Section 6.4 for more
details).

from scratch. Suppose that to train an agent from scratch will take T hours. Usually, a
video game does not only have one agent, but multiple ones with different behaviors or
characteristics. Hence, if we suppose that there are N agents, training all of them from
scratch will take N × T hours every time a design decision is made.

Another possibility is to fine-tune the agents every time these decisions are made. To
fine-tune an agent we need to change something in the training set-up and continue the DRL
training of the previously-trained agent. Therefore, we must spend t f t hours, with generally
t f t ≤ T. However, since there are N agents we need to fine-tune all of them, resulting
in a total of N × t f t hours. Moreover, fine-tuning an agent after a design decision is not
always trivial. It is known that DRL suffers from overfitting (Justesen et al., 2018) that can
render the process of fine-tuning very difficult. However, this can be mitigated with PCG (see
Chapter 4. Finally, both fine-tuning and training from scratch often require hyper-parameter
tuning which may increase the overall training time.

Our objective is to reduce training time and to avoid the re-training of all agents every
time we make a design decision. Our main idea is to train sub-policies that explain locally
some type of behavior that designers want to teach to agents. Then, we need a policy fusion
method that can combine the main policy with the new sub-policy without losing the skills
from its main training. In this way, we get an agent that is now able to adapt to the new
behavior. For example, suppose we have a well-trained agent but we add a new usable object
to the game, which the agent never saw during training and therefore is unable to use it.
Designers could now train a sub-policy which learns only how to best use that object. Then,
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they can combine the previously trained policy with the new sub-policy in order to “teach”
the agent to properly use the new feature.

Suppose we spend tsp hours to train the sub-policy, then most likely tsp ≤ t f t ≤ T. This
method is completely independent from the number N of previously trained agents, because
we need to only train 1 sub-policy and combine it with any of the previously trained agents.
So, the total training time in this case is just tsp. Figure 6.2 shows an example of the different
training times.

Policy Fusion Methods

We propose four different policy fusion methods for DRL to combine different policies.
The first two are simple approaches often used for ensemble methods in RL (Wiering and
Van Hasselt, 2008; Peng et al., 2019), while the other two are novel techniques proposed by
us in this chapter.

Suppose we have a main policy π0 and a set of sub-policies πk for k = 1, . . . , K. Each
policy takes as input a state st and returns a probability distribution over the same discrete
action-space. As is common in the reinforcement learning literature, we will write the policy
as πi(a|st) to indicate that it is a distribution over actions conditioned on state st.

To adapt the main policy to include the behaviors of the sub-policies, without the need
for retraining, we propose the following fusions methods which result in a fusion policy π f :

• Mixture Policy (MP): the resulting policy is the average of the main and all sub-
policies:

π f (a|st) =
1

K + 1

K

∑
k=0

πk(a|st). (6.1)

• Product Policy (PP): the resulting policy is the product of the main and all sub-policies:

π f (a|st) =
1
Z

K

∏
k=0

πk(a|st), (6.2)

where Z is the normalization constant required to make π f a probability distribution.

• Entropy-Threshold Policy (ET): we compute the entropy of all policies at state st

and find the sub-policy k∗ with minimum entropy:

Hk = − ln
1
|A|∑a

πk(a|st) ln πk(a|st) (6.3)

k∗ = argmin
k=1,...,K

Hk, (6.4)

Where |A| is the cardinality of the state space. Then, if Hk∗ is less then H0 plus
threshold ϵ, we perform the action following the sub-policy, otherwise we perform the
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action following the main policy:

π f (a|st) =

{
πk∗(a|st) if Hk∗ < H0 + ϵ

π0(a|st) otherwise
(6.5)

• Entropy-Weighted Mixture Policy (EW): the resulting policy is a weighted average
of the main policy and the minimum-entropy sub-policy identified using Equation 6.4:

π f (a|st) = Hk∗ × π0(a|st) + (1−Hk∗)× πk∗(a|st). (6.6)

6.4 Experimental Results

We performed experiments on two different environments to compare the policy fusion
methods. In the first experiment, we combine two independent policies trained with hard-
coded reward functions in order to understand the performance of each fusion method. For
this, we used the MiniWorld environment, a minimalist 3D interior environment simulator
for reinforcement learning and robotics research (Chevalier-Boisvert, 2018). In the second
set of experiments, we used the DeepCrawl environment (see Chapter 3 for a complete
description) to evaluate how policy fusion methods can be used in combination with Inverse
Reinforcement Learning (IRL).

Results on MiniWorld

For our first experiment we use the PickUpObjs variant of MiniWorld. In this environment,
there is a single large room in which the agent must collect objects of two types: red boxes
and green balls. A maximum of 5 objects are spawned in random positions. The observation
space of this environment is a single RGB image of size (80, 60, 3).

We train two policies with different, hard-coded reward functions. Our main policy π0 is
trained to collect all the red boxes, with reward:

R0 = +1 for collecting a red box. (6.7)

A single sub-policy π1 is then learned with the aim of collecting all the green balls:

R1 = +1 for collecting a green ball. (6.8)

The two policies use the same network architecture, consisting of three, stride 2 convolu-
tional layers of size 5, 3 and 3, respectively, and with 32, 32, and 64 channels, respectively.
These are followed by two fully connected layers of size 256 and a final fully connected layer
followed by a softmax to represent the action distribution. The action space consists of 5
discrete actions: turn left, turn right, move forward, move backward and pick up.
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Figure 6.3: Results of the different fusion methods in the MiniWorld environment. The plot
shows the normalized rewards R0 and R1 using the methods described in Section 6.3. The
plot below shows the total reward R0 + R1 achieved by the respective combined policies.
Numbers are averages over 1,000 episodes.

After training the two policies with PPO algorithm, we combine them using the methods
proposed in Section 6.3. As baselines, we also train a policy from scratch using the combina-
tion of R0 + R1, as well as a policy fine-tuned for the combined reward R0 + R1 after being
trained first with only R0. Whereas the fusion methods do not involve further learning, the
two baseline policies represent “upper bounds” which are trained to optimize the combined
reward. For this first experiment, both the main policy and the sub-policy were trained for
1000 episodes, while the baseline was trained for 3000 episodes.

Figure 6.3 shows the results of these experiments. As the plots illustrate, each policy
fusion method improves upon the overall performance of the agent with respect to the
combined reward. However, our proposed fusion approach EW outperforms all other methods
and achieves the same performance level of the policies trained from scratch or fine-tuned.

This first experiment shows that our proposed policy fusion methods can indeed combine
different policies to achieve more complex behavior. The results indicate that, while all yield
some improvement, the EW method is by far the best overall, followed by PP. This is a trend
we observed in all subsequent experiments.*

Results on DeepCrawl

For a complete description of the environment and the training set-up, refer to the Chapter 3.
As before, we used PPO to train agents in this environment, and they all use the Dense
Embedding architecture proposed in Chapter 4. We train an agent with the hard-coded reward
function in Equation 3.1 as the main policy π0. The training of this agent reflects the “Ranger”
training described in Chapter 3. Subsequently, we train one or more sub-policies and merge

*Code to replicate the experiments is at https://github.com/SestoAle/Policy-Fusion-RL

https://github.com/SestoAle/Policy-Fusion-RL
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(a) (b)

(c)

Figure 6.4: Results for the enhancing performance use-case. In all figures, the top plot shows
the normalized rewards for each fusion method: R0 refers to the original environment reward,
R1 refers to the reward used for training sub-policy π1, and R2 to the reward used for training
sub-policy π2. The bottom plot shows the win rate of the combined agents versus the base
agent π0. (a) results for the combination π0 + π1. (b) results for π0 + π2. (c) results for
π0 + π1 + π2. Numbers are averages over 1,000 episodes.
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(a) (b)

(c)

Figure 6.5: Results for the adding style use-case. In all figures, the top plot shows the
individual normalized rewards for the different fusion methods: R0 refers to the original
environment reward, and R∗ refers to the reward used to train sub-policy π∗. The bottom
plot shows some qualitative statistics which define the “style” of the agent. (a) combination
π0 + πa, where πa is a sub-policy trained to act like an “archer”. Numbers are averages
over 1,000 episodes. (b) combination π0 + πw, where πw is a sub-policy trained to act like
a “warrior”. (c) combination π0 + π1, where π1 is a sub-policy trained to avoid loot in the
map.

those with the main policy. Each of the following sub-policies are trained with DE-AIRL,
using the reward approximators of Chapter 5. The majority of demonstrations for DE-AIRL
come from a human expert. In the next section we describe the experiments we conducted,
each of which are instances of a use-case outlined in Section 6.1.

Enhancing performance. Suppose that training with the hard-coded reward function does
not result in competitive agents. For example, they do not use certain objects in the map which
designers believe would improve their win rate. This can be caused by a badly-designed
reward function or a sub-optimal training setup.
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To explore this use case, we created two different sub-policies π1 and π2 for our first
experiment. The first is trained with DE-AIRL to collect and use a specific object in the
map, while the second is trained from demonstrations to get all loot which increases agent
statistics. We then combine π0 + π1 and π0 + π2, and let the combined agents fight against
the base agent π0. Pitting agents against the base agent allows us to have some quantitative
measure about the different policy fusion methods, as our aim here is to create agents that
increase their win rate.

As Figure 6.4(a) and 6.4(b) show, combining the main policy with π1 and π2 increases
the win rate of the main agent for all fusion methods, with EW being the best, followed
by PP. Moreover, all methods decrease the original reward function of the environment.
This indicates that the reward is probably not optimally designed in order to yield the most
competitive agents (in terms of win rate).

The experiment shows that combining policies can increase the win rate of an agent by
more than 10%. Among the methods, EW is the one that decreases the original reward the
least while at the same time improving the sub-policy reward. In the π2 experiment, the EW
method even outperforms training from scratch and fine-tuning. This is probably due to the
difficulty of combining a hard-coded reward function with a learned one, since these rewards
have different scales.

Since both sub-policies individually already increase the competitiveness of the main
agent, we also tried to combine them all: π0 + π1 + π2. As we expected, Figure 6.4(c)
shows that the combination of all three policies using EW results in an even more competitive
agent which wins more than 70% of the games against the base policy π0. Furthermore, EW
clearly outperforms the other methods, including training from scratch and fine-tuning.

Adding style. This use case is about training NPCs that exhibit certain behavioral styles
specified and controlled by developers. For example, designers may want an agent to act more
“sneakily” or more “aggressively”. It is very difficult to computationally specify subjective
styles, and expect that the main agent π0 may likely not reflect the qualitative behavior a
designer wants. Since we are not interested in the competitiveness of the agent here, but rather
being able to control the behavioral aesthetics of NPCs, we conduct a qualitative analysis of
agent behavior.

We first train a sub-policy π1 with DE-AIRL which avoids loot in the map while fighting
against the opponent. This is an interesting experiment for two reason: on the one hand, we
add a new style to the main behavior, while, on the other hand, we are trying to limit the
agent avoid a behavior it has already learned during training of π0. Figure 6.5(a) shows that
EW method continues to outperform the others, as it decreases the main reward the least
while simultaneously augmenting it with the style demonstrated by the designers. Other
interesting observations here are that MP does not work at all, while the PP method does add
the intended style to the behavior but deviates a lot from the main policy.

For the second experiment in this use-case changed the combat style of π0 to emulate
the style of the other two agent classes in defined in Chapter 3 – Warrior and Archer. These
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(a) (b)

Figure 6.6: Results for the adapting to new features use-case. (a) the top plot shows normal-
ized rewards for the different policy fusion methods: R0 refers to the original environment
reward and R1 refers to the reward used for training sub-policy π1. The bottom plot shows
the win rate of the combined agent versus the base agent. All experiments use the E1 version
of the game. (b) both plots show the win rate of the combined agent versus the plain agent
with different combinations of sub-policies with π0. Numbers averages over 1,000 episodes.

two classes are distinguished from each other by the type of attacks they perform in combat:
the Warrior relies on melee attacks, while the Archer only on ranged attacks. In contrast,
the Ranger, our main policy, performs both melee and ranged attacks. We train Warrior and
Archer sub-policies πw and πa from demonstrations provided by the pre-trained agents and
then combine them with the main policy: π0 + πw and π0 + πa. The results are shown in
Figures 6.5(b) and 6.5(c). Indeed, with π0 + πw we are able to modify the Ranger behavior
act as a Warrior. With π0 + πa we can change the behavioral style of the Ranger towards
the Archer, i.e., to perform more ranged than melee attacks, but the combination does not
perfectly emulate the Archer behavior. Again, in both cases the EW method outperforms all
other fusion methods.

Adapting to new features. suppose an agent π0 was trained on a certain version of the
environment, E0. Later, after design decisions, some aspect of the game has changed. For
example, maybe a new usable item in the map was added, to arrive at a new version of
the environment E1. At this point, designers require an agent π1 which is aware of and
able to properly exploit this new feature. They have two choices: re-train from scratch all
previously-trained agents, or train a sub-policy in order to teach it how to use only the new
object, and then augment π0 with this sub-policy.

For our first experiment in this use-case, we added a new usable object to the game.
We designed this object so that an NPC using it will have an advantage agents that do not.
This way, use of the new object will be reflected in the win rate of π1 over π0. We train a
sub-policy to exploit this feature and combine it with π0 using policy fusion. This requires
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an “adapter” which hides the new object from π0, so to avoid confusion of encountering a
new object never seen during training. As baseline, we train an agent from scratch in E1 but
with the original DeepCrawl reward defined in Equation 3.1. Figure 6.6(a) shows the results:
the combined agent is perfectly capable of using the new object, with EW outperforming all
other fusion methods. An interesting observation here is that training from scratch does not
learn to make use of the new feature: it just ignores the object and reaches the same level
of performance as π0. This demonstrates that training from scratch in the face of design
changes is not a trivial task: we may need to tune hyperparameters or even adapt the reward
function to train an agent able to incorporate the new feature into its behavior. But, as we
mentioned before, engineering a well-designed reward function for very complex behavior
is not easy, and training from scratch takes more time than training only a sub-policy. Our
approach enables quick and efficient adaptation to new features in a game environments,
which facilitates testing without having to wait for agents to re-train.

Our final experiment simulates multiple, iterative design changes: since we know that
fusion methods can adapt to a single change in the environment dynamics, what if we add
two more features? For this, we first added a new usable object which increases the statistics
of agents that collect it, and then we added an instant death tile. Clearly, an agent that
adapts to these changes will have an advantage. For evaluation we compare two agents in
an environment with both new features present. The first agent π0 was trained before these
features were added. The second agent is π0 plus all the sub-policies trained how to use the
new features. The baseline is an agent re-trained from scratch on the environment with both
changes. Since we have established that EW is the best of the considered fusion methods,
we only used this technique here. Figure 6.6(b) shows the results for different combinations
of sub-policies and π0. Indeed, we can even combine even all 4 policies and achieve better
results than the re-training baseline. We believe that after some hyperparameter tuning, the
baseline will likely be able to perform better than our method. However, this would come at
a very high cost in term of human effort and time.

Training Times

Taking the last experiment of Section 6.4 as illustrative example, training the main policy
takes about 66 hours, while training a single sub-policy requires about 6 hours. Using policy
fusion thus requires only an additional 6 hours for each adaptation, whereas it takes another
66 hours per adaptation to re-train main policy from scratch. Our method is about 10 times
faster than the standard approach. All training was performed on a NVIDIA RTX 2080
SUPER GPU with 8GB RAM.
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6.5 Conclusions
Training intelligent agents in complex environments using deep reinforcement learning is
difficult and time-consuming, and moreover requires specialized knowledge of both the
domain and state-of-the-art deep learning techniques. In this paper we presented several
policy fusion methods that can combine policies with the aim of adapting or modifying
behavior in the face of game design changes – all without requiring retraining of agents to
cope with these changes. Our experiments clearly show that the Entropy-Weighted Mixture
(EW) fusion technique significantly outperforms the others methods, and in some cases even
surpasses the agent re-trained from scratch or fine-tuned using the combined reward function.
Of all methods, EW strikes the best balance of maintaining the original policy behavior while
simultaneously augmenting it with the sub-policy’s new “style”.

Our experiments also showed how these fusion methods can be used in combination with
inverse reinforcement learning to create varied and complex behavior without defining new
reward functions, which contrasts to the prevailing perception that IRL is difficult to exploit
in high-dimensional state spaces (Zhao et al., 2020).

The techniques proposed so far in this dissertastion have the aim of satisfying the desider-
ata outlined in Chapter 3. In Chapter 4 we augmented the “credibility” and “imperfection”
desiderata with procedural content generation. In Chapter 5 we added human-likeness enhanc-
ing “credibility” while still satisfying the “prior-free” requirement through demonstration-
efficient inverse reinforcement learning. In this Chapter we increased “variety” via policy
fusion still maintaining all the other desiderata. With our improvements we contributed to
solve problems defined in Chapter 2, and have made steps forward the creation of effective
game design tools based on deep reinforcement learning. What is missing now is the opinion
of professional game developers. In the next chapter we see how we can use concepts,
algorithms and theories encountered up to now for an important development step: game
testing. Moreover, we ask professional game designers how likely they are to use such
innovative techniques.



Chapter 7

Curiosity-Conditioned Proximal
Trajectories†

In the previous chapters we described novel algorithms and benchmarks for training NPCs
that can play the game with or against the human player. These agents offer the potential
of replacing current game AI systems and their inherited problems. However, as stated in
Chapter 1, there is another context where autonomous agents and AI systems are important to
game development: playtesting. This chapter combines the concepts and theories encountered
so far in this dissertation – such as imitation learning and curiosity driven learning described in
Chapter 2, the embedding operations of crucial importance in Chapter 3, and the transformer
architecture outlined in Chapter 4 – to train agents that can perform automatic gameplay
validation.

In this chapter we propose a novel deep reinforcement learning algorithm to perform
automated analysis and detection of gameplay issues in complex 3D navigation environments.
The curiosity-conditioned proximal trajectories method combines curiosity and imitation
learning to train agents that methodically explore in the proximity of known trajectories
derived from expert demonstrations. We show how our new algorithm can explore complex
environments, discovering gameplay issues and design oversights in the process, and rec-
ognize and highlight them directly to game designers. We also propose a visual analytics
interface to aid interpretation of results from the method. This interface transforms infor-
mation from complex models into interpretable and interactive visual forms. We further
demonstrate the effectiveness of the algorithm in a novel 3D navigation environment which
reflects the complexity of modern video games. Our results show a higher level of coverage
and bug discovery than baseline methods, demonstrating that our method can be a useful tool
for game designers to automatically identify design issues. Moreover, our experiments show
that the visual explanations provided by the analytics interface result in a significant increase

†Portions of this chapter were submitted to: A. Sestini, L. Gisslén, J. Bergdahl, K. Tollmar, and A. D.
Bagdanov, “Automated Gameplay Testing and Validation with Curiosity-Conditioned Proximal Trajectories”,
Transactions on Games (ToG), 2022.
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in user trust and acceptance of automated playtesting and increased confidence in the use
of machine learning techniques for video game development. A video compilation of the
results of this chapter is available online*.

7.1 Introduction
Playtesting plays a crucial role in the production of modern video games. The goal of
automated gameplay testing is to free up some of the human resources to allow them to do
more meaningful testing such as measuring gameplay balance, difficulty, and potential rate
of retention.

Recently, automated testing approaches have been proposed to mitigate total reliance
on human testers by training AI-based agents to explore large game scenes (Gordillo et al.,
2021). Automated exploration through intrinsic motivation is a step in the right direction,
however, we argue that it is not enough. First, we need agents capable of learning the world
around them and efficiently understanding the difference between different states. Second,
we need agents that recognize the difference between good and bad trajectories in order to
recognize which paths are “broken” ones.

Based on these considerations, in this chapter we propose a novel Reinforcement Learning
(RL) approach able to train agents which can explore and analyze a large 3D environment
composed of complex navigation challenges. We call the approach automated gameplay
testing and validation with Curiosity-Conditioned Proximal Trajectories (CCPT). As shown
in Figure 7.1, our technique uses a combination of imitation learning and curiosity. These
two concepts work in tandem by guiding the agents to not only imitate recorded expert
demonstration trajectories, but to also explore in their proximity. In particular, we propose an
exploration-conditioned intrinsic reward function leading to agents that do not just learn to
be curious, but that learn what it means to behave curiously. The model enables CCPT not
only to find bugs and gameplay issues, but to automatically identify, filter and highlight them
among the massive quantity of information collected by the agents from their interactions
with the environment.

While CCPT is able to point out trajectories containing bugs, these results are expressed
as gameplay metrics coming from complex models that are understandable only to experts
intimately familiar with the CCPT algorithm and its theoretical foundations. Since this tool
is aimed at designers that typically are non-experts in machine learning, the expertise needed
to understand the details of said results limits the direct accessibility of CCPT. To address
this we propose a purpose-built visual interface designed to convey the massive amount of
information yielded by the CCPT algorithm in a concise and easily interpretable way to
designers. We show how designers can use the interface to understand not only which are
the trajectories containing bugs, but also where the bug is in the trajectory, why the agent
has marked it as bug, and how the agent was able to exploit it. Graphical representations of

*Video available at: https://tinyurl.com/ccpt-test

https://tinyurl.com/ccpt-test
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Figure 7.1: Overview of our approach. By combining imitation learning and curiosity, we
train agents to playtest a large game scenario. All information gathered during training
is saved and eventually filtered upon evaluation through the same curiosity module used
when training. Our exploration-conditioned intrinsic reward function enables us to filter and
highlight trajectories that contain bugs and design oversights like missing collision boxes or
gameplay glitches.

automated gameplay test metrics make it easier for designers to make informed decisions
regarding future improvements to the game. Moreover, the CCPT visual interface is designed
to be completely engine-agnostic which increases the accessibility of the tool by eliminating
the typically heavy engineering work needed for re-implementation in different game engines.

The key contributions of this chapter are: a new open source environment for complex 3D
navigation challenges, suitable as testbed for training both exploration and navigation agents;
a novel neural network architecture for navigation and exploration agents and an empirical
demonstration of its effectiveness; a new exploration algorithm which, thanks to its use of
expert demonstrations, is able to deliberately explore the proximity of desired trajectories;
an interactive tool that uses the CCPT algorithm to improve the interpretability of machine
learning models for game validation and testing; and quantitative experimental validation of
our approach compared to the state-of-the-art as well as qualitative validation based on a user
study involving professional game designers.

7.2 Related Work

Here we review recent work most related to this chapter.
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Automated Play Testing. Several recent studies have investigated the use of AI techniques
to perform automatic play testing, with a focus on maximizing game state coverage. Many
of these recent works heavily rely on classical hand-scripted AI or random exploration
(Stahlke et al., 2020; Holmgård et al., 2018). However, when dealing with complex 3D
environments with difficult navigation challenges we argue that these techniques are not
readily applicable due to the high-dimensional state-space. The Reveal-More algorithm also
uses human demonstrations to guide the random exploration, although in simple 2D dungeon
levels (Chang et al., 2019). Mugrai et al. (2019) developed an algorithm to mimic human
behaviour to get more meaningful gameplay testing, but also to aid in the game design.

At the same time, many other works have used reinforcement learning to perform either
automatic play testing or complex navigation exploration. Alonso et al. (2021) trained a
reinforcement learning agent to navigate a complex 3D environment toward procedurally-
generated goals, while Devlin et al. (2021) trained different agents to perform a Turing test
to evaluate the human-likeness of trained bots. Closer to our work, Agarwal et al. (2020)
trained reinforcement learning agents to perform automated play testing in 2D side-scrolling
games, also providing a set of visualizations for level design analysis, and Gordillo et al.
(2021) used intrinsic motivation to train many agents to explore a 3D scenario with the aim
of finding issues and oversights.

Although this chapter draws inspiration from Gordillo et al. (2021), they based their
approach on count-based exploration that may not be feasible when faced with complex
environmental dynamics that, due to the tabular nature of such algorithms, explode in
complexity (Strehl and Littman, 2008). Moreover, the use of a purely exploration-based
technique can slow down coverage time, especially if designers want to test a particular part
of the environment. Finally, even given good visualizations of the results, this approach does
not tell where, when, and how the issues are found, but rather leave the burden of recognizing
them to the designers.

Imitation Learning. Similar to Chang et al. (2019), we make use of demonstrations to
guide the exploration. However, for this aim we use a state-of-the-art imitation learning
algorithm. Imitation learning aims to distill a policy mimicking the behavior of an expert
demonstrator from a dataset of demonstrations. It is often assumed that demonstrations come
from an expert who is behaving near-optimally. Standard approaches are based on Behavioral
Cloning (BC) that mainly use supervised learning (Bain and Sammut, 1995; Ross et al., 2011;
Knox and Stone, 2009), while more advanced methods are based on adversarial trainings Ho
and Ermon (2016); Fu et al. (2018). A relevant method for our discussion is the Adversarial
Motion Prior (AMP) algorithm, which is a GAN-based imitation learning method that aims
to increase stability of adversarial approaches Peng et al. (2021).

Intrinsic motivation. Intrinsic motivation aims to encourage agents to explore the
environment states in the absence of an extrinsic reward. The already mentioned count-based
exploration is a natural way to do exploration, although for high-dimensional state spaces it
can be infeasible (Strehl and Littman, 2008). Another class of exploration methods rely on
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errors in predicting dynamics (Pathak et al., 2017; Burda et al., 2018). These are machine
learning techniques for high-dimensional states that aim to push agents to explore never or
less-encountered states during training. The interested reader should consult Aubret et al.
(2019) for a detailed survey of the state-of-the-art in intrinsic motivation.

Visualization-Based Analysis

Visual analytics tools are important for both deep reinforcement learning approaches and
for gameplay validation. Most AI models exhibit an important negative characteristic:
a performance versus transparency trade-off. Understanding the reasoning behind their
behaviors becomes a necessity when these results drive design decisions (Puiutta and Veith,
2020). Many approaches have been proposed to mitigate the black-box nature of AI models
through visualization. Jaunet et al. (2020) created a visual analytics interface for studying
the behavior of an agent with memory exploring a level of ViZDoom (Kempka et al., 2016).
Druce et al. (2021) proposed a user interface to better understand when the action output of
automated agents can be trusted or not.

In addition, visual interfaces are already widely used for understanding human tester
behaviors and the impact on game design decisions. The survey of visualization-based
analysis of gameplay data by Wallner and Kriglstein (2013) gives an overview of the current
state of this emerging field of research. Our aim is to combine the usefulness of visual
interfaces for game metrics with more complex analytic interfaces for explainable machine
learning approaches like our curiosity-conditioned proximal trajectories.

7.3 Curiosity-Conditioned Proximal Trajectories

This section details our approach to train agents guided by expert priors to find bugs and
gameplay issues. First, we define the game environment we use for assessing our approach.
Second, we detail our RL setup and training algorithm. Finally, we describe how the approach
highlights issues among all information it gathers during training.

The Navigation Environment

To validate our approach, and to support continued research, we propose a 3D navigation
environment designed to resemble modern game scenarios. A screenshot of the environment
is given in Figure 7.2 together with a top-down view of the whole map. The scene is
approximately 500 m× 500 m× 60 m in size and contains a variety of navigation challenges
and dynamic elements such as moving platforms and elevators. Agents wishing to explore
all secrets contained in the map must learn complex navigation strategies. Our environment
is comparable to recent navigation studies (Gordillo et al., 2021; Devlin et al., 2021; Alonso
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(a) Screenshot of our environment.

(b) Top-down view.

Figure 7.2: Overview of our proposed environment.

et al., 2021) and is open source and available for anyone who wants to exploit, contribute to,
or expand on this research.†

Agents spawn in the center of the map and each episode ends after 500 timesteps, with the
agent performing 1 action every 10 game frames. There are four goal areas in the environment
selected as they are the most difficult spots to reach (indicated by the green arrows in
Figure 7.2(b)). The agent has a total of 10 discrete actions: move forward/backward/left/right,
move in one of the 4 diagonal directions, jump, and wait. The agent can also perform a
double jump while in the air and climb on surfaces of specific elements located around the

†Code available at https://github.com/SestoAle/Navigation-Environment.

https://github.com/SestoAle/Navigation-Environment


7.3 Curiosity-Conditioned Proximal Trajectories 85

map. Moreover, since the intent of the chapter is to provide an automated way to detect
bugs and glitches in a game scene, we manually introduce such gameplay issues like missing
collision boxes and glitches throughout the map.

The state observed by the agent at any instant in time consists of a local perception in
the form of a 3D semantic occupancy map, as well as scalar information about physical
attributes of the agent (discretized global position, if it is grounded, if it is attached to a
climbable surface, if it can perform a double jump, its velocity, and its direction). We show
an example 3D semantic occupancy map as inputs to the networks in Figure 7.3. These maps
are a categorical discretization of the space and elements around the agent, and each voxel is
defined by the semantic integer value of the type of object at that position.

The only extrinsic reward provided is given when an agent reaches an active goal, for
which it receives +10 for each timestep it stays inside this area. With such a sparse reward in
such a large environment, agents have very little chance of receiving even a single, non-zero
reward, thus making training very hard. Moreover, with just the extrinsic reward, even if
they learn to reach a goal location, after convergence agents will always follow the same
trajectory without exploring for new paths. Instead we need agents able to efficiently arrive
to a goal area while continuing to search for undiscovered paths, thus combining rewards for
both exploration and imitation.

The CCPT Algorithm

In this section we detail the algorithm used to generate agents to perform automated playtest-
ing. We devise our method following a main idea: train agents which explore in the proximity
of trajectories predefined by an expert in order to automatically identify overlooked issues.
Our agents consist of a navigation module plus imitation and exploration sub-modules which
both contribute to the reward function used to drive policy learning.

Navigation Module. The navigation module is defined by the policy. As shown in
Figure 7.3(a), the policy takes as input both the global information and the local perception
defined by the semantic occupancy map. It also takes an auxiliary input that defines the level
of exploration followed in a particular episode. Since it is a fundamental part of the reward
function, we defer the description of how this affects training to the Reward Function section
below. To encode the global 3D position p = (x, y, z) ∈ Z3 of the agent we use positional
embeddings similar to the one from Vaswani et al. (2017):

Pi,2j = sin
pi

10000
2j
d

,

Pi,2j+1 = cos
pi

10000
2j
d

,
(7.1)

where j ∈ {0, 1, 2, ..., d/2− 1}, d is the embedding size, pi the respective components of p
and P ∈ R3×d the resulting encoding. We claim that the use of such an embedding is crucial
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(a) Navigation module

(b) Imitation module

(c) Curiosity module

Figure 7.3: Overview of the module architectures used in this chapter.

for training agents that navigate and explore these environments. In fact, the general way of
encoding such information with normalization or with learned embeddings it is not enough
to efficiently understand the difference between different states. In Section 7.5 we support
this claim with ablation experiments.

These vectors are concatenated with the other agent information and passed through a
feed-forward network. The semantic occupancy map is instead passed through its own 3D
convolutional network. All the processed vectors are then concatenated together and passed
through an MLP. The policy is trained using the PPO algorithm.

Imitation Module. The imitation module trains the agent to follow the expert trajecto-
ries and to guide playtesting toward a particular area. We use the AMP algorithm (Peng
et al., 2021), which is built on top of GAIL (Ho and Ermon, 2016). Given a set of expert
demonstrations E, the goal is to learn to measure the similarity between the policy and the
demonstrations, and to then update the policy via forward-RL. The objective is modeled as a
discriminator D(s, a) trained to predict whether a given state-action pair (s, a) is sampled
from the demonstration set or generated by running the policy. AMP adopts the loss function
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proposed for the least-square GAN (Mao et al., 2017):

LAMP = arg minD EdE(s,a)[(D(s, a)− 1)2]+

Edπ(s,a)[(D(s, a) + 1)2], (7.2)

where dE(s, a) and dπ(s, a) respectively denote the likelihood of observing a state-action
pair in the dataset E or by following the policy π. The reward function for training the policy
is then given by:

ri(st, at) = max [0, 1− 0.25(D(st, at)− 1)2]. (7.3)

To further increase training stability, we apply gradient penalties that penalize nonzero
gradients on samples from the dataset (Mescheder et al., 2018).

The state s of the imitation module is described by the local perception of the agent, which
is defined by the 3D semantic occupancy map. This is passed through a 3D convolutional
network and is concatenated with the action embedding before being fed to a feedforward
network, as shown in Figure 7.3(b).

Curiosity Module. The curiosity module is responsible for optimizing coverage of the
environment in the neighborhood of expert demonstrations via intrinsic exploration. Instead
of using count-based exploration like Gordillo et al. (2021), which can be infeasible for high-
dimensional state spaces, we use the Random Network Distillation (RND) algorithm (Burda
et al., 2018). The curiosity module gives an intrinsic reward that is higher for novel and
less-encountered states. With this reward we can train agents with forward-RL to increase
coverage of the environment. for a complete description of the RND algorithm, see Chapter 2.

The more a state is visited by agents, the closer the output of the predictor network will
be to that of the target network for that particular state, lowering the prediction error and thus
the reward signal for exploration. States encountered following the expert demonstrations
will produce low reward values, while for states encountered less frequently the predictor
will not be able to perfectly replicate the target, increasing the reward signal and guiding
agents toward undiscovered paths.

As shown in Figure 7.3(c), both target and predictor networks take as input the global
position, encoded with the positional embedding of Equation 7.1, and the other agent
information. These vectors are then concatenated and passed through a feedforward network.

Reward Function. The core of the algorithm lies in the reward function. Our aim is
to combine the above modules to derive agents that can explore the proximity of expert
trajectories. In this chapter we propose an exploration-conditioned intrinsic reward function.
Inspired by works like de Woillemont et al. (2021) and Gisslén et al. (2021), or in general by
goal-conditioned policies (Andrychowicz et al., 2017), our reward function is:

R(st, at) = α · rc(st+1) + (1− α) · ri(st, at)

+ re(st, at), (7.4)
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where rc is the reward from the curiosity module, ri is the reward from the imitation module,
re is the extrinsic reward from the environment, and α ∈ [0, 1] is a weight hyperparameter
that controls the level of exploration versus imitation. The value of α is randomly sampled at
the beginning of each episode and remains fixed for all timesteps. If an agent samples a value
of α < 0.5, the ri prevails and the reward leads agents to follow the expert demonstrations
more closely. When α = 0, the reward moves agents toward a perfect replication of expert
trajectories. In contrast, if α > 0.5 the rc is dominant and the reward lead the agent to explore
more. The greater the α, the farther away from expert priors agents explore. When α = 1, the
agent completely avoids the expert demonstrations, finding completely new ways to arrive to
the goal location. The re is needed to make agents arrive in the goal area independently of
the sampled α.

In order for the agent to understand in which way it should behave in a particular episode,
the sampled α is part of the state space of the agent. Since α controls the reward that the agent
receives, we are basically combining curiosity-driven and goal-conditioned reinforcement
learning. In this setting we obtain meaningful exploration via curiosity and not just timestep-
level randomness, and the result of training is not just a curious agent, but an agent which
we can control to behave like the expert or like an explorer just by changing α. Algorithm 1
details the full CCPT agent training procedure.

Algorithm 1 Training with CCPT
input: E dataset of expert demonstrations, ϵ filter threshold
π ← initialize policy

D ← initialize AMP discriminator

ϕ̂ ← initialize RND target network

ϕ ← initialize RND predictor network

G ← initialize external dataset

while not converged do ▷ Training
B← initialize policy experience dataset
for each episode i = 1, ..., m do

Sample αi ∼ [0, 1]
Collect trajectory θi = (s0, a0, r0

e .., sT , aT , rT
e ) by executing π

for each timestep t = 1, ..., T ∈ θi do
rt

i = max [0, 1− 0.25(D(st, at)− 1)2]

rt
c = (ϕ̂(st+1)− ϕ(st+1))

2

Rt = αi · rt
c + (1− αi) · rt

i + rt
e

Update reward Rt in θi
end for
Store θi in B
Store (θi, αi) in G ▷ store all trajectories in the external dataset

end for
Update D with LAMP with samples from B
Update ϕ with LRND with samples from B
Update π with LPPO with samples from B

end while
return G
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Detecting Suspicious Trajectories

The final result of our algorithm is not trained agents, but rather all the information gathered
during training. Given the set of all trajectories performed during training, our aim is to find
those that evidence game behavior unintended by designers. Since in our case the intended
paths are described by the demonstrations, we must find trajectories that arrive at the same
goal area defined by experts but are very different from the expected experience.

Thanks to the α component of the reward function in Equation 7.4, for low α values
the agent will revert to following the expert demonstrations very closely, thus lowering
the rewards output by the curiosity module for states that are very near to those seen in
expert demonstrations. In contrast, as α increases agents will explore more and more, and
the rewards output by the curiosity module for states explored in this setting will be kept
relatively high with respect to those near to the expert demonstrations.

We perform a simple preliminary filtering of trajectories by removing all those gathered
with α < 0.5. For the remaining trajectories we exploit the values of the curiosity module.
Given all trajectories that arrive at the goal location with α ≥ 0.5, we compute the average
curiosity values along the trajectory from the start to the goal location:

r̂c(θi) =
∑T

t=0 rc(st)

T
, (7.5)

where θi = (si
0, ai

0, ..., si
T, ai

T) is a trajectory, T is the number of timesteps to arrive to the
goal location, and rc is the reward of the curiosity module at the end of the training. We then
define the set Θ as:

Θ = {θi | r̂c(θi) > ϵ}, (7.6)

where ϵ is a predefined threshold. As we will show in Section 7.5, this set will define
the trajectories that are far from the expert demonstrations and likely exhibit unintended
game behavior. Algorithm 2 details the full process of filtering and highlighting suspicious
trajectories.

Algorithm 2 Filtering with CCPT
input: G dataset of trajectories found during training phase by Algorithm 1
Θ ← initialize bugged trajectory set
for trajectory θi ∈ G | αi ≥ 0.5 do ▷ Trajectory Evaluation

r̂i
c =

∑T
t=0 rc(st)

T
if r̂i

c(θi) > ϵ then
Store θi in Θ

end if
end for
return Θ ▷ return set of broken trajectories

Implementation and Hyperparameters

CCPT is implemented in Tensorflow and all hyperparameters and their settings are:
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• Navigation module: Learning rate βnm = 7e−5, discount γ = 0.90, and entropy
coefficient c2 = 0.1 in PPO.

• Imitation module: learning rate βim = 7e−5, replay buffer size 100, 000, batch size
32, and gradient penalty coefficient 5.0.

• Curiosity module: learning rate βcm = 7e−5 and batch size 128.

These settings were chosen after a set of preliminary experiments made with different
configurations. All training was performed deploying ten agents in parallel on the same
machine with an NVIDIA RTX 2080 SUPER GPU with 8GB RAM and a AMD Ryzen 7
3700X 8-Core CPU.

7.4 A Visual Analytics Interface to CCPT
In order to create a better connection between the CCPT algorithm and designers, we propose
a visual analytics interface for CCPT. It is essential for game designers to understand the
results of automated playtesting in order to take actionable decisions. Visualization can serve
as an effective aid to this analysis. CCPT provides useful information, but in in the form of
raw numbers such as the trajectories θi ∈ Θ defined by low-level states si and values like rc.
These numbers are invaluable for analysis, but they are many and dense. The specific goal
of the visual interface is to facilitate high-level visual analysis of the navigation behavior
of agents and to assess whether there are bugs or overlooked issues in the game scene. In
Figure 7.4 we give an overview of the visualization interface, that consists of three major
components, each described below.

Exploration Overview

Shown in Figure 7.4(a), the Exploration Overview is the main visualization panel. It takes all
the data gathered during training and provides an interactive view of CCPT results familiar to
game designers. The main aim of this module is to show designers how agents have explored
the environment.

To construct the Exploration Overview panel, we first collect the set of all trajectories
gathered by CCPT:

Θ̂ = {θi | i = 1, ..., M}, (7.7)

where M is the total number of episodes within the playtest session. Each state si
t of the

trajectories θi ∈ Θ̂ is composed of, among other elements, the (x, y, z) position of the agent.
We use this information to compute and display a 3D heatmap of all positions visited by
agents during training and exploration. This gives an idea of how agents explored the scene
and which trajectories are the most followed – which should be the same as or similar to the
expert demonstrations. Users can navigate the view in 3D and zoom in and out to highlight
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Figure 7.4: Overview of the visual gameplay analytics interface. The interface combines
data and metrics coming from the CCPT algorithm and displays an overview summary of the
results. The interface is intended to be an accessible and interactive tool to aid understanding
of complex models even for non-experts in machine learning. More details about each
element of the interface are given in Section 7.4.

details. We emphasize that for the construction of the 3D heatmap we use only the states
collected by CCPT during training (Algorithm 1) and that we do not use any additional
information from the real game environment.

A filtered subset of suspicious trajectories highlighted by CCPT are overlaid on the
Exploration Overview. The way all trajectories identified using Equation 7.6 are filtered is
controlled by the user using the Command Interface (described below). The trajectories are
drawn taking into account the (x, y, z) position of each si

t ∈ θi. Finally, a brief description and
statistics from the current experiment are displayed in the top-left corner of the Exploration
Overview.

Command Interface

Illustrated in Figure 7.4(b), this module contains tools that enable users to modify the
Exploration Overview. Starting from the top-right corner, we have:

• Heatmap in time: this slider lets users define a temporal window in which to navigate
the heatmap. This aids in understanding how agent exploration evolves over time.
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(a) (b) (c) (d)

Figure 7.5: Close-up images illustrating different bugs and gameplay issues found by
CCPT. White trajectories indicate expert demonstrations, while the colored ones are those
highlighted by CCPT as problematic. The bugs are: (a) missing collision box; (b) exploiting
props; (c) using unintended path; and (d) exploiting glitches.

• Selection of α: this combo box lets designers filter the heatmap according to the α

value. From Equation 7.4 we see that as α → 0 agents should mainly follow expert
trajectories, and thus the reconstructed environment will visualize just trajectories in
the proximity of the demonstrations. As α→ 1, however, agents should have avoided
the states that are part of the expert demonstrations, thus exploring a wider range of the
scene. This selection is useful for debugging how an imitating agent behaves compared
to an exploratory one.

• Trajectory smoothing slider: since we are using exploratory agents, the trajectories
in Θ can be noisy and less informative in their raw state. Designers can compensate for
this with this slider that smooths the overlaid trajectories to reduce noise. The slider
defines the intensity of the smoothing. Smoothing is done using Savitzky-Golay filters
to preserve salient features (Press and Teukolsky, 1990).

• Trajectory cluster view: this tree view contains the list of all the trajectories overlaid
in the exploration overview. Since Θ contains many trajectories that are very similar
to each other, visualizing all of them would result in a cluttered interface. We there-
fore cluster them with the K-Medoid algorithm (Zhang and Couloigner, 2005) with
similarity determined using the 3D Fréchet distance:

DFréchet(A, B) = min
µ

max
a∈A

d(a, µ(a)), (7.8)

where A and B are two trajectories, a = (x, y, z) ∈ A are points in the trajectory,
µ : A → B is a one-to-one continuous mapping from a point on trajectory A to a
point on trajectory B, and d(u, v) is the Euclidean distance between two points. The
number of clusters can be manually selected by designers through the slider below the
trajectory selection tree. After clustering the exploration overview is rendered using
the trajectory in each cluster having the highest r̂c(θi) (Equation 7.5).
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• Cluster selection: designers can isolate single trajectories θs by selecting them in the
tree selection view, as well as view all the other paths that belong to the same cluster,
by expanding the tree of θs. Designers can change the trajectory color by selecting
from three modes: all trajectories in the same color, trajectories colored according
to the Fréchet distance between them (Equation 7.8), or all trajectories colored using
a gradient based on the normalized rc(si

t) values of each si
t ∈ θi. For the latter, the

higher the rc(si
t) is the more red the trajectories become. This mode has a particularly

useful function: the points highlighted in red are the ones that were less visited by
agents during training. They are the most difficult points to reach and very different
from the expected behaviors. Thus, with high probability these points highlight a bug
or overlooked issues designers seek. In Section 7.5, we show examples of this feature.

Trajectory Details

At the bottom of the interface are two plots displaying details of the selected trajectory θs

(see Figure 7.4(c)). The first is the evolution of the curiosity value rc(ss
t) of each state ss

t ∈ θs

over time. The second plot displays all actions as
t performed by the agent over all timesteps t

of θs. This plot is useful for understanding how the agent found θs and its relative bugs and
gives designers the ability to manually replicate them. If users hover the pointer over one of
these plots, the corresponding point in the 3D trajectory is highlighted.

Implementation

The visual analytics interface is implemented in Python using VisPy, a high-performance
interactive 3D data visualization library, and PyQt5, a python binding for the cross-platform
GUI toolkit Qt. The implementation is open-source and available online.‡ An important
design feature is that it aims to be completely engine agnostic. Thanks to the Exploration
Overview, designers can distinguish all the main 3D structures of the game scene without the
need to visualize results directly in the real game environment. The information visualized
depends only on the Θ data gathered during automated playtesting and does not require any
additional game-specific data. We believe this to be a huge advantage for designers as it
eliminates the burden of using the game engine every time they need to understand where
a bug occurs. If needed, they can use the information from the action plot to replicate the
problem directly into the game.

7.5 Experimental Results

In this section we detail experiments that showcase the capability of CCPT to perform
automated playtesting. We are interested in four primary research questions:

‡Code available at https://github.com/SestoAle/CCPT.

https://github.com/SestoAle/CCPT
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Coverage Bugs Found Bugs Detected

CCPT (ours) 1.96± 0.11 12.80± 1.60 12.80± 1.60
Linear Combination 1.24± 0.35 7.00± 0.00 6.60± 0.49

Peng et al. (2021) 0.84± 0.33 2.00± 0.63 0.00± 0.00

Gordillo et al. (2021) 2.39± 0.34 10.40± 0.48 4.20± 0.75

Table 7.1: CCPT results compared to the state-of-the-art: using a linear combination of
curiosity and imitation; using the AMP approach Peng et al. (2021); and using Gordillo et al.
(2021) approach. Coverage is expressed in millions of unique states explored during training.
The Bugs Found column regards issues found by agents during training, but not necessarily
identified as issues, while Bugs Detected are issues found and identified by Algorithm 2 as
bugs by our model. The numbers represent the mean and standard deviation over 5 different
runs. The bold ones describe the best results.

1. Can CCPT find and highlight bugs and oversights in a complex 3D environment?

2. How does the exploration-conditioned intrinsic reward function improve playtesting
efficiency?

3. Do our models offer better performance than traditional models used for 3D navigation?

4. Does the visual analytics interface increase explainability and trust in the CCPT
algorithm?

For all experiments in this section we used our navigation environment described in
Section 7.3. All images in this section were captured in the CCPT visual analytics interface.
To further investigate the robustness of CCPT, we report additional experiments using
the ViZDoom environment, a real game environment different from our 3D navigation
environment (Kempka et al., 2016).

Playtesting Performance

To evaluate the ability of CCPT to find and highlight bugs we tested four different goal
areas in the environment. These areas represent four of the most difficult spots to reach,
with trajectories that include dynamic elements, climbable surfaces and complex navigation
challenges. For the goal areas we provide six expert demonstrations for each one showing
the intended way to arrive at each specific goal. We then train ten agents in parallel and show
the most relevant trajectories found by the algorithm for each area. In Figure 7.8 we give
visualizations of the results of the four goal area experiments.

Table 7.1 summarizes the results found for all four areas. CCPT is able to find and
highlight different ways of arriving to the same goal area of the expert demonstrations,
however taking different paths and using different elements with respect to the intended
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Figure 7.6: Results of ablation study. The lines represent the mean and and the error bars the
standard deviation of the coverage of the different approaches over 5 different runs. Details
in Sections 7.5.

ones. We compare CCPT with three main algorithms from the state-of-the-art: the one
from Gordillo et al. (2021) that uses an approach based solely on curiosity; the AMP
algorithm (Peng et al., 2021), which only uses imitation learning with the same set of expert
demonstrations used for CCPT; and a linear combination of curiosity and imitation learning,
without the use of our exploration-conditioned intrinsic reward function. We compare three
different metrics: “coverage” is expressed in millions of unique states explored during
training. It is computed by counting the discretized positions gathered by the agent during
training; “bugs found” regards issues found during training, but not necessarily identified
as issues; and “bugs detected” regards issues found and identified as bugs. The first metric
measures the exploratory abilities of the agents, the second one describes the performance of
the approaches, while the latter measures the ability to highlight bugs directly to developers
with Algorithm 2. We argue that the third metric is the most important one for game
designers. Developers usually are not experts in machine learning and thus require methods
that automatically identify where and what bugs are. This avoids looking for issues in a
huge amount of poorly explainable results coming from mere exploration. Compared to the
baselines, even if the approach from Gordillo et al. (2021) seems to perform slightly better
in terms of environmental coverage, CCPT clearly outperforms other methods not only in
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(a)

(b)

Figure 7.7: Exploration overview. (a) a 3D heatmap created by analyzing the (x, y, z)
positions gathered during training compared to the real environment. (b) the evolution of the
heatmap over time: to the left is the heatmap after few training episodes, and to the right the
heatmap at the end of playtesting.
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(a) Area 1 (b) Area 2 (c) Area 3 (d) Area 4

Figure 7.8: Qualitative visualizations on four different tested areas. The white trajectories
indicate the expert demonstrations, while the colored ones are those highlighted by CCPT.

finding bugs we manually inserted in the environment, but also in highlighting them directly
for designers. We reiterate that the focus of CCPT is finding and detecting issues, even to the
detriment of environment coverage.

Figure 7.5 shows close-up examples of some CCPT results. Instead of relying only on
expert demonstrations, the agent took many different paths:

• in Figure 7.5(a) the agent uses a missing collision box in a tiny portion of the wall,
thus arriving into the goal area by exploiting a slight slope of the wall of a pillar;

• in Figures 7.5(b) and 7.5(c) the agent exploits two oversights that allows it to jump
over the wall and skip the main entrance. The first one uses an unintended prop near
the wall while the second one exploits a climbable surface and precise double jumps;
and

• in Figure 7.5(d) the agent exploits a glitch that allows it to perform infinite jumps and
to skip the wall like in the previous examples. This last issue is quite interesting as the
agent has actually learned to exploit the glitch rather than using it at random.

Such examples can be also found in all of the four goal areas tested in this chapter, highlighting
the good performance of our algorithm. Figure 7.9 shows other close-up examples of bugs
found and highlighted by the algorithm.

Evaluating the Reward Function

To evaluate the performance of our exploration-conditioned intrinsic reward function we
performed an in-depth study using different fixed values of α in Equation 7.4: α = 0.5
resulting in an average of rc and ri, α = 0.0 corresponding to only using imitation, and
α = 1.0 corresponding to only using curiosity.

Table 7.1 shows the number of points in space covered for the four methods. As expected,
agents trained with only imitation learning cover the smallest part of the environment, while
those trained with only curiosity cover the most points. However, note that agents trained
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(a) Missing collision box (b) Skip main entrance (c) Skip labyrinth (d) Using unintended path

(e) Using glitch (f) Exploiting props (g) Exploiting slope (h) Using glitch

(i) Missing collision box (l) Missing collision box (m) Using glitch (n) Exploiting props

(o) Using unintended path

Figure 7.9: Close-up images of the four area experiments. Each image represents a different
bug or issue found by CCPT. The white trajectories indicate expert demonstrations, while the
colored ones are those highlighted by CCPT.
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(a) α→ 0 (b) α→ 1

Figure 7.10: Comparison of heatmaps created by (a) agents imitating experts and by (b)
exploratory agents.

Table 7.2: Results of the Likert questionnaire. Designers answered with a value between 1
(strongly disagree) and 7 (strongly agree).

N° Question µ Mo Md σ

1 Do you think the automated playtesting based on ML algorithms can be useful for game development? 6.4 7 7 0.89

2 Do you think the visual analytic tool is a useful aid for understanding the results of the algorithm? 6.2 6 6 0.83

3 The interface is easy to use. 5.6 6 6 0.89

4 The visual interface will aid your decision-making process after a playtesting session. 6.0 6 6 0.70

5 I understand how the ML algorithm for automated playtesting works (the theory behind it). 4.8 6 4 2.68

6 I understand how the visual interface works, its usefulness and what it shows. 6.2 6 7 0.83

7 I can make a comparison between the reconstructed environment and the real game scene. 6.2 7 7 1.30

8 Given a bugged trajectory, I can understand where the tool says there might be a bug. 6.6 7 7 0.54

9 It seems I can easily follow the trajectory within the level (without smoothing). 4.6 - 5 2.07

10 It seems I can easily follow the trajectory within the level (with smoothing). 6.0 7 6 1.00

11 The interface seems to give me enough information to recognize the bug. 5.8 6 6 0.83

12 The tool seems to give me enough information to manually replicate the bug. 6.2 6 6 0.83

13 I think a tool like this can increase confidence in ML based systems for video game development. 6.2 6 6 0.83

with our algorithm achieve much better exploration compared to imitation learning alone and
an average of imitation and curiosity. This is an interesting finding: while they cover a very
large portion of the map, agents trained with our reward are still able to follow the expert
demonstrations. This enables us to filter and highlight broken trajectories as described in
Section 7.3.

Ablation Study

We performed a series of ablation tests to better understand the performance of our models. In
particular, we claim that the combination of the semantic occupancy map and the positional
embeddings described in Section 7.3 is an efficient way to encode environment information
when compared to standard navigation and exploration architectures.

In Figure 7.6 we plot map coverage as a function of training steps for different con-
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(a)

(b)

Figure 7.11: Trajectory overview. (a) shows the set of suspicious trajectories represented
by the centroids of the clusters in Θ. The red parts of each trajectory represent the inferred
location of the bug as indicated by the rc metric. (b) gives a comparison between noisy and
smoothed trajectories.
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(a) (b) (c)

Figure 7.12: Close-up images illustrating bugs found by CCPT and highlighted by the
interface. In (a) the red part of the broken trajectory highlights the presence of a missing
collision box. In (b), the method provides insight into when the agent deviates from the
expert trajectories and takes an unintended path using a prop (an exploitable pillar). In (c), an
example action plot. Analyzing the action plot in the positions where the interface indicates a
bug, developers can understand how the agent exploits that bug using the sequence of actions
provided. The light blue squares represent JUMP actions by the agent.

figurations of the policy network architecture. From the plot it is clear that the positional
embeddings used to encode global positions provide a significant boost to performance
compared to using only normalized values as in (Gordillo et al., 2021; Devlin et al., 2021;
Alonso et al., 2021) or even to learned embeddings. To the best of our knowledge, this is the
first example of using such positional embeddings in deep reinforcement learning. Furthe-
more, the plot shows that the 3D semantic occupancy map and the relative 3D convolutional
network improve the results compared to using only global information and to a ray-casting
baseline similar to Gordillo et al. (2021). The ray-casting approach uses 24 rays cast in
various directions and at various heights. Each ray provides two values: the collision distance
and the semantic value of the collided object. From the plots it is clear that the combination
of positional embeddings and semantic occupancy map that defines our full model clearly
outperforms all other ablations.

Visualization Experiments

To evaluate the features of the visual analytics interface described in Section 7.4, we present
a series of examples for explaining and interpreting the results experiments in Section 7.5.

Environment reconstruction. In Figure 7.7(a) we see a heatmap generated from an
experiment in the Navigation Environment along with a screenshot of the actual game scene.
Note how the reconstructed environment reflects the original structures and how most 3D
elements are distinguishable. These 3D structures are all fairly distinguishable without the
need to be traced back to the game engine. This allows the approach to be completely
engine-agnostic and game-agnostic. Since it is based only on the positions gathered by the
agent during training, the tool can reconstruct any type of environment the user wants to test.
The heatmap clearly shows how the agent mainly follows the expert trajectories highlighted
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Figure 7.13: Visualization experiment on a ViZDoom level. Indicated are three examples of
suspicious trajectories highlighted by the visual analytics interface.

in white. In Figure 7.7(b) we see how the heatmap changes over time, giving insight in how
the agent explores the environment during training.

Finally, in Figure 7.10 we see the environment reconstructed by different agents. Agents
with α = 0, which are purely imitating agents, reconstruct only a small portion of the
environment in the proximity of expert demonstration trajectories. On the other hand, agents
with α = 1 are purely exploratory and reconstruct a large portion of the map, as they are
trained to find different paths arriving at the goal location.

Visualizing trajectories. In Figure 7.11(a) we see an example of trajectories overlaid
on the environment reconstruction. As described in Section 7.4, only the centroids of the
clusters found using K-Medoids are shown. Clustering works well, as each of the trajectories
delineate different paths to the goal. We show the smoothing process in Figure 7.11(b).
Smoothing removes noise due to the exploratory nature of the agents while maintaining the
general shape and important details of the path.

Identifying bugs. We provide some close-up images of bugs highlighted by the visual
interface:

• In Figure 7.12(a) we see how the agent exploits a missing collision box to skip parts of
the intended path. Using the rc(si

t) metric, the interface directly highlights in which
portion of the 3D path the bug likely occurs, as these values indicate trajectory states
that are very different from the expert ones. In this case, the red colored part shows
exactly where the missing collision box is.

• Figure 7.12(b) illustrates how the agent can use props to take an unintended path to
the goal area, diverging from the expected behavior. In this case, the red colored
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part exactly points out the elements in the trajectory used by the agent follow this
unintended path, giving developers insight in what they should change.

• Figure 7.12(c) we see how the agent uses a glitch to arrive to the goal area. This
seemingly meaningless behavior is explained by the plots visualized at the bottom. If
we look at the values in the positions highlighted in red by hovering pointer over the
highest curiosity values, we see how the agent spammed many jump actions that, in
this particular spot, allow it to fly over to the goal area. In this case, developers can not
only see where the bug is, but also understand how the agent exploits it.

User Study

To gain insight into the effectiveness of such visual analytics interface, we conducted a
preliminary user study with 5 experienced, professional level designers. The study consisted
of a 20 minute video explanation of the tool showing all features using the two experiments of
Section 7.5. After viewing the video, participants were asked to answer a Likert questionnaire,
whose results are summarized in Table 7.2. The study aimed to determine the usefulness of
the approach to real level designers in terms of increasing their understanding of the results
of algorithms like CCPT.

The results of questions 1 and 2 suggest that most participants think this tool “could help
relieve stress put on testing teams to identify problem areas in levels” and that “these tools
that provide a higher quality experience for players are a great step forward for development”.
Although most testers are not experts in machine learning as the σ of question 5 indicates, the
responses to questions 2, 6 and 13 demonstrate that our proposed visual analytics interface
substantially increases confidence in the results. Moreover, designers “won’t use machine
learning algorithms for their game unless they have this type of tool”. However, some users
claimed that “the tool looks good and with a bit of training it can be useful”, indicating that
it is not completely understandable at first sight.

Questions 7 through 12 show that all the features included in the tool help designers gain
insight into the bugs the tool highlights. Most problems are related to the visualization of the
trajectories that “are extremely difficult to follow without isolating down single trajectories”.
Although the smoothing “definitely helps make the trajectory more readable”, designers said
that “the issues of size and contrast still make it difficult to follow”. Instead, features like
highlighting the bug and showing the action sequence were much appreciated as participants

“really like the breakdown of the bots actions” and “definitely have all the information to know
that a bug is occurring”.

In conclusion, this preliminary user test shows that experienced designers see the potential
of both the algorithm and the visual interface and that using the algorithm alone would not
be as useful without clearly explainable results provided by a tool like the one we propose.
All users also provided suggestions of how to improve the project. For instance, they “would
love a video component to help pinpoint exactly what and where it took place” and “what
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(a) (b) (c) (d)

Figure 7.14: Close-up images from the ViZDoom experiment. Each image represents a dif-
ferent bug or issue found by CCPT. The white trajectories describe the expert demonstrations,
while the colored ones are those highlighted by CCPT.

about more complex environments? Vertical, rolling terrain, or areas that layer on top of
each other?”.

ViZDoom Experiments

In this section we investigate the robustness of CCPT applied in a real game different to our
3D navigation environment. To verify that CCPT can be a useful tool for game development,
we applied it to the ViZDoom environment, which is a semi-realistic 3D world based on the
classic first-person shooter video game Doom (Kempka et al., 2016). The model architectures
for all the modules are the same as in Section 7.3, but with the 3D semantic occupancy
map and the relative 3D convolutional network replaced with the renderer depth buffer and
a 2D convolutional network. We replaced the 3D occupancy map state space because we
were unable to access the VizDoom game code and implement our own version of the 3D
occupancy map. The depth buffer samples have a single channeled size of 32× 32 and the
network is composed of two 2D convolutional layers with 32 and 64 channels. Each layer
has kernel sizes of 3× 3, strides of 2 and ReLU activations. The action space consists of 6
discrete actions: move forward, move left, move right, turn left, turn right and jump.

We tested our algorithm in the level shown in Figure 7.13(a). The scene is approximately
2800 m× 2800 m× 100 m in size. Since we are interested in coverage testing, we removed
all enemies and props.

For the experiment, we recorded expert demonstrations showing the intended path for
arriving at a specific goal area. We then let CCPT run and in the end we visualize the most
relevant trajectories highlighted by the algorithm. Figure 7.13(b) shows some qualitative
results in which we can see how the algorithm is perfectly able to find and highlight different
ways of arriving to the same goal area with respect to expert trajectories shown in white. In
Figure 7.14 we give some close-up examples of specific findings:

• Figure 7.14(a) shows how the agent can arrive at the goal area using a completely
different path than the intended one;
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• Figure 7.14(b) shows a trajectory similar to the one before, but using an elevated spot
that was not meant to be reachable;

• Figure 7.14(c) shows a slight variation of expert demonstrations using a hidden path;
and

• Figure 7.14(d) shows how the agent can use a complex path to skip part of the level
and arrive in the goal location using a tiny gap between two walls.

Surprisingly, the CCPT algorithm found many different broken trajectories, even in a scene
from a real game like this one. Some of these are just different ways to reach the goal location.
However, many of them highlight interesting paths like the ones shown in the figure. Without
our interface, it would be difficult to understand which the issues are, where they are, and
how agents found them. The amount of data collected in Θ for this experiment was massive,
and we argue that the use of such visual analytics interface is essential even for experts in
CCPT.

7.6 Conclusions
In this chapter we introduced a novel reinforcement learning approach to automatically
playtest complex 3D scenarios. Curiosity-Conditioned Proximal Trajectories (CCPT) enables
developers and designers to specify an area to test in the form of expert demonstrations.
CCPT uses a combination of imitation learning and curiosity, guided by what we call an
exploration-conditioned intrinsic reward function, for performing exploration in the proximity
of demonstrated trajectories. Our approach is not only able to find glitches and oversights,
but can also automatically identify and highlight trajectories containing potential issues.
Our results show a high level of coverage and bug discovery in our proposed navigation
environment, highlighting how well the particular combination of curiosity and imitation
works for this purpose.

Our experiments also show how our proposed visual analytics interface allows designers
to not only easily understand which trajectories contain bugs, but also where, how, and why
these bugs were flagged by CCPT. Deep analysis of the results of automated playtesting is
fundamental to designers in order to allow them to make actionable design decisions. The
interface directly supports this by connecting the results of complex deep reinforcement
learning methods to an interpretable and interactive interface. We believe that algorithms and
tools like these will be useful means for AAA game designers to automatically identify issues
or potential exploits with less reliance on human testers, ultimately increasing confidence in
the use of machine learning techniques in video game production.

In the next chapter we further develop these ideas, asking developers and designers what
characteristics they would like to see in a DRL-based tool for video game development, and
in particular for the use-case of gameplay validation. This analysis will help us to move from
theoretical methods to an effectively useful and, above all, usable tool.





Chapter 8

Imitation Learning as Designer
Assistance Tool†

In Chapter 7 we described a new algorithm and a new visualization tool that aid automatic
gameplay validation. Our qualitative analyses with professional designers demonstrated that
algorithms like these will be useful tools for AAA game development. However, most of
the developers doubted that these techniques are readily applicable in a real development
process due to many factors: the time required to for training, the expertise needed to setup
the environment and hyper-parameters, and the poor re-usability of trained agents. That is,
we now need to move from looking at the desiderata described in Chapter 3 to meeting the
real requirements that could translate these approaches into effective game design tools.

For this reason, in this this chapter we still concentrate on playtesting applications,
proposing a new approach to automated game validation and testing, with a clear focus on
use-cases. With the input of professional game developers, we argue that reinforcement
learning may not be enough to create usable tools. Our method leverages a data-driven
imitation learning technique which requires little effort and time, and no knowledge of
machine learning or programming that designers can use to efficiently train game testing
agents. We investigate the validity of our approach through a user study with industry experts.
The survey results show that our method is indeed a promising approach to game validation
and that data-driven programming would be a useful aid to reduce time and increase quality
of modern playtesting.

Developers also highlighted several open challenges that, in their opinion, still exist in
using a machine learning-based tool that goes beyond the desiderata defined in Chapter 3.
With the help of the most recent literature, in this chapter we analyze the identified challenges
and propose future research directions suitable for supporting and maximizing the utility of
the dissertation beyond the specific techniques it proposes.

†Portions of this chapter appeared in: A. Sestini, L. Gisslén, J. Bergdahl, K. Tollmar, and A. D. Bagdanov,
“Towards Informed Design and Validation Assistance in Computer Games Using Imitation Learning”, published
in the Human-in-the-Loop Learning (HiLL) Workshop at Neural Information Processing Systems (NeurIPS),
2022.
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Figure 8.1: Our approach lets designers perform automated game validation directly during
the design phase. The training is interactive as the algorithm allows designers to smoothly
switch between designing the level, providing gameplay demonstrations, and getting feedback
from the trained testing agents.

8.1 Introduction

As presented in Chapter 7, automated playtesting and validation techniques have been
proposed to mitigate the need for manual validation in large games. This could be done either
by crafting model-based bots and using them to perform automated playtesting (Stahlke et al.,
2020), or with reinforcement learning as shown in Chapter 7. However, the study we report
on in the previous chapter highlighted a few drawbacks. Model-based agents, typically bots
with hand-crafted behaviors (i.e. achieved by scripting), require a certain level of domain
knowledge and programming skills that game designers do not necessarily have. Moreover,
the lack of generalization in this method might render the agents unusable if changes are
made in the game environment.

Reinforcement learning agents, on the other hand, can not only learn to play the game
without scripting but can also be easily retrained when the environment changes. However,
reinforcement learning is sample inefficient and arguably requires a high level of expertise in
machine learning to be effectively used (e.g. for properly crafting a well performing reward
function). Reinforcement learning in general provides a low level of controllability as the
agents will try to exploit the environment regardless of the intentions of the designer (Open
AI, 2016; Jacob et al., 2020). Additionally, making a game compliant with a reinforcement
learning training setup is a considerable engineering effort potentially requiring intrusive
changes to the game’s source code.

In this chapter we propose a data-driven approach for creating agent behaviors for
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automated game validation (illustrated in Figure 8.1). Unlike methods where agents are
manually programmed or scripted, our method uses imitation learning, in particular the
DAgger algorithm (Ross et al., 2011), to clone the behavior of the user. With this, we can
leverage developer expertise while at the same time not requiring additional knowledge of
programming or machine learning. The feedback loop for the designers can therefore be
rapid with a more efficient creation process than having to wait days or sometimes weeks for
manual playtests. This study is made to either validate or refute above claims. The research
questions we are focusing on are: Can imitation learning be used as an effective game design
tool? What improvements and research are needed to maximize its value as a tool? To
explore this, we showcase the possible use cases for which level designers could use our
approach. Further, we report on results from survey that explores how our method satisfies
the requirements previously mentioned and gauges the interest in such a tool by professional
developers. Based on the answers from the survey, we propose future research directions for
improving game validation with imitation learning.

8.2 Related Work

Here, we review work from the literature most related to this chapter.

Automated Playtesting

For an extensive description of the current literature and studies regarding automated playtest-
ing, we refer the reader to Section 7.2. As stated in Chapter 7, there are two main ways to
perform automated gameplay testing. The first one is through classical, hand-scripted AI,
of which which works by Stahlke et al. (2020), Holmgård et al. (2018), Chang et al. (2019),
Mugrai et al. (2019), Stahlke et al. (2020), and Xiao et al. (2005) are notable examples.
In parallel, several other works have used reinforcement learning to perform automated
playtesting. In Chapter 7 we described a novel DRL-based algorithm to perform automatic
validation and automatic search of gameplay bugs, and other notable examples are Politowski
et al. (2022), Zheng et al. (2019), Agarwal et al. (2020), Bergdahl et al. (2020), and Gordillo
et al. (2021).

Imitation Learning

Few approaches have applied imitation learning to game testing agents. The method of by
Chang et al. (2019) uses demonstrations to guide exploration, although it does not use a
learning algorithm. Zhao et al. (2020) used an approach similar to behavioral cloning in
which gameplay agents learn behavioral policies from the game designers. Harmer et al.
(2018) trained agents through a combination of imitation learning and reinforcement learning
with multi-action policies for a first person shooter game. Tucker et al. (2018) used an inverse
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reinforcement learning technique for training agents that can play a variety of games in the
Atari 2600 game suite of the Arcade Learning Environment (ALE) (Bellemare et al., 2013).

8.3 Proposed Method
We propose an approach based on imitation learning to showcase the potential of data-driven
methods for direct gameplay validation to designers. In this section, we first describe why
we decide to use IL, then we detail our IL setup and training algorithm.

8.4 Method Comparison
In this section we better delineate the different common approaches to automated testing and
justify why we decide to use imitation learning.

Reinforcement Learning. Reinforcement Learning (RL) for game validation is known
to be sample inefficient. For example, the work proposed by Gordillo et al. (2021) required
an average of two days of training before thorough coverage of a game scene is achieved.
Even if sample inefficiency can be mitigated by combining RL with IL similar to what we
did in Chapter 7, it is still challenging to practically apply RL in production. Moreover, RL
typically grants little control to the user over the final behavior of the policy as the trained
agents will inherently exploit the reward function regardless designer intention (Open AI,
2016). We can alleviate this problem with reward shaping, but this requires considerable
knowledge of RL and machine learning in general, making it impractical for the general user.
Even given these problems, RL still has some advantages. If designers prefer exploitation
and exploration over imitation, then RL is preferable; and similar to IL, it does not require
any programming knowledge to train.

Scripted Bots. By scripted bots we mean bots modelled with programming methods,
i.e. the standard way of creating game AI bots. To program autonomous bots, designers
must have relatively high domain knowledge of the level design, but also scripting skills to
successfully craft the behaviors of the bots. Moreover, even if they have very fine control
over the final behavior of the bots, the scripted agents will quickly become sub-optimal, and
even unusable, when faced with design changes in the environment. The setup time also
greatly depends on the complexity of the game and game scene. For the reasons listed above,
we argue that this approach does not satisfy the requirements listed in Section 8.1.

Imitation learning (IL). IL is more sample-efficient than RL and allows training of agents
in minutes or only few hours. With this method we only need to leverage the designer’s
domain knowledge of the game, thus effectively adding humans-in-the-loop for superior
controllability. Not only can we demonstrate the intended behavior, but we can even correct it
using new demonstrations with little additional training time. Compared to scripted behavior,
IL provides the same level of generalization as RL as the policy model should be able to
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generalize to some extent to unseen observations. However, compared to both RL and
model-based bots, IL calls for no or limited knowledge of theory or programming skills
as designers only have to demonstrate what they want the IL agent to do. With IL we can
mitigate some of the drawbacks of RL-trained and scripted agents.

Approach

Here we describe our approach to exploring the potential of data-driven methods for direct
gameplay validation to designers.

Algorithm. We use an IL approach based on the DAgger algorithm (Ross et al., 2011),
as shown in Figure 8.1. DAgger allows designers to train agents interactively by actually
playing the game. The core of the algorithm is to let designers seamlessly move between
designing the level, providing game demonstrations and getting feedback from trained testing
agents. Our approach requires little training time and is more sample efficient than the
baseline methods, as we see in Section 8.5. Designers can also provide corrections to faulty
agent behaviors, resulting in a continuous and rapid feedback loop between designers and
agents. Providing corrections is as easy as taking the controller back and playing the game
one more time. Once they are satisfied with agent behavior, designers can stop providing
demonstrations and watch the agent validate the game. Developers can then make any kinds
of design changes and wait for agent feedback without recording any new demonstrations.

State Space. For the approach to be effective, it must be as general as possible in order to
adapt to the many different game genres and scenarios that designers may construct. Since
3D movement often is a crucial gameplay element of modern video games, we focus on
finding the best state representation taking this into consideration. This approach, with minor
observation tweaking, will transfer well to similar, but contextually different game modes.
For setting up a behavior, developers define a goal position in the game environment. The
spatial information of the agent relative to the goal is composed of the R2 projections of
the agent-to-goal vector onto the XY and XZ planes as well as their corresponding lengths
normalized to the available gameplay area. We also include information about the agent
indicating whether it can jump, whether it is grounded or climbing, as well as any other
auxiliary data expected to be relevant to gameplay. The user also specifies a list of entities
and game objects that the agent should be aware of, e.g. intermediate goals, dynamic objects,
enemies, and other assets that could be useful for achieving the final goal. From these entities,
the same relative information is inferred as for the main goal position relative to the agent.
Lastly, the agent also has local perception. A semantic map is used similar to the one used by
th CCPT algorithm described in CHapter 7 which is general and performant. We illustrate an
example of such a semantic 3D occupancy map used as input to the networks in Figure 8.4.
This map is a categorical discretization of the space and elements around the agent, and
each voxel in the map carries a semantic integer value describing the type of object at the
corresponding game world position. The settings of the semantic map can be configured by
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Figure 8.2: Example of a semantic map used by the agent. Each cube describes the seman-
tic integer value of the type of object at the corresponding position relative to the agent
highlighted in blue.

the designers.

Neural Network. We build the neural network πθ with parameters θ with the goal of being
as general and reusable as possible. The way we define the structure of the network is to
fundamentally allow a higher level of usability by game designers. First, all the information
about the agent and goal is passed into a linear layer producing the self-embedding xa ∈ Rd,
where d is the embedding size. The list of entities is passed through a separate linear layer
with shared weights producing embeddings xei ∈ Rd, one for each entity ei in the list. Each of
these embedding vectors is concatenated with the self-embedding, producing xaei = [xa, xei ],
with xaei ∈ R2d. This list of vectors is then passed through a transformer encoder with 4
heads and final average pooling, producing a single vector xt ∈ R2d. In parallel, the semantic
occupancy map M ∈ Rs×s×s is first fed into an embedding layer, transforming categorical
representations into continuous ones, and then into a 3D convolutional network. The output of
this convolutional network is a vector embedding xM ∈ Rd that is finally concatenated with
xt and passed through a feed forward network, producing an action probability distribution.
The complete neural network architecture is shown in Figure 8.4(c).

Given a demonstration dataset E = {τi | τi = (si
0, ai

0, ..., si
Ti

, ai
Ti
), i = 1, .., N} of N

trajectories τi, each composed of a sequence of state-action pairs (si
k, ai

k), we update the
network following the objective:

arg max
θ

E(s,a)∼E [log πθ(a|s)]. (8.1)

This objective aims to mimic the expert behavior which is represented by the dataset E .
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Figure 8.3: Overview of the neural network architecture used in this chapter.

8.5 Experimental Results
In order to evaluate the performance of our approach, we define a set of use cases that
resemble typical situations that game designers face in their daily workflow. In Table 8.1,
we report quantitative results for each use case, comparing our approach to the RL baselines
described below.

Experimental Setup

Here we describe the environment and training setup used in this chapter to test our proposed
approach.

Environment. The environment used in chapter is shown in Figure 8.4. It is a 3D navigation
environment with procedurally generated elements. The environment is purposefully built
like a mutable sandbox which can offer scenarios where a designer’s level design workflow
can be simulated. Users can add and change the goal location, agent spawn positions, layout
of the level, location of intermediate goals and the locations of dynamic elements in the
map. In this environment, the agent has a set of 7 discrete actions: move forward, move
backward, turn right, turn left, jump, shoot, and do nothing. In addition, the agent can use
some interactable objects located around the map.

Training Setup. We compare our approach to two main baselines: Base-RL and Tuned-
RL, both trained using the PPO algorithm with identical hyperparameters (Schulman et al.,
2017). Base-RL utilizes a naive reward function that gives a positive, progressive reward
based on the distance to the goal. For Tuned-RL, a hand-crafted, dense reward function is
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Figure 8.4: Overview of the environment used in this study.

used that is instead designed to lead the agent along a path, reaching multiple sub-goals
before the final main goal. We use the same settings for all subsequent experiments. For
each of the methods, we are interested in: the success rate of the agent (i.e. how many
times it reaches the goal), training time (i.e. the time it takes to reach that success rate),
generalization success rate (i.e. the success rate of the same agent in a different version of
the environment), and imitation metric (i.e. how close the trajectories made by the agent
are to the demonstrations). For the latter, we use the 3D Frechét distance between the agent
trajectories and the demonstrator ones. As we showed in Chapter 7, the Frechét distance
is a good metric to compare trajectories in 3D spaces as it takes into account the spatial
relationships between the points in the curves, rather than just the raw coordinates of the
points. Moreover, it is flexible enough to handle different types of curves and it is quite robust
to noise. For these reasons is a good measurement of how far a given policy trajectories is
with respect to the demonstrator ones. Other distance metrics, such as the Euclidean distance
and Hausdorff distance, may not be as robust and do not consider the shape of the curve.
While dynamic time warping is another option, it can be computationally expensive for large
datasets.

To optimize the policy network we used the DAgger algorithm (Ross et al., 2011). The
number of demonstrations used for training the policy depends on the use case: we started
with an average of 4 episodes for the first iteration of training, then we correct the behavior
of the agent with all the necessary demonstrations. Most of the hyperparameter values were
chosen after many preliminary experiments made with different configuration: learning rate
lr = 0.0005, batch size bs = 512, and number of epochs e0 = 300 for the first DAgger
iteration, and ei = 100 for the subsequent ones. We found this set of values to work well for
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all use cases. All training was performed on a single machine with an NVIDIA GTX 1080
GPU with 8 GB VRAM, a 6-core Intel Xeon W-2133 CPU, and 64 GB of RAM.

Use-case Evaluation

In order to evaluate the performance of the approach, we define a set of use-cases that
resemble typical situations that game designers face in their daily workflow. In Table 8.1, we
report quantitative results for each use-case, comparing our approach to the aforementioned
RL baselines.

Use-case 1: Validating Design Changes. For the first use case, we investigate whether
an IL agent can validate in real-time the layout of a level. The goal in this experiment is to
train an agent to follow human demonstrations, then to change the level and see how the
agent adapts to these changes. This will give developers a glimpse into the usefulness of our
proposed approach when they are still in the design process: they can see how players would
adapt accordingly to modifications in the level layout. In Figure 8.5, we give the details
of the use case. The agent is tasked to navigate to a goal hidden behind a door that can be
opened by interaction with a button. After training the agent, we test it by removing and
adding new elements to the level. We argue, with the support of Table 8.1, that IL is more
suitable than RL for use cases like this. IL is generally significantly faster than RL, and at
the same time it gives the user much more control over the final agent behavior as the agent
can be guided via demonstrations. As seen in this table, we could improve controllability and
training time of the RL solution (e.g. Tuned-RL), but this requires reward shaping, which
is a very difficult task – especially for non-experts in machine learning (Jacob et al., 2020).
Moreover, defining a suitable reward function requires many adjustment iterations to the
training setup that decreases the overall efficiency of the system. It is evident from the table
that IL gives the same level of generalization as RL and it adapts easily to slight variations of
the same environment.

Use-case 2: Validating Complex Trajectories. For this use case we train our agent to
reproduce a complex trajectory as shown in Figure 8.6. The agent has multiple intermediate
goals: use the elevator, interact with the button to create the bridge, destroy a wall by shooting
it, and arrive at the goal location. Here we are not interested in generalization, but only in the
ability to replicate the expert behavior as quickly and closely as possible. In Table 8.1, we see
how our interactive approach is much more suitable for our goals compared to the baselines.
As the table shows, it takes a lot of time for the RL agent to train, which is problematic as
efficiency is a key requirement. Even the Tuned-RL baseline is much more time consuming
than our approach. Moreover, the RL agent will exploit the environment without taking into
account the real intention of the designer. An interesting finding here is that the RL agent has
found a different way to get to the goal location, which is not desirable for this specific use
case but would be very useful for exploit detection.

Use-case 3: Navigation. Navigation is one of the fundamental aspects of many modern
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Figure 8.5: Screenshot of the “Validating Design Changes” use-case.

video games. The traditional scripted way to handle navigation is to pre-bake and use
navigation meshes in combination with classical pathfinding algorithms. However, using a
navigation mesh becomes intractable in many practical situations. Navigation meshes are
computationally expensive to generate and maintain in complex environments, and have
several limitations. They are unable to geometrically represent areas that can only be accessed
through jumping, leading to characters getting stuck or behaving unexpectedly. Moreover, a
navigation mesh may not be able to accurately represent dynamic or changing environments,
such as those with moving platforms or objects that alter the shape of the walkable area. As a
result, a trade-off must often be made between navigation cost and quality. This is achieved
in practice by either removing some of the navigation abilities or by pruning navigation mesh
connections (Alonso et al., 2021). Moreover, every time designers change something in the
layout, the navigation mesh needs to be regenerated. For this use case, we consider a complex
navigation task where the agent has to navigate through a city that the designers have not
completely finished yet. To simulate this, we first record demonstrations in an unfinished city,
and then we evaluate the trained agent within a test city that changes every 2 seconds until
it reaches the goal location. A screenshot of this use case is given in Figure 8.7. Similar to
the second use case, we want the agent to always follow the same path that is demonstrated.
Table 8.1 summarizes the results. Since the city environment is large, training agents with RL
would take a lot of time compared to guiding them along the correct path. Moreover, even if
they enjoy a similar level of generalization, the corresponding RL agents will try to explore
the environment finding different ways to arrive at the goal location. The Tuned-RL baseline,
however, achieves slightly better results in this case. We must reiterate that this baseline is
infeasible to replicate by a designer as it needs a specific reward function and many iterations.
Even then, the overall result is not very different from our approach. As shown by the results
from these experiments, the combination of these elements is more easily achievable with IL
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Figure 8.6: Screenshot of the “Validating a Complex Trajectory” use-case.

rather than RL.

8.6 User Study

We performed a qualitative user study in the form of an online survey * with professional
game and level designers, not only to assess validity and desirability of using our proposed
approach but also to identify open opportunities for improving automated game validation.

*A video describing what was shown in the survey is available at: https://vimeo.com/754718818/
011e28a122.

https://vimeo.com/754718818/011e28a122
https://vimeo.com/754718818/011e28a122
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Figure 8.7: Screenshot of the “Navigation” use-case.

Use-case 1
Success ↑ Time ↓ Generalization ↑ Imitation ↓

Ours 0.95± 0.00 0.02 h 0.96± 0.05 6.84± 0.34
Simple-RL 0.91± 0.02 5.00 h 0.90± 0.00 8.37± 0.27
Tuned-RL 0.95± 0.00 4.48 h 0.90± 0.02 8.13± 0.20

Use-case 2
Success ↑ Time ↓ Generalization ↑ Imitation ↓

Ours 0.90± 0.02 0.06 h - 7.73± 1.10
Simple-RL 0.00± 0.00 18.18 h - 28.11± 0.41
Tuned-RL 0.92± 0.03 13.56 h - 9.53± 1.37

Use-case 3
Success ↑ Time ↓ Generalization ↑ Imitation ↓

Ours 0.81± 0.08 0.22 h 0.78± 0.03 46.07± 1.03
Simple-RL 0.00± 0.00 16.49 h 0.00± 0.00 80.22± 0.53
Tuned-RL 0.86± 0.05 4.12 h 0.87± 0.03 16.79± 2.12

Table 8.1: Quantitative results of our experiments. We compare our approach with two
main baselines: Simple-RL, which uses PPO algorithm with a sparse reward function and
Tuned-RL which uses an hand-crafted and very dense reward function. All the numbers
refer to the mean and standard deviation of 5 training runs. For a complete description of the
use-cases, see Section 8.5. Since in use-case 2 we are not interested in generalization, we do
not report the values for that experiment.
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ID Role Genre(s) YoE MLK
P01 Level Designer FPS 15 Low
P02 Level Designer FPS 11 None
P03 Level Designer Racing 3 Very Low
P04 Level Designer RPG 6 High
P05 Level Designer Racing 1 Very Low
P06 Level Designer RPG 4 Very Low
P07 Game Designer RPG 9 Low
P08 Game Designer Sport 3 Very Low
P09 Game Designer Sport 4 Very Low
P10 Game Designer Match3 1 Very Low
P11 Level Designer RPG 15 Very Low
P12 Level Designer FPS 21 Low
P13 Gameplay Designer RPG 15 Very Low
P14 Game Designer RPG 22 None
P15 Level Designer FPS, racing 10 Very Low
P16 Level Designer RPG 5 Very Low

Table 8.2: Summary of participants. Abbreviations: YoE (years of experience), MLK
(machine learning knowledge), FPS (first person shooter), RPG (role-playing game), TPS
(third person shooter).

Survey Description

The data for the survey were collected from participants recruited using snowball sampling.
Subjects were recruited among different game studios of varying sizes, with different back-
ground knowledge and workflows. The survey is composed of Likert questions with some
additional open questions. We also let participants provide additional feedback to individual
questions. In Table 8.2 we report the details of all survey participants. In Table 8.3 we report
all the questions in the user survey.

The survey was divided into four sections: the first asks participants of some background
information; the second asks them about their current game validation workflow, in particular
if they use manual or automated playtesting; the third, being the main part of the survey, asks
participants what they think about our solution, if they would use it in their games, what
characteristics an agent/approach like this should have to help them in their game and level
design work, if they think IL would help them create better games; and the fourth contains
optional questions about possible use cases and future directions they see that we had not
considered.

Since one of the main focuses of this chapter is to assess what improvements and research
are needed to maximize the value of using our proposed approach, one important question
in the third section of the survey asks participants to evaluate various characteristics that an
agent should display for automated content evaluation. These characteristics are:

• Imitation: the agent can exactly replicate the demonstrations;

• Generalization: the agent can adapt to different variations of the same situation;

• Exploration: the agent can explore beyond the demonstrations and find bugs and issues;
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Table 8.3: All the questions presented to industry experts through the survey. The Type
column refers to the type of answer allowed for each question: Open allowed participants to
answer with a free-text response; Multi allowed participants to choose from list of answers;
[Yes, No] allowed participants to answer either yes or no; and “[1, 7]” allowed participants
to answer with a value between 1 and 7, where 1 generally means “totally disagree” and 7
means “totally agree”.

N° Question Type

1 What is your area of expertise? Open
2 What game or franchise do you work on? Open
3 What is your level of machine learning knowledge? Multi
4 How many years of experience do you have in the video game industry? Open
5 What tools/software do you most commonly use in your everyday work? Open
6 Is any part of the level design evaluation process automatic in your current workflow? [Yes, No]
7 Have you used scripted automated method in your daily work? [Yes, No]
8 How often do you rely on automated rather than manual playtesting? Multi
9 Were the examples shown realistic enough to resemble AAA level design evaluation? [1, 7]

10 Generally, do you think automated evaluation and testing of the level directly in the game editor is useful? [1, 7]
11 How useful do you think the demonstrated agent could be in assisting with content evaluation? [1, 7]

12
What are the important characteristics that an agent for automated content evaluation should have?
Please rank the options below

-

12* Imitation (the agent can exactly replicate the demonstrations) [1, 7]
12* Generalization (the agent can adapt to different variations of the same situation) [1, 7]
12* Exploration (the agent can explore beyond the demonstrations and find bugs and issues) [1, 7]
12* Personas (the agent can have different types of behaviors) [1, 7]
12* Efficiency (the agent must use as few demonstrations as possible) [1, 7]
12* Controllability (having control over the agent behavior vs complete autonomy) [1, 7]
12* Feedback (the agent gives feedback when the amount of demonstration data is enough) [1, 7]
12* Fine-Tuning (behaviors can be fine tuned after initial training) [1, 7]
12* Interpretability (the agent can inform when and why it fails) [1, 7]
13 Any other important characteristics that come to mind? Open
14 Do you think the method demonstrated can be useful to you for the content you create? [1, 7]
15 Would the method demonstrated allow you to create more meaningful gameplay experiences more easily? [1, 7]
16 What are the potential problems you see in using a method like this? Open
18 How does the demonstrated solution compare with scripted agents? Multi

19
How useful do you think this method would be in aiding your everyday
decision-making processes as designer?

[1, 7]

20 Do you see other use cases for this method? Open
21 What other features would you like to see in a method like this? Open
21 Do you have any other feedback, comment or idea for us? Open

• Personas: the agent can have different types of behaviors;

• Efficiency: the agent must use as few demonstrations as possible;

• Controllability: having control over the agent behavior vs complete autonomy;

• Feedback: the agent gives feedback when the amount of demonstration data is enough;

• Fine tuning: behaviors can be fine tuned after initial training;

• Interpretability: the agent can inform me when and why it fails.
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Figure 8.8: Boxplot of answers to some important questions from the survey. The boxes
represent the area between the lower and upper quartiles. The red lines represent the median
of the values, and the whiskers represent the minimum and maximum of the distributions
(except for the outliers that are visualized with black dots).

8.7 Survey Results

We received a total of 16 survey responses. In Figure 8.8 and Figure 8.9 we report some of the
most interesting results obtained. The majority (71.4%) of the participants have more than 5
years of experience in level design, with a median of 7.5 years. All the participants are level,
game, or gameplay designers. The general machine learning knowledge of the participants
range from very low to low. 83.3% of the respondents do not use automatic playtesting and
they rely on external people or systems for their validation. 72.2% of designers never rely on
automated playtesting and only 38.9% have used at least once a scripted automated method
in their daily work. They work on different game projects and game genres and they use
different tools in their level design workflow, but all respondents have knowledge of game
engine editors. The general feeling is that designers would very likely use a tool like this as

“it definitely would be useful to speed up the typically time consuming iterative design process”
and “a method like this can definitely speed up iteration, which is one of the main things any
designer spends a lot of time”. Moreover, they can relate to the demonstrated example as “it
is not quite like how designers are building their levels, but it is not far off ” and they think
the examples shown are “realistic for some games such as platformers”.

Participants acknowledge the usefulness and the potential of the demonstrated method,
even if it would need the proper adaptations for handling the specific game genre they are
working on. Further, 81.2% of the respondents agree that automated validation of the level
directly in the game editor is useful and 93.0% of them think the demonstrated agents could
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(a) (b)

(c) (d)

(e) (f)

Figure 8.9: Pie charts of answers to some of the most important questions in the survey. (a)
The question “what is your area of expertise?”; (b) The question “what is your machine
learning knowledge?”; (c) The question “is any part of the level design evaluation process
automatic in your current workflow?”; (d) The question “have you used scripted automated
method in your daily work?”; (e) The question “how often do you rely in automated rather
than manual playtesting?”; and (f) The question “how does the demonstrated solution
compare with scripted agents?”.

be useful for assisting in validating their content. Many respondents (41.1%) agree that a
method like this adds value compared to scripted agents and some of them (23.5%) think it
could completely replace scripting.

Some designers are skeptical about the complexity of the examples shown in the survey
and they would like to see how well the approach works in more complicated games. One
participant says that “[he is] wondering about how effective this would be in genres that
are more complicated mechanically”. This was expected due to the preliminary nature
of this study and that we do not cover every genre but focus on a few. However, a larger
group (81.2%) think that complexity was high enough which reinforces the notion that the
environment is relevant to a significant part of the community. Designers also describe the
challenges of using such a tool in their daily workflow: one argues that “human players
play very differently than bots, can be difficult to only rely on AI when it comes to testing”



8.8 Conclusions and Future Directions 123

Mean Median Std
Imitation 4.56 4.00 1.63
Generalization 6.50 7.00 0.73
Exploration 6.81 7.00 0.40
Personas 5.87 6.00 1.31
Efficiency 5.50 5.50 1.21
Controllability 4.18 4.00 1.68
Feedback 6.00 6.00 0.96
Fine tuning 5.62 6.00 1.50
Interpretability 6.50 7.00 1.03

Table 8.4: Results of characteristics questions. Participants could give a value between [1, 7]
to each of the category, where 1 means “not so important” and 7 means “very important”.

or “demonstrations take time, which would push busy level designers to not use it. Demon-
strating how to solve specific issues – e.g. recover from a mistake – should not be on the
level designer”. Not all game creators are fully convinced by the approach because “the
demonstration video showed a process that does not really show a level designer anything
new or unexpected”.

After describing their doubts, we asked participants to evaluate each of the characteristics
delineated in the previous section to specify which ones are the most important to improve
the approach. Table 8.4 summarizes these characteristics ratings. We claim that these results
bring much value to our research: not only do we know that our initial hypothesis is supported
by professional designers, but we also what they really want and why they are skeptical of
using such an approach. This is important because, as we will see in Section 8.8, the values
in Table 8.4 form very precise research directions that we encourage all of the game research
community to consider in future contributions to this field.

We asked participants to evaluate each of the characteristics delineated in the previous
section and which are the most important ones to improve the approach. Table 8.4 refers to
the results. We claim that these results bring much value to our research: not only do we know
that our initial hypothesis is supported by professional designers, but we also know what they
really want and why they are skeptical of using such an approach. This is important because,
as we will see in Section 8.8, the values in Table 8.4 form very precise research directions
that we encourage all of the game research community to consider in future contributions to
the video game industry.

8.8 Conclusions and Future Directions
In this chapter, we first claimed that data-driven programming via imitation learning is a
suitable approach for real-time validation of game and level design. We proposed an imita-
tion learning approach and we investigated it focusing on three different design validation
use-cases. Our experiments demonstrate how this type of approach can satisfy many of the
requirements for being an effective game design tool in comparison to simple reinforcement
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learning and model-based scripted behaviors. We also performed a user study with profes-
sional game and level designers from different, and in many cases, disparate game studios
and game genres. We asked participants to assess the desirability and opportunities of using
such an approach in their daily workflow. Moreover, we asked designers what characteristics
they would want from a tool for creating autonomous agents that validate their design.

The user study highlights the desire of designers to have an automated way to test and
validate their games. Along with our preliminary results we demonstrate that the data-driven
approach we proposed is a potential candidate for achieving such objectives. The study
also highlights challenges and the gap that exists between techniques from the literature and
their actual use in the game industry. In light of the results of our qualitative analyses and
experimental results obtained throughout the entire dissertation, we now propose a series of
research directions that will help such approaches move beyond an impractical tool to an
effective game design tool. With this we want to lower the bar for researcher who would
like to contribute and improve this dissertation, as this would help drive the research, and
therefore industry, forward.

Generalization. One of the most important requests is to have an agent that not only imitates
expert behaviors, but that is more representative of the unpredictable nature of players. With
our proposed general purpose neural network and state space we mitigate this problem, but
in many cases agents trained under one set of demonstrations are not able to adapt to larger
variations (Huang et al., 2017). Generalization as a subject in self-learning agents has already
been addressed in the literature, but the state-of-the-art approaches are not readily applicable
for our purpose: most of them use either interactions with the game (Ho and Ermon, 2016; Fu
et al., 2018; Torabi et al., 2018) or learn the inverse dynamics of the environment (Monteiro
et al., 2020). A possible future direction is to try data augmentation techniques used in offline
reinforcement learning algorithms such as the work done by Sinha et al. (2022). Offline
reinforcement learning has several connections to behavioral cloning (Fujimoto and Gu,
2021). It learns a policy using a pre-defined dataset without direct interactions with the
environment, but in contrast with IL that supposes the data comes from an optimal policy,
offline reinforcement learning can also leverage sub-optimal examples. This leads to trained
agents being more general and allows a higher exploration level. With all this considered, we
argue that generalization is far from solved for this use case.

Personas. One recurring feature requested by survey participants is the possibility of
training the model for different behavior types, or so called personas. The aim is to have
various behaviors similar to the multi-modal nature of how humans play, in order to create
more meaningful agents. The research community has addressed the problem of creating
personas many times, but exclusively in RL contexts. Works from de Woillemont et al.
(2021), Roy et al. (2021) have explored how to combine behavior styles with different reward
functions which is not applicable to IL. The work by Peng et al. (2021) is an example of how
to combine IL and RL to create different animation styles. More research into training for
different playstyles with only IL would allow designers to train more meaningful and diverse
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testing agents for validating gameplay in different ways.

Exploration. Participants frequently brought up the exploration aspect, i.e. the ability of
agent to look beyond expert demonstrations in search for overlooked issues. Exploration is
a well known problem in the RL literature (Burda et al., 2018), but exploration in IL is, to
our knowledge, largely unexplored. This is mainly due to the conflicting nature of an agent
that must both learn to, more or less, precisely follow the expert demonstrations as well as
explore beyond the expert behavior. Moreover, we would not use exploration to improve
agents in the validation context, but we would like to exploit exploration to find bugs. In
Chapter 7 we provided a good example of how to leverage both IL and RL to train agents to
both follow demonstrated behaviors but also to explore in search for issues. However, this
type of solution is still too sample inefficient to be used as an active game design tool.

Usability. The usability aspect is one of the most important for participants. This includes
both providing useful information to designers about the models they are training, and the
ease-of-use of the tool. Recent techniques from the explainable RL (Druce et al., 2021)
research community could be used to address the challenge of interpreting behaviors of
the agent. To improve upon this, one can use techniques from game analytics research and
gameplay visualization (Wallner and Kriglstein, 2013). Additionally, a sentiment found in the
survey is that for a tool like this to be usable, there is a need to minimize the effort imposed
on the end-user. To address the latter, few-shot IL is an active topic that can potentially help
to reduce the number of samples required. Works by Duan et al. (2017) and Hakhamaneshi
et al. (2021) specifically addressed this problem within IL, mainly exploiting meta-learning
techniques (Finn et al., 2017). However, these approaches require many preliminary training
iterations and it is unclear how this could be applied to a game in development that is unstable
and not yet finished. One way to both improve the agent’s quality and the usability of the tool
is to leverage the already cited offline reinforcement learning techniques (Kumar et al., 2020;
Chen et al., 2021; Sinha et al., 2022). We can leverage the recording process to not only store
demonstrations, but all other interactions the agent performs while testing the level.

Multitiple Agents. Many designers noted that most modern video games are multi-
agent systems, and in order to thoroughly test these environments we need to train multiple
interacting agents. Most of the current research in IL focuses on single agents learning
from a single teacher. There are a few examples of multi-agent IL. Harmer et al. (2018)
used IL in a multi-agent game, but they do not really address the problem of a multi-agent
system, while Le et al. (2017) proposed a joint approach that simultaneously learns a latent
coordination model along with the individual policies. We believe there is still a long way to
go for meaningful multi-agent IL, especially for this use case, and we encourage researchers
to follow this research direction.





Chapter 9

Conclusions

Video games are becoming more and more popular as a form of entertainment. The number
of persons playing video games is constantly increasing, and with the rise of portable gaming
devices people are playing more video games more often than ever before. The demand
for better games is increasing, as people desire games that are more realistic, have better
graphics, and are more challenging.

At its core, this dissertation is about the potential of deep reinforcement learning for
video game development. In it we propose powerful and flexible tools for creating artificial
intelligence agents that can learn to play games in realistic and challenging ways. We
believe that this technology will continue to be developed and improved, and that the work
described in this dissertation represents a significant step forward. We have shown that deep
reinforcement learning can be used to train agents that can play a variety of different games.
The agents that we have developed are:

• credible: they act in ways that are predictable, that can be interpreted as intelligent,
and that offer the right challenge to the player;

• imperfect: they are imperfect and not superhuman, as they behave like humans;

• prior-free: they learn to play the game without any prior knowledge of the rules and
without manual specification of strategies; and

• various: they exhibit different behaviors in different situations, like real human players.

To conclude, we put the content of this dissertation into context with respect to the
challenges highlighted in Chapter 2 which we think are the most relevant for its contribution
to future research in deep reinforcement learning applied to video: the quest for more
believable and appealing NPCs. In Figure 9.1 we illustrate a summary of the contributions of
this dissertation to each of these challenges.

Generalization. In Chapter 3 and especially in Chapter 4 we showed how to exploit
procedural content generation and procedural game rules to train agents that do not memorize
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trajectories to achieve goals, but that rather learn an abstract representation of the state-space
and of the environment that enables them to generalize and manage all the possible situations
that can happen both in playing with human players and during the development process.
Moreover, in Chapter 6 we proposed new policy fusion methods able to easily adapt a trained
agent to changes in strategy. Since during development games can change on a daily basis,
this dissertation describes how to train agents that support developers in adapting agents to
their design change workflow.

Reward Function. Engineering a good reward function is a challenging task, even more so
if the users of these tools are not experts in machine learning. Our demonstration-efficient
inverse reinforcement learning algorithm and policy fusion methods (Chapters 5 and 6)
provide a form of fine control over the final behavior of agents without defining, changing,
or engineering a reward function. DE-AIRL requires only a few demonstrations and little
training time.

Behavior Quality and Novel Testbeds. Our experiments illustrate the potential of the
techniques proposed in this dissertation to increase the quality of agent behavior. Our agents
are not super-human, but rather learn behaviors suitable for game production, whether we
want to use them as NPCs or for automatic playtesting. We tested these abilities in two
new and open source game environment testbeds – DeepCrawl, outlined in Chapter 3, and
the navigation environment described in Chapter 7 – which we now encourage the research
community to use and to continue and expand this research.

Interpretability. Our studies with industry experts showed that deep analysis and under-
standing of reinforcement learning behaviors are fundamental in order to allow designers to
make actionable design decisions, for example whether or not to include a trained behavior
in the final release of the game. There is still a long way to go towards true interpretability in
reinforcement learning, but we hope our curiosity-conditioned proximal trajectories algorithm
described in Chapter 7 can provide a good example of how to support interpretation.

Usability. The studies conducted in this dissertation showed that agents can be trained
to a high standard using only small neural networks and a few days of training. Chapter 8
demonstrated how, in some cases, the training can be completed in a matter of minutes.
Although there is still some skepticism among professional game developers about the
usability of machine learning, the approach described in Chapter 8 suggests that imitation
learning is a powerful technique that can close the gap between academic findings and game
industry.
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Figure 9.1: List of challenges that interfere with the wide application of DRL in video game
development, alongside with solutions proposed in this dissertation. To the left of each
solution, we highlight the chapter of this manuscript where the interested reader can read
about that topic.





Appendix A

Publications

Peer Reviewed Conference Papers

1. Alessandro Sestini, Alexander Kuhnle, and Andrew D. Bagdanov. “Policy Fusion
for Adaptive and Customizable Reinforcement Learning Agents”. In proceedings
of Conference on Games (CoG), 2021. Candidate’s contributions: contributed to
literature review, algorithm design, theoretical analysis; designed and carried out the
experiments.

2. Alessandro Sestini, Alexander Kuhnle, and Andrew D. Bagdanov. “Demonstration-
efficient Inverse Reinforcement Learning in Procedurally Generated Environments”.
In proceedings of Conference on Games (CoG), 2021. Candidate’s contributions:
contributed to literature review, algorithm design, theoretical analysis; designed and
carried out the experiments.

Peer Reviewed Journal Papers

1. Alessandro Sestini, Linus Gisslén, Joakim Bergdahl, Konrad Tollmar and Andrew D.
Bagdanov. “Automatic Gameplay Testing and Validation with Curiosity-Conditioned
Proximal Trajectories”. In Transaction on Games (ToG), 2022. Candidate’s con-
tributions: contributed to literature review, algorithm design, environment design,
visualization tool design, theoretical analysis; designed and carried out both quantita-
tive and qualitative experiments.

Peer Reviewed Workshop Papers

1. Alessandro Sestini, Joakim Bergdahl, Konrad Tollmar, Andrew D. Bagdanov and
Linus Gisslén. “Towards Informed Design and Validation Assistance in Computer
Games Using Imitation Learning”. Accepted at NeurIPS-22 Workshop on Human-in-
the-Loop Learning, 2022. Candidate’s contributions: contributed to literature review,
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algorithm design, environment design, theoretical analysis; designed and carried out
both quantitative and qualitative experiments.

2. Alessandro Sestini, Alexander Kuhnle, and Andrew D. Bagdanov. “Deep Policy
Networks for NPC Behaviors that Adapt to Changing Design Parameters in Roguelike
Games”. AAAI-21 Workshop on Reinforcement Learning in Games, 2021. Candidate’s
contributions: contributed to literature review, algorithm design, theoretical analysis;
designed and carried out the experiments.

3. Alessandro Sestini, Alexander Kuhnle, and Andrew D. Bagdanov. “DeepCrawl:
Deep Reinforcement Learning for Turn-based Strategy Games”. AIIDE-19 Workshop
on Experimental AI in Games, 2019. Candidate’s contributions: contributed to
literature review, algorithm design, environment design, theoretical analysis; designed
and carried out the experiments.

Papers Under Review

1. Tommaso Aldinucci, Enrico Civitelli, Leonardo di Gangi, Alessandro Sestini. “Con-
textual Decision Trees”. Submitted to Machine Learning (MACH), 2022. Candidate’s
contributions: contributed to methodology design and literature review.
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