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Abstract

The human brain has always been one of the most fascinating fields of study.

The first theories and research results about machine learning date back to

around fifty years ago, but only in the last few years - thanks to increasing

computational power - these theories have been put into practice with ap-

plications in different fields such as autonomous driving, human-computer

interaction, medical imaging, and many others. Perception is perhaps the

most important way humans understand the physical world, and language

is how humans communicate their experiences. For this reason, the integra-

tion of vision and language has been gaining attention and language-aligned

visual features have been shown effective for vision-language tasks. Recently

these tasks have received significant attention from the Artificial Intelligence

community, however many tasks in this field are far from solved and re-

quire further research. In this dissertation we focus on three vision and

language tasks: Visual Question Answering (VQA), Image Captioning (IC),

and Cross-Modal Retrieval (CMR).

Visual Question Answering systems are capable of answering visual ques-

tions (that is, questions referring to the semantic content of images), but a

significant limitation is the inability to answer contextual questions (that is,

those referring to image content but that require external information to be

answered). For this reason, we investigate the use of external knowledge in

support of answer generation. In the first part of this thesis, we propose two

approaches to handle and extract external textual information and improve

VQA in the Cultural Heritage domain - a domain where external information

is crucial. Moreover, we propose a data collection and annotation technique,

as well as a large dataset for VQA in the Cultural Heritage domain.

In the second part of this thesis, we investigate the application of Image

Captioning to Image Quality Assessment (IQA). IQA is the task of evaluating

the perceptual quality of images. IQA approaches are severely limited by

the lack of data for training. After preliminary work on generative data

augmentation, we propose a completely novel approach to exploiting visual

captioning in order to infer quality scores in both No-Reference and Full-

Reference scenarios.

Finally, Cross-Modal Retrieval approaches perform ranking of images

based on text (and vice versa) at a merely descriptive level (focusing on what

objects are in the image and their number). To address this problem, in the

last part of this thesis we propose a new architecture that exploits scene



v

text to improve the performance of cross-modal retrieval tasks on multiple

datasets that vary in the percentage of scene-text images and the type of

caption (contextual, visual).

Keywords: machine learning, deep learning, multi-modal learning, visual

question answering, image captioning, cross-modal retrieval, image quality

assessment, representation learning, computer vision.
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Chapter 1

Introduction

In recent years, research in Artificial Intelligence has increased significantly,

giving birth to new applications in real scenarios such as facial recognition

used on phones, object detection used in the medical field, object tracking,

etc. AI algorithms are gradually becoming more and more accurate but still

have weaknesses that make more research in this field necessary. For exam-

ple, many methods cannot be used in real scenarios due to their complexity

and the fact that they only work in specific domains.

In this thesis, we focus on a specific area of Computer Vision concern-

ing Vision and Language. Research in this area concerns both applications

in real scenarios and applications to other research topics such as Image

Quality Assessment. In Sec. 1.1 we present an overview on vision and lan-

guage tasks, in Sec. 1.2 and Sec. 1.3 we introduce, respectively, the Visual

Question Answering task and the Cross-Modal Retrieval task. Sec. 1.4 gives

an introduction to language and visual quality where we describe the Im-

age Captioning and Image Quality Assessment tasks and how they can be

combined together. Finally, in Sec. 1.5 we outline the contributions of this

thesis.

1.1 Vision and Language Tasks

Computer vision (CV) and Natural Language Processing (NLP) are two of

the most studied sub-fields of Artificial Intelligence (AI). The aim of these

two tasks is to replicate the human activity for vision (CV) and language

(NLP). In the last decade, research in these two fields has led to impressive

1



2 Introduction

improvements in the performance of models on a wide range of tasks. This

improvement is also due to the evolution of the hardware that allows faster

training of large models and the collection of larger datasets.

Thanks to this hardware empowerment and the rise of AI research, a

series of powerful neural networks have been developed. Traditional neural

networks are typically multi-layer perceptrons (MLPs) consisting of mul-

tiple stacked linear layers and nonlinear activations [103, 104]. LeCun et

al. [63] (1998) proposed Convolutional Neural Networks (CNNs) to incor-

porate shift-invariance as a better inductive bias for 2D visual input, which

inspired a large number of deep neural networks, including AlexNet [62],

VGGNet [115], GoogleNet [119], and ResNet [42]. Another seminal break-

through were Recurrent Neural Networks (RNNs) in the field of natural lan-

guage processing (NLP), which are incorporate recurrent cells for sequential

data modeling [44, 105]. To mitigate the vanishing and exploding gradi-

ent problems in long sequence training, LSTM [44], a type of RNN, and

GRU [23], a more efficient version of LSTM, were proposed. Another im-

portant breakthrough in NLP is the Transformer [128], which utilizes an

attention mechanism to learn better language representations. Using a se-

quence of attention layers, Transformers can globally fuse information over

language tokens, leading to rich and powerful models.

As Bisk et al. [9] explained in their work, visual perception is the most

important way humans understand the physical world and language is how

humans communicate their experiences. For this reason, the integration of

vision and language receives much attention, and it has been amply demon-

strated that language-aligned visual features are effective for vision-language

tasks. Many visual-language tasks have been studied, the most relevant

of them to our work are Visual Question Answering (VQA) [2, 3, 69, 120,

143, 144], Image Captioning (IC) [2, 25, 65, 150], and Cross-Modal Retrieval

(CMR) [20,66,78].

1.2 Visual Question Answering

A Visual Question Answering system takes an image and a related question

as input. The aim of the system is to generate the correct answer. In almost

all state-of-the-art works this task is seen as a classification problem where

the answer is chosen from a predefined dictionary. For example, the reference

dataset VQA v2 [40] has a set of around 2K pre-defined answers.
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Antol et al. [3], in the first work on VQA, propose an architecture in which

a CNN [115] is used to encode the image, and an LSTM is used to encode the

question. The output image embedding and question embedding are simply

fused by point-wise multiplication and then passed through a linear layer

followed by a softmax to output the probability of each candidate answer.

From this first work we observe that a typical VQA model consists of

three different sub-modules: the first for image encoding, the second for

question encoding, and a final sub-module for visual and textual information

combination and answer prediction. Most works on VQA add novelty to one

or more of these components.

Since merging image representation and question representation as in [3]

is too simple and coarse, numerous works investigate the use of attention

mechanisms for fusing image and question. In particular, Yang et al. [144]

proposed a Stacked Attention mechanism adding multiple attention layers.

At each attention layer, the question representation is used as a query for

the attention mechanism. A groundbreaking approach for image representa-

tion was proposed by Anderson et al. [2] who emply a bottom-up attention

mechanism based on salient objects in images. Instead of considering the

entire image as a grid (as done in previous methods [3,144]) they use object

features as attention candidates. These features are extracted using a detec-

tor such as Faster R-CNN [38] trained on the Visual Genome dataset [61].

This technique was an important step forward for the VQA community and

increased VQA performance considerably. After this work most of the sub-

sequent approaches used just such visual features for the VQA task.

More recently, with the advent of Transformer models [128], multiple

approaches based on this architecture were proposed. Tan et Al. [120] de-

signed an architecture consisting of three encoders: an object relationship

encoder, a language encoder, and a cross-modality encoder. Fig. 1.1 gives

a diagram of this architecture. The object relationship encoder (that uses

the same visual features as [2]) and the language encoder have the same

number of self-attention layers. The cross-modality encoder consists of mul-

tiple cross-attention and self-attention layers (Ne). As in other works [66,69]

the model is pre-trained with a large number of image-sentence pairs via di-

verse representative pre-training tasks: masked language modeling, masked

object prediction (feature regression and label classification), cross-modality

matching, and image question answering. Other works about Multi-modal

Transformers showed how attention layers [29, 68, 76] and Visual-Textual
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Figure 1.1: The LXMERT [120] model for learning vision-and-language

cross-modality representations. Image and question are encoded separately

through an object-relationship encoder (image) and a language encoder

(question) then a cross-modality encoder merges together the image and

text embedding to predict the answer.

features alignment [66,69] are effective for multi-modal tasks.

Existing VQA approaches are capable of correctly answering visual ques-

tions related to image content, but are not capable of answering questions

whose answer requires external knowledge. In order to answer this type

of question, the VQA community recently introduced a new task known as

Knowledge-Based VQA (KB-VQA). In the first work in this direction [81] the

authors show the performance of standard VQA approaches OK-VQA [81].

Fig. 1.2 shows some example image-caption pairs from the OK-VQA dataset.

We see that the questions belong to completely different categories that

their answers require different knowledge. Garderes et al. in [37] use a

knowledge-based graph based on ConceptNet [117] as contextual knowledge.

The question is encoded with a BERT [27] model and then passed to two dif-

ferent Transformers one for image-question attention and the other for KG-

embeddings-question attention. This architecture allows considering both

visual information and contextual information from the knowledge graph

to infer the correct answer. Following this approach, other state-of-the-art

techniques use Knowledge Graphs to address this problem. The weakness of

these approaches lies precisely in the use of Knowledge Graphs which leads

to multiple problems:

• Standard Knowledge Graphs [79, 117] are extremely large and impos-

sible to process entirely during training and testing.
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Figure 1.2: Samples of image-question pairs from the OK-VQA [81] dataset.

These questions require external knowledge to infer the correct answer.
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• As a consequence, Knowledge Graphs are usually pruned and the loss of

information in the resulting graph leads to a drop in VQA performance.

Most recent approaches [41, 143] solve this problem by prompting GPT-

3 [14] to generate contextual text useful to answering the question. These

systems exploit the fact that GPT-3 is trained with massive amounts of data

and is capable of generating realistic and correct information.

As described above VQA approaches obtain high performance but they

still have important problems making it of limited use in real scenarios:

• They are capable of answering only visual questions referring to the

image content and are not capable of answering contextual questions

whose answers require external information.

• Visual questions are very simple (e.g. what color is...? what is on...?)

and visual answers consist of a reduced number of words (varying from

one to three). This weakness prohibits longer and more comprehensive

answers.

• VQA does not easily incorporate structural data like ontologies, docu-

ments, knowledge graphs, etc.

In this thesis, we address this problem by proposing multiple solutions

to the application of the VQA task in real scenarios. In particular, since a

key problem of VQA answering contextual questions that are in many do-

mains the most frequently asked type of questions by people, we propose two

methods based on external knowledge to answer both visual and contextual

captions. Our methods allow VQA to generate a comprehensive answer for

contextual questions. We apply these methods to the Cultural Heritage Do-

main where most questions of interest involve information not deducible from

the Artwork (e.g. When was the painting painted? Who is the person por-

trayed?). To the best of our knowledge, we are the first to apply VQA in the

Cultural Heritage domain. Moreover, since no annotated dataset for VQA

is available for Cultural Heritage, we propose a data collection and annota-

tion framework for Visual Question Answering and we collect a large-scale

dataset for Cultural Heritage VQA.
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1.3 Cross-Modal retrieval

In general, cross-modal retrieval is the task of ranking samples expressed

in one modality according to a specific query in another modality. Taking

into account image and text modalities, the cross-modal retrieval task can

be split into two sub-tasks:

• Image-to-text retrieval (I2T). Given an image, the aim of this task is

to rank texts according to the similarity to the content of the image.

• Text-to-image retrieval (T2I). Given a text, the aim of the task is to

rank images according to the similarity to the information in the text.

Cross-Modal Image-Text retrieval approaches can be divided into two

main categories:

• Coarse-grained correspondence methods. The architecture consists of

two branches: one for image encoding and the other for text encoding.

The image features and text features are mapped in a joint embedding

space to learn visual-semantic similarity.

• Fine-grained correspondence methods. The network learns to align

relevant regions of the image and text words. Often these methods use

some attention mechanism to learn image-text correspondence.

Regarding coarse-grained matching methods, Kiros et al. [59] use a CNN to

encode the image and an LSTM to encode the text. In [141] the authors

represent text with term frequency-inverse document frequency (TF-IDF)

representation and pass them through a fully connected layer and the image

is encoded with a deep convolutional network (DCNN). In [43] the text is

represented by a matrix of continuous vectors each representing a single word

and it is fed to a CNN. These approaches map image and text directly into

a common latent space and learn to pair image and text through a variety

of contrastive ranking losses [32,96,122,131].

Subsequent approaches focus on capturing fine-grained correlations. In

particular, Li et al. [67] propose a Visual Semantic Reasoning Network

(VSNR) where image region features obtained as in [2] are fed to a Graph

Convolutional Network (GCN) to perform visual semantic reasoning and

generate features enriched with semantic relationships. Subsequently, these

features are given as input to a memory mechanism that gradually generates

the representation for the whole scene. This model is trained by optimizing
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both matching (final representation and caption) and text generation (from

final representation to caption). In [18] the authors capture correspondences

between image and text progressively with multiple steps of alignment and

attention.

As for VQA and Image Captioning, the advent of Transformers boosted

the performances of the Cross-Modal retrieval task. Some of these mod-

els are described in the subsections related to VQA and Image Caption-

ing [66, 69, 76]. In VILLA [35] the authors propose a two-step training ap-

proach exploitable for multiple vision and language tasks. In [20] the authors

design an effective pretraining phase based on three tasks: Masked Language

Modeling (MLM), Image-Text-Matching (ITM), and Masked Region Mod-

eling (MRM). The model is then finetuned on different vision and language

tasks, achieving state-of-the-art performances. Jia et al. [50] leverage a one

billion image alt-text pairs dataset for vision and language pretraining. In

particular, they show that pretraining a vision and language model with

noisy text annotations achieves impressive performance in zero-shot vision

and language tasks without finetuning.

Finally, a recent work by Redford et al. [96] the image is encoded with

a Vision Transformer (ViT) [28] and the caption is encoded with a BERT

Transformer; the model is trained with a large dataset of 400M images (taken

from web) using InfoNCE loss and achieving state-of-the-art performance.

Despite the intense research in this field, cross-modal image-text retrieval

approaches still have many limitations:

• Their performance is acceptable only when image-text pairs are well-

aligned and the overlap between images and text is significant (both

image and text mention or show the same objects).

• They do not work in real scenarios where image and text contain com-

plementary information, and for this reason their alignment is abstract

and symbolic. Fig. 1.3 shows examples of images and compares the vi-

sual description with a real complementary description that contains

more contextual information.

• Only a few methods exploit additional information like scene-text to

improve performance, but consequently, have a reduction in perfor-

mance in scene-text-free context.

In this thesis, we address these problems by investigating the use of scene

text in image-text cross-modal retrieval in real scenarios. News datasets
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Real Caption. Dan Becker 
a director entering CSN 
Bay Area.

Visual Caption. A man 
opening the door of a 
white tir. 

Real Caption. A bust of 
Chopin at his Birthplace.

Visual Caption. A statue 
of a man in front of a 
window.

Real Caption. Dwight 
Gooden in 2016 He is 
now 53 years old and a 
grandfather.

Visual Caption. An 
elegant man wearing a 
dark blue suit and a gold 
tie.

Real Caption. Lauren Dern 
picks out red carpet looks 
at Gabriela Hearst’s studio 
in the Chelsea section of 
Manhattan

Visual Caption. Two 
women in a boutique.

Figure 1.3: Comparison between visual description and real description for

images taken from news articles from GoodNews [10] dataset. We can ob-

serve that real descriptions contain additional information not deducible from

the image content.

represent a real environment where an image-text retrieval system can be

a useful instrument. These datasets as described above and illustrated in

Fig. 1.3 are very challenging for current cross-modal retrieval methods since

the alignment between the content of the image and the caption is abstract.

We propose a transformer-based architecture that exploits scene-text to

perform cross-modal retrieval. Experiments show the effectiveness of our

approach and our performance surpasses state-of-the-art methods on news

datasets. Finally, we show that our approach also reaches state-of-the-art

performance on full scene-text datasets.

1.4 Language and Visual Quality

Image captioning is the task of describing the visual content of an image in

natural language. It requires a visual understanding system and a language

model capable of generating meaningful and syntactically correct sentences.

Like VQA models, Image Captioning models have improved significantly in

the last few years.

The standard image captioning systems consist of two sub-modules: a
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Encoder Layer 1

Encoder Layer 2

Encoder Layer N

...

...

!

!

!

Decoder 
Layer N

Decoder 
Layer 1

Decoder 
Layer 2

Memory-Augmented Encoding Meshed Decoding

A young man riding a 
skateboard in 

front of a statue

Figure 1.4: Meshed Memory Transformer [25] for image captioning architec-

ture. The encoding phase consists of multiple levels and generates a multi-

level representation of the relationships between image regions. exploiting

learned a priori knowledge. These multi-level encodings of image regions are

connected to a language decoder through a meshed and learnable connectiv-

ity to exploit low-level and high-level features.

visual encoder that takes image pixels as input and outputs visual features,

and a language model that takes visual features (generated by the visual

encoder) as input and produces a sequence of words according to a dictionary.

In the very first captioning approaches, Vinyals et al. [130] use a Convolu-

tional Neural Network (CNN) to produce a rich representation of the image

then an LSTM is used to generate the description. In [139] the authors add

an attention mechanism in the LSTM in order to improve the model’s ca-

pability to focus on the correct regions during caption generation. Since the

generated captions tend to not involve all the salient objects in the image,

Cornia et al. in [24] propose a model capable of generating a caption on

explicitly selected image regions.

As described above for VQA, taking the features of detected objects as

image embeddings [2] leads to impressive improvements for the captioning
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task. These visual features are also used by other captioning methods [69,

113,150].

With the advent of Transformer models, multiple studies were carried out

showing the effectiveness of this architecture. Some of these works use ob-

ject features [2] as image embeddings. In particular, OSCAR [69] uses object

tags detected in images as anchor points to significantly ease the learning

of image-text alignments. In [25] Cornia et al. proposed a mesh-like con-

nection between encoding and decoding layers weighted through a learnable

gating mechanism. Fig. 1.4 shows a scheme of the approach. Image regions

are encoded through multiple encoded layers to learn object relationships be-

tween image regions. Each encoding layer is connected to a language decoder

through a meshed and learnable connectivity. In VinVL [150] the authors

improve the object detector of [2] generating richer image encodings feeding

them into OSCAR Transformer [69].

Since the image representation is strongly limited by the power of the ob-

ject detector and the extraction of region-based features is computationally

expensive, other Transformer-based architectures remove this object detec-

tor and perform direct alignment between the image and text representa-

tions. In VILT [58] the authors use a simple linear projection that operates

on image patches in order to obtain visual embeddings. In SimVLM [136]

the model takes row images as input and is trained with weakly labeled

datasets. Transformers achieve state-of-the-art performance for many vision

and language tasks, but they present two problems: self-attention for visual

sequences is significantly more expensive than textual sequences; and there

is an asymmetry between caption text, which is usually short and contains

abstract information, and image that contains more detailed information. In

order to address these problems Li et al. [65] designed an asymmetric Trans-

former architecture based on skip-connection achieving State-Of-The-Art in

different Vision and Language tasks.

In this thesis, we use Image Captioning as an auxiliary task for Im-

age Quality Assessment. To the best of our knowledge, we are the first to

combine these two tasks. Image Quality Assessment (IQA) [135] refers to

a range of techniques developed to automatically estimate the perceptual

quality of images. IQA estimates should be highly correlated with quality

assessments made by multiple human evaluators (commonly referred to as

the Mean Opinion Score (MOS) [93, 111]). IQA has been widely applied by

the computer vision community for applications like image restoration [6],
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image super-resolution [127], and image retrieval [142].

IQA techniques can be divided into three different categories based on

the available information on the image to be evaluated: full-reference IQA

(FR-IQA), reduced-reference IQA (RR-IQA), and no-reference IQA (NR-

IQA). Although FR-IQA and RR-IQA methods have obtained impressive

results, the fact that they must have knowledge of the undistorted version

of the image (called the reference image) for quality evaluation, makes these

approaches hard to use in real scenarios. On the contrary, NR-IQA only

requires the knowledge of the image whose quality is to be estimated, and

for this reason, is more realistic (and also more challenging).

In the last few years, Convolutional Neural Networks (CNNs) have ob-

tained great results on many computer vision tasks, and their success is par-

tially due to the possibility of creating very deep architectures with millions

of parameters, thanks to the computational capabilities of modern GPUs.

Massive amounts of data are needed for training such models, and this is

a big problem for IQA since the annotation process is expensive and time-

consuming. In fact, each image must be annotated by multiple human ex-

perts, and consequently, most available IQA datasets [93, 112] are too small

to effectively train CNNs from scratch.

With the advent of deep neural networks, multiple works have applied

them to learning for NR-IQA. These techniques require large amounts of data

for training and IQA datasets are especially lacking in this regard. Therefore,

to address this problem different approaches have been proposed. Kang et

al. [52] use small patches of the original images to train a shallow network and

thus enlarging the initial dataset. A similar approach was presented in [53]

where the authors use a multi-task CNN to learn the type of distortion and

the image quality at the same time. Bianco et al. [8] used a pre-trained

DCNN fine-tuned with an IQA dataset to extract features, and then train

a Support Vector Regression model that maps extracted features to quality

scores. Liu et al. in [74] use a learning-from-rankings approach. They train

a Siamese Network to rank images in term of image quality and subsequently

the information represented in the Siamese network is transferred, through

fine-tuning, to a CNN that predicts the quality score. Another interesting

work is from Lin et al. [71] who use a GAN to generate a hallucinated

reference image corresponding to a distorted version and then give both the

hallucinated reference and the distorted image as input to a regressor that

predicts the image quality.
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In the last couple of years with the development of new larger datasets

(KonIQ10K [45], PieApp [94], PIPAL ( [51])) for IQA, more complex and

weight architecture have been proposed for this task. In particular, Transformer-

based approaches obtain impressive performances. You et al. [146] propose a

shallow Transformer architecture inspired by ViT adding an adaptive posi-

tional embedding strategy to handle images with different resolutions. Cheon

er al [22] inspired by [146] designed a Transformer architecture to compare

distorted and reference images in a full-reference manner. Finally, in [54] Ke

et al. designed a multi-scale image quality Transformer capable to process

images with varying sizes and aspect ratios

In this thesis, we address the limitations of Image Quality Assessment

systems with three different approaches. In a first work we design a data

augmentation approach based on Auxiliary Classifier-GAN (AC-GAN). We

train this architecture to generate new distorted samples according to a spe-

cific distortion type (JPEG, Blur, White Noise, etc.) and a specific distortion

value. A very shallow quality evaluator is then trained with both original

and augmented data obtaining performance comparable to the state-of-the-

art while requiring less annotated data.

We then exploit Image Captioning for Image Quality Assessment in both

No-Reference and Full-Reference scenarios. Image captioners are capable of

describing the content of high-quality images, but if the image is distorted the

distortion will affect the image content leading to a different caption. Thus,

we can use captioning metrics to compare high-quality image-generated cap-

tions and distorted image-generated captions in order to infer a quality score.

We demonstrate that there is a high correlation between the predicted score

and the quality score of the distorted image. With this approach, we can

avoid training on small IQA datasets since we are using a captioning sys-

tem (that is trained on large amounts of data). Moreover, we demonstrate

that our system is capable of correctly evaluating high-quality images and

restored images.

1.5 Contributions of this thesis

This thesis focuses mainly on vision and language tasks. As described above,

these include other sub-tasks such as object detection, object recognition,

visual reasoning, etc. State-of-the-art approaches achieve good results where

contextual information is not needed, but in real scenarios, this becomes
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extremely relevant. For example, the standard Visual Question Answering

task involves answering questions about the visual content of an image but

in realistic situations users tend to ask questions that are not answerable by

looking at the image but that instead require external contextual knowledge.

The same problem can be found in the generation of captions by an image

captioner or in the ranking generated by retrieval systems that are weak in

handling contextual information.

To address this problem we have largely focused on the Cultural Heritage

domain. In this context, the standard models of Visual Question Answering

fail as most of the questions about artworks require information that cannot

be inferred directly from the artwork itself (e.g. name of the artist, style,

year of production). Furthermore, there are no datasets or other works in

this specific area. Therefore we have designed several architectures to solve

this problem and created a related dataset for VQA in the cultural heritage

domain.

Retrieval systems are also affected by the presence of contextual data. In

fact, when the captions no longer concern a visual description (e.g. a man

speaks sitting in front of a microphone) but contain contextual information

(e.g. Joe Biden speaking from the oval office), the retrieval task is much

more challenging and leads to low performance by standard approaches. To

address this problem, we designed a Transformer-based architecture. This

model exploits scene-text in the input images as additional information for

the retrieval task. We demonstrate the effectiveness of this approach in real

scenarios where there is not an exact matching between image-text pairs.

We investigate image captioning and its novel application to Image Qual-

ity Assessment (IQA). Since IQA approaches are affected by the lack of data

for training, we investigate the potential of generating training samples and

the use of Image Captioning as an instrument to infer quality scores in both

No-Reference and Full-Reference scenarios. This approach avoids training

models for the IQA task relying completely on Image Captioner accuracy.

To demonstrate the effectiveness of our approach we considered several types

of architectures.

In summary, this dissertation makes a number of contributions to the

state-of-the-art in language and vision tasks:

Visual Question Answering for Cultural Heritage. In Chapter 2

We define a novel approach for Visual Question Answering in the Cultural

Heritage Domain capable of answering both visual and contextual questions.
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Differently from the standard VQA approaches that cannot answer contex-

tual questions, our architecture classifies the category of the question (visual,

contextual) in order to exploit the most suitable information. To the best of

our knowledge, this is the first work on VQA applied to the Cultural Her-

itage domain. Moreover, the proposed architecture can be used in different

real environments to cope with limitations of standard VQA.

Generation of Visual and Contextual Descriptions for VQA. In

Chapter 3 we introduce another approach to VQA in the Cultural Heritage

domain that is capable of generating visual and contextual descriptions of

artworks in order to answer both visual and contextual questions. For this

purpose, we investigate the use of GPT-3 for generating contextual informa-

tion. The proposed approach allows answering questions about an artwork

using only its name and avoiding a costly annotation process.

A large-scale Cultural Heritage Question Answering Dataset. Since

there are no datasets for Visual Question Answering in the Cultural Heritage

domain, in Chapter 4 we present the VISCOUNTH dataset. This dataset

contains around 6.5M image-text pairs associated with 500k images. To

the best of our knowledge, this is the largest VQA dataset in the Cultural

Heritage domain and the one with the widest variety of artworks.

Generative Data Augmentation for Image Quality Assessment. In

Chapter 5 we present a work on classical Image Quality Assessment. In this

method, we address the problem of lack of data in IQA with a generative ad-

versarial data augmentation approach. In particular, we train an Auxiliary-

Classifier GAN (AC-GAN) to generate new samples with a specific distortion

type and value. We demonstrate the effectiveness of our data augmentation

reaching results comparable with the state-of-the-art.

Language-based Image Quality Assessment. In Chapter 6 we present

a Full-Reference Image Quality Assessment approach based on image cap-

tioning. To the best of our knowledge, this is the first method that combines

IQA and image captioning. Our system generates a caption for both ref-

erence images and distorted images and then compares the two captions

with standard captioning metrics. We demonstrate that the metric score is

highly correlated with the quality score of the distorted image. Our frame-

work outperforms standard approaches and avoids training on IQA datasets

(that usually leads to overfitting).

Language-based Blind Image Quality Evaluation. In Chapter 7 we
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extended our previous work on Full-Reference IQA based on Image Cap-

tioning to the No-Reference scenario. Since in No-Reference IQA only the

distorted image is available, we train a GAN to enhance the distorted im-

age and use the enhanced version as reference and thus transforming the

No-Reference problem into a Full-Reference one.

Scene Text Image and Language Transformer for Cross-Modal Re-

trieval. Since most of the cross-modal retrieval approaches work only on

well-aligned image-text datasets, we investigate the use of image-text cross-

modal retrieval systems in real scenarios where there is an abstract and

symbolic alignment between image and text pairs. In Chapter 8 we present

STILT, a transformer-based architecture that exploits scene-text in images

to learn better image-text representations for the cross-modal retrieval task.

We demonstrate the effectiveness of our approach multiple datasets.



Chapter 2

Visual Question Answering for

Cultural Heritage

In this chapter we propose a new method for Visual Question

Answering in the Cultural Heritage domain. This approach com-

bines the capabilities of Visual Question Answering models to an-

swer visual questions and the capabilities of Question Answering

models to answer contextual questions. This approach addresses

the limitation of standard VQA approaches that are not capable

to answer contextual questions and therefore not really usable in

real scenarios. 1

2.1 Introduction

Museum visits have adapted throughout the years to exploit technological

advances. Nowadays cultural heritage heavily relies on some form of multi-

media content to deliver information to the user in ways that limit cognitive

burden and engage the visitor as much as possible. This is especially true

for young visitors, where gamification techniques have often proven effec-

tive [7, 46]. Technology can help bridge the gap between user interests and

the message the museum wants to convey.

1The work described in this chapter has been published as ”Visual Question Answering

for Cultural Heritage” in IOP Conference Series: Materials Science and Engineering 2020.

Vol 949

17
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Videos, 3D reconstructions and augmented realities, among others, have

become an integral part of the visit, which has now shifted its focus not

solely on artworks but also on how they are organized and presented. To

offer a richer experience, smart audio guides have also been developed, grad-

ually replacing information sheets or offering some sort of augmented visit

relying on sensors available on personal smartphones. Despite the increasing

diffusion of devices to help guide the visitor, the most effective way to convey

most information still remains a human guide with whom the visitor may

interact to ask for clarifications or deeper discussions on topics of interest.

In fact, the user requires a natural way to interact with whoever is providing

the information, be it an actual museum guide or a piece of software.

At the same time, the diffusion of personal assistants on smartphones is

aiding an increasing number of people with everyday tasks. These assistants,

though, still offer little or no help in the area of cultural heritage. This is

due to the need to process complex pieces of structured information, which

are often transversal to several domains.

Machine Learning is starting to reach out to the complexity of these

tasks. In particular, the emerging topic of Visual Question Answering is

able to engage a user by answering questions about visual media [3, 40].

VQA algorithms merge the capabilities of Computer Vision to understand

image content and those of Natural Language Processing to reason about

questions and provide relevant answers. VQA builds upon the Question

Answering literature, where questions are answered related to text instead

of visual content. Interest in VQA has grown quickly, but it has still not

been applied to cultural heritage since the knowledge required to answer the

variety of questions a user might ask about artworks is not contained within

the opera itself. A full understanding requires external knowledge usually

obtainable only from experts (e.g. museum guides) or information sheets.

This knowledge can be processed separately since it is often available in a

textual form, whether it is provided directly from the museum or retrieved

from online resources. Therefore, to be able to address the dual nature of

the task, i.e. answering both visual and contextual questions, VQA and QA

must be combined.

In this work, we make a first step towards the development of a Visual

Question Answering model for cultural heritage by combining the capabili-

ties of a VQA model and a QA model. Our first contribution is to introduce

a module that accurately discriminates between visual and contextual ques-
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tions. Our second contribution is to design a model made of two branches

able to answer both kinds of questions. Our experiments demonstrate the

effectiveness of our technique for question classification and the performance

of our general question-answering model. To evaluate our model, we anno-

tated a subset of ArtPedia [118] with visual and contextual question-answer

pairs.

In Sec. 2.2 we describe our approach to integrating Visual and Contextual

Question Answering and Contextual for the cultural heritage domain, and

in Sec. 2.3 we report on a number of experiments we performed to quantify

the performance of our approach. We conclude in Sec. 2.4 with a discussion

of our contribution.

2.2 Method

In this section, we describe our approach to open-ended visual question an-

swering. We first show the general model that characterizes our technique

then we describe the sub-modules.

2.2.1 Visual Question Answering with visual and con-

textual questions

The main idea of this work is to classify the type (visual or contextual) of the

input question so that the question can be answered by the most suitable sub-

model. We rely on a question classifier to understand if the question concerns

exclusively visual traits of an image or if an external source of information

is needed to provide a correct answer. The question is then fed to a VQA

or a QA model, depending on the output of the classifier. In both cases, the

question must be analyzed and understood, yet the usage for two separate

architectures is driven by the need to process different additional sources of

information. If the question is visual, then the answer is generated from the

image, whereas if the question is contextual then the answer is generated

using external textual descriptions.

The overall pipeline (see Fig. 2.1) used by our approach to answer a

question is the following:

1. Question Classification. The question is given as input to the ques-

tion classifier module that determines if the question is contextual or

visual.
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Question 
Classifier

Visual Question 
Answering Model

Question Answering 
Model

Who is the author
of this painting?

QUESTION

TEXTUAL DESCRIPTION
Bathers at Asnieres is an oil-on-
canvas painting by the French 

artist Georges Pierre Seurat, the 
first of his two masterpieces on 

the monumental scale...
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n
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xt

u
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Figure 2.1: Model overview. A question classifier categorizes the question

as visual or contextual. The correspondent module is used to answer the

question relying either on the image or external descriptions.

2. [Visual] Question Answering. Depending on the predicted question

type, the corresponding module is activated to generate the answer.

(a) f the question is contextual, it is given as input to a Question

Answering module that also exploits useful external information

to answer the question. This system produces an output answer

only based on this external information.

(b) If the question is visual, the question and the image are given

as input to a Visual Question Answering module. This system

produces an output answer based on the content of the image.

2.2.2 Question Classifier Module

The question classifier module consists of a Bert [27] module for text classi-

fication. BERT makes use of a Transformer [128], an attention mechanism

that learns contextual relations between words (or sub-words) in a text. The

Transformer is trained in a bidirectional way in order to have a deeper knowl-

edge of language context and flow. This language model is extremely versa-

tile since it can be used for different tasks like text classification, next word in

sentence prediction, question answering and entity recognition. This model
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is turned into a question classification architecture by adding a classification

layer on top of the Transformer output. The input question is represented

as the sum of three different embeddings: the token embeddings, the seg-

mentation embeddings and the position embeddings. Moreover, two special

tokens are added at the start and in the end of the question.

2.2.3 Contextual Question Answering Module

The Model used for the Question Answering task is another Bert module that

focuses on this task. In this case the module takes as input both a question

and a textual description. Since this system uses the textual information to

answer the question, the text must contain relevant information to generate

an appropriate answer.

2.2.4 Visual Question Answering Module

The architecture of the Visual Question Answering module is similar to the

one used by Anderson et al. [2] in their Bottom-up Top-Down approach.

Here the salient regions of the image are extracted by a Faster R-CNN [100]

pre-trained on the Visual Genome dataset [60]. The words of the question are

represented with a Glove embedding [91] and then the question is encoded

by a Gated Recurrent Unit (GRU) to condense each question into a fixed

size descriptor. An attention mechanism between the encoded question and

the salient image regions is developed to weigh the candidate regions that

are useful to answer the question. Then the weighted region representations

and the question representation are projected into a common space and are

joined with an element-wise product. Finally the joint representation passes

two fully connected layers and a softmax activation that produces the output

answer.

2.3 Experimental Results

In this section we describe experiments conducted to evaluate the perfor-

mance of our approach. We first introduce the datasets used for training

and testing our network, then we describe the protocols adopted for the

experiments and the obtained results.
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VQA MODELQA MODELQUESTION CLASSIFIER

How many clocks are there in the figure?
Two

What is the color of the sand?
Brown

Are we at the beach?
Yes

What is there in the background on the left?
Surfboard

Who is the author of this painting?
george william joy

When was this painting depicted?
1895

What did Joy do while working on this painting?
borrowed bus from a company

Who mainly used this form of transport? 
middle classes

Who is the author of this painting?
Contextual

What is there in the background?
Visual

When was this painting depicted?
Contextual

Where is the painting now?
Visual

How many people are there in the image?
Visual

When was this painting depicted?
Contextual

What is she wearing on her head?
Contextual

Who is protrayed in this painting?
Contextual

What is hanging on the wall?
Visual

Figure 2.2: Sample outputs of the three components of our architecture.

Correct answers are shown in black, wrong answers in red.

2.3.1 Datasets

For our experiments we used the standard VQA v2 [3] dataset, OK-VQA [81]

and Artpedia [118], a dataset containing images of famous paintings.

VQA v2 This dataset contains 443,757 training questions/answers referred

to 82,783 training images. The number of test examples is about the same

of the training examples, instead the validation examples are about the half.

Each image has more questions referred to it and these are of multiple types

like relation between objects, activity recognition, counting, object detection

and so on. Each question is answered by ten annotators and the given

answers compose the ground truth. VQA v2 is currently the most used

benchmark for Visual Question Answering tasks.

OK-VQA OK-VQA is a subset of the VQA v2 dataset and it contains

14,055 open-ended questions where each of these has five ground truth an-

swers. In particular OK-VQA contains all the questions of VQA v2 that

cannot be answered with processing only the corresponding image but re-

quire external knowledge. We use OK-VQA jointly with the original VQA

dataset to obtain sets of questions related to the image (visual questions) or

to external knowledge (contextual questions).
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Artpedia The Artpedia dataset contains a collection of 2,930 paintings,

each associated to a variable number of textual descriptions collected from

WikiPedia. Each sentence is labelled either as a visual sentence or as a

contextual sentence, if it does not describe the visual content of the artwork.

Contextual sentences can describe the historical context of the artwork, its

author, the artistic influence or the place where the painting is exhibited.

The dataset contains a total of 28,212 sentences, 9,173 labelled as visual

sentences and the remaining 19,039 as contextual sentences. This is not a

Visual Question Answering dataset, so we manually annotated a subset of

images with both visual and contextual question-answer pairs, based on the

available images and descriptions.

2.3.2 Experimental Protocols

Our model is composed by three sub-modules: the question classifier that

classifies if a question requires visual or contextual information, the question

answering module which answers to contextual questions and the visual ques-

tion answering module which answers to visual questions. The three modules

generate different outputs and we evaluate each one of them independently.

The Visual Question Answering module answers with short sentences of at

most three words chosen from the set of answers. For this reason, as common

practice in the VQA literature, we can consider the problem as a classifica-

tion task and estimate the accuracy to asses its performance:

Accuracy =
Nc
Na

(2.1)

where Nc is the number of correct answers and Na the number of total

answers. The same metric can be used for the question classifier module,

since it solves a binary classification task.

The question answering model instead, since it can potentially rely on

structured and more complex information from the meta-data, is able to

answer to questions with more words, articulating short sentences. For this

reason we evaluate its performance not only with Accuracy but also with

F1-measure, a metric that takes into account the global correctness of the

answer:

F1 = 2× Precision×Recall

Precision+Recall
(2.2)

where Precision is defined as the number of correct words divided by the
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OK-VQA/VQA v2 Artpedia

Question Classifier 0.868 0.938

Table 2.1: Question classifier: accuracy of our question classifier on ques-

tions from both the OK-VQA and VQA v2 datasets and from Artpedia.

QA model VQA model

Contextual Visual Accuracy F1-score

✓ ✗ 0.684 0.832

✗ ✓ 0.176 0.150

✓ ✓ 0.504 0.417

Contextual Visual Accuracy

✓ ✗ 0.000

✗ ✓ 0.524

✓ ✓ 0.251

Table 2.2: Results of the two answering models on contextual questions,

visual questions and both visual and contextual questions from Artpedia.

Note that the VQA model does not have access to the external information

required to answer the contextual questions, making it unable to answer

correctly. See Sec. 2.3.3 for analysis of the performance of our full model on

combined Visual/Contextual Question Answering

length of the answer and Recall as the number of correct words divided by

the length of the ground truth.

2.3.3 Experimental results

In order to evaluate the performance of our model we make different experi-

ments. We measure the performance of the model analyzing each component

independently.

Question Classifier

We train the question classifier module with questions of both the OK-VQA

and VQA v2 datasets. We take from VQA v2 a number of visual ques-

tions equal to the number of questions that require external knowledge from

OK-VQA. The obtained dataset is then split into train and test sets. The

question classifier is supposed to understand from the structure of the ques-

tion whether the answer concerns the visual content or not. This is a generic

classifier, agnostic from the domain of the task. In fact, VQA v2 and OK-

VQA contain generic images, while we are interested in applications in the

cultural heritage domain. We demonstrate the effectiveness of our approach
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and its ability to transfer to the cultural heritage domain by evaluating it

both on the VQA/OK-VQA dataset and on a new dataset comprised of a

subset of Artpedia [118]. Since this dataset does not contain questions but

only images and descriptions, we took 30 images from this dataset and anno-

tated them with a variable number of both visual and contextual questions

(from 3 to 5 for both categories). The accuracy of our question classifier

module is shown in Tab. 2.1. We can observe that it is able to predict the

type of the question correctly in most cases.

Contextual Question Answering

We test our question answering module on the subset of Artpedia containing

30 images that we annotated. In particular, we test the accuracy of our

module in three different experiments: test on contextual questions, test on

visual questions and test with both visual and contextual questions. Note

that the outputs of the visual and contextual modules are different, since

VQA is treated as a classification problem, while for QA From the results

shown in Tab. 2.2 we can deduce that our question answering module works

very well with contextual questions and obtains worse results with visual

questions. This can be justified from the fact that visual questions refer to

visible details of paintings that cannot be described in visual sentences of

ArtPedia.

Visual Question Answering

Similarly to the tests conducted for the question answering module, we eval-

uate the visual question answering module on both visual and contextual

questions. In Tab.2.2 results of our visual question answering model are

shown. We can observe that conversely from the question answering module

this model performs well on visual questions and is not able to answer cor-

rectly to contextual questions. This is motivated by the fact that contextual

questions require external knowledge (e.g. author, year) that a purely visual

question answering engine does not have access to.

Full pipeline

Finally, we combine the capabilities of all the modules together and we test

on both visual and contextual questions, obtaining an accuracy of 0.570.
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The full pipeline, thanks to the question classifier, is able to correctly dis-

tinguish between visual and contextual questions. The visual question an-

swering module and the question answering module receive as input almost

all questions that they are able to answer (contextual question for the ques-

tion answering module and visual questions for visual question answering

module). For this reason the complete model exceeds the performances of

both single answering modules. Fig. 2.2 shows some qualitative result of the

three components of the pipeline. The components correctly handle most of

the questions but some common failure cases can be observed. For instance

the Question Answering model might add details to the answer that are not

present in the ground truth and the Visual Question Answering model might

confuse some elements of the painting with similar objects.

2.4 Conclusions

In this first work we presented an approach for Visual Question Answering in

the Cultural Heritage domain. We have addressed two important issues: the

need to process both image and contextual knowledge contained and the lack

of data availability. The model we presented combines the capabilities of a

VQA and a QA model, relying on a question classifier to predict whether it

refers to visual or contextual content. To assess the effectiveness of our model

we annotated a subset of the ArtPedia dataset with visual and contextual

question-answer pairs. Referring to this annotation process, in Appendix A

we describe the a data collection and annotation system for Visual Question

Answering.



Chapter 3

Is GPT-3 all you need for

Visual Question Answering in

Cultural Heritage?

In this chapter we propose a method for Visual Question An-

swering that enables generation at runtime of a description sheet

that can be used for answering both visual and contextual ques-

tions about the artwork, completely avoiding the image annota-

tion process. For this purpose, we investigate on the use of GPT-

3 for generating descriptions of artworks and analyze the quality

of generated descriptions through captioning metrics. Finally,

we evaluate the performance for Visual Question Answering and

captioning tasks. 1

3.1 Introduction

In Chapter 2, we observed that in the Cultural Heritage domain most ques-

tions posed by users concern contextual information rather than what is

actually depicted in a painting. And the proposed solution is an evolution of

VQA known as Contextual Question Answering (CQA). The contextual in-

formation is derived from textual meta-data, which is fed to the model along

1The work described in this chapter has been published at the European Conference

on Computer Vision (ECCV) Workshop on VISion and Art (VISArt).

27
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with the question and the image. In this way, the VQA/CQA model has to

learn to attend either relevant parts of an image or relevant sections of the

text to provide an adequate answer. The need of a textual data nonetheless

opens a new issue, namely where to obtain such description. Information

sheets for artworks may already be available to museum curators yet ex-

tending this kind of application to new data becomes time-consuming and

requires a domain expert.

In this work we explore the usage of a generative natural language pro-

cessing model to automatically create contextual information to be fed to

a CQA model. In fact, recently, generative text models have been finding

large diffusion with groundbreaking results. Among these we find GPT-3,

a generative model trained on a massive corpus of textual data regarding

several domains, including art [14]. GPT-3 is capable of generating a de-

scription starting from a textual query and it has been demonstrated that

the model includes knowledge of the entities described in the training data,

for example paintings and artworks. We therefore investigate the possibili-

ties and the limitations of GPT-3 in applications for cultural heritage, with

a specific focus on question answering. In particular, we explore the quality

of the textual description of artworks that the model is able to generate and

we evaluate their applicability for visual and contextual question answering.

The main contributions of our work are the following:

• We propose an automatic approach to generate textual information

sheets of artworks exploiting GPT-3. We find that the model has ex-

cellent knowledge of art concepts and event details of specific paintings.

• We propose a method to answer both visual and contextual questions

which is artwork agnostic, i.e. it does not require any additional data

or training to be adapted to a new set of images.

• We explore the applicability of GPT-3 in cultural heritage applications.

To the best of our knowledge we are the first to apply GPT-3 to the

art domain.

3.2 GPT-3

To provide to the reader a better understanding of our work, here we present

a brief background context about GPT-3, the third version of Generative

Pre-Trained Transformer [14]. This is an autoregressive language model
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with 175 billion parameters that can be used for different tasks without any

finetuning, achieving strong performances.

The architecture of the GPT-3 Transfomer model is made of 96 attention

layers. While language models like BERT [27] use the Encoder to generate

embeddings from the raw text which can be used in other machine learning

applications, GPT-3 use the Decoder half, so it takes embeddings as inputs

and produces text. In particular the GPT-3 language model has the ability to

generate natural language text that can be hard to distinguish from human-

written text, to the point that research has been carried out to asses whether

GPT-3 could pass a written Turing test [31].

Concretely, during inference, the target of the new task y is directly

predicted conditioned on the given context C and the new task’s input x, as

a text sequence generation task. Note that all C, x and y are text sequences.

For example, y = (y1, ..., yT ). Therefore, at each decoding step t we have

yt = argmax
yt

pW (yt|C, x, y < t) (3.1)

where W are the weights of the pretrained language model, which are frozen

for all new tasks. The context C = h, x1, y1, ..., xn, yn consists of an optional

prompt head h and n in-context examples ({xi, yi}ni=1) from the new task.

3.3 Method

In a Cultural Heritage context, the information useful to answer questions

about a specific artwork is contained in the artwork image and in its con-

textual description. Finding such a description might not be trivial, since it

might require a domain expert to write it down. At the same time, it is quite

costly to train a Visual Question Answering model that takes as input both

the image and the description. This is also not straightforward, since the

two modalities need to be blended and matched together. Consequently, the

main idea of this work is to generate new descriptions for artworks based on

a specific prompt or a specific question and directly use these descriptions to

answer visual and contextual questions. The overall pipeline of our proposed

work is as follows:

1. GPT-3 caption generation. We use GPT-3 to generate descriptions

of artworks, leveraging its memorization capabilities that allowed the

model retain relevant information about training instances. An im-

portant aspect in this phase in to feed the correct prompt as input to
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GPT-3 in order to obtain realistic and correct descriptions. We con-

sider two different types of input prompt:

• General - A general prompt where the expected output is a gen-

eral description of the artwork. The input text follows the struc-

ture:

"Describe and Contextualize the painting < painting name

>"

• Question-based - A specific question based prompt. The input

text follows the structure:

"Painting < painting name > < question >".

The expected generated text by GPT-3 is a small text snippet

that consists in a couple of sentences, focused on the topic of the

question.

2. Question answering. Once the description has been generated in the

previous step, we can exploit it to answer both visual and contextual

questions through a Question Answering language model. For this

purpose we use a pretrained version of DistilBert [108] fine-tuned on

the SQUAD [97] dataset. We feed as input to the DistilBert model the

generated text from the previous step together with the question. The

answer given as output will be the final answer of our method.

Fig. 3.1 and Fig. 3.2 show a scheme of the two variants of our method. More

precisely, in Fig. 3.1 the general input prompt for GPT-3 yields the genera-

tion of a long description of the artwork (similar to a museum information

sheet). On the other hand, the question-based prompt in Fig. 3.2 yields

only the generation of a brief output text, which we find suitable for answer-

ing the question. In conclusion, these two schemes follow roughly the same

structure. The difference is in the input prompt that in the case of Fig. 3.1

is more general and in Fig. 3.2 is more task oriented.
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GPT-3
Describe and 
contextualize the 
painting “Olympia”

PROMPT Olympia is a painting by 
french artist Èdouard 
Manet, first exhibited at the 
1865 Paris  Salon. It 
depicts a nude woman 
reclining on a bed with 
black cat on her feet…   

QA MODEL

Who is the author 
of the painting ?

QUESTION

Èdouard 
Manet

General description generation for question answering

Figure 3.1: Scheme of our method for answering questions using a general

generated description. A prompt with a specific structure is given as input

to GPT-3. Subsequently the generated text is fed together with the question

to a Question Answering model that outputs the answer.

3.4 Experiments

In this section we first outline the experimental setting for the experiments

carried out in this work, presenting dataset and experimental protocol and

we then move on to a discussion of the results.

3.4.1 Dataset

For our experiments, we use the Artpedia dataset [118]. Artpedia contains

a collection of 2,930 artworks, associated to a variable number of textual

descriptions gathered from WikiPedia. Sentences are labelled as a visual

descriptions or as a contextual descriptions. Contextual descriptions regard

information about the artwork that does not directly describe its visual con-

tent. For instance, contextual descriptions can describe the historical con-

text of the artwork, its author, the artistic influence or the museum where

a painting is exhibited. The dataset contains 28,212 descriptions, 9,173 of

which are labelled as visual and the remaining 19,039 as contextual. The

Artpedia dataset has been extended with Question-Answer annotations as

in Sec. 2. In fact, a subset of the images have been associated with visual

and contextual questions, derived from the corresponding captions. In this

work we follow the dataset split used in Sec. 2.
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GPT-3
painting “Olympia”, 
when the painting 
was depicted? 

PROMPT
The painting “Olympia” 
was created french artist 
Édouard Manet in 1863 

QA MODEL

when the painting 
was depicted? 

QUESTION

Èdouard 
Manet

Question-based description generation for question answering

Figure 3.2: Scheme of our method for answering questions using a question-

based generated description. A prompt containing the name of the painting

and the question is given as input to GPT-3. Subsequently the generated

text is fed together with the question to a Question Answering model that

outputs the answer.

3.4.2 Experimental Protocol

Following prior work described in Sec. 2, we evaluate visual questions and

contextual questions with different metrics. In fact, visual question answer-

ing and traditional text-based question answering are often treated in two

different ways. Visual Question Answering is considered as a classification

problem, meaning that a model has to pick an answer from a predefined

dictionary of possible candidates containing a few words each. This stems

from the fact that questions in most datasets are a way of guiding attention

towards specific objects or attributes in the image, without requiring any

complex form of language reasoning. Question Answering on the other hand

is based on a set of sentences, which may contain rare or out-of-dictionary

words. The task is in fact defined as identifying a subset of the textual

description that contains the answer.

In light of this, to evaluate visual questions we rely on accuracy:

Accuracy =
Nc
Na

, (3.2)

where Nc is the number of correct answers and Na the number of total

answers.

For text-based question answering, instead, we use both accuracy and

F1-measure, a metric that takes into account the global correctness of the
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answer:

F1 = 2× Precision×Recall

Precision+Recall
, (3.3)

where Precision is defined as:

Precision =
NCw
|ans|

, (3.4)

and NCw is the number of common words between the output answer and

the ground truth answer and ans the number of words in the generated

answer.

Recall is instead defined as:

Recall =
NCw
|gt|

, (3.5)

where |gt| is the number of words in the ground truth.

We also evaluate the quality of the descriptions generated by GPT-3,

considering it as a standalone image captioning model. We use the following

standard metrics for captioning:

• BLEU1 [89]: BiLingual Evaluation Understudy (BLEU) is the most

commonly used metric for machine translation and image captioning.

BLEU scores are based on how similar a generated caption is to a

reference caption, computing the precision of the generated words. The

downside of BLEU is that it is very sensitive to small changes, such as

synonyms or different word order.

• ROUGE [70]: differently from BLEU, which measures the precision of

the caption, Recall Oriented Understudy of Gisting Evaluation (ROUGE)

focuses on quantifying the amount of correct words with respect to the

reference. Thus, this metric is recall-based and tends to reward long

sentences.

• CIDEr [129]: Consensus-based Image Description Evaluation (CIDEr)

is an automatic consensus metric that measures the similarity of cap-

tions against a set of ground truth sentences written by humans. This

metric has been shown to yield a higher agreement with humans gen-

erated text since it captures notions of grammar, importance and pre-

cision and recall.

• Cosine Similarity : we compute the cosine similarity between feature

vectors for the generated caption and the reference caption. Features

are extracted with the algorithm TF-IDF [107].
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Table 3.1: Image captioning results. We compare our method which gen-

erates captions with GPT-3 with the General and the Question-based ap-

proaches. In the Question-based approach we concatenate all the outputs

of GPT-3 after conditioning it with different questions related to the image.

We compare the results against visual captions, contextual captions or both.

Description type Metric OFA [132] Ours General Ours Question-based

Visual

BLEU1 0.048 0.181 0.137

ROUGE 0.138 0.188 0.16

CIDEr 0.091 0.079 0.172

COSINE 0.113 0.157 0.110

Contextual

BLEU1 0.002 0.168 0.160

ROUGE 0.062 0.178 0.179

CIDEr 0.000 0.248 0.129

COSINE 0.082 0.218 0.324

All

BLEU1 0.000 0.113 0.185

ROUGE 0.053 0.158 0.184

CIDEr 0.000 0.016 0.098

COSINE 0.122 0.253 0.341

3.4.3 Experimental Results

Captioning Results

We start by assessing the quality of the captions generated by GPT-3. First

of all, we ask GPT-3 to generate captions with ourGeneral approach. In Tab.

3.1 we compare the captions using as reference visual captions, contextual

captions and both. All reference captions are ground truth captions taken

from the Artpedia dataset [118].

Interestingly, the model appears to better results for visual captions us-

ing BLEU1 and ROUGE metrics, while using CIDEr and cosine similarity,

the model obtaines higher results for contextual captions. This may seem

counter-intuitive but can be explained looking at the nature of the metrics.

BLEU1 and ROUGE in fact respectively check for word-wise precision and

recall, while CIDEr and cosine distance perform a sentence level scoring,

which is closer to human consensus. We observe that the model is able to

obtain good results, especially with the cosine metric, even when using all

the captions as reference.

We then evaluate the method by taking a concatenation of the outputs

generated by GPT-3 after being conditioned by different questions related to

the image. This obviously introduces a strong bias, given also the fact that
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Table 3.2: Experimental results for Visual Question Answering. We compare

our approach against VQA-CH [11] described in Chapter 2 to understand

whether GPT-3 can replace information sheets for artworks either for visual

or contextual questions. We compare two versions of our model, the General

version, which produces generic descriptions of artworks and the Question-

based version, where prompts are conditioned with the input question to

generate more specific descriptions.

Visual Contextual Accuracy F1 score

VQA-CH [11] ✗ ✓ 0.684 0.832

VQA-CH [11] ✓ ✗ 0.176 0.150

VQA-CH [11] ✓ ✓ 0.504 0.417

Ours - General ✗ ✓ 0.557 0.719

Ours - General ✓ ✗ 0.070 0.055

Ours - General ✓ ✓ 0.239 0.360

Ours - Question-based ✗ ✓ 0.473 0.602

Ours - Question-based ✓ ✗ 0.134 0.202

Ours - Question-based ✓ ✓ 0.256 0.330

questions have been generated from information contained in the captions,

but at the same time proves the usefulness of such captions for more advanced

applications such as visual question answering. As can be seen in Tab. 3.1,

conditioning GPT-3 with the captions leads to better captions according to

most metrics.

In Tab. 3.1 we also provide a baseline as reference, i.e. the output of

the state of the art OFA captioning model [132]. We observe that captions

generated by OFA do not align well with the ground truth sentences. We

attribute this to a domain shift between the datasets commonly used to

train captioning models and descriptions of artworks. In fact, the former are

sentences written by non-experts while for applications in cultural heritage

a domain knowledge is required. This further motivates the usage of GPT-3,

which seems to have integrated sufficient knowledge to articulate complex

sentences with a domain specific jargon.

VQA Results

To evaluate the Visual Question Answering capabilities of our proposed

method, we follow the setting used in Chapter 2. However, we do not rely
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on any vision-based model but rather on a fully textual question answering

model based on DistilBert [108], as explained in Sec. 3.3. In Tab. 3.2, we

compare our approach to the one of VQA-CH described in Chapter 2. It

has to be noted that, contrary to the work in Chapter 2, we do not rely

on real textual descriptions, which are known to contain the answer, but

we only extract information from GPT-3. This is a strong disadvantage

for our method. However, we are not interested in obtaining better results

than VQA-CH, but rather our goal is to demonstrate if GPT-3 can act as a

substitute of textual descriptions handcrafted by domain experts.

We test our method evaluating the accuracy for visual questions, contex-

tual questions and both together. Quantitative results indicate that captions

generated by GPT-3 can yield to high results for contextual questions, yet

very low accuracy for visual questions. As for the captioning setting, we

impute this behavior to the fact that GPT-3 generates generic descriptions,

without including a fine-grained description of the visual content. Thus, on

the one hand the question answering model is capable of extracting mean-

ingful information from the generated captions. This means that GPT-3 is

indeed capable of integrating domain knowledge during training and is capa-

ble of generating a complete information sheet of the artwork. On the other

hand, captions appear to be too generic to obtain information about specific

details in the image.

To overcome this limitation, we test the model using captions generated

with out Question-based approach. By feeding the answer to GPT-3 along

with the title of the artwork, the model is able to generate more specific

captions. Such captions, as explained in Sec. 3.5 are usually shorter but are

focused on the prompt. This is particularly interesting since it means that a

purely text-based model is capable of addressing a vision-based task. In Tab.

3.2 it can be seen that for visual questions alone, our method with question-

based captions performs on par or better than the vision-based VQA-CH

model.

3.5 Qualitative Analysis

In this section we provide a qualitative analysis of the captions generated by

GPT-3 in order to characterize which kind of information they contain in

both the General and Question-based formulation.

Since the prompts that we feed to GPT-3 are different, with one being
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ARTEPEDIA DESCRIPTION QUESTION GENERAL GENERATED DESCRIPTION GENERAL ANSWER QUESTION-BASED GENERATED 
DESCRIPTION

QUESTION-BASED 
ANSWER

'Bathers at Asnières (French: Une 
Baignade, Asnières) is an 

oil-on-canvas painting by the French 
artist Georges Pierre Seurat, the 

first of his two masterpieces on the 
monumental scale.', 'The canvas is 

of a suburban, placid Parisian 
riverside scene.', 'A combination of 
complex brushstroke techniques, 
and a meticulous application of 

contemporary colour theory bring to 
the composition a sense of gentle...

Who is the author of this 
painting?

Bathers at Asnières is a painting by French artist 
Georges Seurat. The painting depicts a group of men 

relaxing by the river Seine on a sunny day. The 
background includes industrial buildings and 

smokestacks, which contrast with the leisurely scene in 
the foreground. Seurat used small dots of color to 

create a sense of light and movement in the painting, 
which has been called an early example of Pointillism. 

The painting was completed in 1884, just before 
Seurat's death at the age of 31. It was exhibited 

posthumously at the Salon des Indépendants in 1886, 
where it received mixed reviews from critics. Some 

praised its technical mastery, while others found it cold 

Georges Seurat ✅
The painting Bathers at Asnìeres was 

created by french artist George Seurat in 
1884

Georges Seurat ✅

When was the painting 
depicted? 1884 ✅ Bathers at Asnìeres was painted by George 

Seurat in 1884 1884 ✅

What is the animal in the 
ground? ❌ The animal on the ground is a dog dog ✅

Is there a man lying 
down? ❌

There is a man lying down in the painting 
Bathers at Asnières, but it is difficult to see. 

He is on the left side of the painting, near the 
bottom.

There is a man lying down 
✅

Dogs Playing Poker, by Cassius 
Marcellus Coolidge, refers 

collectively to an 1894 painting, a 
1903 series of sixteen oil paintings 
commissioned by Brown & Bigelow 

to advertise cigars, and a 1910 
painting., 'Critic Annette Ferrara has  

described Dogs Playing Poker as 
"indelibly burned into ..

All eighteen paintings in the overall 
series feature anthropomorphized 
dogs, but the eleven in which dogs 

are… 

Who is the author of this 
painting? Dogs Playing Poker is a painting by American artist 

Cassius Marcellus Coolidge.The painting depicts a 
group of dogs sitting around a table playing poker. The 
dogs are all wearing human clothes and have cigars in 
their mouths. The painting is set in a dimly lit room, with 

a fireplace in the background.
The painting is often seen as an example of kitsch art, 
due to its subject matter and style. It is also seen as a 
classic example of Americana, due to its depiction of a 
group of dogs engaged in a typically American activity.

Cassius Marcellus 
Coolidge ✅ The painting is anonymous. ❌

Who is sitting on the 
chair? dogs ✅ The artist who painted Dogs Playing Poker is 

named C. M. Coolidge. ❌

What are the dogs doing? playing poker ✅ The dogs in the painting are playing poker. dog ✅

What is the color of the 
table? ❌ table in Dogs Playing Poker is green green ✅

The Singing Butler is an 
oil-on-canvas painting made by 
Scottish artist Jack Vettriano in 

1992.'As a contemporary cultural 
icon, The Singing Butler has been 

compared to Grant Wood's 
American Gothic." It depicts a 

couple dancing on the damp sand of 
a beach on the coast of Fife, with 
grey skies above a low horizon.To 

the left and right, a maid and a man 
hold up umbrellas against the 

weather…

When was the painting 
depicted?

The painting "The Singing Butler" was painted by 
Scottish artist Jack Vettriano in 1992. The painting 

depicts two people, a man and a woman, standing on a 
beach with a Butler who is singing and playing the 

guitar. The background of the painting is a blue sky with 
white clouds. The painting is set in the early 20th 

century..

1992  ✅ This painting was depicted in 1992. 1992 ✅

What are the two people 
in the middle doing? dancing ✅ The two people in the middle are dancing dancing ✅

How many umbrellas are 
there? ❌ There are two umbrellas in the painting. two ✅

Figure 3.3: Qualitative results of our method. Green: ground truth descrip-

tion from the Artpedia dataset [118] and input question. Yellow : general

descriptions provided by GPT-3 and answer obtained based on such text.

Blue: Question-based description and correspondent answer. General de-

scriptions are longer and more detailed than question-based generated de-

scriptions. However, question-based generated descriptions are customized

for the specific question.

more general and the other being question-based, we expect that the cor-

responding generated text by GPT-3 will be different. In Fig. 3.3 we can

observe these differences. Generated general descriptions are very long and

have the aspect of artwork information sheets in which we can find some vi-

sual and contextual information. Question-based generated descriptions are

instead shorter and contain the knowledge needed to answer to the specific

questions. From Fig 3.3 we can observe that the general description is very

useful to answer to contextual questions but fails on some visual questions.

This is likely due to different reasons:

• The generated text does not take into account any specific question

and this can lead to the generation of a description without specific

information useful to answer to the question.

• Visual questions are very specific since they refer to object relation-

ships, colors, counting, etc. and the GPT-3 model tends to be more
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shallow in generating its descriptions.

On the other hand, question-based generated descriptions are helpful to

answer visual questions but the small generated description useful to answer

those specific questions could contain incorrect information leading to wrong

answer predictions. In conclusion these two ways of generating text to answer

visual and contextual questions have some pros and cons:

• General descriptions are longer and contain several pieces of informa-

tion about the artwork. However this is fixed and could not contain

the information needed to answer some questions.

• Question-based descriptions are generated for specific questions and

contain only the information needed to answer the question on which

GPT-3 has been conditioned. If the model has not memorized any

specific information regarding such questions it may contain mistakes

and descriptions will have to be re-computed for each question.

3.6 Considerations on complexity and acces-

sibility of GPT-3

In the previous sections we have demonstrated that GPT-3 could indeed re-

place the usage of an information sheet handcrafted by a domain expert.

However, we need to understand the actual applicability of GPT-3 in a

real case application. GPT-3 has 175B parameters, which approximately

amounts to 700GB. This means that inference on a single GPU is unfeasible

due to current technological limits. The model however has been made avail-

able from OpenAI and is accessible through API that have a pricing fee per

generated token. These considerations somewhat limit a large-scale usage of

the model, especially if a description has to be generated for each question

to be answered. On the other hand, generating fixed descriptions offline, one

for each artwork, appears a viable solution at least for addressing contextual

questions.

3.7 Conclusions

In this work we presented a method for Visual Question Answering in the

Cultural Heritage domain. In particular we have addressed the problem of
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data annotation for artworks, generating descriptions with GPT-3. The per-

formances for the VQA task show that the generated descriptions are useful

to answer the questions correctly. This technique allows to answer visual

and contextual questions focusing only on the generated description and can

be used for any artwork. In fact, there is no need to retrain the model to

incorporate new knowledge. This is possibile thanks to the memorization ca-

pabilities of GPT-3, which at training time has observed millions of tokens

regarding domain-specific knowledge. Finally the generated description can

be integrated as textual input (textual description) in a more complex archi-

tecture as the one described in Chapter 2 in order to address tasks like Visual

Question Answering. This is of particular interest for Cultural Heritage due

to the domain shift between common VQA and captioning datasets com-

pared to the technical jargon that is needed to properly address questions

about art.
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Chapter 4

VISCOUNTH: A Large-Scale

Visual and Contextual Question

Answering Dataset for Cultural

Heritage

In this work we present a large-scale heterogeneous and multi-

language dataset for cultural heritage that comprises approxi-

mately 500K cultural assets and 6.5M question-answer pairs. We

propose a novel formulation of the task that requires reasoning

over both the visual content and an associated natural language

description, and present baselines for this task. Results show

that the current state of the art is reasonably effective, but still

far from satisfactory, therefore further research is this area is rec-

ommended. We also present a holistic baseline to address visual

and contextual questions and foster future research on the topic.
1

1The work presented in this chapter has been submitted to ACM Transactions on

Multimedia Computing, Communications, and Applications (TOMM).
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4.1 Introduction

In Chapters 2 and 3 we presented two approaches for Visual Question An-

swering in the Cultural Heritage Domain. Moreover, we observed that in

the literature there are no large datasets for VQA in Cultural Heritage and

for some of our tests in the previous chapters we annotated a small dataset

with the framework described in Appendix A.

To address the problem of lack of data for VQA in the cultural heritage,

in this work we generate a large-scale dataset for cultural heritage in Ital-

ian and English by means of a semi-automatic approach that exploits data

from an existing ontology-based knowledge graph. We first obtain a set of

question templates asking expert and non-expert users to provide relevant

questions for observed artworks. The question templates are then used to

automatically extract answers from the knowledge graph, thus associating

question-answer pairs with entities belonging to the cultural domain. We

produce both short synthetic answers, useful for validating correctness of the

prediction, and long colloquial answers, useful for user interaction through

dialogue. A preliminary version of the dataset has been presented in [4]. We

significantly extend the dataset by considering a broader variety of question

verbal forms (from 282 to 427), in particular by considering verbal forms that

are specific for certain cultural assets (e.g. “who is the author of this paint-

ing”, specific for paintings) and including additional details (e.g. the span of

the answer for contextual question). Furthermore, we present baselines for

our proposed VQA task and discuss current state-of-the-art performances,

criticality and research directions. Overall the main contributions of our

work are the following:

• We present the first complete large-scale multi-language visual question

answering dataset for cultural heritage comprising approximately 500K

images and 6.5M question-answer pairs in Italian and English. We

detail our data collection process based on ArCO, the Italian cultural

heritage knowledge graph.

• We rise the issue of domain shift in Visual Question Answering datasets

for cultural heritage, which does not allow the exploitation of off-the-

shelf VQA models without a re-training phase. We also take into ac-

count visual and contextual question answering, exploring the limita-

tions of existing image-based and text-based question answering models

for artworks.
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• We propose baselines for the proposed dataset, analyzing the results

according to different criteria such as question type and artwork type.

We believe that this will foster the advancement and development of

interactive smart assistants in museum visits enabling visual and con-

textual question answering capabilities.

4.2 Building VISCOUNTH: A large Visual and

Contextual Question Answering Dataset

for Cultural Heritage

The need for large datasets in the Cultural Heritage domain has motivated

us to exploit the large and detailed amount of structured data in the ArCo

Knowledge Graph [16] to produce a comprehensive VQA dataset, useful for

training and evaluating VQA systems.

ArCo consists of (i) a network of seven ontologies (in RDF/OWL) mod-

eling the cultural heritage domain (with focus on cultural assets) at a fine-

grained level of detail, and (ii) a Linked Open Data dataset counting ∼200M

triples, which describe ∼0.8M cultural assets and their catalog records de-

rived from the General Catalog of Italian Cultural Heritage (ICCD), i.e.

the institutional database of the Italian cultural heritage, published by the

Italian Ministry of Culture (MiC). The ArCo ontology network is openly

released with a CC-BY-SA 4.0 license both on GitHub2 and on the official

MiC website3, where data can be browsed and acceded through the SPARQL

query language4.

Extracting information from ArCo to generate a dataset for VQA is not

free of obstacles. First, ArCo does not give us a measure of which kind of

questions might be interesting for average users in a real scenario. Second,

ArCo data need to be suitably transformed and cleaned to produce answers

in a usable form and questions need to be associated to corresponding an-

swers. Third, the dataset we aim at generating is huge, and therefore manual

validation of produced data cannot be performed.

2https://github.com/ICCD-MiBACT/ArCo/tree/master/ArCo-release
3http://dati.beniculturali.it/
4https://www.w3.org/TR/rdf-sparql-query/

https://www.w3.org/TR/rdf-sparql-query/
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4.2.1 A Semi-Automatic Approach for Generating the

VQA Dataset

To create our VQA dataset, we resorted to a semi-automatic approach that

involves the collaboration of expert and non-expert users and the use of

text processing and natural language processing techniques to obtain an

accurate list of question-answer pairs. We considered a scenario where an

image is associated to available knowledge either manually (e.g., artworks in

a museum can be associated with their descriptions) or by object recognition

(e.g., architectural properties identified by taking pictures), and generated a

dataset as a list of question-answer pairs, each one associated to an image, a

description and a set of available information items. An instance of question-

answer pair is: “Who is the author?” - “The author of the cultural asset is

Pierre François Basan”.

Our semi-automatic approach consisted in two main steps. The first part

of the process focused on generating a list of question types with associated

verbal forms by considering both expert and non-expert perspectives, the

latter assessed by surveys. Then, for each question type, we automatically

generated a list of question-answer pairs by combining question forms and

associated answer templates with information from relevant cultural assets

in ArCo, and accurately cleaning the results. This process was performed

by an ad-hoc tool, developed following a build-and-evaluate iterative pro-

cess. At each step we evaluated a sample of the produced dataset to propose

new data cleaning rules for improving results. The process ended when the

desired accuracy was achieved. Eventually, question-answer pairs from dif-

ferent question types were combined. Next, we first detail our question types

generation process, then fully describe the question-answer pairs generation

by drawing from question types.

The question types generation process was based on the following two

perspectives carried out independently: a domain experts’ perspective, rep-

resented by a selection of natural language competency questions (CQs) [95]

previously considered to model the ArCo ontology network [16], and a user-

centered perspective, represented by a set of questions from mostly non-expert

(65 out of 104) users, collected through five questionnaires on a set of dif-

ferent images of cultural assets belonging to ArCo (five cultural assets per

questionnaire). In the questionnaires, the users were asked to formulate a

number of questions (minimum 5, maximum 10) that they considered related

to each image presented (questions they would ask if they were enjoying the
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cultural asset in a museum or a cultural site). In this way, we collected 2, 920

questions from a very heterogeneous group of users in terms of age (from 24

to 70 years old and 42 years average age), cultural background and interests.

Then, the questions were semi-automatically analyzed and annotated in or-

der to recognize their semantics, associate them (when possible) with ArCo’s

metadata, and create corresponding SPARQL queries for data extraction.

In the clustering process, we grouped user-produced questions into se-

mantic clusters, named question types, with the purpose of grouping together

questions that ask for the same information. Clustering was first performed

automatically by text analysis and sentence similarity, then validated and

corrected manually. The automatic procedure consisted in the following

steps. We initially aggregated sentences that resulted to be identical after

tokenization, lemmatization and stop words removal. Then, for each ques-

tion, we identified the most semantically similar one in the whole set by

Sentence-BERT [99] and aggregated sentences whose similarity was above

84% (we found empirically that this value resulted in a low error rate).

Eventually, we performed average linkage agglomerative clustering with a

similarity threshold of 60%. To prepare for manual validation, we extracted

a list of question forms, each one associated to a numerical ID representing

the cluster it belongs to. Questions in the same cluster (e.g., “Who is the

author?” and “Who made it?”) were placed close to each other. After

removing identical sentences, we obtained about 1, 659 questions, grouped

in 126 clusters. Each question was then manually associated to a textual

(human meaningful) ID (e.g., “AUTHOR”) agreed by the annotators and a

special “NODATA” ID (about 10%) was introduced for questions that refer

to information that is not contained in ArCo. At the end of the process, af-

ter excluding clusters that ask for unavailable and unusable information, we

obtained 29 clusters, each of them representing a question type. Obtained

question types (labeled as “User”) were aggregated with the ones from the

domain experts (labeled as “Expert”) obtaining 43 question types, with 20

of them in common. In addiction, the experts grouped the question types

into three categories based on their nature. As depicted in Fig. 4.1, most

questions (31) were labeled as “contextual”, as it was not possible to find the

appropriate answers in the images associated with the question type consid-

ered (e.g., DATING). Instead, eight question types were defined as “visual”

since the answers can be inferred from the images associated to the cultural

asset, while for four “mixed” question types the answers derive both from vi-



46 The VISCOUNTH Dataset

sual and contextual information. Eventually, the experts defined an answer

template and a SPARQL query for each question type.

We employed SparqlWrapper5 for executing the SPARQL queries and

extracting textual data and pictures from ArCo. We removed cultural as-

sets that have zero or more than one associated pictures. For each record

of the query results we generated a question-answer pair by randomly draw-

ing a question verbal form by the set of appropriated verbal forms in the

associated question cluster, with the same distribution of the results of the

user questionnaires (frequently proposed questions were selected with higher

probability), and building the associated answer from the answer template.

Some question verbal forms are appropriate only for specific types of cul-

tural assets (e.g., “who was it painted by?” makes sense only for paintings).

To establish the appropriated verbal forms for a cultural assets we mapped

both question verbal forms and cultural assets with corresponding macro-

categories (we defined nine macro-categories, i.e., SCULPTURE, OBJECT,

PHOTO, FRESCO, CHURCH, FIND, PRINT, PAINTING, OTHER). Since

this information is not available in ArCo, we considered the available textual

description of the cultural asset category to build the mapping. Due to the

multitude of categories, we performed a filtering and mapping operation to

bring the wide range of types back into a small but explanatory set. As a

state-of-the-art work on Italian cultural heritage, we took into account the

controlled vocabularies defined by the ICCD-MiC6, which also provided the

data for ArCo KG [16]. These controlled vocabularies ensure a standardized

terminology for the description and cataloging of cultural heritage and help

overcome the semantic heterogeneity that is often present in creating such

catalogs. First, we filtered the vocabularies’ elements closest to the type of

artworks to which users refer in their questions. We mapped each textual

description of category with an entry in the controlled vocabularies. As de-

tailed in [15], we used a string matching algorithm that takes as input a list

of words from a well-defined taxonomy and a general description in free text

and returns the equivalent term from the reference taxonomy.

In order to improve both the form of the answer itself and its rendering

in its context, we adopted two approaches. First, we applied a set of clean-

ing rules, such as removing data with errors and changing patterns of verbal

forms (e.g., from “Baldin, Luigi” to “Luigi Baldin”)7. Second, we employed

5https://github.com/RDFLib/sparqlwrapper
6http://www.iccd.beniculturali.it/it/strumenti-terminologici
7a complete list is available on https://github.com/misael77/IDEHAdataset

http://www.iccd.beniculturali.it/it/strumenti-terminologici
https://github.com/misael77/IDEHAdataset
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Figure 4.1: Overview of the 43 question types of QA labeled as ”visual”,

”contextual” and ”mixed”. At the center some images of the types of cul-

tural assets (e.g., PAINTING, SCULTURE, PRINT, FRESCO) present in

VISCOUNTH.

pre-trained language models to improve the form of conversational answers

by adapting each sentence to its associated datum (e.g., Italian prepositions

and articles have to be chosen according to the gender and number of cor-

responding nouns or adjectives). To solve this problem we applied the cloze

task of BERT [27] on the generated answers, asking to infer words whose

genre and number depend on the specific datum and cannot be previously

determined.8 Furthermore, we applied a final grammar correction task by

automatic translating the sentence from Italian to English and back to Ital-

ian by means of a pre-trained language models for translation9.

Eventually, we automatically generated the description of each cultural

asset by combining the long answers of all associated question-answer pairs,

since this information is not available in ArCo.

8https://huggingface.co/dbmdz/bert-base-italian-uncased
9https://huggingface.co/Helsinki-NLP/opus-mt-it-en and opus-mt-en-it

https://huggingface.co/dbmdz/bert-base-italian-uncased
https://huggingface.co/Helsinki-NLP/opus-mt-it-en
opus-mt-en-it
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4.2.2 A Large and Detailed VQA Dataset for Cultural

Heritage

The generated VQA dataset contains 6.49M question-answer pairs covering

cultural assets, 43 question types and 427 verbal forms. The number of

question-answer pairs per template ranges from 35 to 576K. Each question-

answer pair is associated with the corresponding cultural asset and its in-

formation, including its picture, a description and its URI in ArCo. The

number of question types associated to each image depends on the cultural

asset’s type and ranges from a minimum of 1 to a maximum of 26

The final dataset is the largest resource available for training and vali-

dating VQA models in the cultural heritage domain. It comprises 6.493.867

question-answer pairs, with associated visual, textual and structured infor-

mation. In Tab. 4.2, we report this data in comparison to the AQUA [36]

dataset statistics. In contrast to AQUA, we consider a new dimension that

incorporates mixed (contextual and visual) question types. Additionally, our

dataset is two orders of magnitude larger than AQUA. We associate each cul-

tural asset in our dataset with a set of question-answer pairs, with both a

long conversational answer and a short synthetic answer, an image, a natural

language description, its URI in ArCo, the reference ontology class and its

type. In addition, we provide information on the text span of the answer in

the description, when possible.

We make our dataset available on GitHub10. We also provide two sam-

ples in Italian and English of 50 question-answer pairs per question type that

we manually evaluated. Results show an overall accuracy of the long answers

(percent of correct entries) of 96, 6% for the Italian sample, and of 93% for the

English one. We also provide statistics that reports, for each question type,

its usage, the number of associated question forms, the number of question-

answer pairs generated, and the accuracy. Tab. 4.1 shows the breakdown

of the number of question-answer pairs by cultural asset type and question

type. The distribution of cultural asset types in the dataset is provided

in Fig. 4.3. The most common question type are “TYPE”, “TITLE” and

“MATERIALORTECHNIQUE” while “EVENTSITE”, “PURPOSE” and

“BLACKANDWHITE” have fewer associated cultural assets. Excluding cul-

tural assets not classified in a specific category (“OTHER”), the macro cat-

egories with more elements are “OBJECT” (26%) and “PAINTING”(13%)

while the less populated one is “FRESCO” (¡1%).

10Cf. https://github.com/misael77/IDEHAdataset

https://github.com/misael77/IDEHAdataset
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Table 4.1: Number of question-answer pairs by cultural asset typology

question type PHOTO FINDS PAINTING SCULPTURE OBJECT CHURCH FRESCO PRINT Other Total

TYPE 27,244 0 68,938 24,832 157,849 1,907 19 51,829 244,379 576,997

CONSERVATION 0 0 66,890 21,560 115,554 308 3 51,518 184,124 439,957

DATINGCRITERION 0 0 64,075 21,107 116,134 560 4 50,074 187,720 439,674

CULTURALSCOPE 0 0 26,744 13,765 96,606 1,828 3 9,976 140,848 289,770

DATING 25,247 0 68,589 23,343 130,031 957 4 51,598 192,023 491,792

OWNER 0 0 65,991 23,443 142,577 1,308 17 50,195 241,347 524,878

PREPARATORYWORK 0 0 14,256 4,790 33,646 15 3 18,672 37,295 108,677

CLIENT 0 0 4,310 1,170 641 0 0 1,663 4,153 11,937

TITLE 0 0 68,364 24,683 157,037 1,753 18 50,975 267,023 569,853

SUBJECT 0 0 64,307 19,904 67,791 0 3 48,102 94,791 294,898

MATERIALORTECHNIQUE 0 0 68,871 24,177 150,141 0 19 51,220 244,285 538,713

AUTHOR 21,432 0 37,994 7,523 34,128 221 0 40,507 40,105 181,910

LOCATION 0 104,210 47,797 14,580 103,088 0 0 48,426 138,830 456,931

MEASUREMENT 0 0 17,131 5,666 84,490 7 19 45,719 116,900 269,932

ROLEAUTHOR 0 0 10,207 2,949 27,387 228 0 18,014 35,828 94,613

AFFIXEDTECHNIQUE 0 0 17,987 2,721 20,012 0 0 22,817 61,846 125,383

AUTHORCRITERION 0 0 36,710 7,393 28,452 95 0 41,122 55,648 169,420

AFFIXEDPOSITION 0 0 19,864 3,235 38,381 50 0 24,442 56,950 142,922

AFFIXEDELEMENT 0 0 23,092 4,186 49,996 68 0 34,567 78,517 190,426

CATEGORY 0 0 0 1,186 29,216 12 15 0 75,102 105,531

AFFIXEDTRANSCRIPT 0 0 21,272 3,420 31,908 33 0 31,117 62,372 150,122

HISTORICALINFO 0 0 18,912 4,776 21,591 3 6 11,807 35,719 92,814

EVENTNAME 0 0 7,764 1,546 4,344 0 0 3,044 4,182 20,880

AFFIXEDLANGUAGE 0 0 6,922 1,082 15,536 0 0 5,890 26,202 55,632

USEFUNCTION 0 0 37 313 4,181 1,392 0 8 12,594 18,525

TECHNIQUE 0 0 36 315 4,016 0 0 0 13,543 17,910

USETIME 0 0 0 3 551 44 0 0 1,171 1,769

FOUNDLOCATION 0 11,173 25 1 557 0 0 16 129 11,901

EVENTTIME 0 0 7,318 1,536 4,247 0 0 3,509 3,810 20,420

MOTIVATION 0 0 2,151 960 319 0 0 1,402 2,756 7,588

MATERIAL 0 0 36 318 5,716 0 0 8 16,716 22,794

SHAPE 0 0 7,180 715 3,255 0 0 3,052 5,617 19,819

AFFIXEDAUTHOR 0 0 2,439 225 3,599 0 0 4,325 1,067 11,655

USECONDITIONS 0 0 20 299 1,878 0 0 0 3,998 6,195

DECORATIVEPURPOSE 0 0 0 6 647 0 0 0 1,349 2002

DEDICATION 0 0 0 0 914 0 0 354 1 1,269

STORAGE LOCATION 0 0 2,412 58 411 0 0 1,185 862 4,928

EXHIBITION LOCATION 0 0 758 24 27 0 0 4 92 905

BOOK 0 0 0 0 588 0 0 315 151 1,054

PURPOSE 0 0 0 0 8 11 0 0 104 123

ORNAMENTALMOTIV 0 0 0 0 432 0 0 0 753 1,185

BLACKANDWHITE 0 0 0 0 0 0 0 0 128 128

EVENTSITE 0 0 0 0 2 0 0 0 33 35

Total 73,923 115,383 869,399 267,810 1,687,884 10,800 133 777,472 2,691,063 6,493,867
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Figure 4.2: Overview of the 26 question types associated to the PRINT

representing the Doge DonÃ facing the Virgin. 16 question types are labeled

as “contextual”, five question types are “visual”, and three are “mixed”. For

each group three examples of natural language question types (i.e. TYPE,

CONSERVATION and SUBJECT) are given.

4.3 A VQA Model for Cultural Heritage

Visual Question Answering for Cultural Heritage requires to analyze two

heterogeneous sources of information: an image depicting the artwork and a

textual description providing external contextual knowledge. A model capa-

ble of effectively providing answers to both visual and contextual questions

must therefore combine computer vision and natural language processing. In

literature, however, most approaches deal with either one of the two modal-

ities. To understand the challenges posed by our proposed dataset, we first

propose single-modality baselines from the state of the art:

• DistilBert [108] is a very common language transformer trained by dis-

tilling the Bert base model [27]. It results to be lighter and faster with

respect to Bert thanks to knowledge distillation used at training time.

For this reason the size of the DistilBert model is 40% lower, while re-

taining 97% of its language understanding capabilities and being 60%

faster. This model can then be fine-tuned with good performances on

a wide range of tasks.

• RoBERTa [75] has the same architecture of Bert [27] but is trained

with optimized parameters, uses a different tokenizer and a different
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Figure 4.3: Distribution of cultural asset typologies in the VISCOUNTH

dataset.

Table 4.2: Comparison of statistics from the VISCOUNTH and AQUA [36]

datasets.

AQUA VISCOUNTH

Train Val Test Train Val Test

Visual QA pairs 29,568 1,507 127 800,440 100,003 99,748

Contextual QA pairs 40,244 3,617 3,642 3,492,984 437,101 437,254

Mixed QA pairs 0 0 0 901,672 112,281 112,384

QA pairs 69,812 5,124 4,912 5,195,096 649,385 649,386

pretraining scheme.

• LXMERT [120] is a Large multimodal transformer for vision and lan-

guage. It consists of three encoders: a visual encoder, a language

encoder and a cross-modality encoder. This model is pretrained with

large amounts of image-and-sentence pairs via diverse pretraining tasks.

It has been shown that this model can achieve impressive results on

different downstream multimodal tasks after an appropriate finetuning.

We then propose a multi-modality baseline model by combining Distil-

Bert and LXMERT with a question classifier, that predicts whether the

question is contextual or visual and thus if a text-based model (DistilBert)

or a vision-based model (LXMERT) is required. Similar approaches have

been previously adopted in VQA for cultural heritage [11,36]. The question
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classifier is based on Bert [27]. We finetuned a Bert model with a binary

classifier on top. The model predicts if a given question is visual or con-

textual. Depending on the classifier prediction, the question is passed to

the most suitable branch (vision model or text-based model) together with

additional information (image or textual description).

4.4 Results and Discussion

4.4.1 Evaluation Metrics

To evaluate VQA models on the collected dataset, we follow the standard

evaluation setting proposed in [97]. We rely on two metrics, Exact match

and Macro-averaged F1 score:

• Exact match measures the percentage of predictions that exactly match

the ground truth answer.

• Macro-averaged F1 score measures the average overlap between the

prediction predicted answer and the ground truth. Both answers are

considered as a set of unordered words among which the F1 score is

computed. F1 scores are averaged over all questions in the dataset.

Note that for both metrics we do not consider articles and punctuations.

In addition, text-based models generate variable length sentences as a

subset of the textual description, whereas vision-based models pick a a can-

didate among a predefined dictionary of possible answers. In both cases, we

take the set of words and compare it to the ground truth to compute Exact

match and F1 score.

4.4.2 Evaluation

We carry out a quantitative evaluation by first testing off-the-shelf language

pre-trained models. We do not expect such models to perform well on vi-

sual questions but we want to assess whether such models can exploit their

language understanding to comprehend questions relative to the cultural

heritage domain. As detailed in Sec. 4.3, we use as text-based models

RoBERTa [75] and DistilBert [108]. Both datasets have been pre-trained

on SQUAD [97], a reading comprehension dataset with more than 100.000

questions-answer pairs crowd-sourced on a set of Wikipedia articles.
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Table 4.3: F1-score and Exact Match (EM) for different models on contextual

questions.

Pretrained Finetuned

RoBERTa [75] Distilbert [108] Distilbert [108] LXMERT [120] Ours

Metric F1 F1 F1 EM F1 EM F1 EM

AFFIXEDTECHNIQUE 0.00 0.06 0.28 0.16 0.00 0.00 0.00 0.00

CULTURALSCOPE 0.00 0.10 0.84 0.40 0.00 0.00 0.84 0.40

EVENTNAME 0.00 0.03 0.97 0.86 0.00 0.00 0.97 0.86

OWNER 0.01 0.10 0.93 0.92 0.00 0.00 0.49 0.27

TECHNIQUE 0.14 0.58 0.46 0.23 0.00 0.00 0.46 0.23

ROLEAUTHOR 0.00 0.15 0.64 0.57 0.00 0.00 0.64 0.57

TYPE 0.03 0.08 0.29 0.20 0.00 0.00 0.22 0.18

LOCATION 0.03 0.15 0.96 0.91 0.00 0.00 0.96 0.91

TITLE 0.03 0.21 0.98 0.97 0.00 0.00 0.93 0.90

DATING 0.01 0.40 0.73 0.71 0.00 0.00 0.73 0.71

DATINGCRITERION 0.00 0.01 0.81 0.66 0.00 0.00 0.81 0.66

HISTORICALINFO 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00

AUTHORCRITERION 0.12 0.03 0.52 0.43 0.00 0.00 0.52 0.43

CATEGORY 0.00 0.06 0.39 0.16 0.00 0.00 0.39 0.16

AUTHOR 0.01 0.19 0.99 0.91 0.00 0.00 0.99 0.91

DEDICATION 0.24 0.38 0.98 0.96 0.00 0.00 0.98 0.96

USEFUNCTION 0.38 0.33 0.96 0.92 0.00 0.00 0.96 0.92

FOUNDLOCATION 0.01 0.29 1.00 1.00 0.00 0.00 1.00 1.00

EVENTTIME 0.03 0.03 0.32 0.03 0.00 0.00 0.32 0.03

PREPARATORYWORK 0.14 0.02 0.99 0.99 0.00 0.00 0.99 0.99

STORAGE LOCATION 0.01 0.08 0.96 0.96 0.00 0.00 0.96 0.96

CLIENT 0.07 0.21 0.95 0.91 0.00 0.00 0.95 0.91

DECORATIVEPURPOSE 0.13 0.18 0.00 0.00 0.00 0.00 0.00 0.00

USECONDITIONS 0.04 0.07 0.96 0.47 0.00 0.00 0.96 0.47

MOTIVATION 0.01 0.13 0.89 0.49 0.00 0.00 0.98 0.49

EXHIBITION LOCATION 0.01 0.03 0.67 0.63 0.00 0.00 0.67 0.63

AFFIXEDAUTHOR 0.01 0.46 0.86 0.67 0.00 0.00 0.89 0.67

USETIME 0.18 0.04 0.95 0.75 0.00 0.00 0.95 0.75

PURPOSE 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00

BOOK 0.10 0.08 0.57 0.54 0.00 0.00 0.57 0.54

EVENTSITE 0.00 0.00 0.55 0.55 0.00 0.00 0.55 0.55

Mean Contextual 0.06 0.15 0.69 0.58 0.00 0.00 0.67 0.55
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Interestingly, when evaluated on contextual questions, such models per-

form poorly as can be seen in Tab. 4.3. Both models are capable of an-

swering with a certain degree of correctness to a few question categories,

namely DEDICATION and USEFUNCTION, with DistilBert obtaining good F1

scores on an additional restricted number of categories such as TECHNIQUE

and AFFIXEDAUTHOR. For most of the remaining question categories we re-

port an F1 close to 0. This suggests the presence of a domain shift between

standard question answering datasets (such as SQUAD) and VISCOUNTH.

In fact, in art related question-answers, as well as descriptions, there is often

usage of domain specific jargon that is not present in generic text corpora,

making the models unable to understand the question or identify the answer

within the description.

Nonetheless, although unlikely given the proven capabilities of such pre-

trained models, a low F1 could be caused by intrinsic limits in the architec-

tures. To further confirm the presence of a domain shift, rather than some

form of model limitation, we fine-tuned the best of the two models, Distil-

Bert, on the VISCOUNTH dataset. This leads to a significant improvement.

The model gains on average 54 points of F1-score, obtaining close to per-

fect results for question types such as TITLE, AUTHOR, FOUNDLOCATION and

PREPARATORYWORK. Interestingly, for other categories instead DistilBert still

reports low scores, close to zero (HISTORICALINFO, DECORATIVEPURPORSE,

PURPORSE). These categories however either are less represented in the data as

shown in Tab. 4.1 or are intrinsically harder. For instance, the HISTORICALINFO

category presents a high variability in how questions are formulated and fre-

quently asks for generic concepts, which require a high level reasoning on

the description content.

We also perform a similar evaluation with the vision-based model LXMERT

[120]. However, two issues must be taken into account. First, as in most

vision-based models since they cannot rely on textual descriptions, the VQA

task is treated as a classification task. Answering a question corresponds to

selecting the most relevant answer among a dictionary of pre-defined words

or short sentences. For this reason, the domain shift is much more empha-

sized: if the dictionary does not contain terms suitable for cultural heritage

the model will not perform well. Second, whereas a text-based model could

answer visual questions if the requested information is also in the descrip-

tion, a vision-based model cannot answer contextual questions in any way.

As a consequence, we cannot apply a pre-trained vision-model due to signifi-
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cant differences in the answer dictionary. But even fine-tuning the model on

VISCOUNTH leads to an F1-score of 0. In order to perform such finetuning,

we create a new dictionary of answers by filtering the most frequent answers

in the training set. More precisely we selected the answers that appear more

than 8 times.

Moving to mixed questions (Tab. 4.4), on the one hand we can observe

a similar behaviour for text-based models, although the overall F1-score is

much lower since visual knowledge is required to answer correctly. On the

other hand, LXMERT is able to provide correct answers to some of the

questions. Notably, for the MATERIAL question type, LXMERT surpasses

text-based models by a considerable margin, yet it is unable to answer to

MEASUREMENT questions, contrary to DistilBert.

As expected, for visual questions we can observe an opposite trend com-

pared to contextual questions. In Tab. 4.5 we report the results, showing

that LXMERT can provide for almost all question categories a high rate of

correct questions. However, after being fine-tuned on VISCOUNTH, Distil-

Bert is capable of addressing questions related to AFFIXEDTRANSCRIPT and

BLACKANDWHITE. This is due to the fact that sometimes the answers can also

be found in the textual description.

For most experiments we report both the macro-averaged F1-score and

the Exact Match (EM) metrics. It can be noticed that the F1 score is

a relaxation of the EM metric in the sense that it allows an answer to be

loosely compared to the ground truth, even when not all words are the same,

thus accounting for synonyms or different phrasings.

Finally, we evaluate our combined model. We exploit the question clas-

sifier to understand which model is more suitable to address a specific ques-

tion, without looking at the description nor the image. The BERT-based

classifier, described in Sec. 4.3, obtains a question classification accuracy of

98.4% on the test set, indicating that it is fully capable of understanding the

nature of the questions. We do not include mixed questions in training and

at inference time we consider the question to be either visual or contextual

based on the output of the classifier.

As can be seen from Tab. 4.3, Tab. 4.4 and Tab. 4.5, the model is able

to exploit both models to accurately answer visual and contextual questions,

with only a slight drop for language-based samples. For mixed questions,

our model is able to improve compared to LXMERT but exhibits a drop

compared to DistilBert. This confirms that mixed questions indeed pose a
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Table 4.4: F1-score and Exact Match (EM) for different models on mixed

questions.

Pretrained Finetuned

RoBERTa [75] Distilbert [108] Distilbert [108] LXMERT [120] Ours

Metric F1 F1 F1 EM F1 EM F1 EM

MATERIALORTECHNIQUE 0.00 0.27 0.36 0.32 0.27 0.16 0.36 0.32

SUBJECT 0.04 0.13 0.00 0.00 0.00 0.00 0.00 0.00

MEASUREMENT 0.00 0.04 0.84 0.68 0.00 0.00 0.00 0.00

MATERIAL 0.00 0.39 0.09 0.04 0.29 0.14 0.29 0.14

Mean Mixed 0.01 0.21 0.32 0.26 0.14 0.07 0.16 0.11

challenge yet to be solved in question answering applications.

In Tab. 4.6 we report the overall average scores in terms of F1 and

Exact Match. The average is computed as the mean of all category scores,

i.e. contextual, mixed and visual together. Our combined model retains the

best results, providing a baseline for future work in visual question answering

for cultural heritage.

To better understand the challenges in the dataset, we show a breakdown

of results divided by question category and type of cultural property in Tab.

4.7. We do this only for visual questions, since contextual questions do

not exploit visual information. This table shows how the performance of

our approach vary depending on the type of artwork. We can observe, as

expected, that there is a gap between the score obtained for different types

of artwork on specific question classes. As example the question category

CONSERVATION (that includes questions about the conservation state of the

artwork) results easier for prints than sculptures. Vice-versa, the category

AFFIXEDLANGUAGE (that has questions about the language of the writing

attached to the cultural asset) has better results for sculptures. Finally, we

can observe that the category AFFIXEDTRANSCRIPT, that refers to the text

present in the artwork, obtains very low results. This is due to the fact that

these kind of questions are very challenging and require the extraction and

the understanding of text in images and currently this can be done only with

specific networks.
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Table 4.5: F1-score and Exact Match (EM) for different models on visual

questions.

Pretrained Finetuned

RoBERTa [75] Distilbert [108] Distilbert [108] LXMERT [120] Ours

Metric F1 F1 F1 EM F1 EM F1 EM

CONSERVATION 0.00 0.01 0.00 0.00 0.79 0.53 0.79 0.53

AFFIXEDLANGUAGE 0.13 0.66 0.01 0.01 0.67 0.66 0.66 0.66

AFFIXEDELEMENT 0.00 0.01 0.00 0.00 0.83 0.83 0.83 0.83

AFFIXEDTRANSCRIPT 0.02 0.08 0.80 0.69 0.05 0.04 0.04 0.04

AFFIXEDPOSITION 0.00 0.01 0.00 0.00 0.47 0.32 0.47 0.32

SHAPE 0.00 0.00 0.00 0.00 0.68 0.68 0.68 0.68

ORNAMENTALMOTIV 0.00 0.00 0.00 0.00 0.54 0.54 0.54 0.54

BLACKANDWHITE 0.00 0.00 0.70 0.70 0.96 0.96 0.96 0.96

Mean Visual 0.02 0.10 0.19 0.17 0.62 0.57 0.62 0.57

Table 4.6: F1-score and Exact Match (EM) for different models averaged

over all question types.

Pretrained Finetuned

RoBERTa [75] Distilbert [108] Distilbert [108] LXMERT [120] Ours

Metric F1 F1 F1 EM F1 EM F1 EM

Mean Overall 0.05 0.14 0.57 0.47 0.13 0.11 0.61 0.51

Table 4.7: F1-score breakdown for cultural asset category and question type.

We do not report the PHOTO and FIND categories since no visual question

is present for such artworks.

PRINT OBJECT OTHER PAINTING SCULPTURE FRESCO CHURCH

CONSERVATION 0.81 0.79 0.78 0.78 0.77 1.00 0.34

AFFIXEDLANGUAGE 0.61 0.63 0.69 0.78 0.87 - -

AFFIXEDELEMENT 0.89 0.89 0.78 0.96 0.82 - 0.57

AFFIXEDTRANSCRIPT 0.07 0.09 0.03 0.01 0.01 - 0.00

AFFIXEDPOSITION 0.54 0.61 0.40 0.32 0.22 - 0.11

SHAPE 0.81 0.73 0.71 0.59 0.46 - -

ORNAMENTALMOTIV - 0.56 0.54 - - - -

BLACKANDWHITE - - 0.96 - - - -
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4.4.3 Qualitative Analysis

In this section we provide a qualitative analysis of the answers given by our

approach to questions in the VISCOUNTH dataset.

The dataset is divided into three main question types: visual, contextual

and mixed. For each type there are multiple question categories, which refer

to different types of cultural assets. We thus expect the answers given by our

model to be affected by all this aspects. In Fig. 4.4 we show the behaviour

of our model in answering different kinds of questions for different types

of cultural assets. For contextual questions we expect that the answer has

to be extracted from a natural language description, therefore a language

model is sufficient to answer these questions. As we can see in Tab. 4.1

and Tab. 4.3, our model is able to answer the most common contextual

questions in the dataset but has lower performance for questions that appear

in few examples. In Fig. 4.4 we can observe how our model is able to

answer correctly to different categories of contextual questions (LOCATION,

AUTHOR, TITLE, DATING, etc.) for different types of artworks. For these

types of questions we do not observe different performances for different

types of artworks. This is due to the fact that in these cases, our question

answering language model is agnostic to visual information, being solely

based on textual descriptions.

Confirming the results of Tab. 4.4, we observe that our model obtains

low performances on mixed questions. This kind of questions result to be

very challenging since they require both visual knowledge and contextual

knowledge. For instance, for the MATERIAL category, the model should be

able to describe the different materials the artworks are made of and learn

how to recognize them visually. Our model selects either the vision-based

model or the textual-based model to answer a question, hence there is not

a specific way to handle this kind of questions, thus leading to a lack of

performance.

Regarding visual questions, we can observe from Tab. 4.7 that we have

a variation in the performances based on the type of artwork for different

classes of visual questions. For example we can observe that the questions

of the SHAPE category, that refers to the shape of the artwork, as expected,

perform better for prints than for sculptures. Moreover, as shown in Fig. 4.4,

several artworks contain transcripts and there is a specific question category

(AFFIXEDTRANSCRIPT) for this detail. Our model obtains very low perfor-

mance on this question class since it does not contain a specific trained model
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Q: CONTEXTUAL / LOCATION: Where is 
the painting kept?
A: Uffizi Gallery ✓

Q: MIXED / SUBJECT: Who does it 
represent?
A: ✗

Q: MIXED / MATERIALORTECHNIQUE:
What is the material and technique used?
A: table, oil painting ✓

Q: CONTEXTUAL / AUTHORCRITERION:
On the basis of what criterion is the 
cultural asset attributed to the author?
A: Bibliography ✓

Q: VISUAL / AFFIXEDTRANSCRIPT: What
do the written sentences say?
A: ✗

Q: VISUAL / CONSERVATION: What is the 
state of preservation of the work?: 
A: mediocre state of conservation ✓

Q: CONTEXTUAL / AUTHOR:  Who's the 
author?
A: De Finetti Gino ✓

Q: CONTEXTUAL / TITLE:  What's it called?
A: Horse show in Trieste ✓

Q: MIXED / MATERIALORTECHNIQUE:
What are the techniques and materials?
A: Paper, Etching  ✓

Q: CONTEXTUAL / ROLEAUTHOR:
What role did the author play in creating 
the work?: 
A: Engraver ✓

Q: CONTEXTUAL / DATING: When was 
the drawing made?
A: 1559 ✓

Q: VISUAL / AFFIXEDPOSITION:  Where
in the cultural asset is the element posted?
A: Bottom right corner ✓

Q: CONTEXTUAL / AUTHOR:
Who took the photograph?
A: Anonymous ✓

Q: MIXED / MATERIALORTECHNIQUE:
What are the materials and techniques of 
realization?: 
A: Collodium, glass ✓

Q: CONTEXTUAL / AFFIXEDTECHNIQUE:
What are the technical characteristics of the 
element attached to the cultural asset?
A: Graffito ✓

Q: VISUAL / AFFIXEDTRANSCRIPT:  
What does it say in the captions?
A: ✗

Figure 4.4: Qualitative Results. Answers given by our approach for different

question category/class on different artwork types.

for scene text extraction.

4.5 Conclusions

We presented a large scale heterogeneous multi-language dataset for visual

question answering in the cultural heritage domain. Our dataset contains

approximately 6.5M question-answer pairs in Italian and English, spanning

500K cultural assets of different types, including artworks, churches, his-

torical objects and others. Each cultural asset is associated to an image,

a natural language description and other information. We presented some

baselines that employ and combine machine learning models for both con-

textual (natural language description) and visual processing. Our results

show that fine-tuning on a domain-specific dataset is crucial for this task,

thus confirming the utility of our dataset. Our best model achieves an over-

all accuracy (F1 average) of 0.61. Although these result is promising, we

found out that certain question categories are hard to compute, especially

the ones that require mixed (visual and contextual) reasoning. We believe

that further research in this direction would be beneficial for the cultural her-

itage field, as well as for other fields where multi-modal (visual and natural
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language) reasoning is required.



Chapter 5

GADA: Generative Adversarial

Data Augmentation for Image

Quality Assessment

We propose a No-reference Image Quality Assessment (NR-IQA)

approach based on the use of generative adversarial networks. To

address the problem of lack of adequate amounts of labeled train-

ing data for NR-IQA, we train an Auxiliary Classifier Genera-

tive Adversarial Network (AC-GAN) to generate distorted images

with various distortion types and levels of image quality at train-

ing time. The trained generative model allows us to augment

the size of the training dataset by introducing distorted images

for which no ground truth is available. We call our approach

Generative Adversarial Data Augmentation (GADA) and experi-

mental results on the LIVE and TID2013 datasets show that our

approach – using a modestly sized and very shallow network – per-

forms comparably to state-of-the-art methods for NR-IQA which

use significantly more complex models. Moreover, our network

can process images in real time at 120 image per second unlike

other state-of-the-art techniques.1

1The work described in this chapter was presented at the International Conference on

Image Analysis and Processing (ICIAP), 2019.
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Figure 5.1: Patches extracted from images generated by the proposed

method compared with the same patches from true distorted images with

the same image quality and distortion type.

5.1 Introduction

In Chapters 2,3,4 we focused on the task of Visual Question Answering in

the Cultural Heritage domain addressing different problems connected to

real scenarios. In the next three chapters, we introduce another visual and

language task: image captioning. In this thesis, the research related to this

topic is strictly connected with its application to Image Quality Assessment.

In this preliminary work, we propose an approach to address the lack of

large labeled datasets for IQA. Since obtaining annotated data to train the

network is difficult, we propose a technique to generate new images with

a specific image quality and distortion type. We learn how to generate

distorted images using Auxiliary Classifier Generative Adversarial Networks

(AC-GANs), and then use these generated images in order to improve the

accuracy of a simple CNN regressor trained for IQA. In Fig. 5.1 we show

patches of images generated with our approach alongside their corresponding

patches with real distortions.

5.1.1 Auxiliary Classifier GANs.

In the last few years GANs have been widely used in different areas of com-

puter vision. The Auxiliary Classifier GAN (AC-GAN) [88] is a variant



5.2 Generative Adversarial Data Augmentation for NR-IQA 63

of the Generative Adversarial Network (GAN) [39] which uses label condi-

tioning. This kind of network produces convincing results. Our aim is to

use this architecture to generate distorted images conditioned to a distor-

tion category and image quality value. Since the main objective of the work

is NR-IQA and the performance of the quality regressor is highly related

to the generated image, it is crucial that the generator produce convincing

distortions.

5.2 Generative Adversarial Data Augmenta-

tion for NR-IQA

In this section we describe our approach to perform data augmentation for

NR-IQA datasets. We first show the general steps that characterize our

technique, and then describe the use of AC-GAN in this context.

5.2.1 Overview of Proposed Approach

The main idea of this work is to generate new distorted images with a specific

image quality level and distortion type to partially solve the problem of

the poverty of annotated data for IQA. We use an AC-GAN to generate

new distorted images. Once the generator has learned to produce distorted

images convincingly we use it to generate new examples to augment the

training set as we train a deep convolutional regressor to estimate IQA. The

pipeline of our technique is as follows:

1. Training the AC-GAN. Using patches of the training images we

train an AC-GAN. The generator learns to generate distorted images

with a given distortion class and quality level starting from reference

images. The regressor, which aims is to predict the image quality,

is trained with both generated and real distorted images using the

adversarial GAN loss.

2. Generative data augmentation. Once the training of the AC-

GAN converges, the generator is able to produce convincing distortions

and we can stop its training. We continue training the discriminator

branch, augmenting the training data via the trained generator. The

regressor is trained with both real distorted images from the training

set and images artificially distorted using the generator.
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3. Fine-Tuning of the regressor. Once convergence is reached in step

2 we perform a final phase of fine-tuning: the regressor is trained with

only real distorted images from the IQA training set.

5.2.2 Auxiliary Classifier GANs for NR-IQA

An Auxiliary Classifier Generative Adversarial Network is a GAN variant

in which it is possible to condition the output on some input information.

In the AC-GAN every generated sample has a corresponding class label,

c ∼ pc, in addition to the noise z. This information is given as input to the

generator which produces fake imagesXfake = G(c, z). The discriminator not

only distinguishes between real and generated examples but predicts also the

class label of the examples. The sub-network that classifies the input is called

the classifier. The objective function is characterized by two components: a

log-likelihood on the correct discrimination LS and a log-likelihood on the

correct class LC :

LS = E[logP (S = real | Xreal)] + E[logP (S = fake | Xfake)] (5.1)

LC = E[logP (C = c | Xreal)] + E[logP (C = c | Xfake)] (5.2)

The discriminator is trained to maximize LS + LC and the generator is

trained to minimize LC − LS .

Our approach is slightly different from a standard AC-GAN: the latter

expects only noise and class label as input, but in our case we want to

generate an output image that is a distorted version of a reference one, so

we also need to feed the reference image and force a reconstruction with an

L1 loss. Moreover, we want to distort the reference image so that the output

matches a target image quality, so we feed also this value as input. Because

we would like to reconstruct a distorted version of the reference image given

as input, we can write the additional L1 loss as it follows:

LL1 = E[||y −G(z, x, c, q)||1]

where y is the distorted ground truth image, z is a random Gaussian noise

vector, x is the reference image, c is the distortion class and v is the image

quality.

The goal of this work is to predict the quality score of images, so we

introduce a regressor network whose aim is to predict the quality score of
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Figure 5.2: A schematic representation of the proposed network.

input images. The loss used to train this component is a mean squared error

(MSE) between the predicted quality score and the ground truth:

LE = E[(q − q̂)2] (5.3)

where q and q̂ are the ground truth and the prediction of the image quality

score, respectively.

The expectations for all losses defined here are taken over minibatches of

either generated or labeled training samples.

5.2.3 The GADA Architecture

In Fig. 5.2 we give a schematic representation of the proposed model. The

components of the GADA network are as follows.

Generator. The Generator follows the general auto-encoder architec-

ture. It takes as input a high quality reference image, a distortion class,

and a target image quality. The input information is encoded through three

convolutional layers (one with 64 feature maps and two with 128). Before

up-sampling we concatenate a noise vector z to the latent representation,

together with an embedding of the distortion category and image quality.

We use skip connections [48,102] in the generator, which allows the network

to generate qualitatively better results.
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Discriminator. The Discriminator takes as input a distorted image and

through three convolutional layers (one with 64 feature maps, and two with

128 to mimic the encoder) followed by a 1 × 1 convolution extracts 1024

feature maps (that are also fed to the classifier and the regressor). A single

fully-connected layer reduces these feature maps to a single value and a

sigmoid activation outputs the prediction of the provenance of the input

image (i.e. real or fake). This output is used to compute the loss defined in

equation 5.1.

Classifier. The Classifier takes as input the feature maps described for the

Discriminator. This network consists of two fully-connected layers. The first

layer has 128 units and the second has a number of units equal to the number

of distortion categories and is followed by a softmax activation function. The

output of this module is used in the classifier loss for the AC-GAN as defined

in equation 5.2.

Evaluator. The Evaluator takes as input the feature maps described

for the Discriminator and should accurately estimate the image quality of

the input image. This module consists of two fully-connected layers, the

first with 128 and the second with a single unit. The MSE loss defined in

equation 5.3 is computed using the output of this module.

5.3 Experimental Results

In this section we describe experiments conducted to evaluate the perfor-

mance of our approach. We first introduce the datasets used for training

and testing our network, then we describe the protocols adopted for the

experiments.

Datasets. For our experiments we used the standard LIVE [109] and

TID2013 [93] datasets for IQA. LIVE contains 982 distorted versions of 29

reference images. Original images are distorted with five different types of

distortion: JPEG compression (JPEG), JP2000 compression (JP2K), white

noise (WN), gaussian blur (GB) and fastfading (FF). The ground truth qual-

ity score for each image is the Difference Mean Opinion Score (DMOS) whose

value is in the range [0, 100]. TID2013 consist of 3000 distorted images ver-

sions of 25 reference images. The original images are distorted with 24

different types of distortions. The Mean Opinion Score of distorted images

varies from 0 to 9.
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Experimental Protocols. We analyze the performance of our model

using the standard IQA metrics. For each dataset we randomly split the

reference images (and their corresponding distorted versions) in 80% used

for training and 20% used for testing, as described in [52,149]. This process

is repeated ten times. For each split we train from scratch and compute the

final scores on the test set.

Training Strategy. At each training epoch, we randomly crop each image

in the training-set using patches of 128×128 pixels and feed it to the model.

For all the three phases we train using these crops with a batch size of 64.

During the first one we use Adam optimizer with a learning rate of 1e−4

for the discriminator and 5e−4 for the generator, classifier and evaluator.

During the second and third phases we divide the learning rate by 10.

Testing Protocol. At test time we randomly crop 30 patches from each

test image as suggested in [8]. We then pass all 30 crops through the dis-

criminator network (with only the evaluator branch) to estimate IQA. The

average of the predictions for the 30 crops gives the final estimated quality

score.

Evaluation Metrics. We use two evaluation metrics commonly used

in IQA context: the Linear Correlation Coefficient (LCC) and Spearman

Correlation Coefficient (SROCC). LCC is a measure of the linear correla-

tion between the ground truth and the predicted quality scores. Given N

distorted images, the ground truth of i-th image is denoted by yi, and the

predicted score from the network is ŷi. The LCC is computed as:

LCC =

∑N
i=1(yi − y)(ŷi − ŷ)√∑N

i (yi − y)2
√∑N

i (ŷi − ŷ)2
(5.4)

where y and ŷ are the means of the ground truth and predicted quality

scores, respectively.

Given N distorted images, the SROCC is:

SROCC = 1−
6
∑N
i=1 (vi − pi)

2

N (N2 − 1)
, (5.5)

where vi is the rank of the ground-truth IQA score yi in the ground-truth

scores, and pi is the rank of ŷi in the output scores for all N images. The

SROCC measures the monotonic relationship between ground-truth and es-

timated IQA.
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Generative Data Augmentation with AC-GAN. As described in

Sec. 5.2.1 our approach consists of three phases: a first one where we train

the generator, a second phase where we perform data augmentation, and

the final fine-tuning phase of the evaluator over the original training-set.

As a first experiment, we calculated the performance obtained after each of

the three different phases and compared with the performance of a direct

method which consists of training only the evaluator and classifier branches

of the discriminator directly on labeled training data (e.g. no adversarial

data augmentation). We trained and tested the proposed method and the

direct baseline on the LIVE dataset as described in Sec. 5.3, but for this

preliminary experiment we used crops of 64 × 64 pixels and a shallower

regression network.

In Tab 5.1 we give the LCC and SROCC values computed for the baseline

and after each of the three phase of our approach. We note first that each

phase of our training procedure results in improved LCC and SROCC, which

indicates that generative data augmentation and fine-tuning both add to

performance. At the end of phase 3 the LCC and SROCC results surpass

the direct approach by ∼ 2%, confirming the effectiveness of GADA with

respect to direct training.

5.3.1 Comparison with the state-of-the-art

Here we compare GADA with state-of-the-art results from the literature.

Results on LIVE. We trained on LIVE dataset following the protocol

described in 5.3. The results are shown in Tab. 5.2. Each column of the

table represents the partial scores for a specific distortion category of LIVE

dataset. Our method seems to be very effective on this dataset despite the

fact that many other approaches process larger patches (e.g. 224× 224, the

input size of the VGG16 network) and capture more context information.

We observe from the table that our model performs very well on Gaussian

noise (GN) and JPEG2000 (JP2K). We obtain worse results for Fast Fading

(FF), which is probably due to the fact that FF is a local distortion and

we process patches of small dimension, so for each crop the probability of

picking a distorted region is not 1.

TID2013 We follow the same test procedure for TID2013 and report our

SROCC results in Tab. 5.3. We see that for 11 of the 24 types of distortion

we obtain the best results. For local and challenging distortions like #14,
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JP2K JPEG WN GBLUR FF ALL

Baseline
LCC 0.950 0.964 0.973 0.938 0.933 0.943

SROCC 0.938 0.931 0.977 0.939 0.898 0.935

Phase 1
LCC 0.944 0.952 0.967 0.920 0.912 0.933

SROCC 0.933 0.930 0.980 0.926 0.889 0.930

Phase 2
LCC 0.958 0.958 0.974 0.939 0.924 0.942

SROCC 0.941 0.933 0.988 0.945 0.891 0.939

Phase 3
LCC 0.959 0.973 0.993 0.953 0.935 0.962

SROCC 0.955 0.941 0.990 0.953 0.912 0.955

Table 5.1: Comparison of baseline and each phase of the GADA approach in

LCC and SROCC. In the first block results for the direct baseline method

(directly training the evaluator with only labeled IQA data) are shown. In

the second block results for our method are shown after each of the three

phases: training of the AC-GAN (Phase 1), generator data augmentation

(Phase 2), and evaluator fine-tuning (Phase 3).

#15 and #16 the performance of our model is low, and again we hypothesize

that the small size and uniform sampling of patches could be a limitation

especially for extremely local distortions.

5.4 Conclusions

In this work we proposed a new approach called GADA to resolve the prob-

lem of lack of training data for No-reference Image Quality Assessment. Our

approach uses a modified Auxiliary Classifier GAN. This technique allows

us to use the generator to generate new training examples and to train a

regressor which estimates the image quality score. The results obtained on

LIVE and TID2013 datasets show that our performance is comparable with

the best methods of the state-of-the-art. Moreover, the very shallow network

used for the regressor can process images with an high frame rate (about 120

image per second). This is in stark contrast to state-of-the-art approaches

which typically use very deep models like VGG16 pre-trained on ImageNet.

We feel that the GADA approach offers a promising alternative to labo-
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LCC SROCC

JP2K JPEG GN GB FF ALL JP2K JPEG GN GB FF ALL

DIVINE [86] .922 .921 .988 .923 .888 .917 .913 .91 .984 .921 .863 .916

BLIINDS-II [106] .935 .968 .980 .938 .896 .930 .929 .942 .969 .923 .889 .931

BRISQUE [84] .923 .973 .985 .951 .903 .942 .914 .965 .979 .951 .887 .940

CORNIA [145] .951 .965 .987 .968 .917 .935 .943 .955 .976 .969 .906 .942

CNN [52] .953 .981 .984 .953 .933 .953 .952 .977 .978 .962 .908 .956

SOM [149] .952 .961 .991 .974 .954 .962 .947 .952 .984 .976 .937 .964

BIECON [57] .965 .987 .970 .945 .931 .962 .952 .974 .980 .956 .923 .961

PQR [147] – – – – – .971 – – – – – .965

DNN [13] – – – – – .972 – – – – – .960

RankIQA+FT [74] .975 .986 .994 .988 .960 .982 .970 .978 .991 .988 .954 .981

Hall.-IQA [71] .977 .984 .993 .990 .960 .982 .983 .961 .984 .983 .989 .982

NSSADNN [140] – – – – – .984 – – – – – .986

GADA (ours) .977 .978 .994 .968 .943 .973 .963 .948 .991 .958 .917 .964

Table 5.2: Comparison between GADA and the state-of-the-art on LIVE.

riously annotating images for IQA. Significant improvements can likely be

made, especially for highly local distortions, through saliency-based sampling

of image patches during training.
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Chapter 6

Language Based Image Quality

Assessment

Evaluation of generative models, in the visual domain, is often

performed providing anecdotal results to the reader. In the case

of image enhancement, reference images are usually available.

Nonetheless, using signal based metrics often leads to counter-

intuitive results: highly natural crisp images may obtain worse

scores than blurry ones. On the other hand, blind reference im-

age assessment may rank images reconstructed with GANs higher

than the original undistorted images. To avoid time consuming

human based image assessment, semantic computer vision tasks

may be exploited instead. In this work we advocate the use of

language generation tasks to evaluate the quality of restored im-

ages. We show experimentally that image captioning, used as a

downstream task, may serve as a method to score image qual-

ity. Captioning scores are better aligned with human rankings

with respect to signal based metrics or no-reference image quality

metrics. We show insights on how the corruption, by artifacts,

of local image structure may steer image captions in the wrong

direction.1

1The work described in this chapter was presented at ACM Multimedia Asia, 2021,

where it the Best Paper Award.
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A statue of a woman 

wearing a christmas tie

A brown and white dog 

wearing a tie

A brown and white dog

wearing a red tie

Figure 6.1: Caption generated on Compressed, Reconstructed and Original

image (left to right) using [2]. Sample ground truth caption: “A brown and

white dog wearing a neck tie”. Best viewed in color on computer screen.

6.1 Introduction

In Chapter 5 we introduce a first work about Image Quality Assessment that

addresses the problem of lack of training data with a generative adversarial

data augmentation technique. In the current chapter, we propose a com-

pletely novel approach for IQA that exploits Image Captioning. The main

contribution of this work are the following:

• We propose an image quality assessment method based on language

models. To the best of our knowledge, language has never been used

to evaluate the quality of images.

• Our evaluation protocol shows consistency across different captioning

algorithms [2, 25] and language similarity metrics. Interestingly, im-

proving the language generation model also improves the correlation

between our score and MOS.

• Experiments shows that our approach does not suffer from drawbacks

of common full-reference and no-reference metrics when evaluating

GAN enhanced images and keeps a high accordance with human scores

for compressed and for images restored via deep learning.
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JPEG20MSEOURGT GAN

Figure 6.2: Qualitative comparison of reconstruction methods: GAN pro-

duces images more pleasant for the human eye. Best viewed in color on

computer screen. GT: original image; JPEG 20: JPEG compression with

quality factor 20; MSE: CNN-based restoration using MSE loss and direct

training; GAN: GAN-based restoration using perceptual loss.

6.2 Image Restoration

Here we formalize the image restoration task. Given some image processing

algorithm D, such as JPEG image compression, a distorted image is defined

as ILQ = D(IHQ), where IHQ is a high quality image undergoing the dis-

tortion process, image enhancement aims at finding a restored version of the

image IR ≈ G(ILQ).

In this work we pick a state-of-the art image enhancement method aimed

at compression artifact removal, originally presented in [33]. In this work

Galteri et al. try to learn a generative model G which, conditioned on the

input distorted images, is optimized to invert the distortion process D so

that G ≈ D−1. Their generator architecture is loosely inspired by [42]. They

employ LeakyReLU activations and 15 residual layers in a fully convolutional

network. The final image is obtained by a nearest neighbor upsampling of a
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convolutional feature map and a following stride-one convolutional layer to

avoid gridlike patterns possibly stemming from transposed convolutions.

The set of weights ψ of the D network are learned by minimizing:

Ld =− log
(
Dψ

(
I|IC

))
− log

(
1−Dψ

(
IR|IC

))
,

where I is the uncompressed or high-quality image, IR is the restored image

created by the generator and IC is a compressed image.

The generator is trained combining a perceptual loss with the adversarial

loss:

LAR = LP + λLadv, (6.1)

where Ladv is the standard adversarial loss:

Ladv = − log
(
Dψ

(
IR|IC

))
(6.2)

that rewards solutions that are able to mislead the discriminator, and Lp is

a perceptual loss based on the distance between images computed projecting

I and IR on a feature space by some differentiable function ϕ and taking the

Euclidean distance between the two feature representations:

LP =
1

WfHf

Wf∑
x=1

Hf∑
y=1

(
ϕ (I)x,y − ϕ

(
IR

)
x,y

)2

. (6.3)

In [33] it has been shown that using a GAN approach instead of direct

training of the network for image enhancement, results in improved subjec-

tive perceptual similarity to original images and, more importantly, in much

improved object detection performance. Qualitative examples of GAN and

direct training method are shown in Fig. 6.2.

6.3 Evaluation Protocol

Classic full-reference image quality evaluation methods rely on the simi-

larity between an image which has been processed by some enhancement

method and a reference undistorted image. GANs are great at filling in high

frequency realistic details in image enhancement tasks. Unfortunately this

often results in lower performance in full-reference assessment as can be seen

in Tab. 6.4, although the restored images appear as “natural” and pleasant

to human evaluators. It is clear from such results that while measuring SSIM
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and PSNR, optimizing MSE or SSIM losses without adversarial learning is

best. For this reason, in [33,34] semantic tasks are used to evaluate the qual-

ity of restored images. Measuring the performance of a semantic task such

as detection on restored images gives us an understanding of the “correct-

ness” of output images. Given some semantic task (e.g. object detection),

a corresponding evaluation metric (e.g. mAP) and a dataset, the evaluation

protocol consists in measuring the variation of such metric on different ver-

sions of the original image. Interestingly, this evaluation methodology gives

hints on what details are better recovered by GANs.

In certain cases, detection is a task describing scene semantics in a very

approximate fashion; usually detectors do not degrade for object classes that

are clearly identifiable by their shape since even high distortions in the image

are not able to hide such features. The gain in image quality provided by

GANs, according to object detection based evaluation, resides in producing

high quality textures for deformable objects (e.g. cats, dogs, etc).

In this work we advocate the use of a language generation task for evalu-

ating image enhancement at a finer level. The idea is that captioning maps

the semantics of images into a much finer and rich label space represented

by short sentences. To be able to obtain a correct caption from an image

many details must be identifiable.

We devise the following evaluation protocol for image enhancement. We

pick an image captioning algorithm A. Image captioning is the task of gener-

ating a sequence of words which is possibly grammatically and semantically

correct, describing the image in detail. We look at performance of a caption-

ing algorithm A on different versions of a dataset (e.g. COCO): compressed,

original and restored. In particular we analyze results from two highly per-

forming captioning methods [2, 25] which combine a bottom-up model of

visual entities and their attributes in the scene with a language decoding

pipeline. Both methods are trained over several steps incorporating seman-

tic knowledge at different levels of granularity. In particular the bottom-up

region generator is based on Faster R-CNN [100] which is based on a feature

extractor pre-trained on ImageNet [26] and then fine-tuned to predict ob-

ject entities and their attributes using the Visual Genome dataset [61].In [2],

further knowledge is incorporated into the model by training the caption

generation model using a first LSTM as a top-down visual attention model

and a second level LSTM as a language model. Meshed memory transform-

ers [25] share the exact same visual backbone as [2] but exploit a stack of
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memory-augmented visual encoding layers and a stack of decoding layers to

generate caption tokens.

No matter how captioning models are optimized, our results show that the

behavior of the captioning model for image quality assessment is consistent

over several metrics as shown in Tab. 6.1.

Captioning is evaluated with several specialized metrics measuring the

word-by-word overlap between a generated sentence and the ground truth

[89], in certain cases including the ordering of words [5], considering n-grams

and not just words [70,129] and the semantic propositional content (SPICE

[1]). These metrics evaluate the similarity with respect to a set of reference

captions (usually this is five references).

6.3.1 Subjective Evaluation

In this evaluation we assess how images obtained with the selected GAN

based restoration method [33] are perceived by a human viewer, evaluating in

particular the preservation of details and overall quality of an image.In total,

16 viewers have participated to the test, a number that is considered enough

for subjective image quality evaluation tests [137]; no viewer was familiar

with image quality evaluation or the approaches proposed in this work. A

Single-Stimulus Absolute Category Rating (ACR) experimental setup has

been developed using avrateNG2, a tool designed to perform subjective image

and video quality evaluations. We asked participants to evaluate images’

quality using the standard 5-values ACR scale (1=bad, up to 5=excellent).

A set of 20 images is chosen from the COCO dataset, selecting for each image

three versions: the original image, a JPEG compressed version with QF=10

(a high compression quality factor) and the restored version of the JPEG

compressed image with QF=10 compressed image; this results in a set of

60 images. Each image was shown for 5 seconds, preceded and followed by

a grey image, also shown for 5 seconds. Considering our estimation of test

completion time we chose this amount of images to keep each session under

30 minutes as recommended by ITU-R BT.500-13 [49].

To select this small sample of 20 images to be as representative as possible

of the whole dataset for the captioning performance we operate the following

procedure. Let µ∗(v) and σ2∗(v) be the mean of a captioning metric score (in

our case we used CIDEr) for a given version of the image v. We iteratively

2https://github.com/Telecommunication-Telemedia-Assessment/avrateNG

https://github.com/Telecommunication-Telemedia-Assessment/avrateNG
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extract 20 random image ids out of the whole 5,000 testing set from the

Karpathy split, without repetition. We attempt to minimize

eµ =
∑
v∈V

|µ∗(v)− µ(v)| (6.4)

and

eσ2 =
∑
v∈V

|σ2∗(v)− σ2(v)| (6.5)

by iterative resampling images until we find eµ and eσ2 such that eµ ≤ 10−3

and eσ2 ≤ 10−4. Where V is the set of different version of an image, namely:

JPEG compressed at QF=10 (referred to as JPEG 10 in the following), its

GAN reconstruction and the original uncompressed image. The selected im-

ages contain different subjects, such as persons, animals, man-made objects,

nature scenes, etc. Both the order of presentation of the tests for each viewer,

and the order of appearance of the images were randomized.

6.4 Results

In the following, we report results on two datasets: MS-COCO [72] and

LIVE [110]. We use COCO, in particular the Karpathy split, since it is the

reference benchmark for image captioning, accounting for 5000 images for

training and validation each with 5 ground truth sentences per image. LIVE

is a widespread benchmark for image quality assessment. LIVE consists of 29

high resolution images compressed at different JPEG qualities for a total of

204 images. For each LIVE image a set of user scores is provided indicating

the perceived quality of the image.

6.4.1 Language Based IQA

In Tab. 6.1 we report results using various captioning metrics. Interestingly

all metrics show that captions over reconstructed images (REC rows) are

better with respect to caption computed over compressed images (JPEG

rows). This shows that image details that are compromised by the strong

compression induce errors in the captioning algorithm. On the other hand

the GAN approach is able to recover an image which is not only pleasant

to the human eye but recovers details which are also semantically relevant

to an algorithm. In Fig. 6.1 we show the difference of captions generated

by [2] over original, compressed and restored images. A human may likely
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Figure 6.3: Top) Subjective image quality evaluation of original COCO im-

ages (orange), heavily compressed JPEG images (blue) and their restored

version obtained with the GAN-based approach (green). Restored images

are perceived as having a better quality than their compressed versions.

Bottom) Histograms of MOS scores of the three types of images.

succeed in producing a almost correct caption for highly compressed images,

nonetheless state-of-the art algorithms are likely to make extreme mistakes

which are instead not present on reconstructed images.

In Fig. 6.5 we show the different performance of captioning algorithms

in terms of CIDEr measure on the same split of test of compressed and re-

stored images, considering different quality factors of JPEG. The captioner

proposed in [25] outperforms [2] as expected, but interestingly we may ob-

serve that the range of CIDEr values of [25] is significantly higher than [2].

We argue that this could be considered a strong feature of our evaluation

approach, as a wider range of value may imply that a good captioner is able
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JPEG 10 GAN Original

A couple of people

sitting next to a

christmas tree.

A man riding a wave on

a surfboard in the

ocean.

A man riding a wave on

a surfboard in the

ocean.

Figure 6.4: Examples of captions for COCO images used in the subjective

quality evaluation. Left column) JPEG compressed with QF=10; Center col-

umn) GAN-based restoration from JPEG compressed images with QF=10;

right column) original images.

Table 6.1: Evaluation of image restoration over compression artifacts using

GAN and captioning as a semantic task (best results highlighted in bold).

Captions created from reconstructed images obtain a better score for every

metric.

QUALITY BLEU 1↑ METEOR↑ ROUGE↑ CIDEr↑ SPICE↑
JPEG 10 0.589 0.173 0.427 0.496 0.103

REC 10 0.730 0.253 0.527 1.032 0.189

JPEG 20 0.709 0.241 0.513 0.937 0.174

REC 20 0.751 0.266 0.543 1.105 0.201

JPEG 30 0.740 0.258 0.535 1.054 0.194

REC 30 0.757 0.269 0.549 1.133 0.205

JPEG 40 0.748 0.263 0.542 1.087 0.200

REC 40 0.758 0.270 0.549 1.132 0.206

JPEG 60 0.755 0.267 0.546 1.117 0.204

REC 60 0.760 0.270 0.550 1.137 0.207

ORIGINAL 0.766 0.274 0.556 1.166 0.211

to predict the image quality in a finer manner than other weaker captioning

algorithms.

Fig. 6.6 shows the bottom-up captioning process performed on an image

used in the subjective evaluation. The left image shows the JPEG 10 ver-

sion, while the right one shows the GAN reconstruction. The images show
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the bounding boxes of the detected elements. In the first case the wrong

detections of indoor elements like “floor” and “wall” are likely reasons for

the wrong caption, as opposed to the correct recognition of a “white wave”

and “blue water” in the GAN-reconstructed image.

In order to understand better what metric could be used instead of human

evaluation we computed the correlation coefficient ρ between BRISQUE [83],

NIQE [85], CIDEr and MOS for all versions of the images. As shown in

Tab. 6.2, it turns out that using a fine-grained semantic task as image cap-

tioning is the best proxy (highest correlation) of real human judgment.

Fig. 6.4 show a captioning example from the COCO images used in the

subjective quality evaluation experiment. On the left we show a sample com-

pressed with JPEG with a QF=10, on the center we show the image restored

with [33] and on the right we show the original one. It can be observed that

the caption of the restored image is capable of describing correctly the image

content, on par with the caption obtained on the original image. Instead,

the caption of the highly compressed JPEG image is completely unrelated

to image content, probably due to object detection errors.
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Figure 6.5: CIDEr scores using [2] and [25] on compressed and restored

images for different QFs from MS-COCO.
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Table 6.2: Correlation coefficient between no-reference and captioning based

metrics and MOS on COCO.

Metric ρ

NIQE 0.84

BRISQUE 0.89

CIDEr 0.96

6.4.2 Comparison with MOS

In Fig. 6.3 top) are reported subjective evaluation results as MOS (Mean

Opinion Scores) as box plots, showing the quartiles of the scores (box),

while the whiskers show the rest of the distribution. The plots are made

for the original images, the images compressed with JPEG using a QF=10,

and the images restored with the GAN-based approach [33] from the heavily

compressed JPEG images. The figure shows that the GAN-based network

is able to produce images that are perceptually of much higher quality than

the images from which they are originated; the average MOS score for JPEG

images is 1.15, for the GAN-based approach is 2.56 and for the original

images it is 3.59. The relatively low MOS scores obtained also by the original

images are related to the fact that COCO images have a visual quality that

is much lower than that of dataset designed for image quality evaluation. To

give better insight on the distribution of MOS scores, Fig. 6.3 bottom) shows

the histograms of the MOS scores for the three types of images: orange

histogram for the original images, green for the JPEG compressed images

and blue for the restored images.

We further show that our language based approach correlates with per-

ceived quality using a IQA benchmark test on the LIVE dataset, which

contains the opinion scores for each image. However, no caption is pro-

vided in this dataset. For this reason, we consider the output sentences of

captioning approaches over the undistorted image as the ground truth in

order to calculate the language similarity measures. In Tab. 6.3 we show

the Pearson correlation score of different captioning metrics and other com-

mon full-reference quality assessment approaches. The experiment shows an

interesting behaviour of our approach in terms of correlation. In the first

place, we can observe that each captioning metric has a correlation index

that is higher or at least comparable with the other full-reference metrics.

In particular, METEOR and CIDEr perform better than the other metrics

independently of which captioning algorithm is used. Moreover, we observe
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Table 6.3: Pearson score, correlating scores with users’ MOS for differ-

ent captioning metrics and image based full-reference approaches on LIVE.

CIDEr obtains a superior score with respect to image based methods.

Metric Ours w/ [25] Ours w/ [2]

BLEU 1 0.873 0.838

METEOR 0.900 0.846

SPICE 0.895 0.844

ROUGE 0.861 0.832

CIDEr 0.901 0.854

PSNR 0.857

SSIM 0.893

LPIPS 0.859

that the correlation metric significantly improves if we employ a more per-

forming captioner. In this particular case, the visual features used by the

two captioning techniques are exactly the same, the main difference lies in

the overall language generation pipeline of the approaches. Hence, we argue

that language is effectively useful for quality assessment, and the more a cap-

tioning algorithm is capable to provide detailed and meaningful captions the

better we could use the generated sentences to formulate good predictions

about the quality of images.

6.4.3 Comparison with Full-Reference Metrics

A common setting that is used to evaluate image enhancement algorithms

is full reference image quality assessment, where several image similarity

metrics are used to measure how much a restored version differs with respect

to the uncorrupted original image. This kind of metrics, measuring pixel-

wise value differences are likely to favor MSE optimized networks which

are usually prone to obtain blurry and lowly detailed images. In Tab. 6.4 we

report results on COCO for full-reference indexes. In this setup, we compress

the original images at different quality factors and then we restore them

with a QF specific artifact removal GAN. We use the uncompressed image

generated caption as GT, as in Tab. 6.3. The results show that, for restored

images, PSNR accounts for a slight improvement while SSIM indexes lower

than the compressed counterparts. This is an expected outcome, as in [33]

it is shown that state of the art results on PSNR can be obtained only

when MSE is optimized and on SSIM if the metric is optimized directly.
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Table 6.4: Evaluation using no-reference and full-reference metrics on MS-

COCO. NIQE and BRISQUE rate better GAN images than the ORIGINAL.

SSIM always rate restored images worse than compressed. PSNR shows

negligible improvement.

QUALITY NIQE↓ BRISQUE↓ Ours w/ [25] ↑ PSNR ↑ SSIM↑ LPIPS↓
JPEG 10 6.689 52.67 0.542 25.45 0.721 0.305

GAN 10 3.488 17.93 1.118 25.70 0.718 0.144

JPEG 20 5.183 43.99 0.956 27.46 0.796 0.187

GAN 20 3.884 17.85 1.289 27.60 0.784 0.085

JPEG 30 4.474 37.72 1.165 28.61 0.831 0.134

GAN 30 3.601 18.32 1.370 28.81 0.819 0.060

JPEG 40 4.011 33.61 1.260 29.41 0.852 0.105

GAN 40 3.680 18.68 1.424 29.44 0.836 0.048

JPEG 60 3.588 28.15 1.366 30.71 0.880 0.067

GAN 60 3.885 19.45 1.482 30.61 0.862 0.032

ORIGINAL 3.656 21.79 - - - -

Nonetheless, as can be seen in Fig. 6.2, GAN enhanced images are more

pleasant to the human eye, therefore we should not rely just on PSNR and

SSIM for GAN restored images. Our approach, using [25], is in line with

LPIPS [151]. Unfortunately, LPIPS, as shown in Tab. 6.3 has low correlation

with scores determined by human perceived quality.

6.4.4 Comparison with No-Reference Metrics

In certain cases it is not possible to use full reference metrics quality metrics,

e.g. if there’s no available original image. These kind of metrics typically

evaluate the “naturalness” of the image being analyzed. In the same setup we

used previously, we perform experiments using NIQE and BRISQUE which

are two popular no-reference metrics for images. We report in Tab. 6.4 the

results.

Interestingly, these metrics tend to favor GAN restored images instead

of the original uncompressed ones. Most surprisingly, NIQE and BRISQUE

obtain better results when we reconstruct the most degraded version of im-

ages (QF 10-20), but these values increase as we reconstruct less degraded

images. We believe that BRISQUE and NIQE favor crisper images with high

frequency patterns which are distinctive of GAN based image enhancement.
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A couple of people sitting next to a

Christmas tree.

A man riding a wave on a surfboard in

the ocean.

Figure 6.6: Bottom-Up detection process of captioning on two images: left)

JPEG compressed; right) GAN reconstruction. Note that several mistaken

detections on the left image are avoided in the right one. In particular

on the left “surfboard” is missed and “white floor” and “blue wall” are

wrongly detected. This two indoor details are the one that likely mislead

the captioning.

6.5 Conclusion

In this work we propose a new idea to evaluate image enhancement methods.

Existing metrics based on the comparison of the restored image with an

undistorted version may give counter-intuitive results. On the other hand

the use of naturalness based scores may in certain cases rank restored images

higher than original ones.

We have shown that instead of using signal based metrics, semantic com-

puter vision tasks can be used to evaluate results of image enhancement

methods. Our claim is that a fine grained semantic computer vision task

can be a great proxy for human level image judgement.

We show that employing algorithms mapping input images to a finer

output label space, such as captioning, leads to more discriminative metrics.

Future work will regard the evaluation of captions provided by humans over

compressed and restored images. Moreover, we will take into account the

accuracy of captions as a further metric to optimize.



Chapter 7

LANBIQUE: LANguage-based

Blind Image QUality Evaluation

Image quality assessment is often performed with deep networks

which are fine-tuned to regress a human provided quality score

of a given image. Usually, these approaches may lack gener-

alization capabilities and, while being highly precise on similar

image distribution, it may yield lower correlation on unseen dis-

tortions. In particular they show poor performances whereas im-

ages corrupted by noise, blur or compressed have been restored

by generative models. As a matter of fact, evaluation of these

generative models is often performed providing anecdotal results

to the reader. In the case of image enhancement and restora-

tion, reference images are usually available. Nonetheless, using

signal based metrics often leads to counterintuitive results: highly

natural crisp images may obtain worse scores than blurry ones.

On the other hand, blind reference image assessment may rank

images reconstructed with GANs higher than the original undis-

torted images. To avoid time consuming human based image as-

sessment, semantic computer vision tasks may be exploited in-

stead. In this chapter we advocate the use of language generation

tasks to evaluate the quality of restored images. We refer to our

assessment approach as LANguage-based Blind Image QUality

Evaluation (LANBIQUE). We show experimentally that image

captioning, used as a downstream task, may serve as a method to

87
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score image quality, independently of the distortion process that

affects the data. Captioning scores are better aligned with human

rankings with respect to classic signal based or No-Reference im-

age quality metrics. We show insights on how the corruption, by

artifacts, of local image structure may steer image captions in the

wrong direction. 1

7.1 Introduction

In Chapter 6 we introduce a novel approach about Image Quality Assessment

based on Image Captioning. This method works in a Full-Reference Scenario

where high quality reference image is available to evaluate the quality of its

corresponding distorted version. In real scenarios reference image is not

available. In this work, we focus on this aspect introducing a new method.

We refer to the new approach as LANguage-based Blind Image QUality

Evaluation (LANBIQUE). Fig. 7.2 shows the gist of the proposed approach:

the effects of image compression lead to a wrong captioning of the image

on the left with respect to the original high quality image on the right;

captioning an image that has been obtained enhancing the compressed image

with a GAN-based approach (center) leads to a caption that is very similar

to the caption of the high quality image. The main contributions of our work

are the following:

• LANBIQUE show consistency across different captioning algorithms [2,

25] and language similarity metrics. Interestingly, improving the lan-

guage generation model also improves the correlation between our score

and MOS.

• Experiments shows that LANBIQUE does not suffer from drawbacks

of common Full-Reference and No-Reference metrics when evaluating

GAN enhanced images and keeps a high accordance with human scores

for compressed and for images restored via deep learning.

In this extended version, we propose the following improvement with

respect to the work described in Chapter 6.

• We show that LANBIQUE can be used also for distortions different

from JPEG compression.

1The work described in this chapter was published in ACM Transactions on Multimedia

Computing, Communications, and Applications (TOMM), 2022.



7.1 Introduction 89

Original GAN MSE JPEG20

Figure 7.1: Qualitative comparison of reconstruction methods: GAN pro-

duces images more pleasant for the human eye. Best viewed in color and

zoomed on computer screen. GAN: GAN-based restoration using perceptual

loss. MSE: CNN-based restoration using MSE loss; JPEG 20: JPEG com-

pression with quality factor 20.

• We tested LANBIQUE on the larger and more diverse PieAPP dataset,

showing strong results against learning and non-learning based meth-

ods.

• Finally, the basic version of LANBIQUE is extended in order to make

it possible to work also without a reference image. To get to this goal

we employ a blind restoration GAN, which can restore images without

the knowledge nor the intensity of the distortion, to recover a pseudo-

reference image.

The rest of this chapter is organized as follows: in Section 2 we describe

the related works. In Section 3 we briefly discuss about prior GAN-based

image restoration approaches. In Section 4 we describe LANBIQUE in de-

tail. In Section 5 we show experimental results of LANBIQUE on different

settings and datasets. Finally, in Section 6 we draw the conclusions about

our approach.
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A statue of a woman 

wearing a christmas tie

A brown and white dog 

wearing a tie

A brown and white dog

wearing a red tie

Figure 7.2: Caption generated on Compressed, Reconstructed and Original

image (left to right) using [2]. Sample ground truth caption: “A brown and

white dog wearing a neck tie”. Best viewed in color on computer screen.

7.2 Image Restoration

Even if this work does not propose novel image restoration approaches, to

make the chapter self-contained here we formalize the image restoration or

enhancement task. The main motivation that lead us to work on an al-

ternative to image quality assessment is the poor performance of standard

IQA methods on images that have been enhanced by GANs, e.g. for denois-

ing [55,125], deblurring [124,148] or compression artefact removal [33,80,126].

Furthermore, we leverage image restoration as a tool to extend the capabil-

ities of LANBIQUE in order to evaluate those images that lack an uncor-

rupted high quality counterpart, extending our approach to the No-Reference

scenario, as show in Sect.7.3.3.

Problem formulation. Given some image processing algorithm D, such

as JPEG image compression, a distorted image is defined as ILQ = D(IHQ),

where IHQ is a high quality image undergoing the distortion process, image

enhancement aims at finding a restored version of the image IR ≈ G(ILQ).

In this work we use two image enhancement networks, one that is specific for

JPEG artifacts [33], and a more generic approach, which can work without

prior knowledge of the degradation [133].
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In [33] Galteri et al. try to learn a generative model G which, condi-

tioned on the input distorted images, is optimized to invert the distortion

process D so that G ≈ D−1. Their generator architecture is loosely inspired

by [42]. They employ LeakyReLU activations and 15 residual layers in a fully

convolutional network. The final image is obtained by a nearest neighbor

upsampling of a convolutional feature map and a following stride-one convo-

lutional layer to avoid grid-like patterns possibly stemming from transposed

convolutions.

The set of weights ψ of the D network are learned by minimizing:

Ld =− log (Dψ (IHQ|ILQ))− log (1−Dψ (IR|ILQ)) ,

where IHQ is the uncompressed or high-quality image, IR is the restored

image created by the generator and ILQ is a compressed image.

The generator is trained combining a perceptual loss with the adversarial

loss:

LAR = LP + λLadv, (7.1)

where Ladv is the standard adversarial loss:

Ladv = − log (Dψ (IR|ILQ)) (7.2)

that rewards solutions that are able to mislead the discriminator, and Lp is

a perceptual loss based on the distance between images computed projecting

IHQ and IR on a feature space by some differentiable function ϕ and taking

the Euclidean distance between the two feature representations:

LP =
1

WfHf

Wf∑
x=1

Hf∑
y=1

(
ϕ (IHQ)x,y − ϕ (IR)x,y

)2

. (7.3)

They employ a generator inspired by [42], with a residual architecture us-

ing LeakyReLU activations, Batch-Normalization [47] and Nearest-neighbour

upsampling layer is used to recover original size [87], and a fully convolutional

Discriminator. In [33] it has been shown that using a GAN approach instead

of direct training of the network for image enhancement, results in improved

subjective perceptual similarity to original images and, more importantly, in

much improved object detection performance. Qualitative examples of GAN

and direct training method are shown in Fig. 7.1.

Real-ESRGAN [133] is a more recent approach, that has the advantage of

not requiring to know the type of distortion nor the intensity of it in advance
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Figure 7.3: Overview of LANBIQUE. An image is first processed by an

object detector, each box feature is then fed to a captioning model [2, 25];

then a metric for captioning evaluation is used to score the quality of the

image. In this example a highly JPEG corrupted images yields a low CIDEr

score of 0.631.

to restore an image. In [133] Wang et al. introduce a high-order degradation

modeling process to better simulate complex real-world degradations. Dif-

ferently from [33] they use a U-Net discriminator with spectral normalization

to increase discriminator capability and stabilize the training dynamics. As

in ESRGAN [134] the generator is built by several residual-in-residual dense

blocks (RRDB).

7.3 Evaluation Protocol

Classic Full-Reference image quality evaluation methods rely on the similar-

ity between an image which has been processed by some algorithm D and

a reference undistorted image. Considering the use case of image enhance-

ment of an image that was compressed, GANs are a good solution since they

are great at filling in high frequency realistic details in image enhancement

tasks; in this case the resulting enhanced image is compared to the refer-

ence. Unfortunately, when using classical MSE based Full-Reference metrics

such as SSIM and PSNR GAN restored images yield lower performance as

can be seen in Tab. 7.2, although they appear as “natural” and pleasant

to human evaluators, as also seen in examples of Fig.7.1. For this reason,

in [33, 34] semantic tasks are used to evaluate the quality of restored im-

ages. Measuring the performance of a semantic task such as detection on
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restored images gives us an understanding of the “correctness” of output

images. Given some semantic task (e.g. object detection), a corresponding

evaluation metric (e.g. mAP) and a dataset, the evaluation protocol consists

in measuring the variation of such metric on different versions of the original

image. Interestingly, this evaluation methodology gives hints on what details

are better recovered by GANs.

In certain cases, detection is a task describing scene semantics in a very

approximate fashion; usually detectors do not degrade for object classes that

are clearly identifiable by their shape since even high distortions in the image

are not able to hide such features. The gain in image quality provided by

GANs, according to object detection based evaluation, resides in producing

high quality textures for deformable objects (e.g. cats, dogs, etc).

In this chapter we advocate the use of a language generation task for eval-

uating image enhancement. The idea is that captioning maps the semantics

of images into a much finer and rich label space represented by short sen-

tences. To be able to obtain a correct caption from an image many details

must be identifiable.

7.3.1 Evaluation with Reference Captions

We devise the following evaluation protocol for image enhancement. We

pick an image captioning algorithm A. Image captioning is the task of

generating a sequence of words, possibly grammatically and semantically

correct, describing the image in detail. Given a set of reference captions S

and the caption generated from an input image A(I), we want to measure

their similarity with a language metric D:

LANBIQUE(D,A; I, S) = D(A(I), S) (7.4)

We look at the performance of a captioning algorithm A on different versions

of a dataset (e.g. COCO): compressed, original and restored. The pipeline

of this evaluation approach is depicted in Fig. 7.3.

In particular, we analyze results from two highly performing captioning

methods [2,25] which combine a bottom-up model of visual entities and their

attributes in the scene with a language decoding pipeline. Both methods

are trained over several steps incorporating semantic knowledge at different

levels of granularity. In particular, the bottom-up region generator is based

on Faster R-CNN [100] which is based on a feature extractor pre-trained

on ImageNet [26] and then fine-tuned to predict object entities and their
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attributes using the Visual Genome dataset [61]. In [2], further knowledge is

incorporated into the model by training the caption generation model using

a first LSTM as a top-down visual attention model and a second level LSTM

as a language model. Meshed memory transformers [25] share the exact

same visual backbone as [2] but exploit a stack of memory-augmented visual

encoding layers and a stack of decoding layers to generate caption tokens.

No matter how captioning models are optimized, our results show that the

behavior of the captioning model for image quality assessment is consistent

over several metrics as shown in Tab. 7.1.

Captioning is evaluated with several specialized metrics measuring the

word-by-word overlap between a generated sentence and the ground truth

[89], in certain cases including the ordering of words [5], considering n-grams

and not just words [70,129] and the semantic propositional content (SPICE

[1]). These metrics evaluate the similarity with respect to a set of reference

captions S, that is usually composed of five references.

7.3.2 Evaluation without Reference Captions

Unfortunately, in most of the cases reference captions are not available as

they often must be collected with great expense of effort and resources; in

fact, standard datasets used for image quality evaluation do not include

captions. However, it is possible to evaluate any kind of test image with

our language based approach by modifying the pipeline. The idea is that

the reference image is enough high quality to provide a valid caption for the

evaluation of LANBIQUE. We caption the reference image IHQ using the

same captioner A we use for the test image I, then we maintain the same

procedure we previously described:

LANBIQUE-NC(D,A; I, IHQ) = D(A(I),A(IHQ)). (7.5)

This evaluation approach is represented in Fig. 7.4. Since we change the

evaluation pipeline with respect to the previous case, we argue that there

may be a drawback with respect to the original version of the approach. As

a matter of fact, modern captioners provide just one description per image

and this means that the computation of D metric is done just between two

sentences. However, this does not affect the performance of our approach

significantly, provided that the A generates high quality captions.
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Language Model

Language 
Metric 0.932Blind Image 

Enhancement Language Model Pseudo Ground Truth Caption

Predicted Caption

Input Image

Pseudo
Reference

Figure 7.4: LANBIQUE without a reference caption available. The refer-

ence image is captioned as well by the same language model to generate a

description of the image. This output is used as pseudo ground truth caption

and compared to the predicted caption.

7.3.3 No-Reference Evaluation

In this section we show how our approach can be extended to work in a No-

Reference setting. In many occasions we may not have a high quality image

available to be compared with the one to be tested. For this reason, we

modify our language based pipeline by adding an additional blind restoration

module R. We assume that the images to be tested are corrupted by one or a

combination of unknown distortions that are responsible of a global reduction

of the visual quality. In this extended model, our aim is to restore corrupted

input image I in order to use the enhanced version as the reference image.

After this operation is completed, we are able to feed both the corrupted

image and the restored one to the same captioning module, hence we generate

their text descriptions and finally we calculate the ultimate score based on

some language metric D:

LANBIQUE-NR(D,A,R; I) = D(A(I),A(R(I))). (7.6)

This No-Reference approach is depicted in Fig.7.5

Typically, image distortions are not known a priori so it may be a difficult

task to train many networks capable of handling all the possible combinations

of corruption processes and then select the best one for a specific restoration.

For this reason, we choose to train a single network following a degradation

model, so that it can restore most types of distorted images and recover their

original quality as best as possible. In order to ensure a good output qual-

ity, we employed Real-ESRGAN [133] as the restoration module. We have
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Language Model

Language 
Metric 0.752Language Model Pseudo Ground Truth Caption

Predicted Caption

Input Image

Reference
Image

Figure 7.5: LANBIQUE in the No-Reference setting. A blind image en-

hancement method is used to recover a high quality version of the image,

then a captioning model is applied to both images. Input image predicted

caption is then compared with the pseudo ground truth caption obtained

from the restored image.

modified the original model by adding JPEG2000 in the training procedure,

then we have fine-tuned a pre-trained version of such network with the new

introduced distortion.

In most of the cases, recovered images represent a solid reference for

our evaluation model, as they are very close to real images from the point

of view of human perception. In this setup, our LANBIQUE-NR assigns

high scores to slightly distorted images, as their reconstruction is likely very

perceptually close, and the captions generated are pretty close. On the other

hand, highly distorted images are transformed into better quality data that

differ significantly from input. In this case, the captions between the two

versions may differ much more, thus leading to lower scores of language

metrics.

7.3.4 Subjective Evaluation

In this evaluation we assess how images obtained with the selected GAN

based restoration method [33] are perceived by a human viewer, evaluating in

particular the preservation of details and overall quality of an image. In total,

16 viewers have participated to the test, a number that is considered enough

for subjective image quality evaluation tests [137]; no viewer was familiar

with image quality evaluation or the approaches proposed in this work. A

Single-Stimulus Absolute Category Rating (ACR) experimental setup has
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been developed using avrateNG2, a tool designed to perform subjective image

and video quality evaluations. We asked participants to evaluate images’

quality using the standard 5-values ACR scale (1=bad, up to 5=excellent).

A set of 20 images is chosen from the COCO dataset, selecting for each

image three versions: the original image, a JPEG compressed version with

QF=10 (high compression quality factor) and the restored version of the

JPEG compressed image with QF=10 compressed image; this results in a

set of 60 images. Each image was shown for 5 seconds, preceded and followed

by a grey image, also shown for 5 seconds. Considering our estimation of

test completion time, we chose this amount of images to keep each session

under 30 minutes as recommended by ITU-R BT.500-13 [49].

To select this small sample of 20 images to be as representative as pos-

sible of the whole dataset D for the captioning performance we operate the

following procedure. Let µ∗(v) and σ2∗(v) be the mean and variance of a

captioning metric score (in this case we used CIDEr) for a given version v of

the image i. We iteratively extract 20 random image ids, yielding set D∗ out

of the whole 5,000 testing set from the Karpathy split, without repetition.

We attempt to minimize:

eµ =
1

|D∗|
∑
i∈D∗

∑
v∈Vi

|µ∗(v)− µ| (7.7)

and

eσ2 =
1

|D∗|
∑
i∈D∗

∑
v∈Vi

|σ2∗(v)− σ2| (7.8)

by iterative resampling images until we find eµ and eσ2 such that eµ ≤ 10−3

and eσ2 ≤ 10−4. Vi is the set of different versions of an image i in the smaller

dataset D∗, namely: JPEG compressed at QF=10 (referred to as JPEG 10

in the following), its GAN reconstruction and the original uncompressed

image; and µ and σ2 are the mean and variance of the considered captioning

metric computed on the whole set of images D. The selected images contain

different subjects, such as people, animals, man-made objects, nature scenes,

etc. Both the order of presentation of the tests for each viewer, and the order

of appearance of the images were randomized.

2https://github.com/Telecommunication-Telemedia-Assessment/avrateNG

https://github.com/Telecommunication-Telemedia-Assessment/avrateNG
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7.4 Experimental Results

7.4.1 Results on JPEG Artefacts

First, we study in detail the behavior of LANBIQUE on a single distortion.

This way we can easily control the amount of image corruption and evaluate

the behavior of our metric on GAN restored images.

Results with reference captions. In order to use a dataset of images

with a set of associated captions, we selected the 5,000 images testing set

from the Karpathy split of COCO dataset [19]. The images have then been

compressed at different JPEG Quality Factors (QF), and then they have been

reconstructed using the GAN approach of [33]. In Tab. 7.1 we report results

of LANBIQUE using various captioning metrics D. Interestingly, all metrics

show that captions over reconstructed images (REC rows) are better with

respect to caption computed over compressed images (JPEG rows). This

shows that image details that are compromised by the strong compression

induce errors in the captioning algorithm. On the other hand, the GAN

approach is able to recover an image which is not only pleasant to the human

eye but recovers details which are also relevant to a semantic algorithm. In

Fig. 7.2 we show the difference of captions generated by [2] over original,

compressed and restored images. A human may likely succeed in producing

an almost correct caption for highly compressed images, nonetheless state-

of-the art algorithms are likely to make extreme mistakes which are instead

not present on reconstructed images.

In Fig. 7.6 we show the different performance of captioning algorithms

in terms of CIDEr measure on the same split of test of compressed and re-

stored images, considering different quality factors of JPEG. The captioner

proposed in [25] outperforms [2] as expected, but interestingly we may ob-

serve that the range of CIDEr values of [25] is significantly higher than [2].

We argue that this could be considered a strong feature of our evaluation

approach, as a wider range of value may imply that a good captioner is able

to predict the image quality in a finer manner than other weaker captioning

algorithms.

Fig. 7.7 shows the bottom-up captioning process performed on an image

used in the subjective evaluation. The left image shows the JPEG 10 ver-

sion, while the right one shows the GAN reconstruction. The images show

the bounding boxes of the detected elements. In the first case the wrong
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Table 7.1: Evaluation of image restoration over compression artifacts with

GAN using LANBIQUE with different captioning metrics (best results high-

lighted in bold). For each metric we denote higher(↑) or lower(↓) is better.

JPEG q indicates a JPEG compressed image with QF = q (e.g. 10), while

(REC q) indicates the corresponding reconstruction using [33]. Captions

created from reconstructed images obtain a better score for every metric.

QUALITY BLEU 1↑ METEOR↑ ROUGE↑ CIDEr↑ SPICE↑
JPEG 10 0.589 0.173 0.427 0.496 0.103

REC 10 0.730 0.253 0.527 1.032 0.189

JPEG 20 0.709 0.241 0.513 0.937 0.174

REC 20 0.751 0.266 0.543 1.105 0.201

JPEG 30 0.740 0.258 0.535 1.054 0.194

REC 30 0.757 0.269 0.549 1.133 0.205

JPEG 40 0.748 0.263 0.542 1.087 0.200

REC 40 0.758 0.270 0.549 1.132 0.206

JPEG 60 0.755 0.267 0.546 1.117 0.204

REC 60 0.760 0.270 0.550 1.137 0.207

ORIGINAL 0.766 0.274 0.556 1.166 0.211

detections of indoor elements like “floor” and “wall” are likely reasons for

the wrong caption, as opposed to the correct recognition of a “white wave”

and “blue water” in the GAN-reconstructed image.

Results without reference captions. A common setting that is used

to evaluate image enhancement algorithms is Full-Reference image quality

assessment, where several image similarity metrics are used to measure how

much a restored version differs with respect to the uncorrupted original im-

age. This kind of metrics, measuring pixel-wise value differences are likely

to favor MSE optimized networks which are usually prone to obtain blurry

and lowly detailed images.

In certain cases, it is not possible to use Full-Reference quality metrics,

e.g. if there’s no available original image. These kind of metrics typically

evaluate the “naturalness” of the image being analyzed. In the same setup

we used previously, we perform experiments using NIQE and BRISQUE

which are two popular No-Reference metrics for images. Interestingly, these

metrics tend to favor GAN restored images instead of the original uncom-

pressed ones. Most surprisingly, NIQE and BRISQUE obtain better results
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Figure 7.6: CIDEr scores using [2] (purple) and [25] (yellow) on compressed

and restored images for different QFs from MS-COCO.

when we reconstruct the most degraded version of images (QF 10-20), but

these values increase as we reconstruct less degraded images. We believe

that BRISQUE and NIQE favor crisper images with high frequency pat-

terns which are distinctive of GAN based image enhancement and they are

typically stronger when reconstructing heavily distorted images.

In Tab. 7.2 we report results on COCO for Full-Reference and No-Reference

indexes. In this setup, we compress the original images at different QFs and

then we restore them with a QF specific artifact removal GAN. We use the

uncompressed image generated caption as ground truth, as in Tab. 7.3. The

results show that, for restored images, PSNR accounts for a slight improve-

ment while SSIM indexes lower than the compressed counterparts. This is an

expected outcome, as in [33] it is shown that state of the art results on PSNR

can be obtained only when MSE is optimized and on SSIM if the metric is

optimized directly. Nonetheless, as can be seen in Fig. 7.1, GAN enhanced

images are more pleasant to the human eye, therefore we should not rely just

on PSNR and SSIM for GAN restored images. LANBIQUE, using [25], is in
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A couple of people sitting next to a

Christmas tree.

A man riding a wave on a surfboard in

the ocean.

Figure 7.7: Bottom-Up detection process of captioning on two images: left)

JPEG compressed; right) GAN reconstruction. Note that several mistaken

detections on the left image are avoided in the right one. In particular

on the left “surfboard” is missed and “white floor” and “blue wall” are

wrongly detected. These two indoor details are the one that likely mislead

the captioning.

line with LPIPS [151]. Unfortunately, LPIPS, as shown in Tab. 7.3 has low

correlation with scores determined by human perceived quality.

Correlation with Mean Opinion Score. In Fig. 7.8 left) are reported

subjective evaluation results as Mean Opinion Scores (MOS) as box plots,

showing the quartiles of the scores (box), while the whiskers show the rest

of the distribution. The plots are made for the original images, the images

compressed with JPEG using a QF=10, and the images restored with the

GAN-based approach [33] from the heavily compressed JPEG images. The

figure shows that the GAN-based network is able to produce images that are

perceptually of much higher quality than the images from which they are

originated; the average MOS score for JPEG images is 1.15, for the GAN-

based approach is 2.56 and for the original images it is 3.59. The relatively

low MOS scores obtained also by the original images are related to the fact

that COCO images have a visual quality that is much lower than that of

dataset designed for image quality evaluation. To give better insight on the

distribution of MOS scores, Fig. 7.8 right) shows the histograms of the MOS

scores for the three types of images: orange histogram for the original images,

green for the JPEG compressed images and blue for the restored images.

We further show that our language based approach correlates with per-
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Table 7.2: Evaluation using No-Reference and Full-Reference metrics on MS-

COCO. For each metric we denote higher(↑) or lower(↓) is better. JPEG q

indicates a JPEG compressed image with QF = q (e.g. 10), while (REC q)

indicates the corresponding reconstruction using [33]. NIQE and BRISQUE

rate better GAN images than the ORIGINAL. SSIM always rate restored

images worse than compressed. PSNR shows negligible improvement. [25]

and CIDEr have been used by LANBIQUE-NC respectively as language

model and language metric.

QUALITY NIQE↓ BRISQUE↓ PSNR ↑ SSIM↑ LPIPS↓ LANBIQUE-NC ↑
JPEG 10 6.689 52.67 25.45 0.721 0.305 0.542

REC 10 3.488 17.93 25.70 0.718 0.144 1.118

JPEG 20 5.183 43.99 27.46 0.796 0.187 0.956

REC 20 3.884 17.85 27.60 0.784 0.085 1.289

JPEG 30 4.474 37.72 28.61 0.831 0.134 1.165

REC 30 3.601 18.32 28.81 0.819 0.060 1.370

JPEG 40 4.011 33.61 29.41 0.852 0.105 1.260

REC 40 3.680 18.68 29.44 0.836 0.048 1.424

JPEG 60 3.588 28.15 30.71 0.880 0.067 1.366

REC 60 3.885 19.45 30.61 0.862 0.032 1.482

ORIGINAL 3.656 21.79 - - - -

JPEG

Original

GAN

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5MOS

12
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Figure 7.8: Left) Subjective image quality evaluation of original COCO im-

ages (orange), heavily compressed JPEG images (blue) and their restored

version obtained with the GAN-based approach (green). Restored images

are perceived as having a better quality than their compressed versions.

Right) Histograms of MOS scores of the three types of images.
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ceived quality using a IQA benchmark test on the LIVE dataset [111] that

consists of 29 high resolution images compressed at different JPEG quali-

ties for a total of 204 images. For each LIVE image a set of user scores is

provided indicating the perceived quality of the image. However, no caption

is provided in this dataset. For this reason, we consider the output sen-

tences of captioning approaches over the undistorted image as the ground

truth in order to calculate the language similarity measures, following the

LANBIQUE-NC protocol presented in Sect. 7.3.2. In Tab. 7.3 we show the

Pearson correlation score of different captioning metrics and other common

Full-Reference quality assessment approaches. The experiment shows an

interesting behaviour of our approach in terms of correlation. In the first

place, we can observe that each captioning metric has a correlation index

that is higher or at least comparable with the other Full-Reference metrics.

In particular, METEOR and CIDEr perform better than the other met-

rics independently of which captioning algorithm is used. In the following

experiments LANBIQUE, LANBIQUE-NC and LANBIQUE-NR have been

computed using CIDEr metric. Moreover, we observe that the correlation

metric significantly improves if we employ a more performing captioner. In

this case, the visual features used by the two captioning techniques are ex-

actly the same, the main difference lies in the overall language generation

pipeline of the approaches. Hence, we argue that language is effectively use-

ful for quality assessment, and the more a captioning algorithm is capable of

providing detailed and meaningful captions the better we could use the gen-

erated sentences to formulate good predictions about the quality of images.

In order to better understand what metric could be used instead of human

evaluation, we computed the correlation coefficient

ρ =

∑
i∈D(xi − x)(yi − y)√∑

i∈D(xi − x)2
∑
i∈D(yi − y)2

(7.9)

between BRISQUE [83], NIQE [85], the proposed LANBIQUE and MOS for

all versions of the images. As shown in Tab. 7.4, it turns out that using

a fine-grained semantic task as image captioning is the best proxy (highest

correlation) of real human judgment.

Fig. 7.9 shows a captioning example from the COCO images used in the

subjective quality evaluation experiment. On the left we show a sample com-

pressed with JPEG with a QF=10, on the center we show the image restored

with [33] and on the right we show the original one. It can be observed that
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JPEG 10 GAN Original

A couple of people

sitting next to a

christmas tree.

A man riding a

wave on a surfboard

in the ocean.

A man riding a

wave on a surfboard

in the ocean.

A teddy bear sitting

next to a car.

A dog sitting in the

front of a car.

A dog is sitting in a

car seat.

A man riding a

skateboard on a

skate board.

A man riding a

skateboard on the

street.

A man riding a

skateboard on a

sidewalk.

Figure 7.9: Examples of captions for COCO images used in the subjective

quality evaluation. Left column) JPEG compressed with QF=10; Center col-

umn) GAN-based restoration from JPEG compressed images with QF=10;

right column) original images.
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Table 7.3: Pearson score, correlating scores with users’ MOS for differ-

ent captioning metrics and image based Full-Reference approaches on LIVE

dataset. CIDEr obtains a superior score with respect to image based meth-

ods.

Metric LANBIQUE-NC w/ [25] LANBIQUE-NC w/ [2]

BLEU 1 0.873 0.838

METEOR 0.900 0.846

SPICE 0.895 0.844

ROUGE 0.861 0.832

CIDEr 0.901 0.854

PSNR 0.857

SSIM 0.893

LPIPS 0.859

Table 7.4: Pearson’s Correlation coefficient, ρ(X,Y ) between No-Reference

and captioning based metrics (xi ∈ X) and MOS (yi ∈ Y ), as defined in

Eq. 7.9 on for a sample set D sampled from COCO.

Metric NIQE BRISQUE LANBIQUE

ρ ↑ 0.84 0.89 0.96

the caption of the restored image is capable of describing correctly the image

content, on par with the caption obtained on the original image. Instead,

the caption of the highly compressed JPEG image is completely unrelated

to image content, probably due to object detection errors.

7.4.2 Results on all distortions

We further show the performance of our approach in full reference image

quality assessment on other types of distortion. In this experiment we keep

using LIVE dataset, as it contains images corrupted with other processes,

such as Gaussian blur, fast-fading, JPEG2000 and white noise, but we add

also a recent large scale PieAPP dataset.
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Results on LIVE

We repeat the same experiment done for JPEG images on LIVE dataset,

firstly considering each distortion separately and then all the distortions to-

gether. In Tab. 7.5 we show the Pearson score for LANBIQUE and several

Full-Reference approaches. As we can see, our approach seems to underper-

form on each distortion except for JPEG, while SSIM and LPIPS are consis-

tent despite the diversity of decaying processes. This is somehow expected,

as blur and white noise tend not to harm detection significantly unless they

are used with high intensity. Fast fading on the other hand, is to be con-

sidered as local distortion. For this reason, objects may not be corrupted at

all, thus leading to unchanged detection performances and consequently low

correlation scores for our assessment approach. As expected LANBIQUE-

NR obtains a lower score than LANBIQUE-NC: in fact LANBIQUE-NC is

an upper bound for the No-Reference version since this latter protocol would

require a perfect blind restoration method capable of obtaining the reference

images to obtain the same score.

Table 7.5: Pearson’s correlation of our approach (Full-Reference and No-

Reference) on all distortions present on LIVE compared with other Full-

Reference metrics. For the No-Reference approach (LAMBIQUE-NR) fast

fading score is not reported since actual State-Of-The-Art restoration ap-

proaches perform poorly on this distortion.

GBLUR FASTFADING JP2K JPEG WN TOTAL

PSNR 0.767 0.763 0.83 0.857 0.732 0.752

SSIM 0.886 0.845 0.89 0.893 0.951 0.789

LPIPS 0.951 0.836 0.885 0.859 0.910 0.785

LANBIQUE-NC 0.786 0.651 0.787 0.901 0.735 0.792

LANBIQUE-NR 0.676 - 0.679 0.796 0.667 0.701

However, we experience a totally different scenario when the distortions

are evaluated all together. We can see that for each IQA approach we have

tested, there is a significant drop in the correlation coefficient with respect to

single distortion experiments. We argue this is due to the fact that the scores

for single distortion types are well correlated but considering the scores for

multiple distortion classes there is a bigger discrepancy between them that

leads to a decrease of the total score. On the other hand, our approach does

not suffer from this phenomenon, as the performance we measure in these
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conditions is consistent, if not higher, with single distortions. Moreover, our

language based approach slightly overperforms the other measures on the

same data and at the same conditions.

Results on PieAPP

Finally, we use a more recent large scale dataset [94]. Prashnani et al. col-

lected a very large dataset increasing the number of distortions with respect

to existing IQA benchmarks. Moreover, they designed the testing procedure

differently. Specifically, instead of collecting multiple subjective scores from

a set of users, they rely on the fact that for humans is easier to tell which

of two distorted images IA, IB is closer to a reference undistorted one IR.

Then images are labelled by the percentage of users that preferred an IA
with respect to IB . If there is an even split between these two populations,

it means that both images are equally different from the reference IR. Start-

ing from 200 reference images and combining a diverse set of 75 distortions,

with a total of 44 distortions in the training set, and 31 in the test set which

are distinct from the training set, the PieAPP dataset accounts for a total

of 77,280 pairwise comparisons for training (67,200 inter-type and 10,080

intra-type). In Tab. 7.6 we report results in term of Kendall’s Rank Correla-

tion Coefficient: KRCC = 1/
(
n
2

)∑
i<j sign(xi − xj)sign(yi − yj); Pearson’s

Linear Correlation Coefficient (PLCC or ρ(X,Y ) as defined in Eq. 7.9) and

Spearman’s Rank Correlation (SRCC), ρ(R(X), R(Y ) where R(X) are the

ranks of sample X.

Interestingly, both image and type of distortions do not overlap between

training and testing. In Tab. 7.6, we show how our LANBIQUE-NC approach

(using CIDEr and [25]) ranks with respect to non-learning (top) and learning

based (bottom) approaches. We refer to non-learning methods when the al-

gorithm is not relying in any way on any kind of supervision for the IQA task.

Our approach exploits learned deep networks and features but those are not

the result of training on PieAPP or on any other IQA dataset. Instead, the

lower portion of the Table reports methods [12,17,56,77], that are specifically

trained to score image similarity. Very interestingly our LANBIQUE-NC ap-

proach is consistently better than any non-learned image similarity metric

and outperforms all both [12] and [94], with [12] being a close comparison.
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Table 7.6: Evaluation on PieAPP dataset. Column FR indicates if the

method is used in a Full-Reference fashion or not. For all metrics higher

is better. We report Kendall’s Rank Correlation Coefficient (KRCC), Pear-

son’s Linear Correlation Coefficient (PLCC) and Spearman’s Correlation

Coefficient(SRCC). KRCC is computed for the whole set (pAB ∈ [0, 1])

and for a set for which there is more agreement between human labels

(pAB /∈ [.35, .65]). LANBIQUE-NC has better KRCC with respect to all

non-learning based methods and is also better than most of the methods

that exploit some sort of supervision to perform IQA.

Method FR Learning KRCC (pAB ∈ [0, 1]) KRCC (pAB /∈ [.35, 65]) PLCC SRCC

MAE yes no .252 .289 .302 .302

RMSE yes no .289 .339 .324 .351

SSIM yes no .272 .323 .245 .316

MS-SSIM yes no .275 .325 .051 .321

GMSD yes no .250 .291 .242 .297

VSI yes no .337 .395 .344 .393

PSNR-HMA yes no .245 .274 .310 .281

FSIMc yes no .322 .377 .481 .378

SFF yes no .258 .295 .025 .305

SCQI yes no .303 .364 .267 .360

LANBIQUE-NC yes no .342 .412 .316 .310

DOG-SSIMc [90] yes yes .263 .320 .417 .464

Lukin et al. [77] yes yes .290 .396 .496 .386

Kim et al. [56] yes yes .211 .240 .172 .252

Bosse et al. [12] no yes .269 .353 .439 .352

Bosse et al. [12] yes yes .414 .503 .568 .537

PieAPP [94] yes yes .668 .815 .842 .831

7.5 Conclusion

In this work we propose LANBIQUE, a new approach to evaluate image

quality using language models. Existing metrics based on the comparison

of the restored image with an undistorted version may give counter-intuitive

results. On the other hand, the use of naturalness based scores may in certain

cases ranks restored images higher than original ones.

We show that instead of using signal based metrics, semantic computer

vision tasks can be used to evaluate results of image enhancement methods.

Our claim is that a fine grained semantic computer vision task can be a

great proxy for human level image judgement. Indeed we find out that

employing algorithms mapping input images to a finer output label space,

such as captioning, leads to more discriminative metrics.

LANBIQUE is capable to evaluate the quality of images corrupted by
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different distortions and its performance is comparable to other image quality

assessment methods. Moreover, we have modified our evaluation pipeline to

transform our original solution into a No-Reference method and we have

demonstrated that it keeps performing fair on standard benchmarks.

Finally, we have tested LANBIQUE an a large scale dataset that contains

unknown distortions. Despite the lack of learning and of knowledge on data,

our approach outperforms every baseline that does not use learning for the

evaluation, and it is comparable to most of the learned approaches on the

same data.

As a final note, we would like to remark that our approach will continu-

ously improve thanks to the advancement of image captioning and enhance-

ment networks. Indeed, we have shown that without changing the visual

features, switching to a better captioning algorithm we get a higher perfor-

mance. Moreover, being LANBIQUE-NC an upper bound for LANBIQUE-

NR, as image enhancers gain quality, the gap between the performance of

these two methods will shrink.
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Chapter 8

STILT: Scene-Text Image and

Language Transformer for

Cross-Modal Retrieval

Image-text cross-modal retrieval tasks are capable of understand-

ing visual semantics, leading to correct ranking of captions (and

vice versa). However, their performance is limited when images

are associated with complementary descriptions like scene-text

and visual information is less relevant. In this work we pro-

pose a Scene-Text Image and Language Transformer (STILT)

for cross-modal retrieval. STILT combines image and scene-

text representations according to scene-text position in the im-

age, and a fusion token representation is learned to merge visual

and scene-text information. Scene-text and caption representa-

tions are aligned using a contrastive loss and are then given as

input to two cross-modal encoders which improve representation

learning. We demonstrate the effectiveness of our approach in

two challenging contextual captioning datasets, GoodNews and

Politics, and our experiments show that STILT outperforms the

state-of-the-art by about 6% on both. 1

1Part of this work was conducted while the author was a visiting Ph.D. student at

Univerisitat Autonoma de Barcelona, Barcelona (Spain), from October to March 2021-

2022. The work has been submitted to the 2023 IEEE/CVF Conference on Computer

Vision as Pattern Recognition (CVPR).
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8.1 Introduction

In traditional image-text cross-modal retrieval tasks, image descriptions are

descriptive of the visual content of the image (for example “a man hold-

ing a microphone”) and do not contain contextual information (for example

“Bruce Springsteen singing at Madison Square Garden”). Thus, standard

Transformer-based approaches only work when text is well-aligned with the

visual content. This is a significant weakness since in real scenarios users

tend to introduce contextual information when describing objects or look-

ing for something in order to communicate more specific and fine-grained

information. A few works address this problem, designing specific training

objectives to learn the degree of abstractness of an image-text pair [121,122].

Most existing cross-modal retrieval approaches do not consider contextual

information decodable from the image such as scene-text. To address this,

we propose a Scene-Text Image and Language Transformer (STILT) model

for image-text cross-modal retrieval. STILT works with both scene-text-

free images and images containing scene-text. We first encode the image

and caption with independent image and language Transformer encoders.

The extracted scene-text information is encoded with the same language

encoder used for the caption. Image and scene-text embeddings are then

combined according to the position of scene-text in the image, and we use

two multi-modal encoders to fuse scene-text image features with caption

features through cross-modal attention. We use three losses for model pre-

training: an image-text contrastive (ITC) loss on representations from the

unimodal encoders for feature alignment, a masked-image modeling (MLM)

objective to improve language encoding representation, and an image-text

matching (ITM) loss on the top of the two multi-modal encoders for a more

fine-grained image-text interaction.

The contributions of this work are the following:

• We propose a novel Transformer-based architecture that exploits scene-

text information (OCR, and text position in the image) for robust

cross-modal representation. We demonstrate the effectiveness of our

pre-training approach on datasets with different percentages of scene-

text images.

• We compare our approach with state-of-the-art approaches on ab-

stractly aligned image-text datasets and full scene-text datasets, and
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our experiments demonstrate that STILT significantly outperforms ex-

isting methods.

• We show through qualitative analysis the effectiveness of using scene-

text for aligned and non-aligned image-text datasets, demonstrating

that scene-text is useful information to learn more abstract image-text

alignment.

8.2 The STILT Approach

In this section we introduce and describe the STILT model architecture and

then define our pre-training strategy.

8.2.1 Model Architecture

As shown in Fig. 8.1, the STILT architecture consists of an image encoder,

a text encoder, and two multi-modal encoders:

• The image encoder (Ienc) consists of a 6-layer Visual Transformer ViT-

B/16 as initialized with weights pre-trained on Imagenet-1k.

• The textual encoder (Tenc) consists of a 6-layer BERTbase model.

• The two multi-modal encoders consist of a 6-layer ViT-B/16 (Vmm)

and a 6-layer BERTbase (Tmm).

The input image I is given as input to the image encoder (Ienc) and

outputs a sequence of visual tokens {vcls, v0, v1, . . . , vn} corresponding to

different visual regions of the image. The textual encoder Tenc encodes the

caption and outputs a sequence of tokens {ccls, c0, c1, . . . , cm}. The extracted
scene-text from the image I is encoded with the textual encoder Tenc which

outputs a sequence of tokens {scls, s0, s1, . . . , sz}. We consider the coordi-

nates relative to each scene-text bounding box {p0, p1, p2, . . . , pz} and we fuse

them with the corresponding scene-text token embedding using the following

strategy:

spi = (Wmssi + bms) + (Wpspi + bps) (8.1)

where Wms, Wps, bms, bps are models parameters. Moreover, we filter the

encoded visual regions that contain scene-text and we fuse them with the

corresponding scene-text bounding box coordinates as follows:

vpi = (Wnvvi + bnv) + (Wnvpi + bnv) (8.2)
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where Wms, Wps, bms, bps are again models parameters.

Finally, we fuse the visual [CLS] token vcls and the scene-text [CLS]

token scls as following:

fcls =Wfn((Wnvvcls + bnv)⊕ (Wnsscls + bns)) + bfn (8.3)

where ⊕ is the concatenation operation and Wnv, Wns, Wfn, bnv, bns, bfn
are once again model parameters. We consider as final encoded image rep-

resentation the concatenation of fused [CLS] token fcls, visual embeddings,

position-aware scene-text tokens (SP ) and position-aware visual tokens:

V = [fcls, vcls, v0, ..., vn, vp0, ..., vpk, scls, sp0, sp1, ..., spz] (8.4)

These visual features V are fused with the caption features through cross-

attention in the multi-modal encoders Tmm and Vmm.

8.2.2 Pre-Training

Inspired by [66], we pre-train STILT with three different losses: an image-

text contrastive loss on the image encoder Ienc and the text encoder Tenc,

Masked Language Modeling (MLM) on the multi-modal encoder Tmm, and

Image-Text-Matching (ITM) on both the multi-modal encoders Tmm and

Vmm.

Image-text Contrastive Loss. We use this loss to align image and text

representations after the encoding phase. We project the [CLS] token of the

visual representation vCLS and the contextual representation ccls into the

same space after normalizing the output embeddings. We define a similarity

function s(v, c) = pv(vcls)
T pc(ccls), where pv and pc are linear projections

that maps vcls and ccls into the same number of dimensions. For each im-

age and text pair in a batch we use as predictions the softmax-normalized

image-to-text pi2t and text-to-image pt2i similarities (as defined in [66]) and

compute the loss as sum of cross-entropy (CE) losses:

Litc = CE(yi2t(I), pi2t(I)) + CE(yt2i(T ), pt2i(T )) (8.5)

where yi2t(I) and yt2i(T ) are the ground-truth one-hot vectors indicating

positive matching pairs.

Masked Language Modeling. Masking tokens in the input text and

training the model to predict the masked token has been demonstrated to
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Figure 8.1: The STILT architecture. The image is encoded with a ViT

encoder Ienc, and both scene-text and caption are encoded with the same

BERT encoder Tenc. Image tokens corresponding to image patches that

contain scene text are replicated and combined with scene-text position,

while scene text embeddings are combined with corresponding positions.

The two multi-modal encoders Vmm and Tmm merge visual and caption

representations through cross-attention.
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be good practice for pre-training language transformers [27, 66]. For the

implementation of the Lmlm loss, we follow [27], randomly masking 15% of

tokens with a [MASK] token (80% of the time) or a random token (10% of

the time) or the same token (10% of the time).

Image-Text Matching. We use this loss on the top of the two multi-

modal encoders Tmm and Vmm for predicting when an image-caption pair

is matching or not. To compute the two-class probability pitm (match/not

match), we use each of the [CLS] tokens in output from the two multi-modal

encoders, projecting them into a two-dimensional space and using a softmax

as activation function. More specifically:

Lvitm = CE(yitm, pitm(I, T )) (8.6)

Lcitm = CE(yitm, pitm(T, I)), (8.7)

where yitm is ground-truth two-dimensional one-hot vector.

The final aggregated Litm loss is then:

Litm = Lvitm + Lcitm, (8.8)

and the final loss function for STILT pre-training is:

L = Litc + Lmlm + Litm. (8.9)

8.2.3 Implementation Details

For STILT we use BERTbase [27] for caption and scene text encoding and

ViT-B/16 [146] for image encoding. For our experiments, we consider a

light version of our model, (STILTlight) where the uni-modal encoders have

9 layers and the multi-modal encoders have 3 layers. We freeze the first 8

layers of the uni-modal encoders in order to have a faster training phase. We

pre-trained our model using ITC, ITM and MLM losses for 10 epochs and

then fine-tuned it for aother 10 epochs using ITC and ITM losses with batch

size of 128 on 4 NVIDIA A100s.

8.3 Experimental Results

We performed a range of experiments in order to evaluate the effectiveness

of our approach and compare STILT to the state-of-the-art. In the next
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section we described the datasets used in all experiments, and in Sec. 8.3.2

we show the effectiveness of our approach with varying input information

and loss objectives. In Sec. 8.3.3 we compare our approach with the state-

of-the-art on complementary image-text datasets where image and text are

symbolically aligned, and in and Sec. 8.3.4 we compare on full scene-text

datasets.

8.3.1 Datasets

For our experiments, we use three different types of datasets: contextual

datasets, scene-text images datasets, and general-purpose datasets.

Contextual Datasets. The Politics [121] dataset consists of around

246K image-text pairs where the text is part of news articles. Images and

related descriptions are complementary and have a more abstract and sym-

bolic alignment. The GoodNews [10] dataset consists of around 466K images

paired with captions from the New York Times. Like Politics, captions con-

tain additional information not inferable from the visual content.

Scene-Text Image Datasets. TextCaps [114] consists of around 28K

images containing OCR taken from OpenImages and each image is associ-

ated with 5 captions. Coco Text Captions [78] (CTC) is a subset of images

containing scene-text images from the COCO training set.

General Purpose Datasets. Visual Genome [60] is a dataset anno-

tated with visual question-answer pairs and contains about 5.4M region de-

scriptions associated with around 108K images. The Flickr30k [92] dataset

contains 31,000 images collected from Flickr, Each image is paired with 5

reference sentences provided by human annotators.

Contextual datasets, scene-text images datasets, and general purpose

datasets are very different. General purpose datasets are standard datasets

for image-text retrieval where semantic visual information contained in the

image is described in the caption. Consequently, image-text pairs are well-

aligned for these datasets. In contrast, contextual datasets consist of abstractly-

aligned image-text pairs since the semantic visual information is not de-

scribed in the caption that tends to add complementary information to that

shown in the image. Finally, full scene-text datasets consist of only images

that contain scene-text with their corresponding captions and thus images

and captions are well-aligned.
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I→ T T→ I

Input Pre-training Losses 5-way 10-way 20-way 5-way 10-way 20-way

Image + Caption ITC 64,48 51,28 40,13 63,59 50,88 40,13

Image + Caption ITC + ITM + MLM 65,68 52,33 41,52 65,13 51,95 41,86

Image + Caption + OCR ITC 68,38 55,73 44,86 68,29 56,13 44,87

Image + Caption + OCR ITC + ITM + MLM 69 55,88 44,97 68,43 56,34 44,95

Image + Caption+ OCR + OCR Positions ITC + ITM + MLM 70,61 56,12 45,34 69,98 57, 41 45,3

Table 8.1: Performance of our approach for different training losses and

inputs on the Politics dataset. We report the results for image-to-text (I→T)

and text-to-image (T→I) retrieval for recall@1 in 5, 10, and 20-way retrieval

tasks.

8.3.2 Evalutation Method

To evaluate the effectiveness of our approach we consider different variants

of our STILTlight model varying the pre-training losses and network inputs.

In Tab. 8.1 we show the performance of our method for the cross-modal

retrieval task on the Politics dataset. The results reported in the table

are for both image-to-text and text-to-image retrieval and are computed as

described in [122] by picking random (non-paired) samples from the test

set, along with the ground-truth paired sample and computing Recall@1 in

5, 10, and 20-way tasks. When using only the ITC loss we rank images

according to texts (and vice versa) computing cosine similarity between the

representations in output from the uni-modal encoders. Adding the ITM

loss, the rank is computed as the sum of the ITM scores in output from the

two multi-modal encoders.

We extracted scene text and its position from the Politics dataset using

the Google vision API for optical character recognition. Since this dataset

contains both scene-text images and images with no scene-text, we input

into our model an empty string when there is no scene-text in the image.

We observe that adding image-text matching (ITM) and masked lan-

guage modeling (MLM) to the contrastive loss (ITC) as pre-training losses

always improves model performance. Moreover, adding scene-text (OCR)

information as input to our model results in a significant performance boost.

Finally, adding information about the scene-text positions in the image fur-

ther improves the performance. STILT is able to effectively exploit scene

text and its position to improve cross-model retrieval.
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Politics GoodNews

I→T T→I I→T T→I

method 5-way 10-way 20-way 5-way 10-way 20-way 5-way 10-way 20-way 5-way 10-way 20-way

PVSE [116] 59,19 - - 60,57 - - 85,16 - - 85,26 - -

HAL [73] 59,19 - - 59,03 - - 86,23 - - 85,79 - -

AMRANI [82] 61,17 - - 61,17 - - 86,29 - - 86,78 - -

THOMAS2 [123] 62,74 - - 62,39 - - 87,91 - - 87,82 - -

THOMAS [123] 64,67 - - 64,92 - - 88,49 - - 88,65 - -

STILTlight 70,61 56,12 45,34 69,98 57, 41 45,3 93,45 87,15 79,13 93,27 87,12 78,96

STILTlight + Finetuning 71,83 57,47 47,55 70,95 57,96 45,91 94,51 88,07 79,98 94,36 88,04 79,80

Table 8.2: Comparison between STILT and State-Of-The-Art approaches

on non-literal image-text datasets. STILT outperforms other techniques on

Politics and GoodNews datasets.

CTC-1K CTC-5K

Model I→T T→I I→T T→I

R@1 R@5 r@10 R@1 R@5 r@10 R@1 R@5 r@10 R@1 R@5 r@10

SCAN [64] 36.3 63.7 75.2 26.6 53.6 65.3 22.8 45.6 54.3 12.3 28.6 39.9

VSRN [67] 38.2 67.4 79.1 26.6 54.2 66.2 23.7 47.6 59.1 14.9 34.7 45.5

STARNet [78] 44.1 74.8 82.7 31.5 60.8 72.4 26.4 51.1 63.9 17.1 37.4 48.3

ViSTA-S [21] 52.5 77.9 87.2 36.7 66.2 77.8 31.8 56.6 67.8 20.0 42.9 54.4

STILTlight 53.0 78.2 88.3 37.5 66.8 78.4 33.3 58.3 68.7 21.2 43.4 55.6

Table 8.3: Comparison between STILT and state-of-the-art approaches on

CTC-1K and CTC-5K test datasets.

8.3.3 Cross-Modal Retrieval with Abstract Image-Text

Alignment

Tab. 8.2 shows the performances of STILTlight on the Politics and Goodnews

datasets. These two datasets contain a different proportion of scene-text

images (in Politics about 50% of images, in GoodNews only about 20% ).

In this experiment, we trained our model on the training set of the reference

dataset and then finetuned it on the same. We report the results of recall@1

in 5-, 10-, and 20-way tasks (differently from other approaches that show

only 5-way results). We see that our model outperforms state-of-the-art

approaches by more than 7% on Politics and 6% on GoodNews in the 5-

way test. Excluding STILT, the methods listed in the table do not use

scene-text and to the best of our knowledge, we are the first to exploit OCR

to perform both scene-text and scene-text aware cross-modal retrieval in

abstract-aligned image-text datasets. Moreover, we demonstrate that taking

advantage of scene text for this kind of dataset is extremely helpful to find

additional symbolic correlations between images and captions.
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Figure 8.2: Qualitative results. The first five ranked captions for image-to-

text retrieval on the Politics dataset. Our model exploits scene-text effec-

tively (left column) and still correctly ranks when no scene-text is present

(right column).

8.3.4 Full Scene-Text Image and Text Cross-Modal Re-

trieval

For full scene-text aware retrieval, we evaluate STILT on the CTC-1K and

CTC-5K test sets using the train and test splits described in [78]. We

pre-trained STLITlight on Visual Genome and fine-tuned it on Flickr30K,

TextCaps, and the training split of CTC. Tab. 8.3 shows the comparison

between STILT and the state-of-the-art for recall@1 recall@5 and recall@10.

We see that STILTlight outperforms other techniques on both CTC-1K and

CTC-5K. VISTA-S also uses a transformer-based architecture with three

separated encoders for scene-text, caption, and image. STILT uses the same

BERT encoder to encode both caption and scene-text, but we replicate im-

age embeddings containing scene-text and combine them with scene-text

positions to obtain more consistent scene-text-aware image representation

before passing it to the multi-modal encoders. Note that for STILTlight we

are training only the last four layers of each ViT and BERT model, unlike

the other approaches that train a full model.
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8.4 Qualitative Analysis

In order to qualitatively demonstrate the effectiveness of the STILT model

we consider examples from the GoodNews dataset. This dataset represents a

real scenario since it contains a wide variety of image-caption pairs that come

from New York Times news. For this qualitative analysis, STILTlight model

is tested in a 50-way task (ranking 50 captions according to the content of

an image) with the purpose of outlining its limits. In Fig. 8.2 we give some

samples for the image-to-text retrieval task. The first column contains of

examples with scene-text images, and the second of images without scene-

text. We see that STILT is capable of correctly ranking the captions for

images that would have never been ranked correctly without exploiting scene-

text. In particular, in the second example, the first five ranked captions

describe a specific person, and in a real scenario if a human does not know

the name of the person the only way to generate a correct ranking is by

focusing on the scene-text. This is a very frequent problem in news datasets

since in most cases articles are related to well-known persons and ranking

algorithms are not trained to recognize them. The last two examples in the

first column show examples where the scene-text is useless to generate the

correct rank. Our model fails and ranks the correct caption as second but

the rank 1 captions have similar meaning. The second column gives results

for images with no scene-text where we see that STILT is able to associate

well-aligned image-caption pairs.

8.5 Conclusions

State-of-the-art cross-model retrieval models only work with well-aligned

image-text pairs. In this work we propose a transformer-based approach to

address this limitation by exploiting scene-text to perform cross-modal re-

trieval. We demonstrate the effectiveness of our approach on news datasets

and full scene-text datasets, and our experiments show that STILT consis-

tently outperforms the state-of-the-art. To the best of our knowledge ours

is the first work exploiting scene-text for cross-modal retrieval applied to

abstract image-text datasets. Considering that STILTlight achieves very im-

pressive performance despite having most layers frozen during pretraining,

the next interesting step would be to train the full model end-to-end.
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Chapter 9

Conclusions

9.1 Summary of Contributions

In the first part of this dissertation we focused on one of the main problems

of vision and language systems, Visual Question Answering, which is notably

poor at incorporating contextual data. This makes many of these approaches

useful in research contexts, but unusable in real-world scenarios. We consider

the concrete scenario of Visual Question Answering in the cultural heritage

domain and proposed two systems capable of answering both contextual and

visual questions. These approaches are also suitable for use in other sce-

narios. Since there were no Visual Question Answering datasets for cultural

heritage, we created a dataset containing about 6.5M question-answer pairs

associated with about 500K images. For completeness, an annotation sys-

tem for question-answer pairs in the cultural heritage domain has also been

developed, which can also be used to test the accuracy of VQA models.

A key factor limiting progress in Image Quality Assessment is the lack of

annotated data. We proposed a generative approach to data augmentation

that partially mitigates this problem, and additionally developed a novel

approach to exploiting image captioning as an image quality evaluator. This

second approach does not require model training on annotated IQA datasets

and is completely based on the robustness of the captioner. Furthermore,

the experiments carried out also allow an evaluation from other points of

view of the captioning systems.

Finally, our contributions to the field of cross-modal retrieval are very

much connected to those of the Visual Question Answering described above.
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The STILT model uses scene-text to address the retrieval problem of con-

textual data (image-test pairs taken for example from newspaper articles).

Our experiments show that STILT achieves excellent performance even on

standard (non-contextual) datasets.

9.2 Directions for Future Work

In the last year, research in the field of image and language tasks has mainly

concerned the development of models based on transformers which, thanks to

extensive pre-training, obtain impressive results in all vision and language

downstream tasks. These models are extremely large (some even require

40 GPUs for training) and are hardly usable in real-world scenarios. In

addition, models trained on billions of samples have been developed whose

performance is truly impressive. Notable examples include CLIP [96] for

cross-modal retrieval model, as well as DALL-E [98] and stable diffusion

models [101] for text-to-image generation and manipulation.

A possible research direction will be to reduce the complexity of these

extremely large models without reducing their performance so that they can

be used in real scenarios. Moreover, since the aforementioned approaches

obtain excellent results, they can be exploited to create synthetic dataset

annotations for specific purposes or be applied to improve the performance

of models in other areas of computer vision.

As described in various chapters of this thesis, vision and language tasks

do not work in real scenarios since they are not capable to process contextual

information that is not inferable from the image content. The Computer

Vision community seems to be still anchored to this limitation. New datasets

for contextual tasks have to be collected to improve the ability of models to

abstract from a visual representation to a more general one. This branch of

research needs also new metrics that involve the contextual aspect to have a

better evaluation of the approaches. Another limitation is due to the way of

managing external knowledge from the current approaches when addressing

contextual datasets. Existing knowledge graphs, ontologies, and document

libraries are too big to be processed by a model at run time. A great step

forward in this direction will be a knowledge representation quick to explore

that contains as much information as possible. An alternative direction to

address vision and language tasks would be also to study self-supervised

learning strategies avoiding long supervisioned training.
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Transformer models have undoubtedly changed Computer Vision research

improving the performance of vision and language tasks but they are not yet

easily exploited in real contexts. Another important direction of research

for the AI community will be to study the representation learning of trans-

former models in order to avoid the large pretraining phase or easily adapt

an already pretrained transformer to other completely different domains.

This will be extremely useful and will probably lead to new applications in

multiple scenarios where the amount of training data is low as in some real

contexts.
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Appendix A

Data Collection for Contextual

and Visual Question Answering

in the Cultural Heritage

Domain

In this demonstration we propose an annotation tool to collect

question-answer samples for artworks, necessary to train and

evaluate visual and contextual question answering models. The

tool is completely web-based, and relies on an automatic question-

answer generation model to aid the annotation process. Through

the annotator, users can inspect and refine the generated annota-

tions and obtain statistics on their quality. A pre-trained visual

and contextual question answering model is also provided to the

final user to be able to interact with the system by asking ques-

tions about artworks.1

This appendix is related to the VQA approaches for Cultural Heritage,

previously presented in Chapter 2, and Chapter 3

1The work presented in this chapter has been presented as a Demo to the International

Conference on Pattern Recognition (ICPR) 2021
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A.1 Introduction

The usage of VQA for Cultural Heritage has been explored in Chapter 2,

where questions have been categorized into two categories: visual if they

refer to the content of the artwork and contextual is they refer to knowledge

deductible only from an external source. Interacting through questions and

dialogs will likely be the evolution of smart audio guides for museum visits

and simple image browsing on personal smartphones. In this way, the classic

audio guide turns into a smart personal instructor with which the visitor

can interact by asking for explanations focused on specific interests. The

advantages are twofold: on the one hand, the cognitive burden of the visitor

will decrease, limiting the flow of information to what the user actually

wants to hear; and on the other hand, it proposes the most natural way of

interacting with a guide, favoring engagement. However, realizing such an

interactive system is not straightforward. The biggest obstacle towards this

goal is the lack of specialized data for the cultural heritage domain, which

will require an expensive and temporally demanding annotation campaign.

In particular, there is the need for question-answer pairs related to both the

visual and contextual information of artworks. To address this limitation,

we propose a semi supervised approach that relies on automatic question

generators to adapt textual descriptions of artworks to data that can be

used to train visual/contextual question answering models. The system we

demonstrate is a web based annotation tool to browse, edit and validate

datasets of automatically generated questions relative to images of artworks.

The tool offers the advantage of lowering the annotation burden of building a

dataset manually, while allowing the user to perform an analysis of question

generation

A.2 Data Collection

The purpose of the proposed system is to aid users in the annotation of art-

work images with visual and contextual questions/answers. Each artwork is

paired with a picture and a textual description, which can be easily gath-

ered from online sources such as Wikipedia or DBpedia. Users can assign

a label to sentences to mark them as visual or contextual. These sentences

are then fed to a text-based question generation model which converts them

into questions and answers. The visual and contextual labels are automat-
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ically transferred from sentences to questions. To obtain question-answer

pairs, we first gather a collection of visual and contextual sentences relative

to artworks. We use data from Artpedia [118], a dataset containing 2.930

paintings and a total of 28.212, manually labeled as visual or contextual

(9.173 visual sentences and 19.039 contextual sentences). On average, an

artwork is labeled with 3.1 visual sentences and 6.5 contextual sentences.

The user of our system can browse all images and their textual labels and

can enter new descriptions or modify existing ones. We then automatically

generate question-answer pairs with 1 [30], a recently proposed end-to-end

trainable sequence-to-sequence model. We have obtained more than 100.000

generated questions and answers. Each generated item can be inspected

through the web interface and can be edited by the user. Once a sample has

been inspected, it is marked as ”revised” and is then considered to be part of

the dataset under construction. If a new question is instead added directly

by the user, it is automatically flagged as revised. To ease the data collection

process, we developed a fast annotation web interface where multiple users

can revise questions in parallel, inspecting a sequence of random question-

answer pairs. In this way we have collected a dataset of 1027 manually

revised question-answers out of a subset of 1500 automatically generated

samples. During the revision process, if a mistake is identified in the auto-

matically generated sample, the user can label it with a customizable error

category. This provides us with statistics on the quality of the question gen-

erator, which offers interesting insights about the model. We have identified

10 error categories for questions, among which the most common are too long

questions, two words questions (such as what is?) and nonsense questions.

A.3 Visual and Contextual Question Answer-

ing

We have integrated in the system the model presented in Chapter 2, which

answers both visual and contextual questions, relying on a question classifier

to understand whether a Question Answering or Visual Question Answering

sub-module is better suited to answer. The user can therefore test the model

by interacting with it, asking questions about an artwork and its contextual

information through a chat. In this way it is possible to collect data with

the proposed annotation tool, train a custom model and deploy it through

the web interface to the final user. In addition, the collected data can be
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used to test pre- trained models for visual and contextual question answering

with a joint evaluation. In fact, in literature no dataset for visual question

answering in the cultural heritage domain has been collected yet.

A.4 Conclusion

In this demonstration we have proposed a web based annotation tool to

collect in a semi automatic way questions and answers relative to artworks.

The tool relies on a text- based question/answer generator. The generated

samples can then be manually inspected and revised. The system also offers

to inspect the quality of the generated questions by gathering error statistics

and provides an interface for the user to interact with a pre-trained question

answering model that answers both visual and contextual questions.



Appendix B

Publications

This research activity has led to several publications in international journals

and conferences. These are summarized below.

International Journals

1. L. Galteri, L. Seidenari, P. Bongini, M. Bertini, AD. Bimbo. “LANBIQUE:

LANguage-based Blind Image QUality Evaluation”, ACM Transactions on

Multimedia Computing, Communications, and Applications (TOMM), vol.

18 issue 2s, 2022.

Submitted

1. F. Becattini, P. Bongini, L. Bulla, AD. Bimbo, L. Marinucci, M. Mongiovi,

V. Presutti “VISCOUNTH: A Large-Scale Visual and Contextual Question

Answering Dataset for Cultural Heritage”, ACM Transactions on Multimedia

Computing, Communications, and Applications (TOMM), 2022.

International Conferences and Workshops

1. P. Bongini, R. Del Chiaro, AD. Bagdanov, AD. Bimbo. “GADA: Genera-

tive adversarial data augmentation for image quality assessment”, in Inter-

national Conference on Image Analysis and Processing (ICIAP), 2019.

2. P. Bongini, Becattini, AD. Bagdanov, A. Del Bimbo “Visual question an-

swering for cultural heritage”, in IOP Conference Series: Materials Science

and Engineering, 2020.

131



132 Publications

3. L. Seidenari, L. Galteri, P. Bongini, M. Bertini, A. Del Bimbo “Language

based image quality assessment”, in ACM Multimedia Asia, 2021 (Best

paper award).

4. P. Bongini, F. Becattini, A. Del Bimbo “Is GPT-3 all you need for Visual

Question Answering in Cultural Heritage?”, in European Computer Vision

Conference (ECCV) Workshop on Vision and Art (VisArt), 2022.

Submitted

1. P. Bongini, AF. Biten, AM. Delgado, D. Karatzas, AD. Bagdanov, “STILT:

Scene-Text Image and Language Transformer for Cross-Modal Retrieval”,

Computer Vision and Pattern Recognition, 2023.

Demo

1. F. Vannoni, P. Bongini, F. Becattini, AD. Bagdanov, Alberto Del Bimbo

“Data Collection for Contextual and Visual Question Answering in the Cul-

tural Heritage Domain”, in International Conference on Pattern Recognition

(ICPR), 2020.



Bibliography

[1] P. Anderson, B. Fernando, M. Johnson, and S. Gould, “Spice: Semantic

propositional image caption evaluation,” in Proc. of ECCV, 2016.

[2] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, and

L. Zhang, “Bottom-up and top-down attention for image captioning and vi-

sual question answering,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2018, pp. 6077–6086.

[3] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and

D. Parikh, “Vqa: Visual question answering,” in Proceedings of the IEEE

international conference on computer vision, 2015, pp. 2425–2433.

[4] L. Asprino, L. Bulla, L. Marinucci, M. Mongiov̀ı, and V. Presutti, “A large

visual question answering dataset for cultural heritage,” in Machine Learn-

ing, Optimization, and Data Science: 7th International Conference, LOD

2021, Grasmere, UK, October 4–8, 2021, Revised Selected Papers, Part II,

2021, pp. 193–197.

[5] S. Banerjee and A. Lavie, “Meteor: An automatic metric for mt evaluation

with improved correlation with human judgments,” in Proc. of the ACL

workshops, 2005.

[6] M. R. Banham and A. K. Katsaggelos, “Digital image restoration,” IEEE

signal processing magazine, vol. 14, no. 2, pp. 24–41, 1997.

[7] F. Becattini, A. Ferracani, L. Landucci, D. Pezzatini, T. Uricchio, and

A. Del Bimbo, “Imaging novecento. a mobile app for automatic recognition of

artworks and transfer of artistic styles,” in Euro-Mediterranean Conference.

Springer, 2016, pp. 781–791.

[8] S. Bianco, L. Celona, P. Napoletano, and R. Schettini, “On the use of deep

learning for blind image quality assessment,” Signal, Image and Video Pro-

cessing, vol. 12, no. 2, pp. 355–362, 2018.

[9] Y. Bisk, A. Holtzman, J. Thomason, J. Andreas, Y. Bengio, J. Chai, M. La-

pata, A. Lazaridou, J. May, A. Nisnevich et al., “Experience grounds lan-

guage,” arXiv preprint arXiv:2004.10151, 2020.

133



134 BIBLIOGRAPHY

[10] A. F. Biten, L. Gomez, M. Rusinol, and D. Karatzas, “Good news, everyone!

context driven entity-aware captioning for news images,” in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2019, pp. 12 466–12 475.

[11] P. Bongini and et al., “Visual question answering for cultural heritage,” in

IOP Conference Series: Materials Science and Engineering, vol. 949, no. 1.

IOP Publishing, 2020.

[12] S. Bosse, D. Maniry, K.-R. Müller, T. Wiegand, and W. Samek, “Deep neural

networks for no-reference and full-reference image quality assessment,” IEEE

Transactions on image processing, vol. 27, no. 1, pp. 206–219, 2017.

[13] S. Bosse, D. Maniry, T. Wiegand, and W. Samek, “A deep neural network

for image quality assessment,” in Proceedings of ICIP. IEEE, 2016, pp.

3773–3777.

[14] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,

A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models

are few-shot learners,” Advances in neural information processing systems,

vol. 33, pp. 1877–1901, 2020.

[15] L. Bulla, M. C. Frangipane, M. L. Mancinelli, L. Marinucci, M. Mongiov̀ı,

M. Porena, V. Presutti, and C. Veninata, “Developing and aligning a detailed

controlled vocabulary for artwork,” in European Conference on Advances in

Databases and Information Systems. Springer, 2022, pp. 529–541.

[16] V. A. Carriero, A. Gangemi, M. L. Mancinelli, L. Marinucci, A. G. Nuzzolese,

V. Presutti, and C. Veninata, “Arco: The italian cultural heritage knowledge

graph,” in Proc. of ISWC, Part. II, 2019, pp. 36–52.

[17] H. Chang, M. K. Ng, and T. Zeng, “Reducing artifacts in JPEG decom-

pression via a learned dictionary,” IEEE Transactions on Signal Processing,

vol. 62, no. 3, pp. 718–728, Feb 2014.

[18] H. Chen, G. Ding, X. Liu, Z. Lin, J. Liu, and J. Han, “Imram: Iterative

matching with recurrent attention memory for cross-modal image-text re-

trieval,” in Proceedings of the IEEE/CVF conference on computer vision

and pattern recognition, 2020, pp. 12 655–12 663.

[19] X. Chen, H. Fang, T.-Y. Lin, R. Vedantam, S. Gupta, P. Dollár, and C. L.

Zitnick, “Microsoft COCO captions: Data collection and evaluation server,”

arXiv preprint arXiv:1504.00325, 2015.

[20] Y.-C. Chen, L. Li, L. Yu, A. El Kholy, F. Ahmed, Z. Gan, Y. Cheng, and

J. Liu, “Uniter: Universal image-text representation learning,” in European

conference on computer vision. Springer, 2020, pp. 104–120.



BIBLIOGRAPHY 135

[21] M. Cheng, Y. Sun, L. Wang, X. Zhu, K. Yao, J. Chen, G. Song, J. Han,

J. Liu, E. Ding et al., “Vista: Vision and scene text aggregation for cross-

modal retrieval,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2022, pp. 5184–5193.

[22] M. Cheon, S.-J. Yoon, B. Kang, and J. Lee, “Perceptual image quality as-

sessment with transformers,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2021, pp. 433–442.

[23] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation

of gated recurrent neural networks on sequence modeling,” arXiv preprint

arXiv:1412.3555, 2014.

[24] M. Cornia, L. Baraldi, and R. Cucchiara, “Show, control and tell: A frame-

work for generating controllable and grounded captions,” in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2019, pp. 8307–8316.

[25] M. Cornia, M. Stefanini, L. Baraldi, and R. Cucchiara, “Meshed-memory

transformer for image captioning,” in Proceedings of the IEEE/CVF confer-

ence on computer vision and pattern recognition, 2020, pp. 10 578–10 587.

[26] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A

large-scale hierarchical image database,” in Proc. of CVPR. Ieee, 2009, pp.

248–255.

[27] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training

of deep bidirectional transformers for language understanding,” in Proc. of

NAACL-HLT, 2019, pp. 4171–4186.

[28] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-

terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image

is worth 16x16 words: Transformers for image recognition at scale,” arXiv

preprint arXiv:2010.11929, 2020.

[29] Z.-Y. Dou, Y. Xu, Z. Gan, J. Wang, S. Wang, L. Wang, C. Zhu, P. Zhang,

L. Yuan, N. Peng et al., “An empirical study of training end-to-end vision-

and-language transformers,” in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2022, pp. 18 166–18 176.

[30] X. Du, J. Shao, and C. Cardie, “Learning to ask: Neural question generation

for reading comprehension,” arXiv preprint arXiv:1705.00106, 2017.

[31] K. Elkins and J. Chun, “Can gpt-3 pass a writer s turing test?” Journal of

Cultural Analytics, vol. 5, no. 2, p. 17212, 2020.

[32] F. Faghri, D. J. Fleet, J. R. Kiros, and S. Fidler, “Vse++: Improving visual-

semantic embeddings with hard negatives,” arXiv preprint arXiv:1707.05612,

2017.



136 BIBLIOGRAPHY

[33] L. Galteri, L. Seidenari, M. Bertini, and A. D. Bimbo, “Deep universal gener-

ative adversarial compression artifact removal,” Transactions on Multimedia,

2019.

[34] L. Galteri, L. Seidenari, M. Bertini, and A. Del Bimbo, “Deep generative

adversarial compression artifact removal,” in Proc. of ICCV, 2017. [Online].

Available: https://arxiv.org/abs/1704.02518

[35] Z. Gan, Y.-C. Chen, L. Li, C. Zhu, Y. Cheng, and J. Liu, “Large-scale ad-

versarial training for vision-and-language representation learning,” Advances

in Neural Information Processing Systems, vol. 33, pp. 6616–6628, 2020.

[36] N. Garcia and et al., “A dataset and baselines for visual question answering

on art,” in European Conference on Computer Vision. Springer, 2020, pp.

92–108.

[37] F. Gardères, M. Ziaeefard, B. Abeloos, and F. Lecue, “Conceptbert:

Concept-aware representation for visual question answering,” in Findings

of the Association for Computational Linguistics: EMNLP 2020, 2020, pp.

489–498.

[38] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international confer-

ence on computer vision, 2015, pp. 1440–1448.

[39] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in

neural information processing systems, 2014, pp. 2672–2680.

[40] Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and D. Parikh, “Making the

v in vqa matter: Elevating the role of image understanding in visual question

answering,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2017, pp. 6904–6913.

[41] L. Gui, B. Wang, Q. Huang, A. Hauptmann, Y. Bisk, and J. Gao, “Kat: A

knowledge augmented transformer for vision-and-language,” arXiv preprint

arXiv:2112.08614, 2021.

[42] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2016, pp. 770–778.

[43] Y. He, S. Xiang, C. Kang, J. Wang, and C. Pan, “Cross-modal retrieval

via deep and bidirectional representation learning,” IEEE Transactions on

Multimedia, vol. 18, no. 7, pp. 1363–1377, 2016.

[44] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural com-

putation, vol. 9, no. 8, pp. 1735–1780, 1997.

[45] V. Hosu, H. Lin, T. Sziranyi, and D. Saupe, “Koniq-10k: An ecologically

valid database for deep learning of blind image quality assessment,” IEEE

Transactions on Image Processing, vol. 29, pp. 4041–4056, 2020.

https://arxiv.org/abs/1704.02518


BIBLIOGRAPHY 137

[46] M. Ioannides, N. Magnenat-Thalmann, and G. Papagiannakis, Mixed Reality

and Gamification for Cultural Heritage. Springer, 2017, vol. 2.

[47] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep

network training by reducing internal covariate shift,” arXiv preprint

arXiv:1502.03167, 2015.

[48] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation

with conditional adversarial networks,” 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Jul 2017.

[49] Rec. ITU-R BT.500-13 - Methodology for the subjective assessment of the

quality of television pictures, ITU, 2012.

[50] C. Jia, Y. Yang, Y. Xia, Y.-T. Chen, Z. Parekh, H. Pham, Q. Le, Y.-H.

Sung, Z. Li, and T. Duerig, “Scaling up visual and vision-language represen-

tation learning with noisy text supervision,” in International Conference on

Machine Learning. PMLR, 2021, pp. 4904–4916.

[51] G. Jinjin, C. Haoming, C. Haoyu, Y. Xiaoxing, J. S. Ren, and D. Chao,

“Pipal: a large-scale image quality assessment dataset for perceptual image

restoration,” in European Conference on Computer Vision. Springer, 2020,

pp. 633–651.

[52] L. Kang, P. Ye, Y. Li, and D. Doermann, “Convolutional neural networks

for no-reference image quality assessment,” in Proceedings of the IEEE con-

ference on computer vision and pattern recognition, 2014, pp. 1733–1740.

[53] ——, “Simultaneous estimation of image quality and distortion via multi-

task convolutional neural networks,” in 2015 IEEE international conference

on image processing (ICIP). IEEE, 2015, pp. 2791–2795.

[54] J. Ke, Q. Wang, Y. Wang, P. Milanfar, and F. Yang, “Musiq: Multi-scale

image quality transformer,” in Proceedings of the IEEE/CVF International

Conference on Computer Vision, 2021, pp. 5148–5157.

[55] D.-W. Kim, J. Ryun Chung, and S.-W. Jung, “Grdn: Grouped residual dense

network for real image denoising and GAN-based real-world noise modeling,”

in Proc. of CVPR Workshops, 2019.

[56] J. Kim and S. Lee, “Deep learning of human visual sensitivity in image

quality assessment framework,” in Proc. of CVPR, 2017, pp. 1676–1684.

[57] ——, “Fully deep blind image quality predictor,” IEEE Journal of selected

topics in signal processing, vol. 11, no. 1, pp. 206–220, 2017.

[58] W. Kim, B. Son, and I. Kim, “Vilt: Vision-and-language transformer without

convolution or region supervision,” in International Conference on Machine

Learning. PMLR, 2021, pp. 5583–5594.



138 BIBLIOGRAPHY

[59] R. Kiros, R. Salakhutdinov, and R. S. Zemel, “Unifying visual-semantic

embeddings with multimodal neural language models,” arXiv preprint

arXiv:1411.2539, 2014.

[60] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz,

S. Chen, Y. Kalantidis, L.-J. Li, D. A. Shamma, M. Bernstein, and

L. Fei-Fei, “Visual genome: Connecting language and vision using

crowdsourced dense image annotations,” in ., 2016. [Online]. Available:

https://arxiv.org/abs/1602.07332

[61] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen,

Y. Kalantidis, L.-J. Li, D. A. Shamma et al., “Visual genome: Connecting

language and vision using crowdsourced dense image annotations,” Interna-

tional journal of computer vision, vol. 123, no. 1, pp. 32–73, 2017.

[62] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” Communications of the ACM, vol. 60,

no. 6, pp. 84–90, 2017.

[63] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278–2324, 1998.

[64] K.-H. Lee, X. Chen, G. Hua, H. Hu, and X. He, “Stacked cross attention for

image-text matching,” in Proceedings of the European conference on com-

puter vision (ECCV), 2018, pp. 201–216.

[65] C. Li, H. Xu, J. Tian, W. Wang, M. Yan, B. Bi, J. Ye, H. Chen, G. Xu,

Z. Cao et al., “mplug: Effective and efficient vision-language learning by

cross-modal skip-connections,” arXiv preprint arXiv:2205.12005, 2022.

[66] J. Li, R. Selvaraju, A. Gotmare, S. Joty, C. Xiong, and S. C. H. Hoi, “Align

before fuse: Vision and language representation learning with momentum

distillation,” Advances in neural information processing systems, vol. 34, pp.

9694–9705, 2021.

[67] K. Li, Y. Zhang, K. Li, Y. Li, and Y. Fu, “Visual semantic reasoning for

image-text matching,” in Proceedings of the IEEE/CVF international con-

ference on computer vision, 2019, pp. 4654–4662.

[68] L. H. Li, M. Yatskar, D. Yin, C.-J. Hsieh, and K.-W. Chang, “Visualbert:

A simple and performant baseline for vision and language,” arXiv preprint

arXiv:1908.03557, 2019.

[69] X. Li, X. Yin, C. Li, P. Zhang, X. Hu, L. Zhang, L. Wang, H. Hu, L. Dong,

F. Wei et al., “Oscar: Object-semantics aligned pre-training for vision-

language tasks,” in European Conference on Computer Vision. Springer,

2020, pp. 121–137.

https://arxiv.org/abs/1602.07332


BIBLIOGRAPHY 139

[70] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,” Text

Summarization Branches Out, 2004.

[71] K.-Y. Lin and G. Wang, “Hallucinated-iqa: No-reference image quality as-

sessment via adversarial learning,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2018, pp. 732–741.

[72] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,

and C. L. Zitnick, “Microsoft COCO: Common objects in context,” in Proc.

of ECCV, 2014.

[73] F. Liu, R. Ye, X. Wang, and S. Li, “Hal: Improved text-image matching by

mitigating visual semantic hubs,” in Proceedings of the AAAI conference on

artificial intelligence, vol. 34, no. 07, 2020, pp. 11 563–11 571.

[74] X. Liu, J. Van De Weijer, and A. D. Bagdanov, “Rankiqa: Learning from

rankings for no-reference image quality assessment,” in Proceedings of the

IEEE international conference on computer vision, 2017, pp. 1040–1049.

[75] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,

L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert pre-

training approach,” arXiv preprint arXiv:1907.11692, 2019.

[76] J. Lu, D. Batra, D. Parikh, and S. Lee, “Vilbert: Pretraining task-agnostic

visiolinguistic representations for vision-and-language tasks,” Advances in

neural information processing systems, vol. 32, 2019.

[77] V. V. Lukin, N. N. Ponomarenko, O. I. Ieremeiev, K. O. Egiazarian, and

J. Astola, “Combining full-reference image visual quality metrics by neural

network,” in Proc. of Human Vision and Electronic Imaging XX, vol. 9394.

SPIE, 2015, pp. 172–183.

[78] A. Mafla, R. S. Rezende, L. Gomez, D. Larlus, and D. Karatzas, “Stacmr:

Scene-text aware cross-modal retrieval,” in Proceedings of the IEEE/CVF

Winter Conference on Applications of Computer Vision, 2021, pp. 2220–

2230.
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