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Abstract—Image segmentation is an important branch of
modern image processing, especially in biomedical or microscopy
image analysis. Novel optical imaging techniques such as Light-
Sheet Fluorescent Microscopy (LSFM) allow the reconstruction of
massive biological samples with micron-scale spatial resolution.
In this context, image segmentation is challenging due to the
high variability of LSFM images. This article describes the
optimization of an automatic segmentation pipeline to identify
the cardiac tissue in LSFM-based high-resolution 3D recon-
structions of five murine hearts, previously cleared and stained
with Wheat Germ Agglutinin (WGA). We address the challenge
using Trainable WEKA (Waikato Environment for Knowledge
Analysis) Segmentation, a plug-in of Fiji software. Three dif-
ferent training sets were generated by means of a manual
ground truth combined with two additional feature selection
algorithms included in WEKA: CorrelationAttributeEvaluator
and InfoGainAttributeEvaluator. To speed up the computational
time, we also defined a reduced training dataset selecting only
common features between the two sets: median diffusion, mean,
anisotropy, and entropy. We trained four different classifiers for
each of the three training sets in order to identify myocardium
tissue from the background: RandomForest, J48, NaiveBayes,
and MultilayerPerceptron. The performance of the classifiers
was evaluated for each training set and we found that the
RandomForest is the more accurate and stable model over
different datasets with a Dice similarity coefficient of 0.895,
0.895, and 0.892, respectively. Results highlight the reliability
of RandomForest to address high-resolution image segmentation,
allowing the generation of 3D whole-heart reconstruction useful
to investigate, in the future, structural features in pathological
mouse models.
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I. INTRODUCTION

The World Health Organization (WHO) estimates that 17.9
million people worldwide die of cardiovascular disease (CVD)
every year [1]. Research in recent years has made many
advances in this field to improve diagnosis, treat these diseases
better, and reduce CVD mortality [2].

Several imaging modalities can be applied to studying the
heart, including echography, CT, coronary angiography, PET,
and MRI [3], [4]. All of these techniques are characterized
by insufficient spatial resolution and the inability to detect
fluorescence-marked particles usually used in biomedical re-
search [5], [6], [7]. On the other hand, due to the intrinsic opac-
ity of the cardiac tissue, conventional microscopy techniques
have the disadvantage of requiring the use of small working
distances, or a mechanical slicing of the sample, thus intro-

ducing the consequent risks of modifying sample dimensions,
preventing a reliable three-dimensional (3D) reconstruction.
Light Sheet Fluorescence Microscopy (LSFM), combined with
novel advanced tissue-clearing techniques, overcomes these
limitations [8], [9].

LSFM consists in illuminating the transparent sample with a
single thin sheet of light orthogonally oriented to the detection
path so that only the excited optical plane of the tissue is
detected. The sample is then moved in an axial direction to
perform a tomographic scan, imaging the volume section-by-
section, and thus creating a 3D model after a post-processing
step [10], [11], improving image contrast and allowing high
speed and precise monitoring of cells or tissues combined
with fluorescent multi-labeling within a complex and dynamic
environment such as the cardiovascular one [12], [13]. LSFM
image segmentation lacks fully automated techniques because
of the inherent variability of images obtained with this imaging
technique. New deep-learning techniques are emerging and
showing good results, but currently manual segmentation
remains the gold standard in terms of reliability. Naturally, au-
tomatic classification overcomes the problems associated with
manual segmentation, which is time-consuming and sensitive
to high inter- and intra-operator variability [3].

In this study, we optimized a system capable of automat-
ically segmenting cardiac tissue in LSFM reconstructions of
cleared adult murine hearts. To this aim, we adopted a plug-in
from Fiji, Trainable Weka Segmentation (TWS), to perform a
two-step optimization: first, we identified the most significant
features to discriminate the tissue from the background with
two different algorithms; then, we trained four models on
the different training datasets to perform a real segmentation,
finally comparing their performance. The ultimate goal of our
project is to generate a 3D model of the heart anatomy, thus
correlating, in the future, structural features between heart
remodeling and electrical heart dysfunctions in pathological
murine models.

II. MATERIAL AND METHODS

The present investigation is applied to five three-
dimensional reconstructions of cleared hearts of control mice
of 6 months (C57BL/6J). The experimental protocol was
approved by the Italian Ministry of Health (protocol num-
ber 647/2015-106 PR). All the animals were provided by
ENVIGO, Italy. Samples reconstructions were obtained by
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Fig. 1: a) Representative longitudinal view of a cleared mouse heart reconstruction generated with light-sheet microscopy by staining cellular
membranes (pixel size: 20.8 µm). A manual classification of tissue (red) and background (green) is superimposed on the image as an example
of ground truth. b) Features selected to generate the training test using the Trainable Weka Segmentation (TWS) plugin. c) Scheme of the
training/test workflow implemented using the tool KnowledgeFlow included in TWS. The main parts are highlighted with dashed gray lines.

performing a three-step imaging protocol: tissue clarification
with CLARITY method optimized for the cardiac tissue [14],
[15]; staining of cellular membranes with Wheat Germ Ag-
glutinin (WGA) conjugated with Alexa Fluor 633; imaging
by tiles with a custom-made light-sheet microscope [16] with
an original voxel size of 0.65 µm × 0.65 µm × 2 µm in x,
y and z axis respectively. Final reconstruction was obtained
by stitching tiles with custom-made software [17]. In this
paper, three-dimensional (3D) images are downsampled to an
isotropic pixel size of 20.8 µm.

Cardiac tissue segmentation is performed frame-by-frame
in two-dimension (2D) using the plugin TWS, included in the
image analysis software Fiji [18], [19], evaluating different
classification models on three different sets of features.

A. Preliminary dataset and ground-truth

The preliminary dataset used to identify key features for
prediction consists of ten images at different depths from the
reconstruction of a single control mouse heart. By starting
the TWS plugin, the two classes of interest "Tissue" and
"Background" were defined. Ground truth was generated by
manually classifying different regions of interest (ROIs) (Fig-
ure 1a) in all 10 frames. In the "Settings" tab, all features
offered by the WEKA software were selected (Figure 1b) to
generate as many features as possible from the images. Next,
dimensionality reduction was performed using two different
selection algorithms.

B. Feature extraction

Dimensionality reduction was performed using the "Select
Attributes" tool in Weka Explorer. This is based on the joint ac-
tion of an attribute evaluation algorithm (Attribute Evaluator)
and a search algorithm (Search Method). The first evaluates
each attribute in the data set in relation to the desired classifi-
cation; the latter determines the most meaningful combination
of attributes for the classification. Among the algorithms for
attribute selection supported by Weka, we selected:

• CorrelationAttributeEvaluator: calculates the correlation
between each attribute and the output variable: attributes

are the more significant the closer the correlation values
are to 1.

• InfoGainAttributeEvaluator: calculates the entropy of
each attribute in relation to the output variable: attributes
are the more significant the closer the entropy values are
to 1.

In the present study, both evaluation algorithms described
above were used, generating two different sets of features
(defined as Correlation set and InfoGain set for simplicity).
A set of the common attributes between the previous two sets
was also considered and defined as reduced set.

C. Classifiers

The tool KnowledgeFlow presents a "data-flow"-inspired
interface for Weka. Users can select Weka components from a
toolbar, place them on a layout canvas, and link them together
to form a "knowledge flow" for data processing and analysis.
Here, the following classifiers were tested:

• RandomForest: this is the default algorithm when imple-
menting a classifier in Weka;

• J48: characterized by a fast learning process;
• NaiveBayes: the Bayesian classifier is generally reliable

and compact;
• MultilayerPerceptron: a classifier widely used in imaging,

based on a supervised learning technique called back-
propagation.

To compare these classifiers, we generate the KnowledgeFlow
shown in Figure 1c.

D. Training set and test set

The training and the test datasets were generated by first
selecting randomly 40 and 30 images from the five different
reconstructions, respectively, and then manually labeling tissue
and background on these images. Then we extracted from
labeled images the three different sets of features derived
through Weka Explorer: Correlation set, InfoGain set, and
reduced set, thus generating three versions of training and test
datasets. Exploiting the workflow shown in Figure 1c, the four
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Fig. 2: ROC curve of the four models tested on the reduced set of
features.

TABLE I: Dice similarity coefficient

Classifier Correlation set InfoGain set Reduced set
J48 0.869 0.889 0.879
NaiveBayes 0.881 0.880 0.888
RandomForest 0.895 0.895 0.892
MultilayerPerceptron 0.872 0.893 0.865

different models were trained on the same training set and then
used to classify the test set. Finally, the performance of each
model was assessed by the "ClassifierPerformanceEvaluator"
module, generating numerical statistics and plotting the Re-
ceiver operating characteristic (ROC) curve.

III. RESULTS

Feature selection was performed using two different algo-
rithms: the CorrelationAttributeEvaluator and the InfoGainAt-
tributeEvaluator. In both cases, we defined the selection
threshold as the correlation value obtained using the original
image as a feature, without extracting any statistical index
or morphological operator. In the first case, the correlation
of the original image was 0.474554. The following features,
having a correlation value larger than 0.474554, were selected:
median, mean, anisotropic diffusion, entropy, membrane pro-
jection, Gaussian blur, and minimum. These were defined as
Correlation set. With the second approach, the correlation
of the original image was 0.53931, and the algorithm then
identifies as fundamental those features with a correlation
value larger than 0.53931, namely: median, mean, anisotropic
diffusion, entropy, variance, and maximum, that were defined
as InfoGain set. We defined also a reduced set of features,
composed of the subset of features in common with the
previous two sets: median, mean, anisotropic diffusion, and
entropy.

The four models were trained and tested using these three
different sets of features. The Dice similarity coefficient values
for the 4 models and for the three different feature sets (Cor-
relation, InfoGain, and reduced sets respectively) are shown
in Table I.

The model with the best performance is the RandomForest
for all the feature sets, and the error of this model is less

variable than the other models over the different feature sets.
Using the reduced set of features, the ROC curve of the four
models is generated and shown in Figure 2, and the main
metrics of the selected model (RandomForest) are reported in
Table II.

TABLE II: RandomForest Performance

Class TP Rate FP Rate Precision Recall F-Measure ROC Area

Tissue 0.975 0.211 0.837 0.975 0.901 0.940

Background 0.789 0.025 0.966 0.789 0.869 0.940

Weighted Avg. 0.887 0.123 0.898 0.887 0.886 0.940

Finally, a tissue segmentation was performed on an entire
mouse heart reconstruction (Figure 3a shows a representative
frame of the sample classified). The 3D image was segmented
frame-by-frame using the RandomForest trained with the
reduced set of features. This model assigns to each pixel
a probability p ∈ [0, 1] of belonging to the "tissue" class
(Figure 3b). The final binary segmentation can be obtained by
applying an arbitrary threshold on that probability map (here,
the threshold is set p = 0.5, Figure 3c). A 3D segmentation is
shown in Figure 3d. The model was able to correctly segment
the myocardial tissue also in the regions affected by a low
fluorescence signal intensity, without being affected by the
variability of the background brightness.

IV. DISCUSSION AND CONCLUSION

This work aimed to optimize a software pipeline for cardiac
tissue segmentation in LSFM reconstructions of cleared whole
murine hearts. This aspect is important for the investigation
of cardiac functioning [20], allowing in the future to correlate
structural cardiac tissue remodeling with electrical dysfunc-
tions of the heart detected by novel optical mapping techniques
in murine hearts [21], [22]. The work was articulated in three
phases: first, we manually segmented the cardiac tissue from
the background frame-by-frame in 2D with a plugin of Fiji,
TWS, then we extrapolated the most significant attributes
exploiting two different feature selection algorithms included
in WEKA and finally, we tested different models to evaluate
their accuracy on two different ROIs: tissue and background.
The optimized pipeline applied to the 3D reconstruction of the
hearts showed a good functioning of our system providing a
good approach for automatic segmentation of LSFM images.
It could be interesting to perform the same test with more
powerful processors, using a larger dataset. The main limit
was connected to the resolution of the images and the reduced
dataset. An improvement of the work could be to use a larger
data set and involve images with a higher spatial resolution.
The proposed method, applied to reconstructions of hearts
of control and pathological models, will allow the extraction
of anatomical features, enabling the quantification of the
structural remodeling occurring in pathological hearts.
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