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Abstract
We consider a mixed boundary value problem in a domain � contained in a half-ball B+ and
having a portion T of its boundary in common with the curved part of ∂B+. The problem
has to do with some sort of constrained torsional rigidity. In this situation, the relevant
solution u satisfies a Steklov condition on T and a homogeneous Dirichlet condition on
� = ∂�\T ⊂ B+. We provide an integral identity that relates (a symmetric function of) the
second derivatives of the solution in � to its normal derivative uν on �. A first significant
consequence of this identity is a rigidity result under a quite weak overdetermining integral
condition for uν on �: in fact, it turns out that � must be a spherical cap that meets T
orthogonally. This result returns the one obtained byGuo andXia under the stronger pointwise
condition that the values of uν be constant on �. A second important consequence is a set of
stability bounds, which quantitatively measure how� is far uniformly from being a spherical
cap, if uν deviates from a constant in the norm L1(�).

Mathematics Subject Classification Primary 35N25 · 35B35 · 35M12; Secondary 35A23

1 Introduction

Let B and S = ∂B be the (open) unit ball and the unit sphere in R
N , centered at the origin,

and set B+ = {x = (x1, . . . , xN ) ∈ B : xN > 0}. Consider in B+ a bounded domain � (i.e.,
a bounded open connected set) whose boundary � is the union of � and T = � \ �, where
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� is a smooth hypersurface contained in B+, T is a subset of S, and T meets � at a common
(N − 2)-dimensional submanifold � = � ∩ T of S.

In �, we consider the following mixed boundary value problem:

�u = N in �, u = 0 on �, uν = u on T . (1.1)

Here and in what follows, uν denotes the derivative of u in the direction of the outward unit
normal ν to �. In particular, we have that

ν(x) = x on T .

For the existence and uniqueness of a solution u of (1.1), which is smooth in � \ � and
belongs to C0,γ (�) for some γ ∈ (0, 1), we refer the reader to [8, Proposition 2.2]; more
precisely, Lieberman [12] guarantees that u ∈ C0,γ (�), whereas the classical regularity
theory for elliptic equations gives that, for k ∈ N with k ≥ 2 and γ ∈ (0, 1), u ∈ Ck,γ (�\�)

provided that� is of classCk,γ . In [8], the solutionof (1.1) is obtained as a suitably normalized
solution of the variational problem:

sup
0 �=v∈W 1,2

0 (�,�)

(∫
�

v dx
)2

∫
�

|∇v|2dx − ∫T v2dSx
.

Here, W 1,2
0 (�,�) denotes the subspace of functions in W 1,2(�) vanishing in a Sobolev

sense on �. The supremum can be interpreted as some sort of relative or constrained torsion
T(�,�) for domains contained in B. In fact, if � ⊂ B (and hence T = ∅), we recover a
definition of the standard torsion of � (see [13]).

The issue of regularity up to the (whole) boundary for (1.1) is delicate. The regularity of
the solution u strongly depends on how � and T intersect. As done in [8], we shall further
assume that u belongs to W 1,∞(�) ∩ W 2,2(�) to ensure that we can integrate by parts.
As shown in [8, Proposition 3.5], such an assumption is surely satisfied whenever � and T
intersect orthogonally.

The aim of this paper is to study a Serrin-type overdetermined boundary value problem
for (1.1). In fact, similarly to [23, 24] and as done in [8], we add the extra condition

uν = R on �, (1.2)

where R is some given constant. In [8], under suitable regularity assumptions, it is shown that
the problem (1.1)–(1.2) arises naturally in a shape optimization problem. If the relative torsion
T(�,�) is stationary with respect to volume-preserving transformations at a domain�, then
the corresponding function u that attains T(�,�) satisfies (1.1)–(1.2) (see [8, Proposition
4.2]).

A rigidity result for problem (1.1)–(1.2) has been proved byGuo andXia [8]. In our slightly
different setting, themain result in [8] states that, if a suitably regular overdetermined solution
exists, then R > 0, � must be the spherical cap defined by

{x ∈ B+ : |x − z| = R} with |z| =
√
1 + R2, (1.3)

and u must be equal on � to the quadratic polynomial defined for x ∈ R
N by

1

2
(|x − z|2 − R2).

We shall compute in Proposition 2.4 the exact value of R in terms of � as

R = N

∫
�
xN dx

∫
�
xN dSx

. (1.4)
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Fig. 1 The construction of a
symmetric domain �. The
R-spherical cap � meets
orthogonally the unit spherical
cap T

z

0

√
1 + R2

Σ

R

1

T
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Thus, � must be a spherical cap and � results as a lenticular domain, as shown in Fig. 1.
In this paper, we shall study the problem (1.1)–(1.2) from a quantitative point of view. In
other words, we will estimate how close � is to a spherical cap in terms of the deviation of
uν from the constant R in some Lebesgue norm on �.

In order to do that, we first refine Guo and Xia’s rigidity result. In fact, by shadowing the
arguments in [8], we obtain the following integral identity for the solution of (1.1):

∫

�

xN (−u)

{
|∇2u|2 − (�u)2

N

}
dx = 1

2

∫

�

(
u2ν − R2) [uνxN − 〈Xq , ν〉]dSx . (1.5)

Here, Xq is the conformal Killing field defined by

Xq = xN x − 1

2

(|x |2 + 1
)
eN = xN ∇q(x) − q(x) eN , x ∈ R

N , (1.6)

where eN = (0, . . . , 1) ∈ R
N , andwe set: q(x) = (1+|x |2)/2. Integral identities of this kind

have been obtained for the Alexandrov’s Soap Bubble Theorem and the classical Serrin’s
problem by the authors of this note (see [14–16, 20]). In those cases, the role of the field Xq

in the identity was played by the identity field R
N � x �→ x . Note that, on the unit sphere S,

Xq is the projection of −eN on the tangent space to S.
In [8], it is proved that, if u satisfies (1.1)–(1.2), then the left-hand side of (1.5) must

be zero. Since xN > 0 in � ⊂ B+ and u < 0 in � by [8, Proposition 2.3], the function
in the braces at the left-hand side of (1.5) must vanish identically on �, since it is always
non-negative by the Cauchy–Schwarz inequality. As a by-product, one infers that u must be
a spherically symmetric quadratic polynomial, as noted in [14]. Thus, � must be a portion
of a sphere, since u = 0 on �. The lenticular shape of � then ensues quite easily.

Now, observe that, from (1.5) it is evident that its right-hand side (and hence its left-hand
side) is null if (1.2) holds. However, (1.5) gives more information for at least two reasons.
One is that Guo and Xia’s rigidity result can bemerely obtained under the weaker assumption
that the right-hand side of (1.2) is non-positive. The second and more important reason is
that the identity gives quantitative information. In fact, if we know that uν deviates from R
by little in some integral norm, then the integral at the left-hand side of (1.5) is small.

Now, notice that, if we consider a quadratic polynomial as defined by

Q(x) = 1

2
|x − z|2 − q0 for x, z ∈ R

N , q0 ∈ R,
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and we set h = Q − u, then it turns out that

|∇2u|2 − (�u)2

N
= |∇2h|2.

Thus, the square root of the first integral in (1.5) can be seen as the weighted (second
order) W 2,2-seminorm in � of h with respect to the positive measure xN [−u(x)] dx . Also,
notice that h = Q on �, and hence Q has to do with the distance of the point z to points
in �. Therefore, we will see that, in order to obtain an estimate of closeness of � from the
spherical cap defined in (1.3), it is just the matter of proving that the oscillation of h = Q on
� can be controlled in terms of the aforementioned weighted W 2,2-seminorm of h.

We are now going to present our quantitative rigidity estimates. We need to recall some
notation from the subsequent sections.

As in [8], we assume that u ∈ W 1,∞(�) ∩ W 2,2(�). Under this assumption, since u ∈
W 1,∞(�) and u = 0 on �, then u ∈ C0,1(�). In fact, we can extend u by 0 outside � to the
whole B, thus obtaining a function in W 1,∞(B), which coincides with C0,1(B) ⊃ C0,1(�),
since B is convex. Thus, we let L to be an upper bound1 of the Lipschitz seminorm defined
in (3.2), i.e. L ≥ [u]C0,1(�).

Also, we present our stability results under the assumption that � and T intersect on � in
a way that � satisfies the (θ, a)-uniform interior cone condition, for given parameters θ and
a (see Sect. 3 for the definition). We adopt this condition to avoid an excessively technical
presentation. Nevertheless, our arguments could be adapted and the same stability result of
Theorem 1.1 below achieved in more general cases (see Remark 4.8).

In order to measure the deviation of � from a spherical cap, for a given point z ∈ R
N , we

define two quantities,

ρe = max
x∈�

|x − z| and ρi = min
x∈�

|x − z|,

so that we have:

� ⊆ [Bρe (z) \ Bρi (z)
] ∩ B+.

The point z must be conveniently chosen. A good choice of z is a somewhat modified center
of mass of �:

z = 1

|�|
{∫

�

x dx −
∫

T
u(x) x dSx

}
. (1.7)

With this choice, we have that the mean value of the field ∇h is zero. This will allow the use
of certain suitable Hardy-Poincaré-type inequalities.

We now present our stability results
Our most general quantitative estimates are contained in Theorem 4.9. Here, we prefer to

present three special instances of that result in three relevant situations, which better depict
the dependence of the estimates on certain geometrical assumptions on the surface �.

In the next theorem, � is not allowed to touch the flat part of B+.

Theorem 1.1 (� does not touch ∂B+ \ ∂B) Set N ≥ 2. Let � be a domain contained in B+
and satisfying the (θ, a)-uniform interior cone condition. Assume that there exists a positive
number m such that

1 When � and T intersect orthogonally, [8, Proposition 3.5] ensures that u ∈ C1,γ (�) ∩ W 2,2(�): their
argument is based on spherical reflection. The global C1,γ (�) regularity of u is also guaranteed whenever �

is a capillary surface with contact angle θ ∈ (0, π/2): see [11, Theorem 3.2].
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� ⊂ {x ∈ B+ : xN ≥ m}. (1.8)

Let u ∈ W 1,∞(�) ∩ W 2,2(�) be the solution of (1.1) and assume that L ≥ [u]C0,1(�).
Moreover, let R and z be the number and point defined in (1.4) and (1.7). Then, it holds that

ρe − ρi ≤ c

{
‖u2ν − R2‖1/21,� max

{
log
(
‖u2ν − R2‖−1/2

1,�

)
, 1
}

for N = 2,

‖u2ν − R2‖1/N1,� for N ≥ 3,

for some non-negative constant c = c(N , θ, a, L,m).

In Sect. 4.3 we show that the assumption 1.8 can be removed at the cost of getting a slightly
worse stability exponent, namely 1/(N + 1) in place of 1/N for N ≥ 3 (see Theorem 4.9).
Such a generalization is non-trivial and requires a new and careful analysis, which is provided
in Sect. 4.3.

The next result considers the case where� satisfies an interior sphere condition relative to
B+. In fact, the same stability rate of Theorem 1.1 can also be obtained if (1.8) is dropped and
replaced by the assumption that � satisfies the strong ri -uniform interior sphere condition
relative to B+. Such a condition, which is introduced in Sect. 4.1 following the spirit of [21,
Section 4.1], is surely satisfied whenever � and T intersect orthogonally.

Theorem 1.2 (� satisfies a strong sphere condition) Set N ≥ 2 and let � be a domain
contained in B+. Assume that � satisfies the (θ, a)-uniform interior cone condition and the
strong ri -uniform interior sphere condition relative to B+.

Let u ∈ W 1,∞(�) ∩ W 2,2(�) be the solution of (1.1) and assume that L ≥ [u]C0,1(�).
Moreover, let R and z be the number and point defined in (1.4) and (1.7). Then, it holds that

ρe − ρi ≤ c

{
‖u2ν − R2‖1/21,� max

{
log
(
‖u2ν − R2‖−1/2

1,�

)
, 1
}

for N = 2,

‖u2ν − R2‖1/N1,� for N ≥ 3,

for some non-negative constant c = c(N , θ, a, L, ri ).

The rate of stability further improves if both additional assumptions are in force.

Theorem 1.3 (� satisfies a strong sphere condition and � does not touch ∂B+ \ ∂B) Set
N ≥ 2 and let � be a domain contained in B+. Assume that � satisfies the (θ, a)-uniform
interior cone condition and the strong ri -uniform interior sphere condition relative to B+.
In addition, suppose that there exists m > 0 such that (1.8) holds.

Let u ∈ W 1,∞(�) ∩ W 2,2(�) be the solution of (1.1) and assume that L ≥ [u]C0,1(�).
Moreover, let R and z be the number and point defined in (1.4) and (1.7). Then, it holds that

ρe − ρi ≤ c

⎧
⎪⎪⎨

⎪⎪⎩

‖u2ν − R2‖1/21,� for N = 2,

‖u2ν − R2‖1/21,� max
{
log
(
‖u2ν − R2‖−1/2

1,�

)
, 1
}

for N = 3,

‖u2ν − R2‖1/(N−1)
1,� for N ≥ 4,

c = c(N , θ, a, L, ri ,m).

The paper is organized as follows. In Sect. 2, we derive our fundamental integral identity
(1.5). In Sect. 3, we prepare the proofs of Theorems 1.1–1.3 and 4.9, by collecting a pointwise
estimate from below for −u in terms of the distance of a point x to the boundary � and some
Poincaré-type estimates in weighted spaces. These adapt to the constrained case � ⊂ B+
similar bounds obtained in [14–16] (see also [7]). Finally, in Sect. 4, we carry out the proofs
of Theorems 1.1–1.3 and 4.9.

123



   23 Page 6 of 26 R. Magnanini, G. Poggesi

2 A fundamental identity

In this section, we shall prove the identity (1.5).
For later use, we preliminarly recall some easily verified properties of the Killing field Xq

defined in (1.6) and the solution u of (1.1). In fact, it holds that

divXq = NxN in R
N ; Xq = xN x − eN , 〈Xq , ν〉 = 〈Xq , x〉 = 0 on S, (2.1)

∇(�u) = 0 in �, ∇u = uν ν on �, 〈∇2u ν, ω〉 = 0 on T , (2.2)

for every direction ω which is tangential to T . The last two conditions follow from the fact
that � and T are level surfaces for u and uν − u = 〈x,∇u〉 − u.

The proof of (1.5) is inspired by calculations carried out in [8]. Essentially, those are a
combination of repeated integrations by parts and the application of conditions (2.1) and
(2.2).

We begin by adapting to our aims and notations an identity in [8, Proposition 3.3]. We
introduce the so-called P-function by setting:

P = 1

2
|∇u|2 − u in �. (2.3)

Lemma 2.1 (A Pohozaev-type identity) Let u ∈ W 1,∞(�) ∩ W 2,2(�) be the solution of
(1.1). Then, the following identity holds:

N
∫

�

xN P dx = 1

2

∫

�

u2ν〈Xq , ν〉 dSx . (2.4)

Remark 2.2 Being as u ∈ W 1,∞(�)∩W 2,2(�), all the integration by parts performed in this
section are allowed (see, e.g., the version of the divergence theorem stated in [8, Proposition
3.2]).

Proof of Lemma 2.1 The proof of [8, Proposition 3.3] can be summarized and reorganized
as follows. By straightforward computations, we see that the following differential identity
holds true:

N xN P = div

{
〈Xq ,∇u〉 ∇u − N u Xq − 1

2
|∇u|2Xq

}

+(N − 1) div

{
xN u ∇u − 1

2
u2eN

}
.

Next, we integrate on � and use the divergence theorem. We have that

N
∫

�

xN P dx =
∫

�

〈Xq ,∇u〉 uν dSx +
∫

T
〈Xq ,∇u〉 uν dSx +

−1

2

∫

�

u2ν〈Xq , ν〉 dSx + (N − 1)
∫

T
xN u uν dSx − 1

2
(N − 1)

∫

T
xN u2dSx .

Here, we have used that u = 0 on � and 〈Xq , ν〉 = 0 on T .
Now, we use that ∇u = uν ν on � and uν = u on T , and hence infer that

N
∫

�

xN P dx

= 1

2

∫

�

u2ν〈Xq , ν〉 dSx +
∫

T
〈−(eN )T ,∇T u〉 u dSx + 1

2
(N − 1)

∫

T
xN u2dSx .
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Here, we have also noticed that

〈Xq ,∇u〉 uν = 〈Xq , uν ν + ∇u − uν ν〉 u
= 〈Xq ,∇u − uν ν〉 u = 〈−(eN )T ,∇T u〉 u on T .

where with (eN )T and ∇T u we denote the tangential components of eN and ∇u on T .
Thus, we are left to prove that the two integrals on T sum up to zero. This ensues by

applying the divergence theorem on the surface T :

0 =
∫

�

u2〈(eN )T , ν�〉 d�x =
∫

T
divT (u2(eN )T ) dSx

=
∫

T

{
u2divT ((eN )T ) + 2 〈(eN )T ,∇T u〉 u} dSx .

Here, divT denotes the tangential divergence. The first integral is zero, because u = 0 on �.
The conclusion follows by noting that divT ((eN )T ) = −(N − 1) xN . ��

We are now ready to prove the main result of this section.

Theorem 2.3 (Fundamental identity) Let u ∈ W 1,∞(�) ∩ W 2,2(�) be the solution of (1.1).
Then, for any given constant c, the following identity holds:

∫

�

xN (−u)

{
|∇2u|2 − (�u)2

N

}
dx = 1

2

∫

�

(
u2ν − c2

) [
xN uν − 〈Xq , ν〉]dSx . (2.5)

Proof Taking the vector field Xu = xN ∇u − u eN , we compute that

div(Xu) = N xN in �, 〈Xu, ν〉 = 0 on T , 〈Xu, ν〉 = xN uν on �, (2.6)

and hence, by the divergence theorem and (2.1),

0 =
∫

�

div(Xu − Xq) dx =
∫

�

〈Xu − Xq , ν〉 dSx =
∫

�

[xN uν − 〈Xq , ν〉] dSx .

Thus, it is sufficient to prove (2.5) for c = 0.
Next, observe that

�P = |∇2u|2 − (�u)2

N
,

and hence, the Gauss-Green formula gives:
∫

�

xNu �P dx =
∫

�

�(xNu) P dx +
∫

�

div
{
xNu ∇P − P ∇(xNu)

}
dx

=
∫

�

[2 uxN + xN �u] P dx +
∫

�

{
xNu Pν − [〈eN , ν〉 u + xN uν] P

}
dSx

=
∫

�

[2 uxN + N xN ] P dx −
∫

�

xNuν P dSx +
∫

T

{
xNu Pν − xN (u + uν)P

}
dSx .

Here, we used that�u = N in�, u = 0 on�, and 〈eN , ν(x)〉 = xN for x ∈ T . Consequently,
we deduce that

∫

�

xNu �P dx = 2
∫

�

uxN P dx + 1

2

∫

�

〈Xq , ν〉u2ν dSx +

−1

2

∫

�

xNu
3
ν dSx +

∫

T
xNu Pν dSx − 2

∫

T
xNu P dSx ,

123
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since uν = u on T and u = 0 and |∇u| = uν on �. Here, the second summand at the
right-hand side is obtained by applying (2.4). All in all, we have that

∫

�

xNu �P dx = −1

2

∫

�

u2ν
[
xNuν − 〈Xq , ν〉] dSx

+2
∫

�

uxN P dx +
∫

T
xNu Pν dSx − 2

∫

T
xNu P dSx ,

and hence we are left to prove that the last three integrals sum up to zero.
The integral on � can be treated by integrating on � the differential identity:

div
{[

(2 u P + u2) I − u2∇2u
]
eN
} = 2 uxN P.

Here, I denotes the N × N identity matrix. In this calculation, we have used the first identity
in (2.2). Thus, by the definition of P and divergence theorem, we get:

2
∫

�

uxN P dx =
∫

T

{
xN
[
u |∇u|2 − u2

]− u2 〈∇2u eN , ν〉}dSx . (2.7)

Again, we used that u = 0 on � and 〈eN , ν(x)〉 = xN for x ∈ T .
Next, we directly compute on T that

Pν = 〈∇2u ∇u, ν〉 − uν = 〈∇2u (uνν + ω), ν〉 − uν = u 〈∇2u ν, ν〉 − u.

In the first equality, we have decomposed ∇u into the sum of its normal and tangential
components uν ν and ω. In the second equality, we used the third identity in (2.2) and that
uν = u on T . Moreover, we observe that on T it holds that

〈∇2u eN , ν〉 = 〈∇2u
(
xN ν − Xq) , ν〉 = xN 〈∇2u ν, ν〉,

by the second identity in (2.1) (being as ν(x) = x on S) and the third identity in (2.2) (being
as Xq tangent to T ).

Therefore, with this and the identity for Pν in mind, we finally conclude that

2
∫

�

uxN P dx +
∫

T
xNu Pν dSx − 2

∫

T
xNu P dSx = 0,

thanks to (2.7). This was what we were left to prove. ��
A convenient choice of the constat c in (2.5) is suggested by the following proposition.

Proposition 2.4 (The value of R) Let u ∈ W 1,∞(�) ∩ W 2,2(�) be the solution of (1.1).
If uν = R on �, then we have that

R = N

∫
�
xN dx

∫
�
xN dSx

= N |�|
|�|

c�
N

c�
N

, (2.8)

where cEN denotes the N-th coordinate of the center of mass of a set E.

Proof By using the divergence theorem and (2.6), we compute that

N
∫

�

xN dx =
∫

�

div(Xu) dx =
∫

�

〈Xu, ν〉 dSx =
∫

�

xN uν dSx = R
∫

�

xN dSx .

Thus, (2.8) follows at once. ��
As a consequence of this proposition and Theorem 2.3, we obtain a more general version

of Guo and Xia’s rigidity result.
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Corollary 2.5 Let u ∈ W 1,∞(�) ∩ W 2,2(�) be the solution of (1.1).
If the right-hand side of (2.5) is non-positive for some c ∈ R, then

u(x) = 1

2

(|x − z|2 − R2) for x ∈ �

and � must be the spherical cap {x ∈ B+ : |x − z| = R}, where R is given by (2.8), and
z = (z′, zN ) is such that |z| = √

1 + R2 and |z′| ≤ 1. The same conclusion holds true, in
particular, if uν is constant on �.

Proof By Theorem 2.3, our assumption clearly gives that the volume integral at the left-hand
side of (2.5) must be zero. Since u < 0 in � by [8, Proposition 2.3] and xN > 0 in � ⊂ B+,
we infer that

0 ≡ |∇2u|2 − (�u)2

N
= |∇2u|2 − 〈∇2u, I 〉2

N
in �.

Thus, the Cauchy–Schwarz inequality for the N 2-vectors ∇2u and I holds with the sign of
equality. As already observed in [15], we have that u must be a quadratic polynomial of the
form:

u(x) = 1

2

(|x − z|2 − q0
)

for some q0 ∈ R.

Since u = 0 on �, we infer that q0 > 0 and � must equal {x ∈ B+ : |x − z| = √
q0} — a

spherical cap.
We now determine q0 and z. On one hand, observe that

N
∫

�

xN dx =
∫

�

div(Xu) dx =
∫

�

〈Xu, ν〉 dSx

=
∫

�

xN uν dSx =
∫

�

xN |x − z| dSx = √
q0

∫

�

xN dSx ,

i.e. we have that q0 = R2. In particular, we infer that uν = R on �. On the other hand, for
x ∈ T , we must have that

0 = uν(x) − u(x) = 〈x − z, ν〉 − 1

2
(|x − z|2 − q0) = 1

2
(1 + q0 − |z|2),

being as ν(x) = x for x ∈ T . Hence, |z| = √
1 + q0 = √

1 + R2. Finally, we have that
|z′| ≤ 1, since T is required to be contained in the upper hemisphere of ∂B+.

If uν is constant on�, then Proposition 2.4 tells us that the constant must equal the number
R in (2.8). Choosing c = R gives the the right-hand side of (2.5) is zero. ��
Remark 2.6 It is just an exercise to check that any spherical cap of the form specified in the
corollary meets T orthogonally.

3 Weighted Sobolev-type bounds

In this section, we collect some notations, definitions, and preliminary lemmas. We will
provide the proofs only when they are not available in the literature.

Given θ ∈ (0, π/2] and a > 0, we say that a set E satisfies the (θ, a)-uniform interior
cone condition, if for every x ∈ ∂E there is a unit vector ω = ωx such that the cone with
vertex at the origin, axis ω, opening width θ , and height a defined by
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Cω = {y : 〈y, ω〉 > |y| cos(θ), |y| < a}
is such that

w + Cω ⊂ E for every w ∈ Ba(x) ∩ E . (3.1)

Such a condition is equivalent to Lipschitz-regularity of the domain; more precisely, it is
equivalent to the strong local Lipschitz property of Adams [1, Pag 66] and to the uniform
Lipschitz regularity in [5, Section III] and [22, Definition 2.1].

In the sequel, we shall always consider a domain� ⊂ B+ that satisfies this cone condition.
We then denote byC0,1(�) the class of Lipschitz continuous functions on�. If u ∈ C0,1(�),
we set L to be the Lipschitz constant of u in �, i.e.

L = [u]C0,1(�) = sup

{ |u(x1) − u(x2)|
|x1 − x2| : x1, x2 ∈ �, x1 �= x2

}
. (3.2)

The Hardy-Poincaré-type inequalities in the lemma and corollary below are adapted from
[19, Section 3.2] and [16, Lemma 2.1] and can be deduced by the works of Bojarski [3] and
Hurri-Syrjänen [9, 10]. For a domain E ⊂ R

N , we denote by dE its diameter.

Lemma 3.1 Let E ⊂ R
N be a bounded domain satisfying the (θ, a)-uniform interior cone

condition.
Consider three numbers r , p, α such that, either

1 ≤ p ≤ r ≤ N p

N − p (1 − α)
, p (1 − α) < N , 0 ≤ α ≤ 1, (3.3)

or

r = p ∈ [1,∞) , α = 0. (3.4)

Then, there exists a positive constant, c = c(N , r , p, α, θ, a, dE ) such that

‖ f − fE‖r ,E ≤ c ‖δα
∂E ∇ f ‖p,E , (3.5)

for every function f ∈ L1
loc(E) such that δα

∂E ∇ f ∈ L p(E). Here, fE denotes the mean
value of f on E.

If E ⊂ B+, the dependence of c on dE can be removed, being as dE ≤ 2.

Corollary 3.2 Let E ⊂ R
N , N ≥ 2, be a bounded domain satisfying the (θ, a)-uniform

interior cone condition and let f be a function such that ∇ f ∈ L1
loc(E) and δα

∂E ∇2 f ∈
L p(E). Consider three numbers r , p, α satisfying either (3.3) or (3.4). If

∫

E
∇ f dx = 0,

then it holds that

‖∇ f ‖r ,E ≤ c ‖δα
∂E ∇2 f ‖p,E ,

where c is the same constant appearing in (3.5).

Remark 3.3 (On the proof of Lemma 3.1 and Corollary 3.2) Lemma 3.1 and Corollary 3.2
hold true in the more general case where E is a John domain: we refer the reader [16, proof of
item(i) of Lemma 2.1 and item (i) of Corollary 2.3]) for details. Roughly speaking, a domain
is a b-John domain if it is possible to travel from one point of the domain to another without
going too close to the boundary (see Section A for the precise definition). The class of John
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domains contains Lipschitz domains but also very irregular domains with fractal boundaries
as, e.g., the Koch snowflake.

For b-John domains, (see [16, items (i),(ii) of Remark 2.4]), the following explicit bounds
for the constant c hold true:

c ≤ kN , r , p, α b
N |E | 1−α

N + 1
r − 1

p , if r , p, α are as in (3.3),

c ≤ kN , p b
3N (1+ N

p ) dE , if r , p, α are as in (3.4).

Of course, the volume appearing in the first inequality can be easily estimated by means
of |E | ≤ |B| dN

E . Moreover, as we show in Lemma A.2, if a domain E satisfies the (θ, a)-
uniform interior cone condition, then it is a b-John domain and b can be explicitly estimated
in terms of a, θ, dE only.

We thus obtain that (3.5) holds true with some constant c that depends only on
N , r , p, α, θ, a, dE . If E ⊂ B+, the dependence on dE can be removed, being as dE ≤ 2.

We conclude this section by providing an adaptation of [18, Theorems 2.4 and 2.7] (see
also the errata corrige in Sect.A.2). We warn the reader that in [18] we adopted a different
normalization in the definition of the L p-type norms.

Lemma 3.4 Let 1 ≤ p < q ≤ ∞. Let E ⊂ R
N be a bounded domain satisfying the (θ, a)-

uniform interior cone condition.

(i) If p > N, then there is a non-negative constant c = c(N , p, θ, a, dE ) such that

max
E

f − min
E

f ≤ c ‖∇ f ‖p,E ,

for any f ∈ W 1,q(E).
(ii) If 1 ≤ p ≤ N and

αp,q = p (q − N )

N (q − p)
,

then there is a non-negative constant c = c(N , p, q, θ, a, dE ) such that

max
E

f − min
E

f ≤ c

⎧
⎨

⎩

‖∇ f ‖αp,q
p,E ‖∇ f ‖1−αp,q

q,E if 1 ≤ p < N ,

‖∇ f ‖N ,E log
(
e |E | 1

N − 1
q ‖∇ f ‖q,E

‖∇ f ‖N ,E

)
if p = N ,

for any f ∈ W 1,q(E).

Explicit bounds for the constants c can be computed.
If E ⊂ B+, the dependence of the constants c on dE can be removed, being as dE ≤ 2.

Remark 3.5 For sub-harmonic functions, a similar estimate in the case where 1 ≤ p < N
and q = ∞ can also be obtained by putting together [20, Lemma 3.14] with the Hardy-
Poincarè-type inequalities mentioned in Lemma 3.1. See also [17, Theorems 3.1 and 3.2] for
adaptations to either domains satisfying a weaker cone-type condition or John-type domains.

4 Quantitative stability results

In this section, we shall give the proofs of Theorems 1.1–1.3 and of the more general Theo-
rem 4.9 below. We begin by recalling some notations and other facts from the Introduction.
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4.1 Some geometrical facts

Lemma 4.2 below is an adaptation of [15, Lemma 3.1] to the case of the mixed problem (1.1),
which takes inspiration from [21, Section 4.1]. We also mention that a fractional version of
[15, Lemma 3.1] has been recently used in [6].

Wewill make use of the followingmaximumprinciple formixed boundary value problems
in B+, which is a reformulation of [8, Proposition 2.3].

Lemma 4.1 Let f ∈ C2(�) ∩ C1(� \ �) satisfy

� f ≥ 0 in �, f ≤ 0 on �, fν ≤ f on T ,

and assume that f ∈ W 1,∞(�) ∩ W 2,2(�). Then, we have that f ≤ 0 on �.

Proof Set f+ to be the positive part of f . By using the boundary conditions on f , an inte-
gration by parts, and the inequality � f ≥ 0 in �, we find that
∫

�

|∇ f+|2 dx −
∫

T
f 2+ dSx ≤

∫

�

|∇ f+|2 dx −
∫

T∪�

f+ fν dSx = −
∫

�

f+� f dx ≤ 0.

On the other hand, [8, (2.5)] informs us that

0 ≥
∫

�

|∇ f+|2 dx −
∫

T
f 2+ dSx ≥ λ1

∫

�

f 2+ dx ≥ 0,

where λ1 is the first Robin-Dirichlet eigenvalue. Hence, we easily infer that f+ ≡ 0 in �. ��

In the spirit of [21, Section 4.1], we now introduce some appropriate sphere conditions
peculiar to B+. In fact, we say that� satisfies the ri -uniform interior sphere condition relative
to B+, if for each x ∈ � there exists a touching ball Bri (x0) of radius ri such that: (i) its
center x0 satisfies |x0|2 ≤ 1 + r2i and (ii) its closure intersects B+ \ � only at x .

Notice that the requirements of this definition are related to how� and T intersect. In fact,
a necessary condition for the validity of (i) and (ii) is that 〈ν�(x), ν∂B(x)〉 ≥ 0 for x ∈ ∂�.

Since in our setting� is smooth, we must have that x0 = x −ri ν(x) for x ∈ �. However,
notice that this may not be the only possibility for the points on ∂�.

We say that � satisfies the strong ri -uniform interior sphere condition relative to B+ if,
besides satisfying the ri -uniform interior sphere condition relative to B+, � has the property
that, for any x ∈ � such that its closest point x to � belongs to ∂�, the ball with radius ri
and centered at the point x + ri

x−x
|x−x | is a touching ball at x relative to B+ (as in the previous

definition). We notice that this condition is surely satisfied if � and T intersect orthogonally.
Here and in the sequel, δA(x) will denote the distance of a point x ∈ R

N to a set A.

Lemma 4.2 (A geometric bound) Let u be the solution of (1.1). Then

− u(x) ≥ 1

2
δ�(x)2 for every x ∈ �. (4.1)

Moreover, if � satisfies the strong ri -uniform interior sphere condition relative to B+, then
it holds that

− u(x) ≥ ri
2

δ�(x) for every x ∈ �. (4.2)
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Proof From Lemma 4.1, we know that u ≤ 0 in �.
Fix x ∈ �\�, let r = δ�(x), and consider the ball Br (x) with radius r centered at x . It is

easy to check that the function defined by w(y) = (|y − x |2 − r2)/2 for y ∈ Br (x) satisfies

�w = N in Br (x), w = 0 on ∂Br (x),

and

wν ≥ w on T ∩ Br (x).

The last inequality follows from the direct computations

w = 1 + |x |2 − r2

2
− 〈x, y〉 and wν = 1 − 〈x, y〉, for y ∈ T ∩ Br (x) ⊂ ∂B,

and the trivial inequality r2 ≥ 0 ≥ |x |2 − 1, which holds true for any x ∈ B ⊃ �.
If we choose f = u − w and � = Br (x) ∩ B+ in Lemma 4.1, we then have that w ≥ u

in Br (x) ∩ B+ and hence, in particular, −r2/2 = w(x) ≥ u(x). Thus, (4.1) is proved.
Next, assume that � satisfies the strong ri -uniform interior sphere condition relative to

B+. If δ�(x) ≥ ri , (4.2) immediately follows from (4.1). If δ�(x) < ri , instead, let x
be the closest point in � to x and call Bri the relevant touching ball at x ∈ �0 (with
radius ri and centered at the point x + ri

x−x
|x−x | that we denote by x0), which contains x .

Setting w(y) = (|y − x0|2 − r2i
)
/2 and using that the center x0 of the touching ball satisfies

|x0|2 ≤ 1+ r2i , we infer that wν ≥ w on T ∩ Bri . Hence, an application of Lemma 4.1 with
f = u − w and � = Bri ∩ B+ gives that w ≥ u in Bri ∩ B+. As a consequence, being as
x ∈ Bri ∩ B+, we obtain that

−u(x) ≥ r2i − |x − x0|2
2

= (ri + |x − x0|)(ri − |x − x0|)
2

≥ ri
2

(ri − |x − x0|).
This gives (4.2), since ri − |x − x0| = δ�(x). ��
Remark 4.3 (i) Notice that the ri -uniform interior sphere condition relative to B+ guarantees
the validity of the Hopf lemma for uν on �. The additional “strong” assumption is needed
to obtain the Lipschitz growth of u from �, i.e., (4.2).

(ii) In the classical setting (where B+ is replaced by R
N ), the improved growth in (4.2)

remains true in the more general case in which � satisfies an interior pseudoball condition
(see [4, Step 2 in the proof of Theorem I] and [2, Theorem 4.4]). In this regard, one may
introduce a notion of pseudoball condition relative to B+.

Let u be the solution of (1.1). We consider the harmonic function

h(x) = Q(x) − u(x), x ∈ �, (4.3)

where

Q(x) = 1

2
|x − z|2. (4.4)

and z ∈ R
N is some point to be chosen. As the next lemma shows, h has to do with the

numbers

ρe = max
x∈�

|x − z| ρi = min
x∈�

|x − z|. (4.5)

Note that we have:

� ⊆ (Bρe (z) \ Bρi (z)
) ∩ B.
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Lemma 4.4 Fix z ∈ R
N . Then, we have that

|∇2h|2 = |∇2u|2 − (�u)2

N
in �.

Moreover, it holds that

ρe − ρi ≤ 8

d�

(
max

�

h − min
�

h

)
. (4.6)

Proof The identity easily follows by direct computation.
Next, let x1, x2 ∈ � be such that d� = |x1 − x2|. It is clear that x1, x2 ∈ � ∪ T . If

x1, x2 ∈ �, then d� ≤ d� . If x1, x2 ∈ T , then d� ≤ dT ≤ d�∩T ≤ d� . In fact, the second
inequality follows from the fact that T is a spherical cap contained in a half sphere. If x1 ∈ �

and x2 ∈ T (or the other way around), we take y ∈ � = � ∩ T and infer that

d� = |x1 − x2| ≤ |x1 − y| + |y − x2| ≤ d� + dT ≤ 2 d�.

Thus, in any case we have that d� ≤ 2 d� . Now, if x1, x2 ∈ � are such that d� = |x1 − x2|,
we easily see that d� = |x1 − x2| ≤ |x1 − z| + |z − x2| ≤ 2 ρe, so that d� ≤ 4 ρe. Using the
last inequality together with

max
�

h − min
�

h = 1

2
(ρ2

e − ρ2
i ) = 1

2
(ρe + ρi )(ρe − ρi ) ≥ 1

2
ρe (ρe − ρi ),

(4.6) easily follows. ��

4.2 Special stability estimates

In this section, we shall give the proof of Theorems 1.1–1.3. To this aim, we must work on
the fundamental identity (1.5). We shall see that its right-hand side can be easily estimated
in terms of the deviation of ‖u2ν − R2‖1,� . Thanks to Lemma 4.2, the left-hand side of (1.5),
instead, can be bounded from below by the following weighted L2-norm:

‖δτ
�∇2h‖2,�. (4.7)

The appropriate exponent τ will be chosen as τ = 1 in Theorems 1.1 and 1.2, τ = 1/2
in Theorem 1.3, and τ = 3/2 in Theorem 4.9 below. The final stability estimates will then
result from a bound of ρe − ρi in terms of those relevant weighted norms. This task will be
achieved by means of Lemma 3.4.

Thus, we begin with the following lemma.

Lemma 4.5 (Weighted bounds for the Hessian matrix of h) Take N ≥ 2. Let � ⊂ R
N be a

subdomain of B+ and define the number

m = min{xN : x ∈ �}. (4.8)

Let u be the solution of (1.1) with Lipschitz constant L be as in (3.2).
For any choice of z ∈ R

N , let h be the function defined in (4.3). The following statements
hold true.

(i) If � satisfies the (θ, a)-uniform interior cone condition, then we have that

‖δ3/2� ∇2h‖22,� ≤ (L + 2) ‖u2ν − R2‖1,�
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and, if the number m in (4.8) is positive,

‖δ�∇2h‖22,� ≤ L + 2

m
‖u2ν − R2‖1,�.

(ii) If � satisfies the strong ri -uniform interior sphere condition relative to B+, then we
have that

‖δ�∇2h‖22,� ≤ L + 2

ri
‖u2ν − R2‖1,�

and, if the number m in (4.8) is positive,

‖δ
1
2
�∇2h‖22,� ≤ L + 2

m ri
‖u2ν − R2‖1,�.

Proof In view of (3.2), we have that 0 < uν ≤ L on �. Thus, being as 0 ≤ xN ≤ 1 for
x ∈ B+, we have that

|uνxN − 〈Xq , ν〉| ≤ L + 2 on �,

and hence, from (1.5) and Lemma 4.4, we get:
∫

�

xN (−u)|∇2h|2dx ≤ L + 2

2
‖u2ν − R2‖1,� (4.9)

(i) Notice that

xN ≥ δ�(x) for any x ∈ � ⊂ B+.

By this inequality, (4.9), and (4.1), the first desired inequality easily follows. Also, the second
desired inequality easily ensues by putting together (4.9), (4.1), and the fact that m > 0.

(ii) Since � satisfies the strong ri -uniform interior sphere condition relative to B+, (4.2)
holds true. Thus, we have that

−xN u(x) ≥ ri
2

δ�(x)2.

This bound, together with (4.9) leads to the first desired inequality. Next, by using (4.2) and
the fact that m > 0, we deduce that

−xN u(x) ≥ m ri
2

δ�(x).

Inserting this inequality into (4.9) gives the second desired inequality. ��
Notice that, as already mentioned, the proofs of Theorems 1.1–1.3 will only entail the

cases in this lemma where 0 < τ ≤ 1. The desired conclusions will in fact be obtained by
adapting to the present setting the arguments developed by the authors in [16, 18, 20]. The
case where τ = 3/2 will instead be used for the proof of the more general result contained
in Theorem 4.9, which requires a new and careful analysis.

The proofs of Theorems 1.1–1.3 will result from Theorem 4.6 below. In order to proceed,
we recall from the introduction the convenient choice of z:

z = 1

|�|
{∫

�

x dx −
∫

T
u(x) x dx

}
.

Notice that, with this choice, we have that
∫

�

∇h dx =
∫

�

(x − z) dx −
∫

�

∇u dx =
∫

�

x dx − z |�| −
∫

T
u(x) x dx = 0.
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This ensures that Corollary 3.2 can be applied with v = h, E = �.

Theorem 4.6 Let N ≥ 2 and let � ⊂ B+ be a domain satisfying the (θ, a)-uniform interior
cone condition.

Let u be solution of (1.1) and consider the function h = Q − u, where Q is given by (4.4)
with z as in (1.7). Then, the following statements hold true.

(i) There is some non-negative constant c = c(N , τ, θ, a) such that

ρe − ρi ≤ c

{
‖δτ

� ∇2h‖2,� if 0 < τ < 2 − N
2 ,

‖∇h‖1−κN ,τ

∞,� ‖δτ
� ∇2h‖κN ,τ

2,� if 2 − N
2 < τ ≤ 1,

(4.10)

where

κN ,τ = 1

τ + N/2 − 1
.

(ii) There is some non-negative constant c = c(N , θ, a) such that

ρe − ρi ≤ c ‖δτ
� ∇2h‖2,� max

{
log

( ‖∇h‖∞,�

‖δτ
� ∇2h‖2,�

)
, 1

}
(4.11)

with τ = 2 − N/2.

Proof In both items, we will use at some point the trivial inequality

max
�

h − min
�

h ≤ max
�

h − min
�

h.

(i) Let 2 − N/2 < τ ≤ 1. By using item (ii) of Lemma 3.4 with E = �, f = h, p =
NκN ,τ < N , and q = ∞, we find a constant c = c(N , τ, θ, a) such that

max
�

h − min
�

h ≤ c ‖∇h‖κN ,τ

NκN ,τ ,�‖∇h‖1−κN ,τ

∞,� .

By using (4.6) and the trivial inequality, we thus find a constant c = c(N , τ, θ, a) such that

ρe − ρi ≤ c ‖∇h‖κN ,τ

NκN ,τ ,�‖∇h‖1−κN ,τ

∞,� .

We point out that in (4.6) 8/d� can be replaced by 8/a, since � contains at least a cone of
height a.

By applying Corollary 3.2 with E = �, f = h, r = NκN ,τ , p = 2, α = τ , the second
inequality in (i) easily follows.

Next, let τ < 2− N/2. By the Sobolev immersion theorem (here, we are indeed applying
item (i) of Lemma 3.4 with E = �, f = h and p = NκN ,τ > N ), we can find a constant
c = c(N , τ, θ, a) such that

max
�

h − min
�

h ≤ c ‖∇h‖NκN ,τ ,�.

By again using (4.6) and the trivial inequality, we thus infer that

ρe − ρi ≤ c ‖∇h‖NκN ,τ ,�,

by possibly changing the relevant constant. Hence, the first inequality in (i) follows by using
Corollary 3.2 with E = �, f = h, r = NκN ,τ , p = 2, α = τ .
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(iii) Let τ = 2− N/2. By using (4.6), the trivial inequality, and item (ii) of Lemma 3.4 with
E = �, f = h, p = N = 4 − 2τ and q = ∞, we find a constant c = c(N , θ, a) such
that

ρe − ρi ≤ c ‖∇h‖N ,� max

{
log

(‖∇h‖∞,�

‖∇h‖N ,�

)
, 1

}
.

The inequality in (ii) then ensues by applying Corollary 3.2 with E = �, f = h, r = N ,
p = 2, and α = τ . ��

Remark 4.7 (An explicit bound for ‖∇h‖∞,�) With the choice (1.7), we can easily obtain
the following explicit bound:

‖∇h‖∞,� ≤ 2(L + 1).

where L is that defined in (3.2).
In fact, we have that

|∇h(x)| ≤ |∇u(x)| + |x − z| ≤ L + |x − z| for x ∈ �. (4.12)

Moreover, we see that

|x − z| ≤
∣∣∣∣x − 1

|�|
∫

�

y dy +
∫

T
u(y) y dSy

∣∣∣∣

≤ 1

|�|
∫

�

|x − y| dy + 1

|�|
∫

�

|∇u(y)| dy ≤ d� + L ≤ 2 + L,

for x ∈ �. In the second inequality, we used that
∫

T
u(y) y dSy =

∫

�

∇u(y) dy,

by the divergence theorem.

We are now ready for the proofs of Theorems 1.1, 1.2, 1.3.

Proof of Theorem 1.1 The conclusion easily follows by combining the second inequality in
item (i) of Lemma 4.5, Theorem 4.6 (with τ = 1), the trivial inequality

δ�(x) ≤ δ�(x) for x ∈ �, (4.13)

and Remark 4.7. ��

Remark 4.8 Taking into account Remark 3.5, Theorem 1.1may be extended to the case where
the uniform interior cone condition is dropped and replaced by weaker either cone-type or
John-type conditions.

Proof of Theorem 1.2 The desired estimate easily follows by combining the first inequality
in item (ii) of Lemma 4.5, Theorem 4.6 (with τ = 1), (4.13), and Remark 4.7. ��

Proof of Theorem 1.3 The desired estimate easily follows by using the second inequality in
item (ii) of Lemma 4.5, Theorem 4.6 (with τ = 1/2), (4.13), and Remark 4.7. ��
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4.3 The general stability estimate

In this section, we shall state and prove a stability estimate for general domains satisfying the
(θ, a)-uniform interior cone condition. Compared to those proved in Sect. 4.2, in this case
the stability rates are slightly poorer, as the following theorem shows.

Theorem 4.9 (General stability) Set N ≥ 2 and let � be a domain contained in B+ and
satisfying the (θ, a)-uniform interior cone condition.

Let u ∈ W 1,∞(�) ∩ W 2,2(�) be the solution of (1.1) and assume that L is a bound for
[u]C0,1(�). Let R be the number defined in (1.4) and set

ρ(�) = inf
z∈RN

(ρe − ρi ) , with ρe and ρi as in (4.5).

Then, the following estimates hold true.

(i) If N ≥ 3,

ρ(�) ≤ c ‖u2ν − R2‖1/(N+1)
1,� ,

for some non-negative constant c = c(N , θ, a, L).
(ii) If N = 2, for any 0 < η < 1,

ρ(�) ≤ c ‖u2ν − R2‖1/(3+2η)
1,� ,

for some non-negative constant c = c(θ, a, L, η).

Notice that, in order to prove the special stability estimate in the previous section, we used
Theorem 4.6. Here, we stress that, since its proof is based on Lemma 3.4 and Corollary 3.2,
the relevant exponent τ had to be chosen in [0, 1]. This fact allowed us to treat the cases of
Lemma 4.5 with τ = 1/2 or 1.

However, if we want to treat the general case, we must choose τ = 3/2, as it is clear
from Lemma 4.5. Thus, Theorem 4.6 is no longer useful and we must come up with another
strategy. The key idea is to obtain inequalities similar to those in Lemma 3.4, but restricting
the L p-norms (appearing on the right-hand sides) to a suitable subset sufficiently far from
the boundary.

To this aim, for σ ≥ 0, we define the parallel set

�σ = {x ∈ � : δ�(x) > σ } , (4.14)

where� denotes the boundary of�. Being as� a bounded domain (i.e., open and connected)
satisfying the (θ, a)-uniform interior cone condition, by Lemma A.1 below, we know that
there exists a positive constant δ0 = δ0(θ, a, d�) such that �σ is connected for any 0 ≤ σ ≤
δ0. We now set

σ0 = min

{
a

2

sin θ

1 + sin θ
, δ0

}
. (4.15)

Notice that for 0 ≤ σ ≤ σ0, besides being connected, the domain �σ also satisfies the
(θ, a/2)-uniform interior cone condition. The second assertion follows from Lemma A.3
noting that σ0 ≤ a

2
sin θ

1+sin θ
≤ a

4 . This ensures that Lemma 3.1 and Corollary 3.2 can be
applied with E = �σ .

The following lemma will be useful in the sequel.

123



Quantitative symmetry in a mixed Serrin-type problem for a. . . Page 19 of 26    23 

Lemma 4.10 Let � ⊂ R
N , N ≥ 2, be a bounded domain satisfying the (θ, a)-uniform

interior cone condition. Consider the parallel set �σ for 0 < σ ≤ σ0, where σ0 is that given
in (4.15).

If 1 < p < N, we have that

max
�

v − min
�

v ≤ c
{
σ
1− N

p ‖∇v‖p,�σ + [v]C0,1(�) σ
}

,

for any function v ∈ C0,1(�) subharmonic in �σ and some positive constant c depending
on N , p, θ, a, d�.

Proof Let x1 and x2 be points on � that respectively minimize and maximize v on �. For
j = 1, 2, define the point y j = x j + 2σ

sin θ
ω j , where ω j is the axis of a cone C j ⊂ � with

vertex at x j , height a, and opening width θ . Since 2σ
sin θ

≤ a
1+sin θ

(being as σ ≤ σ0), by
trigonometry we have that the ball B2σ (y j ) is contained in C j ⊂ �. Hence, the ball Bσ (y j )
is contained in �σ .

Now, the sub-harmonicity of v gives that

|v(y j ) − v�σ | ≤ 1

|B| σ N

∫

Bσ (y j )
|v − v�σ | dy

≤ 1
(|B| σ N

)1/q

[∫

Bσ (y j )
|v − v�σ |q dy

]1/q

≤ 1
(|B| σ N

)1/q

[∫

�σ

|v − v�σ |q dy
]1/q

,

for any q > 1, after an application of Hölder’s inequality. Thus, by the definition of [v]C0,1(�),
we can infer that

|v(x j ) − v�σ | ≤ |v(y j ) − v�σ | + 2σ

sin θ
[v]C0,1(�)

≤ c

{

σ−N/q
[∫

�σ

|v − v�σ |q dy
]1/q

+ [v]C0,1(�) σ

}

,

for some constant c = c(N , q, θ). Therefore, by choosing q = pN/(N − p) and applying
(3.5) with E = �σ , r = pN/(N− p), p = p, α = 0, we conclude that our desired inequality
holds with an explicit constant c = c(N , p, θ, a, d�). ��

Corollary 4.11 Let �, σ , and �σ be as in Lemma 4.10 and take τ ≥ 1. For any subharmonic
function of class C0,1(�) in �σ such that

∫

�σ

∇v dx = 0,

we have the following.

(i) If N ≥ 3, then

max
�

v − min
�

v ≤ c
{
σ 2− N

2 −τ‖δτ
� ∇2v‖2,� + [v]C0,1(�) σ

}
,

for some positive constant c = c(N , τ, θ, a, d�).
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(ii) If N = 2, then for any 0 < η < 1 we have that

max
�

v − min
�

v ≤ c
{
σ 1−η−τ‖δτ

� ∇2v‖2,� + [v]C0,1(�) σ
}

,

for some positive constant c = c(N , τ, θ, a, η, d�).

Proof For convenience, we set �σ = ∂�σ .
(i) Let N ≥ 3. By putting together Lemma 4.10 with p = 2 and Corollary 3.2 with

E = �σ , f = v, r = 2, p = 2, α = 1, we find that

max
�

v − min
�

v ≤ c
{
σ 1− N

2 ‖δ�σ ∇2v‖2,�σ + [v]C0,1(�) σ
}

≤ c
{
σ 1− N

2 ‖δ� ∇2v‖2,�σ + [v]C0,1(�) σ
}

for some constant c = c(N , θ, a, d�), being as δ�σ (x) ≤ δ�(x) for any x ∈ �σ . We can now
exploit our construction to further increase the exponent of the distance in the first summand
at the right-hand side of the last inequality.

In fact, the definition (4.14) of �σ gives that

δ� ≤ σ 1−τ δτ
� in �σ ,

and hence

‖δ� ∇2v‖2,�σ ≤ σ 1−τ‖δτ
� ∇2v‖2,�σ ≤ σ 1−τ‖δτ

� ∇2v‖2,�.

This is just what was left to prove.
(ii) Let N = 2. By combining Lemma 4.10 with p = 2/(1 + η), the Hölder inequality

‖∇v‖2/(1+η),�σ
≤ |�σ |η/2 ‖∇v‖2,�σ ,

and Corollary 3.2 with E = �σ , f = v, r = 2, p = 2, α = 1, we find that

max
�

v − min
�

v ≤ c
{
σ−η ‖δ�σ ∇2v‖2,�σ + [v]C0,1(�) σ

}

≤ c
{
σ−η ‖δ� ∇2v‖2,�σ + [v]C0,1(�) σ

}

for some positive constant c = c(θ, a, η, d�). Here, we also estimated the term |�σ | appear-
ing in the Hölder inequality above by means of |�σ | ≤ |�| ≤ |B| dN

� . The first summand
at the right-hand side of the last inequality can be estimated as in the proof of (i), and hence
the desired result follows at once. ��
Remark 4.12 If � ⊂ B+, then the dependence on d� in the constants c in Lemma 4.10 and
Corollary 4.11 can be removed, being as d� ≤ 2.

We are now ready to prove our general stability result. We are going to prove the stability
result for ρe − ρi with the choice

z = 1

|�σ |
{∫

�σ

x dx −
∫

�σ

∇u dx

}
, (4.16)

for a given value of σ , as specified below in the proof. The result in the statement of Theo-
rem 4.9 will follow noting that ρ(�) ≤ ρe − ρi . With the choice of z in (4.16), the function
h defined in (4.3)–(4.4) satisfies

∫

�σ

∇h dx = 0,
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and hence, Corollary 4.11 can be applied with v = h.

Proof of Theorem 4.9 Let σ0 = σ0(θ, a) be that defined in (4.15), where the dependence on
d� has been removed in light of Remark 4.12.

(i) Combining item (i) of Corollary 4.11 with v = h, τ = 3/2 and the trivial inequality

max
�

h − min
�

h ≤ max
�

h − min
�

h (4.17)

gives that

max
�

h − min
�

h ≤ c
{
σ− N−1

2 ‖δ3/2� ∇2h‖2,� + [h]C0,1(�) σ
}

, (4.18)

for any 0 < σ ≤ σ0. By Remark 4.12, here c = c(N , θ, a).
Now, the term [h]C0,1(�) can be bounded by recalling (4.12) and using that, by (4.16),

|x − z| ≤ 1

|�σ |
∫

�σ

|x − y| dy + 1

|�σ |
∫

�σ

|∇u(y)| dy ≤ d� + L ≤ 2 + L,

being as �σ ⊂ � ⊂ B+. As a consequence, we get the bound:

[h]C0,1(�) ≤ 2 (L + 1). (4.19)

Putting together (4.19), (4.18), (4.13), and the first inequality in item (i) of Lemma 4.5 gives
that

max
�

h − min
�

h ≤ 2 c (L + 1)
{
σ− N−1

2 ‖u2ν − R2‖1/22,� + σ
}

. (4.20)

We now fix

σ = min
{
‖u2ν − R2‖1/(N+1)

2,� , σ0

}
,

so as to minimize in σ ∈ (0, σ0] the right-hand-side of (4.20). We then distinguish two cases.
If ‖u2ν−R2‖1/(N+1)

2,� < σ0, we have that σ = ‖u2ν−R2‖1/(N+1)
2,� , and hence (4.20) becomes

max
�

h − min
�

h ≤ 4c (L + 1) ‖u2ν − R2‖1/(N+1)
2,� . (4.21)

Otherwise, we easily obtain that

max
�

h − min
�

h ≤ [h]C0,1(�) d� ≤ [h]C0,1(�) d�

≤ 4(L + 1) ≤ 4 σ−1
0 (L + 1) ‖u2ν − R2‖1/(N+1)

2,� ,

where, in the third inequality, we used (4.19) and that d� ≤ 2. Thus, (4.21) always holds
for some constant c = c(N , θ, a). The desired conclusion, then easily follows by recalling
(4.6).

(ii) Fix 0 < η < 1. Combining item (ii) of Corollary 4.11 with v = h, τ = 3/2, and
(4.17) gives that

max
�

h − min
�

h ≤ c
{
σ−η−1/2‖δ3/2� ∇2h‖2,� + [h]C0,1(�) σ

}
,

for any 0 < σ ≤ σ0. Putting together the last inequality, (4.19), (4.13), and the first inequality
in item (i) of Lemma 4.5, we infer:

max
�

h − min
�

h ≤ 2c (L + 1)
{
σ−η−1/2‖u2ν − R2‖1/22,� + σ

}
.
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We now fix

σ = min
{
‖u2ν − R2‖1/(3+2η)

2,� , σ0

}
,

so as to minimize in σ ∈ (0, σ0] the right-hand-side, and conclude by the same analysis
performed in item (i). ��
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Appendix A: Remarks on the uniform cone condition

In this appendix, we detail some geometrical facts and amend an inaccuracy contained in
[18].

A.1 Some geometrical facts

As already mentioned, the uniform (θ, a)-interior cone condition adopted in the present
paper is equivalent to the strong local Lipschitz property of Adams [1, p. 66] and to the
uniform Lipschitz regularity in [5, Section III] and [22, Definition 2.1]. By putting together
[22, Proposition 4.1 in the Appendix] and [5, Proposition III.1], we easily infer the following
result.

Lemma A.1 Let� be a bounded domain satisfying the uniform (θ, a)-interior cone condition.
There exists a positive constant δ0 depending on a, θ , and d� such that, for any σ ≤ δ0, the
parallel set �σ = {x ∈ � : δ�(x) > σ } is connected.

A domain � in R
N is a b-John domain, with b ≥ 1, if each pair of distinct points x1 and

x2 in � can be joined by a curve ψ : [0, 1] → � such that ψ(0) = x1, ψ(1) = x2, and

b δ�(ψ(t)) ≥ min {|ψ(t) − x1|, |ψ(t) − x2|} .

A curve satisfying the previous inequality is called a John curve. By using the previous
lemma, we now prove that domains satisfying the uniform (θ, a)-interior cone condition are
b-John domains and provide an explicit estimate for b in terms of θ, a, d�.

Lemma A.2 Let� be a bounded domain satisfying the uniform (θ, a)-interior cone condition.
Then, � is a b-John domain with

b ≤ max

⎧
⎨

⎩
1

sin(θ)
,

d�

min
{
a
2

sin θ
1+sin θ

, δ0

}

⎫
⎬

⎭
,

where δ0 is the constant appearing in Lemma A.1.
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Proof Set σ = min
{
a
2

sin θ
1+sin θ

, δ0

}
. Lemma A.1 guarantees that any two points x1, x2 ∈ �σ

can be joined by a curve ψ : [0, 1] → �σ . Also, we easily compute that

min {|ψ(t) − x1|, |ψ(t) − x2|}
δ�(ψ(t))

≤ d�

δ�(ψ(t))
≤ d�

min
{
a
2

sin θ
1+sin θ

, δ0

} .

On the other hand, if x j (for j = 1 and/or 2) is a point in � \�σ , then we can find a point
y j ∈ �σ and another curve φ j , joining x j to y j , such that

min
{|φ j (t) − x1|, |φ j (t) − x2|

}

δ�(φ j (t))
≤ 1

sin θ
.

In fact, we have that δ�(x j ) ≤ σ ≤ a
2

sin θ
1+sin θ

≤ a/4. Hence, if x j is the projection of
x j on �, (3.1) gives that x j + Cω ⊂ � with ω = ωx j . If we set y j = x j + a

1+sin θ
ω

(which is a point on the axis of the cone x j + Cω), by some trigonometry we have that
δ�(y j ) ≥ δ∂(x j+Cω)(y j ) = a sin θ

1+sin θ
> a

2
sin θ

1+sin θ
. In particular, y j ∈ �σ .

For � > 0, the choice

φ j (t) =
{
x1 + t

�
(y1 − x1) if j = 1,

y2 + t
�
(x2 − y2) if j = 2,

t ∈ [0, �],

is clearly admissible. Moreover, for any x1, x2 ∈ �, it allows to create a suitable curve
from x1 to x2 by joining together φ1 (if x1 ∈ � \ �σ ), a curve contained in �σ , and φ2 (if
x2 ∈ �\�σ ).

In any case, for any x1, x2 ∈ � we can always find a John curve ψ from x1 to x2 such
that

min {|ψ(t) − x1|, |ψ(t) − x2|}
δ�(ψ(t))

≤ max

⎧
⎨

⎩
1

sin(θ)
,

d�

min
{
a
2

sin θ
1+sin θ

, δ0

}

⎫
⎬

⎭
,

and the conclusion follows. ��
We now prove the following useful result.

Lemma A.3 Let � satisfy the (θ, a)-uniform interior cone condition. Then, the parallel set
�σ = {x ∈ � : δ�(x) > σ } satisfies the (θ, a/2)-uniform interior cone condition, for any
σ ≤ a/4.

Proof Let x be any point on ∂�σ and let y be a point in � (not necessarily unique) such that
δ�(A) = |x − y| = σ . Since � satisfies the (θ, a)-uniform interior cone condition, we set
Cω to be a cone satisfying (3.1) (with x = y). Since Bσ (x) ⊂ �, by using (3.1) we can easily
verify that x + Cω ∩ Ba/2 ⊂ �σ (Fig. 2).

Moreover, we can also check that

w + Cω ∩ Ba/2 ⊂ �σ for every w ∈ Ba/2(x) ∩ �σ .

Since x is chosen arbitrarily in ∂�σ , the last inclusion gives that �σ satisfies the (θ, a/2)-
uniform interior cone condition. The last inclusion holds by noting that, for anyw ∈ Ba/2(x)∩
�σ , we have that Bσ (w) ⊂ � (by definition of�σ ) and Bσ (w) ⊂ Ba(y) (being as σ ≤ a/4).
Hence, we can argue as above to get that w + Cω ∩ Ba/2 ⊂ �σ . ��
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Fig. 2 The construction of
Lemma A.3. Here, x ∈ ∂�σ and
y ∈ � = ∂� is such that
|x − y| = δ�(x) = σ ≤ a/4. The
shaded region is the cone
x + Cω ∩ Ba/2. By (3.1), the
region bounded by the dashed
lines and containing the smallest
disk is contained �

xy
a

a/2

A.2 Errata corrige of [18, Corollary 2.3 and Theorems 2.4 and 2.7]

In [18], we assumed the following notion of cone condition, which is strictly weaker than the
one adopted in the present paper. A bounded domain � ⊂ R

N with boundary � satisfies the
(θ, a)-uniform interior cone condition if, for every x ∈ �, there is a cone Cx with vertex at
x , opening width θ , and height a, such that Cx ⊂ � and Cx ∩ � = {x}, whenever x ∈ �. We
will refer to this definition as the old cone condition. It is easy to check that this condition is
verified (with same θ and a), if � satisfies the (new) (θ, a)-uniform interior cone condition
adopted in Sect. 3.

It is a classical result [1, 22] that if� is a bounded domain satisfying the old cone condition,
then there exists a positive constant Cp(�) — the (p, p)-Poincaré constant — such that

‖ f − f�‖p,� ≤ Cp(�)‖∇ f ‖p,� for any f ∈ W 1,p(�).

We realized that the proof of [18, Corollary 2.3] contains a mistake. Here, we correct that
proof. The amended proof below shows that the constant c in [18, Corollary 2.3] depends not
only on N , p, θ , a, but also on Cp(�). As a consequence, the dependence on Cp(�) should
be added also in the constants c of [18, Theorems 2.4 and 2.7]. Since, when � is of class C2,
Cp(�) can be estimated in terms of the radius ri of the uniform interior sphere condition and
the diameter d� (see [16, item (iii) of Remark 2.4]), [18, Lemma 3.2] remains true with a
constant c = c(N , p, ri , d�) and the rest of the paper remains unchanged.
Amended proof of [18, Corollary 2.3]
By using [18, (2.3)], we have that

| f (x) − fCx | ≤ cN ,p a

(
1

|Cx |
∫

Cx

|∇ f |p dx
)1/p

≤ cN ,p
a

|Cx |1/p ‖∇ f ‖p,�.

(Note that in [18], differently from the present paper, the L p norms were normalized by the
Lebesgue measure of the domain.)

Next, we easily infer that

| fCx − f�| ≤ 1

|Cx |
∫

Cx

| f − f�| dx ≤ 1

|Cx |1/p
(∫

Cx

| f − f�|p dx
)1/p

≤ 1

|Cx |1/p ‖ f − f�‖p,� ≤ Cp(�)

|Cx |1/p ‖∇ f ‖p,�.

All in all, we conclude that

| f (x) − f�| ≤ | f (x) − fCx | + | fCx − f�| ≤ c ‖∇ f ‖p,�,
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for some constant c that depends on N , p, θ, a, and Cp(�). ��

Remark A.4 As pointed out in Remark 3.3, if � is a bounded b-John domain, Cp(�) can be
estimated in terms of b and d�. In turn, if � satisfies the new cone condition of the present
paper, the John parameter b, and hence Cp(�), can be estimated in terms of the parameters
θ , a of the relevant definition, and d�. From this observation, the statement of Lemma 3.4
easily follows.

On the contrary, the old cone condition adopted in [18] is not sufficient to give an estimate
of the (p, p)-Poincaré constant (see, e.g., [22]), and hence neither of the John parameter. In
fact, reasoning as in [22, Example 2.6], one can construct a family of (uniformly) bounded
domains �ε sharing the same (fixed) parameters of the old cone condition and a sequence
uε ∈ W 1,2(�ε) such that

∫

�ε

uε dx = 0,
∫

�ε

|∇uε|2 dx → 0,

while
∫
�ε u2ε dx remains bounded away from zero.
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