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Spatially heterogeneous weights and a non-compensatory aggregation scheme, are two

important properties needed to construct a composite indicator capable of summarizing

properly themultidimensional phenomenon of local spatial units. Such a composite indicator

takes into account, on the one hand, the latent characteristics of the specific units related to

their location in the territory, andon the other hand, the relative importance of sub-indicators

highlighting both positive and negative aspects of the studied phenomena. Under these

premises, this article proposes a new method called Ordered Geographically Weighted
Averaging (OGWA), which can consider different degrees of non-compensability between
sub-indicators and, at the same time, the spatial heterogeneity for continuous, ordinal,

and mixed data. The properties of the method are evaluated through a simulation study.

Finally, the method is applied to construct a composite indicator to map the urban public

infrastructure of São Sebastião do Paraíso, a city located in the southeastern region of

Brazil.

Introduction

Composite indicators are one-dimensional measures resulting from the mathematical aggregation
of sub-indicators that reflect the different underlying elements of a multidimensional phenomenon
(Kuc-Czarnecka, Lo Piano, and Saltelli, 2020). The literature on composite indicators is
considerable and provides answers to many of the problems associated with their operation.
(Nardo et al., 2005; OECD, 2008).
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Geographical Analysis

However, most of this literature does not address the concept of heterogeneity in building
the composite indicator (Sarra and Nissi, 2020). The concept of heterogeneity is associated with
the idea that sub-indicators influence the composite indicator’s score non-homogeneously and
mainly vary from one unit to another. Let us see the example of a composite indicator built to
represent the public infrastructure of a city (Libório, da Silva Martinuci, et al., 2020; Libório,
Laudares, et al., 2020). The absence of asphalt in a wealthy neighborhood is more important
in representing urban public infrastructure than in a poor neighborhood. The absence of other
urban infrastructure is lower in wealthy neighborhoods than in poorer ones. Thus, the absence
of other public infrastructure rivals the absence of asphalt, reducing the importance of asphalt in
representing public infrastructure in poorer neighborhoods.

This concept of heterogeneity is even stronger when the units’ geographical location is
considered (Fusco, Vidoli, and Rogge, 2020; Cartone and Postiglione, 2021; Artelaris, 2022).
This idea is based on the principle of the disparity of the latent characteristics that define the
multidimensional phenomenon in each of the spatial units (Fusco, Vidoli, and Sahoo, 2018).
Returning to the example, the concept of spatial heterogeneity in a composite indicator represent-
ing urban public infrastructure is linked with the principle of proximity whereby the presence of
asphalt in a neighborhood influences and is influenced by the presence of this sub-indicator in
nearby neighborhoods.

The role of the weighting approach in incorporating spatial heterogeneity into the composite
indicator makes the definition of the aggregation scheme critical. The relationship between
weighting and aggregation of sub-indicators has been extensively discussed by Nardo et al. (2005),
Munda (2012), Becker et al. (2017b), and Greco et al. (2019). These studies show that
compensatory aggregation schemes imply that the sub-indicators are substitutable, so the weights
also assume a substitution function.

In compensatory aggregation, underperforming sub-indicators are compensated by overper-
forming sub-indicators (Ekel, Pedrycz, and Pereira Júnior, 2020). In the example, the score of
the composite indicator of public infrastructure in a region with 10% of roads without asphalt
(performance or score of 0.10) and 100% of roads with sewage system (performance or score of
1.00) is equal to 0.55 in compensatory aggregation.

Non-compensatory aggregation schemes do not allow compensation between poor and
above-average performance sub-indicators (Pedrycz, Ekel, and Parreiras, 2011). In the example,
the score of the composite indicator of public infrastructure in a region with 10% of roads
without asphalt and all roads with a sewage system is equal to 0.18 in the harmonic mean
non-compensatory aggregation. Thus, non-compensatory aggregation penalizes the presence of
sub-indicators with poor and above-average performance.

Another advantage of non-compensatory aggregation is that the weights of the sub-indicators
retain their relative importance function, which means that the sub-indicators have different levels
of adherence to the concept of the multidimensional phenomenon (Becker et al., 2017a, 2017b).

Therefore, a proper incorporation of spatial heterogeneity in the composite indicators must,
simultaneously, ensure that the weights of the sub-indicators assume a function of relative
importance through a non-compensatory aggregation and that the weights of the sub-indicators
vary between spatial units to consider their specificities.

In this regard, the Ordered Weighted Averaging (OWA) operator (Yager and Kacprzyk, 2012)
is a suitable multicriteria decision-making method as it is structurally non-compensatory and
weights the sub-indicators according to the characteristics of the analysis units (Yager, 1988).
Besides, implementing linguistic quantifiers makes it possible to regulate the sub-indicators’
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compensation levels (Ekel, Pedrycz, and Pereira Júnior, 2020) and the heterogeneity of the
sub-indicators’ weights (Libório, Martinuci, Ekel, et al., 2022).

However, composite indicators constructed by OWA disregard the spatial effects in the
weighting, not fully fulfilling the requirements indicated in the literature for considering the
concept of spatial heterogeneity.

The objective of this research is to explore and contribute to the state of the art in the
construction of composite indicators with multicriteria approaches, by proposing a new method
called Ordered Geographically Weighted Averaging (OGWA), able to take into account the
non-compensability between simple indicators and the spatial heterogeneity. In fact, to the
best of the authors’ knowledge, the OGWA is the first method, in a multicriteria setting, that
simultaneously considers different levels of compensation between sub-indicators, positive or
negative aspects of the phenomenon, and spatial heterogeneity in the composite indicator.

The study is also a pioneer in considering spatial heterogeneity in the representation of urban
public infrastructure (Narbón-Perpiñá and De Witte, 2018a, 2018b). In fact, the research results
fill the gap for studies that can provide better representations of urban public infrastructure,
contributing to urban planning (Coutinho-Rodrigues, Simão, and Antunes, 2011) and its subfields,
such as the optimization of public budgets (D’Inverno et al., 2023), public resource management
(Narbón-Perpiñá & De Witte, 2018b), prioritization of public investments (Ziara et al., 2002)
and equitable distribution of urban public infrastructure in the city (Pandey, Brelsford, and
Seto, 2022).

Furthermore, it is necessary to point out that the presented results can be extended for their
utilization in the processing of ordinal data (e.g., Likert scales – Godo and Torra, 2000; Ahn &
Choi, 2012) as well as mixed ordinal and continuous data. Considering this, the findings of the
present article can potentially be helpful in different domains of social studies.

The article proceeds as follows. Section 2 presents the fundamental aspects of building
composite indicators, highlighting the issues of spatial heterogeneity and non-compensatory
aggregation. The OGWA method is presented in Section 3, and simulations illustrating the
properties and accuracy of the OGWA are reported in Section 4. Section 5 focuses on an
empirical application to public urban infrastructure, with details on the study area, selection,
and data collection criteria, the construction steps of the composite indicators, and the results.
Conclusions, including research limitations, future work, and final considerations, are presented
in Section 6.

Literature review

Nardo et al. (2005) and OECD (2008) extensively treat building composite indicators’ fundamen-
tal concepts and stages. These studies highlight that the most important sources of uncertainty
related to building composite indicators occur during scale normalization, weighting, and aggre-
gation of sub-indicators. This conclusion is confirmed in several subsequent studies (Dialga and
Le Giang, 2017; Becker et al., 2017b).

Normalization is a mathematical operation that transforms the different sub-indicator scales
into a single, comparable scale. The main normalization techniques transform the data for the
interval [0,1] by the max–min function and for mean zero and standard deviation one by the
z-scores function (Carrino, 2017; Walesiak, 2018; Cinelli et al., 2021).

Researchers have considerable concerns about sub-indicator weighting (Becker et al., 2017a,
2017b; Bruggemann and Carlsen, 2021). According to these scholars, weighting is a procedure
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Geographical Analysis

that allows relative importance to be assigned to sub-indicators. The weights representing this
relative importance can be obtained through the data-driven or participatory weighting approach.
Data-driven weights are obtained statistically from the data and are free from expert judgment
bias or evaluation errors influenced by personal experiences, ideologies, and viewpoints. Partic-
ipatory weights are obtained from expert opinions and are free from statistical determinations
that could produce weights inconsistent with the multidimensional phenomenon’s conceptual
structure.

There is a vast literature on aggregation schemes, which provides a good description and
application examples of these methods (Munda, 2012; Greco et al., 2019, 2021; El Gibari
et al., 2021; Blancas and Lozano-Oyola, 2022). According to this literature, aggregation
is the procedure that combines the normalized scaled and weighted sub-indicators into a
one-dimensional measure to represent the multidimensional concept.

Non-compensability issue in composite indicators
Sub-indicators can be combined through compensatory or non-compensatory aggregation
schemes. The first one is the most employed and can be defined as a linear aggregation
in which sub-indicators with poor and above-average performance compensate each other.
The second one is less used but more advantageous when a poor performance in one
sub-indicator is not conceptually compensable by an above-average performance in another
sub-indicator.

Examples of compensatory aggregation schemes are the arithmetic mean function, the
Principal Components Analysis (PCA), or the Benefit-of-the-Doubt (BoD) in DEA-like models.
In contrast, examples of non-compensatory aggregation schemes are the mean-min function
(Casadio Tarabusi & Guarini, 2013) and BoD extensions with weight constraints or penalties
according to the different mix of simple indicators (Vidoli and Mazziotta, 2013) or an explicit
or implicit preference structure between simple indicators (Fusco, 2015; Vidoli, Fusco, and
Mazziotta, 2015; Fusco, 2023).

Spatial heterogeneity in composite indicators
The operationalization of the heterogeneity concept in composite indicators is closely linked to
the weighting of the sub-indicators. The heterogeneity concept is considered when the weight of
the sub-indicators varies according to the unit of analysis. Three classes of methods are capable
of operationalizing the heterogeneity concept1:

1. BoD and OWA that operationalize the heterogeneity concept of the analyzed units
disregarding the influence of distance in defining the sub-indicators’ weights (Libório,
Martinuci, Ekel, et al., 2022; Libório, Martinuci, Machado, et al., 2022);

2. Spatial BoD (Fusco, Vidoli, and Sahoo, 2018) and the Geographically Weighted Principal
Components Analysis (GWPCA – Cartone and Postiglione, 2021) that operationalize
the heterogeneity considering the latitude and longitude of units in defining, providing
statistical information on the spatial context;

3. Multiscale analysis that are based on aggregating scale-weighted sub-indicators (Doeffin-
ger and Hall, 2021) and neglect the mutual influence of the units of analysis in defining
the sub-indicators’ weights subjectively.

Literature review2 shows that scholars consider only the second class of methods for
operationalizing the concept of spatial heterogeneity. None of the main works on BoD (Cherchye,
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Moesen, and Van Puyenbroeck, 2004; Nardo et al., 2005; Cherchye et al., 2007; OECD, 2008)
consider this method compatible with the spatial heterogeneity concept. Only Libório, Martinuci,
Ekel, et al. (2022) and Libório, Martinuci, Machado, et al., 2022 argue that the BoD definition of
weights operationalizes the concept of spatial heterogeneity. On the contrary, researchers agree
that the Spatial BoD and the GWPCA operationalize the concept of spatial heterogeneity. Seven
out of ten articles mention the Spatial BoD (Fusco, Vidoli, and Sahoo, 2018; Fusco, Vidoli, and
Rogge, 2020; Artelaris, 2022) and the GWPCA (Saib et al., 2015; Trogu and Campagna, 2018;
Cartone and Panzera, 2021; Cartone and Postiglione, 2021) simultaneously with the terms
“composite indicators” and “spatial heterogeneity”1. Only Doeffinger and Hall (2021) mention
the Multiscale analyses among the 10 articles1 that simultaneously mention the terms “composite
indicators” and “spatial heterogeneity”. Besides, none of the reference works in the composite
indicator’s literature (Nardo et al., 2005; OECD, 2008) recognize Multiscale analysis as a method
of building composite indicators.

Spatial BoD identifies the sub-indicators’ weights through “spatial conditioning”, that is, by
comparing nearby units to consider external factors common to neighboring units, which directly
or indirectly affect the sub-indicators in constructing the composite indicator. This process
assigns greater weights to the above-average performance sub-indicators in each neighborhood,
that is, locally, resulting in a composite indicator able to consider local territorial differences
(Fusco, Vidoli, and Sahoo, 2018; Fusco, Vidoli, and Rogge, 2020).

GWPCA defines the sub-indicators’ weights to maximize the variance of the sub-indicators in
each spatial unit. This maximization assigns greater weights to the most correlated sub-indicators.
Thus, the composite indicator built by the GWPCA reflects the most similar sub-indicators for
each spatial unit (Harris, Brunsdon, and Charlton, 2011; Demšar et al., 2013).

Spatial BoD and GWPCA have at least two limitations in common. First, the sum of the
weights of the sub-indicators of the spatial units is different from one. Methods popularly used in
building composite indicators have weights that add up to one (El Gibari, Gómez, and Ruiz, 2019).
This difference in the sum of weights makes it impossible to compare composite indicators built
by the Spatial BoD and GWPCA with other composite indicators (Nardo et al., 2005).

Second, the Spatial BoD and GWPCA aggregate the sub-indicators by the arithmetic mean,
allowing maximum compensation between poor and above-average performance sub-indicators.
This compensatory aggregation removes the relative importance property of the weights
(Greco et al., 2021) and distorts the conceptual function of the Spatial BoD and GWPCA
weights.

That is why the full consideration of spatial heterogeneity in composite indicators depends
concomitantly on the attribution of differentiated weights of a sub-indicator to each unit and
on the guarantee that these weights assume their function of relative importance through the
non-compensatory aggregation of the sub-indicators.

Spatial heterogeneity and non-compensatory aggregation in composite indicators
The literature shows a limited number of studies that simultaneously address the hetero-
geneity of sub-indicator weights through non-compensatory aggregation. A broader search3

shows that only Fusco, Vidoli, and Rogge (2020) mention the terms “composite indicators”,
“non-compensatory aggregation,” and “spatial heterogeneity” simultaneously. However, the
multicriteria decision-making literature offers a method that allows simultaneous consideration
of heterogeneity and non-compensatory aggregation in composite indicators and is suitable for
extension to the case of spatial heterogeneity: the OWA (Yager, 1988).

5

 15384632, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gean.12384 by U

niversita D
i Firenze Sistem

a, W
iley O

nline L
ibrary on [25/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Geographical Analysis

An OWA operator of dimension n and function [0, 1]n → [0, 1] (Pedrycz, Ekel, and
Parreiras, 2011) aggregates a given number of normalized sub-indicators a1, a2, … , a

n
as

follows:

OWA

(
a1, a2, … , a

n

)
=

n∑

i=1

w
i
b
i
, (1)

where b
i

is the best-performing sub-indicator between the sub-indicators a1, a2, … , a
n

and the
set of weights w1,w2, … ,w

n
meets the condition w

i
∈ [0, 1] and

∑
n

i=1 wi = 1.
Therefore, each w

i
weight is assigned to a position that corresponds to the performance

of a sub-indicator and not to a particular sub-indicator. The definition of which sub-indicators
are weighted with [0, 1] depends on the performance of each sub-indicator in their respective
spatial units and the Orness Degree (Ekel, Pedrycz, and Pereira Júnior, 2020; Silva et al., 2020).
The Orness Degree or θ corresponds to the degree of optimism or risk adopted by the decision
maker (Yager, 1988). The decision maker can adjust θ to emphasize the positive aspects of the
phenomenon and reflect an optimistic decision. In this case, worse-performing sub-indicators are
disregarded, biasing the composite indicator scores upward. The emphasis on the negative aspects
reflects a pessimistic stance by the decision maker, whereby higher performance sub-indicators
are not aggregated, skewing the composite indicator scores downward.

The adjustment of θ allows biasing the results upward (emphasis on positive aspects) or
downward (emphasis on negative aspects). The following expression gives its definition:

θ = 1
n − 1

n∑

i=1

(n − i)w
i

(2)

This flexible weighting approach is consistent with the heterogeneity concept, as the weights
of sub-indicators may vary between units, making it possible to capture the particularities of each
unit.

Additionally, the fuzzy linguistic quantifiers “More than j” and “At least j” criteria allow
the decision maker to regulate the compensation levels between sub-indicators and to emphasize
the positive or negative aspects of the multidimensional phenomenon (Bernardes et al., 2022).

The “More than j criteria” quantifier emphasizes the negative aspects (OWA− in the rest
of the article) by preventing sub-indicators with poor performance from being compensated by
sub-indicators with above-average performance (Pereira Jr. et al., 2016). The adjustment of the
degree of emphasis is carried out by setting j, which is reflected through α in the value of θ using
the following expression:

Q(r) =

{
0 if 0 ≤ r ≤ α r

1−α
1 if α < r ≤ 1

, (3)

whereQ(r) is a fuzzy set reflecting the level at which the portion of r ∈ [0, 1] sub-indicators meets
the concept of the multidimensional phenomenon given byQ, which must satisfy three conditions:
Q(0) = 0, Q(1) = 1, and if r1 > r2, then Q

(
r1

)
> Q

(
r2

)
, α = j∕n, and θ = (1 − α) ÷ 2.

The composite indicator scores that result using Equation (3) are biased downward, which is
advantageous in social and environmental analysis because the trade-off between sub-indicators
of poor and above-average performance masks areas of vulnerability (Zabihi et al., 2019; Libório,
Martinuci, Ekel, et al., 2022).

In contrast, the “At least j criteria” quantifier emphasizes the positive aspects (OWA+ in the
rest of the article) of the multidimensional phenomena (Pedrycz, Ekel, and Parreiras, 2011) by
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the following expression:

Q(r) =

{
r

α if 0 ≤ r ≤ α
1 if α < r ≤ 1

, (4)

where α = j∕n and θ = 1 − (α ÷ 2).
The composite indicator scores constructed from this quantifier are upward biased. This

upward bias, similar to the BoD, is an advantageous property for analyses comparing the
economic performance of countries as it avoids disputes over the sub-indicator weighting scheme
(Cherchye et al., 2007).

After choosing the appropriate linguistic quantifier for the problem, it is possible to set the
OWA operator weights by applying the following expression:

w
i
= Q

(
i

n

)
− Q

(
i − 1
n

)
, i = 1, … , n. (5)

As presented, the OWA assigns different weights to a sub-indicator according to the
performance of each unit of analysis, aggregates the sub-indicators in a non-compensatory way,
and allows emphasizing the positive or negative aspects of the multidimensional phenomenon.

In the literature, several articles constructing composite indicators through OWA have been
proposed (Rocco et al., 2009; Badea, Tarantola, and Bolado, 2011; Hernández-Perdomo, Rocco,
and Ramirez-Marquez, 2016; Almoghathawi et al., 2017; Libório, Martinuci, Ekel, et al., 2022;
Parsons et al., 2021; Bernardes et al., 2022; Shu et al., 2022). However, there is no recognition
of OWA as a method for operationalizing the concept of spatial heterogeneity.

Therefore, the consideration of the concept of spatial heterogeneity in the OWA through
the incorporation of the influence of the distances between spatial units in the defini-
tion of the weights of the sub-indicators is the basis of the new method proposed and
implemented in Section 3 of this research: the Ordered Geographically Weighted Averaging

(OGWA).

The OGWA method

In Trogu and Campagna’s (2018) stream, the need to apply different and distinct weights to
different spatial units, aiming to account for local variations (non-stationary spatial conditions)
on the latent contextual conditions, is also realistic in the OWA case.

Therefore, to consider the influence of spatial heterogeneity (variability in space) in the
composite indicator building, by following Fotheringham et al. (2003) idea, the OWA can be
modified as follows:

OGWA

(
a1, a2, … , a

n

)
=

n∑

i=1

w
i
Sb

i
, (6)

where Sb
i

is the best-performing spatially weighted sub-indicator among the spatially weighted
sub-indicators Sa

i
, i = 1, … , n, and S is a matrix of spatial weights of dimension m × m (m is

the number of spatial units), where each element s
uv

in S represents the distance between the
spatial units u and v, where u, v = 1, 2, … ,m.

The OGWA formulation, concerning OWA, considers spatial heterogeneity assuming that
observations close to the spatial unit u (neighborhood) have more influence over the weights
than more remote observations. Therefore, the geographical weights decrease4 with the distance
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Geographical Analysis

to the spatial unit u and v and can be determined, without loss of generality, by using a kernel
function, for example, the Gaussian5 as in Cartone and Postiglione (2021):

s
uv
= exp

(

−1
2

(
d
uv

γ

)2
)

, (7)

where d
uv

is the geographical distance between the units u and v, and γ is the bandwidth.6

In particular, the spatial weights matrix obtained from Equation (7) is also called the
spatial continuity matrix (Brandão and Brandão, 2017). This spatial continuity matrix is
associated with the influence and mutual relationship between spatial units (Fotheringham and
Brunsdon, 1999).

Thus, the OGWA method in Equation (6) makes it possible to capture local latent contextual
conditions in constructing the composite indicator, thus emphasizing local positive and negative
aspects of the analyzed phenomena, which might be less evident or masked.

Based on this proposed approach, a Monte Carlo significance test, in the stream of
Fotheringham et al. (2002) and Harris, Brunsdon, and Charlton (2011), is adapted to our
procedure to investigate spatial non-stationarity and justify the use of OGWA instead of OWA.
It tests whether the results are significantly different from those obtained by randomly varying
the data (taking sample locations in pairs), that is, whether the results vary significantly across
space.

This is done by comparing the actual (observed) standard deviation of the results with the
standard deviation of several random distributions of the data, assuming that each pattern in the
data occurs by chance and that each permutation of the data is equally likely to occur. Therefore,
the null hypothesis is the spatial stationarity of OGWA scores (whatever the permutation of
the data, the variability in scores does not change) and the alternative hypothesis is the spatial
non-stationarity of OGWA scores (different permutations of the data give different variability in
scores).

The proposed test proceeds as follows:

1. Using the sample data, calculate the actual standard deviation (SD) of OGWA;
2. Randomly select a permutation of data;
3. Calculate the SD of the OGWA by using the randomly generated data;
4. Repeat steps 2 and 3, for example, 999 times (the more, the better);
5. Rank the 999 simulated OGWA’s SDs and the actual OGWA’s SD (the existence of

significant spatial variation in the calculated OGWA scores is related to its position in
this ranked distribution);

6. Find out where the actual SD of the OGWA is on this ranked scale of 1000 values;
7. If the actual SD lies in the upper or lower 2.5% tail of this ranking distribution, then

the actual OGWA’s SD is “significantly” different (at the 95% level) from the simulated
OGWA’s SDs.

Finally, an important issue to discuss is the bandwidth choice for OGWA. The optimal
bandwidth can be selected using a leave-one-out cross-validation (CV) procedure (Harris,
Brunsdon, and Fotheringham, 2011). Leave-one-out CV removes each observation (e.g., u) one
at a time for a potential bandwidth and provides a measure of how well the method with that
bandwidth determines the value of each removed data point. The differences between values are
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Fusco et al. Ordered Geographically Weighted Averaging (OGWA)

evaluated by using the following Root Mean Square Error (RMSE) formula:

RMSE =

√√√√
( 1
m

) m∑

u=1

(
Sb − Sb−u

)2
(8)

Note that the bandwidth is found before the OGWA score is computed. This is to avoid
including another type of heterogeneity given by the OGWA operator weights w

i
and to focus

only on spatial latent contextual conditions.
The method and the elaborations have been implemented in R software and will be included

in the R package Compind (Vidoli and Fusco, 2023).

A spatial point-pattern simulation study to evaluate OGWA properties

In order to test and demonstrate the properties and accuracy of the OGWA method, a spatial
point-pattern simulation has been performed. In order to stress the method and show how it
performs in case of presence of clusters7, the chosen Data Generating Process (DGP) is a Matern
cluster process (Matern, 1986) with a constant density of μ= 300 points per area (intensity) and
a radius of 0.2 (Fig. 1). Note that clusters are overlapped to account for the influence of all points
in the data.

Once the patterns of spatial points are determined, in order to appreciate the OGWA data
sorting and comparison process, three simple indicators (namely I1, I2, and I3) are constructed
in such a way as to obtain spatial clusters with homogeneous observations for high values of
one indicator and low values of another (Fig. 2). In particular, with random differences between
units with a mean of zero and a constant variance of 0.02, clusters A and D have high values for
indicators I1 and I3, cluster B has high values for I2, and cluster C has medium-high values for
all the indicators.

Then, OGWA was implemented for different values of the bandwidth γ from 0.1 to 1 by
0.01 and fixed “More than j” and “At least j” criteria equal to two indicators.

The results for OGWA− and OWA
− are plotted in Figs. 3 and 4. Fig. 3 is a lines plot

(Dykes and Brunsdon, 2007) where the bandwidths are placed on the x-axis and the OGWA− and
OWA

− on the y-axis. Each line corresponds to the results of a single unit obtained at different
bandwidths, and the color is given by the OGWA− values. OWA−′s results are plotted at γ = 1 to
show that OGWA− converges to OWA− when the bandwidth is large.

Fig. 4 shows the maps of the pattern of the results as the bandwidth changes (for simplicity,
the results are presented with bandwidths 0.1, 0.5, 1), exhibiting that at lower bandwidths, units
are compared locally, and as the bandwidth increases, the comparison becomes more global,
tending toward the OWA− pattern.

For ease of reading, since the same findings in terms of convergence of OGWA+ to OWA+

are observed, Figs. A1 and A2 for OGWA+ can be found in the Appendix A.

Real data: Mapping the spatial heterogeneity of public urban

infrastructure through OGWA

Public urban infrastructure
Urban infrastructure is a multidimensional concept that reflects visible urban structures such as
roads and buildings and invisible systems such as public services, culture, and the environment

9

 15384632, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gean.12384 by U

niversita D
i Firenze Sistem

a, W
iley O

nline L
ibrary on [25/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Geographical Analysis

Figure 1. Simulated matern cluster process.

Figure 2. Simulated data: simple indicators values.

(Brandão and Brandão, 2017). The literature on urban infrastructure is quite broad, encompassing
the disciplines of urban studies, geography, sociology, philosophy, and economics (Steele and
Legacy, 2017) and addressing issues of public investment, environmental impacts, climate
change, urban infrastructure, and social vulnerability (Ferrer, Thomé, and Scavarda, 2018).

In particular, the results of this research are exclusively related to physical infrastructure
and public services to the extent that the definition of urban infrastructure includes private
construction (Pandey, Brelsford, and Seto, 2022).

10
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Fusco et al. Ordered Geographically Weighted Averaging (OGWA)

Figure 3. Simulated data: Scalogram of OGWA− and OWA−.

Narbón-Perpiñá and De Witte (2018a, 2018b) provide a complete literature review on
physical infrastructure and public services in cities. Public service infrastructure includes waste
collection, sewerage systems, water supply, and electricity. Urban public physical infrastructure
can be divided into two types. The first type of public physical infrastructure is related to the
provision of services such as administration, recreation, health, education, social, and public
safety. The second type of public physical infrastructure includes roads, traffic lights, and
stormwater networks.

The fundamental difference between these two types of physical infrastructure is related to
their spatial representation. Hospitals, schools, and police stations are geographic points with
latitude and longitude, whereas polygons represent roads and stormwater networks with complex
geometries and have multiple geographic coordinates.

This distinction is particularly relevant in this research, as polygons are continuous spatial
representations compatible with the principle of spatial continuity in which the spatial behavior
of the phenomenon is not defined by discrete boundaries (Fotheringham and Brunsdon, 1999;
Brandão and Brandão, 2017).

From an application point of view, the consideration of heterogeneity and spatial continuity
has been ignored in the construction of composite indicators of urban infrastructure. Current
approaches are limited to the compensatory aggregation of physical infrastructure and services
such as, for example, education, health, roads, social programs, sports and culture, waste
collection, and water supply in a composite indicator (Afonso & Fernandes, 2006, 2008;
Nijkamp and Suzuki, 2009; Yusfany, 2015).
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Geographical Analysis

Figure 4. Simulated data: OGWA− and OWA− maps by bandwidth.

Therefore, the simultaneous consideration of multidimensionality, non-compensability,
heterogeneity, and spatial continuity is an innovative approach that fills the gap for studies
that provide better representations of urban public infrastructure (Narbón-Perpiñá and De
Witte, 2018a, 2018b).

Consequently, the results of this approach have a high degree of applicability in urban
planning (Coutinho-Rodrigues, Simão, and Antunes, 2011) and can be used to optimize public
budgets (D’Inverno, Vidoli, & De Witte et al., 2023), reduce inequalities in the distribution of
urban infrastructure (Pandey, Brelsford, and Seto, 2022), prioritize investments in infrastructure,
taking into account the multidimensional nature of the problem (Ziara et al., 2002). As an effect,
it is expected to increase the efficiency in the management of public resources (Narbón-Perpiñá
and De Witte, 2018a, 2018b) and stimulate the economic development of the city through
the economies of scale, specialization, and economies of agglomeration generated by public
infrastructure (Collier and Venables, 2016).

Study area, selection, and data collection
This research maps the urban public infrastructure of São Sebastião do Paraíso, a city located
in the southeastern region of Brazil. The city’s urban infrastructure is distributed among the

12
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Fusco et al. Ordered Geographically Weighted Averaging (OGWA)

Figure 5. Location map and urban census tracts of São Sebastião do Paraiso.

94 urban census tracts shown in Fig. 5 (IBGE, 2010b). Census tracts are the smallest unit of
census information collection and are the most reliable data source on Brazilian cities’ urban
infrastructure (Libório, da Silva Martinuci, et al., 2020; Libório, Laudares, et al., 2020).

The literature shows the existence of different frameworks for representing urban infras-
tructure and that the selection of sub-indicators should consider the availability of data and
the identification of services provided to the population according to the local government
(Narbón-Perpiñá and De Witte, 2018a, 2018b).

In this sense, the sub-indicators in the survey “Surroundings of domiciles” (IBGE, 2010a)
were selected. This survey is based on urban infrastructure managed directly or indirectly by
local governments and provides information on the number of households in the census area
served by one of the two types of urban public infrastructure listed below:

• Physical infrastructure: S-1. Street identification, S-2. Public lighting, S-3. Asphalt on the
street, S-4. Sidewalk, S-5. Curbstone, S-6. Sidewalk curb ramps, S-7. Afforestation, and
S-8. Rainwater harvesting (storm drain).

• Service infrastructure: S-9. Sewerage system, S-10. Water distribution network, and S-11.
Waste collection service.

Data for the urban public infrastructure sub-indicators were collected from the latest
available demographic census (IBGE, 2010b). The proportion of households served by public
urban infrastructure was calculated considering the total number of households in each census
tract. Thus, the sub-indicator scores vary within the [0.1] interval and reflect the performance of
the sub-indicator in each census tract. The descriptive statistics of the proportion of households
served by the 11 selected urban public infrastructure sub-indicators are presented in Table 1.

Composite indicator building
Six composite indicators have been constructed to analyze the benefits of considering spatial
heterogeneity, non-compensatory aggregation, and highlighting the positive and negative aspects
of the phenomenon in the representation of urban public infrastructure. The steps of the procedure
were as follows:

1. Normalization of the sub-indicators for the interval [0, 1] through the function (observed
value−minimum value)/(maximum value−minimum value);

13
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Geographical Analysis

Table 1. Descriptive Statistics

S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 S-10 S-11

Average 0.82 0.98 0.95 0.92 0.96 0.96 0.79 0.18 0.98 0.99 0.94
Minimum 0.21 0.78 0.32 0.21 0.40 0.20 0.30 0.00 0.80 0.82 0.61
Maximum 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.91 1.00 1.00 1.00
SD 0.17 0.04 0.11 0.14 0.09 0.10 0.16 0.23 0.04 0.02 0.09

Note: N= 94 observations.

2. Construction of the Euclidean distances matrix between the census tracts of the city by
the latitude and longitude of the centroids of the respective polygons;

3. Definition of the optimal bandwidth (value of γ of the function (7)) through the
leave-one-out cross-validation method (Harris, Brunsdon, and Fotheringham, 2011);

4. Building of the matrix of weights (spatial continuity) through the application of function
(7) based on the matrix of distances;

5. Adoption of an intermediate degree of emphasis on negative aspects (θ = 0.73) applying
j = 8 in the function (3);

6. Adoption of an intermediate degree of emphasis on positive aspects (θ = 0.27) applying
j = 3 in the function (4);

7. The construction of the six composite indicators of urban public infrastructure is detailed
below:

7.1. OWA
− that disregards spatial heterogeneity and emphasizes the negative aspects,

applying the results of steps 1 and 5 to functions (1) and (2);
7.2. OWA

+ disregards spatial heterogeneity and places emphasis on the positive aspects,
applying the results of steps 1 and 6 to functions (1) and (2);

7.3. OWA
= that disregards spatial heterogeneity and non-compensation between

sub-indicators, applying the results of step 1 with a j = 11 to functions (1)
and (2);

7.4. OGWA
− that considers spatial heterogeneity and emphasizes the negative aspects,

applying the results of steps 1–5 to function (6);
7.5. OGWA

+ considers spatial heterogeneity and places emphasis on the positive
aspects, applying the results of steps 1–4 and 6 to function (6);

7.6. OGWA
= considers spatial heterogeneity and disregards non-compensation between

sub-indicators, applying the results of steps 1–5 with j = 11 to function (6).

An important step, as discussed in Section 3 and highlighted in Section 4 is the bandwidth
choice for OGWA on the current data. In fact, in Section 4, it was seen that small bandwidths
lead to greater spatial variability of results, while large bandwidths lead to results closer to OWA.

The optimal bandwidth, equal to 0.03, has been selected using the procedure exposed in
Section 3. Fig. 6 shows the leave-one-out CV function (in terms of RMSE – Equation 8) for
different bandwidths, with a global minimum at 0.03.

Then, the geographical weights were obtained using the GWmodel R package (Gollini
et al., 2015; Lu et al., 2014), calculating the distance between any GW model calibration points
and the data points and using the chosen optimal bandwidth.

Finally, the composite indicators are compared to analyze the benefits of OGWA in
increasing the accuracy and amount of information on problems of a multidimensional nature.
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Fusco et al. Ordered Geographically Weighted Averaging (OGWA)

Figure 6. Leave-one-out cross-validation (CV) function.

Table 2. Statistics of Composite Indicator Scores of Urban Public Infrastructure

OWA
−

OWA
+

OWA
=

OGWA
−

OGWA
+

OGWA
=

Average 0.76 0.95 0.82 0.65 0.83 0.71
Minimum 0.29 0.57 0.41 0.22 0.45 0.33
Maximum 0.92 1.00 0.94 0.87 0.99 0.90
SD 0.12 0.07 0.09 0.14 0.13 0.13

Results and discussions

Considering spatial heterogeneity in the representation of urban infrastructure builds composite
indicators with scores 11% lower on average. This result indicates a negative relationship
between a census tract’s urban public infrastructure and neighboring areas’ public infrastructure
(Table 2).

The standard deviation of the composite indicator scores OGWA−, OGWA+, and OGWA=,
on average, is 1.4 times greater than that of the composite indicators OWA−, OWA+, and OWA=,
indicating a better differentiation of the urban public infrastructure when spatial heterogeneity is
considered. This finding is even more evident in Fig. 7 where the composite indicators OGWA−,
OGWA

+, and OGWA
= show a greater variation of colors (scores), which helps to distinguish

between areas with deficient (census tracts colored in dark red) and satisfactory urban public
infrastructure (census tracts colored in dark blue).

The maps in Fig. 7 also show how the emphasis on the positive and negative aspects of
the multidimensional phenomenon increases the informational power over the spatial dynamics
of the urban public infrastructure. The mapping of urban public infrastructure by OWA

− and
OGWA

− makes it possible to identify priority areas for public investment. This identification is
especially useful in decision-support systems that prioritize investments in public infrastructure
(Ziara et al., 2002) in a perspective of rebalancing and equalizing the territory.
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Geographical Analysis

Figure 7. Urban infrastructure mapping of composite indicatorsOWA−, OWA+,OWA=,OGWA−,
OGWA

+, and OGWA=.

The incorporation of spatial heterogeneity in OWA
− reflected in OGWA

− offers public
policy planners a better distinction between areas with a deficit of urban public infrastructure.
In addition, the consideration of the negative effect of the neighborhood on the representations
of the public infrastructure of each area through the OGWA− signals that the number of city
areas with deficient infrastructure is greater when spatial heterogeneity is considered. This is
a significant finding, as it impacts urban planning, especially in defining the public budget. In
particular, the OGWA− indicates that the public budget for infrastructure investments should be
greater to reduce inequalities in city distribution of public infrastructure.

Similarly, the mapping of urban public infrastructure by OGWA+ favors the distinction of
areas that most benefit from the appreciation of property and the benefits generated by urban
public infrastructure. This better distinction makes it possible for governments to adjust property
taxes, considering the urban public infrastructure available in each area.

From an urban planning point of view, analyzing the positive and negative aspects of urban
public infrastructure offers valuable information for prioritizing investments and adjustments in
property tax collection (Coutinho-Rodrigues, Simão, and Antunes, 2011). Besides, considering
spatial heterogeneity favors this analysis even more, making it possible to adjust the collection of
property taxes, generating resources to reduce inequality in the distribution of public infrastructure
in cities (Pandey, Brelsford, and Seto, 2022).

From a statistical point of view, the need to consider spatial heterogeneity is also confirmed
by the test of non-stationarity (1,000 replications) carried out on the results of OGWA−, OGWA+,
and OGWA= (Fig. 8).

Plots in Fig. 8, and the corresponding P-value, suggest that OGWA−’s (subgraph a),
OGWA

+’s (subgraph b), and OGWA
=’s (subgraph c) results are non-stationary with a P-value

<0.001, 0.003 and <0.001, respectively.
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Fusco et al. Ordered Geographically Weighted Averaging (OGWA)

Figure 8. Non-stationarity test of composite indicators (a) OGWA
−, (b) OGWA

+, and (c)
OGWA

=.

Conclusions

This article extends the literature on the construction of composite indicators through multicriteria
approaches, improving existing methods by allowing for spatial heterogeneity and providing
evidence on its impact on the representation of multidimensional phenomena.

Indeed, the concept of spatial heterogeneity has not been widely explored in the field of
composite indicators (Sarra and Nissi, 2020), as confirmed by the literature review. Although
widely used methods consider the heterogeneity of sub-indicator weights, the literature recognizes
that the operationalization of the spatial heterogeneity concept occurs only when the sub-indicator
weights are defined considering the matrix of spatial weights.

Among the methods that consider the matrix of spatial weights in the heterogeneous
definition of sub-indicator weights, the Spatial BoD and the GWPCA were found to be the
most popular. However, it was noted that the Spatial BoD and the GWPCA are methods based
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Geographical Analysis

on compensatory aggregation, which makes the sub-indicator weights assume a function of
substitution rather than relative importance. Thus, the fundamental idea of spatial heterogeneity,
that the influence of a sub-indicator on the multidimensional concept varies according to the
spatial unit is not adequately considered.

The research discusses the compatibility of the mathematical properties of OWA, that is
a multicriteria method able to take into account non-compensability among simple indicators,
with the concept of spatial heterogeneity. It proposes a new method, the “Geographically
Ordered Weighted Averaging” (OGWA), capable of operationalizing the spatial heterogene-
ity concept in the OWA. The mathematical properties of OGWA make it an innovative
method to simultaneously account for heterogeneity and spatial continuities in the con-
struction of the composite indicator, in addition to the non-compensatory aggregation of
sub-indicators.

Furthermore, the proposed method may be useful in several areas of social research, as it
can be extended to ordinal data and mixed ordinal and continuous data.

Acknowledgements

The development of this research was supported by ChildFund Brasil, one of the oldest social
development and child protection agencies, with 83 years in the world and 56 in Brazil.

Data Availability Statement

Martinuci, O. D. S., A. Machado, and M. Libório. (2021). “Data for: Time-in-space analysis of
multidimensional phenomena.” Mendeley Data, V4, doi: 10.17632/m3y4jncvch.4

Notes

1 It is important to note that all of the methods mentioned are capable of accounting for spatial
heterogeneity, but are not designed to test for spatial association. Local spatial association indicators for
evaluating the existence of spatial patterns in a multivariate context have also been very poorly addressed
in the literature. The most relevant is the extension of the Local Geary’s c statistic (Anselin, 1995)
proposed by Anselin (2019), called the Multivariate Local Geary Statistic, which collapses the squared
distances associated with variables into a weighted sum by providing a single value for the statistic at
each location.

2 Search in the Scopus and Web of Science databases, in the title, abstract, or keywords on February 19,
2023.

3 Search in the Google Scholar, Scopus, and Web of Science databases, in the title, abstract, or keywords
on February 19, 2023.

4 Another possibility would have been to use a spatial weights matrix as in Fusco, Vidoli, and Sahoo (2018)
with element 1 if the unit is within the inclusion circle (given by a chosen distance radius) and 0
otherwise. In this case, we would have calculated the score considering the units in the cluster, but this
would have resulted in completely discarding more distant units that have an influence, albeit small, on
the performance of the other observations.

5 Gaussian presents the advantage to weight all the observations, with a weight that tends toward zero if
the distance increases.

6 Bandwidth is a chosen distance beyond which the geographical weight of the observations is set to the
value 0. The larger the bandwidth, the higher the number of observations to which the kernel gives a
nonzero weight.
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Fusco et al. Ordered Geographically Weighted Averaging (OGWA)

7 Despite the different nature and purpose of the two methods, a test of the underlying spatial association
patterns was performed with the Multivariate Local Geary Statistic method (Anselin, 2019), varying
the bandwidth, as a robustness check of our method. A high positive correlation is found for group C.
In fact, as pointed out in Anselin (2019), “the generalization of the Local Geary c statistic to multiple
variables is a way to formalize the combination of attribute similarity and locational similarity” and C
is the only group with similar values for all indicators. As expected, the correlation is less positive for
A, B, and D, and the larger the bandwidth, the lower the value.

Appendix A

Figure A1. Simulated data: Scalogram of OGWA+ and OWA+.
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Geographical Analysis

Figure A2. Simulated data: OGWA+ and OWA+ maps by bandwidth.
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