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Abstract—In this paper we propose a new optimization model for maximum likelihood estimation
of causal and invertible ARMA models. Through a set of numerical experiments we show how
our proposed model outperforms, both in terms of quality of the fitted model as well as in the
computational time, the classical estimation procedure based on Jones reparametrization. We also
propose a regularization term in the model and we show how this addition improves the out of sample
quality of the fitted model. This improvement is achieved thanks to an increased penalty on models
close to the non causality or non invertibility boundary.
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1. INTRODUCTION

A zero mean ARMA process of order (p, q) is defined through the following stochastic difference
equation:

Yt − φ1Yt−1 − . . .− φpYt−p = θ1εt−1 + . . .+ θqεt−q + εt, εt ∼ WN (0, σ2), (1)

or in compact form [5] as Φ(B)Yt = Θ(B)εt, where Φ(·) and Θ(·) are the pth and qth-degree polynomials

Φ(z) = 1− φ1z − . . .− φpz
p, (2)

Θ(z) = 1 + θ1z + . . .+ θpz
q, (3)

and B is the backward shift operator (see [5, 6, 13]). In Eq. (1), φ = (φ1, . . . , φp) are the parameters
concerning the autoregressive part, while analogously θ = (θ1, . . . , θq) are the parameters of the moving
average component. As it is typically assumed, the error terms in Eq. (1) are modeled as a zero mean
Gaussian white noise process of variance σ2.

The interest towards this class of statistical models is justified by their employment in a multitude of
fields like business planning, finance, transportation systems, demography and medicine. With special
reference to real-time forecasting systems, it is very important to develop computationally efficient
estimation methods focused on improving the numerical stability of the related fitting procedure and
the predictive ability of the ARMA models.

ARMA models estimation has a very long history [1, 2, 5, 9, 12, 14, 15, 26]. Maximum likelihood
estimation is usually performed for its advantageous asymptotic properties. A closed form expression
of the ARMA exact likelihood function was firstly given in [26]. Afterwards, the focus shifted to finding
expressions of the exact likelihood being more suitable for its computation [2, 9]. Finally, in the late 70’s,
the computational advantages of computing the exact likelihood by means of Kalman Filter [20] have
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been pointed out in [15]. To date, Kalman Filter algorithm, initialized according to the Gardner method
[12], represents the state-of-the-art of the methods employed to compute the exact likelihood.

As it is usually required in forecasting applications, the estimation of (φ, θ) needs to take into account
the causality and invertibility conditions [6] which act like constraints in the search space. These
constraints are usually handled by means of the Jones reparametrization [19] which converts the original
constrained ARMA estimation problem into an unconstrained one.

In this paper we propose to fit causal and invertible ARMA models by exact maximum likelihood
estimation avoiding the employment of the Jones reparametrization [19]. This is achievable solving a
bound constrained optimization problem. The benefits of our formulation are both lower computational
fitting times and better numerical stability w.r.t. the classical unconstrained approach. Furthermore, we
propose the addition of a quadratic regularization term to the ARMA exact likelihood function. This
term improves the predictive ability of the fitted ARMA models.

The rest of the paper is organized as follows. Section 2 contains a review of the Jones reparametri-
zation method. In Section 3 the notion of closeness of (φ, θ) to the feasibility boundary is defined. In
Section 4 our bound constrained maximum likelihood estimation approach is provided. In Section 5,
extensive computational experiments which assess the reliability of the proposed method are reported.
Finally, the overall conclusions are remarked in Section 6.

2. JONES REPARAMETRIZATION

When causality and invertibility conditions [6] hold, the parameters φ = (φ1, . . . , φp) and θ =
(θ1, . . . , θq) are constrained to belong to the set Sp × Sq, corresponding to the polynomial operator root
conditions

Sp = {φ ∈ R
p | 1− φ1z − . . .− φpz

p �= 0 ∀ z ∈ C s.t. |z| ≤ 1} (4)

Sq = {θ ∈ R
q | 1 + θ1z + . . . + θpz

q �= 0 ∀ z ∈ C s.t. |z| ≤ 1}. (5)

These feasible sets are easily identified for p ≤ 2 and q ≤ 2, but for k > 2 the form of Sk becomes
complicated and for k > 4 the polynomial Eqs. (4), (5) cannot be solved analytically [23]. The geometry
of the feasible set Sp × Sq is described in detail in [7, 27, 29]. To circumvent the problem of dealing with
constraints (4) and (5) Barndorff-Nielsen and Schou [4] reparametrize φ = (φ1, . . . , φp) in terms of the
partial autocorrelations ρ = (ρ1, . . . , ρp) by means of the one-to-one continously differentiable Levinson
mapping Υ(·):

φ
(k)
k = ρk, k = 1, . . . , p, φ

(k)
i = φ

(k−1)
i − ρkφ

(k−1)
k−i , i = 1, . . . , k − 1. (6)

In (6), causality is simply obtained by ρk ∈ (−1, 1) ∀k = 1, . . . , p. Jones [19] introduces an additional
mapping J : Rp → (−1, 1)p, which allows to formulate the original problem as an unconstrained
optimization problem introducing variables uk, k = 1, . . . , p:

ρk =
1− exp (−uk)

1 + exp (−uk)
, k = 1, . . . , p. (7)

Similar transformations can also be employed for the moving average parameters θ = (θ1, . . . , θq)
in order to guarantee the invertibility condition. By writing the moving average polynomial (3) for the
negative vector of MA parameters, −θ, we get

Θ(z) = 1− (−θ1)z − . . .− (−θq)z
q, (8)

and the following can be deduced

θ
(k)
k = bk, k = 1, . . . , q,

θ
(k)
i = θ

(k−1)
i + bkθ

(k−1)
k−i , i = 1, . . . , k − 1, (9)

where the variables bk ∈ (−1, 1) ∀k = 1, . . . , q. Jones reparametrization for the moving average part is
equivalent to (7):

bk =
1− exp (−wk)

1 + exp (−wk)
, k = 1, . . . , q. (10)
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In [19], the variables bk are called partial moving average coefficients. The optimization of the exact
loglikelihood in the causal and invertible feasible space is now carried out with respect to the variables
u = (u1, . . . , up) ∈ R

p and w = (w1, . . . , wq) ∈ R
q.

Note that φ = Υ(ρ), while θ = −Υ(b). In fact, for any u and w, the evaluation of the exact likelihood
function in a causal and invertible feasible point can be computed by means of the transformations (6),
(7), (9), (10), and the Kalman recursions. Inverse Jones transformations are easily found by solving (7),
(10) respectively for uk, k = 1, . . . , p and wk, k = 1, . . . , q. On the other hand, Monhan [24] derives the
expression of the inverse transformation Υ−1(·) of (6) which equivalently can be extended for the moving
average part (9).

3. CLOSENESS TO THE FEASIBLITY BOUNDARY

In this Section, the notion of closeness of a feasible point (φ, θ) ∈ Sp × Sq to the set ∂Sp × ∂Sq, i.e.
the boundary of the invertibility and causality regions, is formalized. This will be useful later in this work,
when investigating the relation between the closeness to the boundary and the numerical stability during
the optimization of the Gaussian ARMA exact log-likelihood function.

It is partially documented 1) that log-likelihood evaluation by Kalman filter may fail when a point (φ, θ)
is close to the causality boundary. Furthermore, it is well known that closeness to the non-invertible
region is problematic due to the presence of the so-called pile-up effect [21, 22, 28]. Indeed, when the
true parameter of an MA(1) process is close to unity, the model can be estimated to be non-invertible
with a unit root even when the true process is invertible, with a considerably high probability in a finite
sample. Ansley and Newbold [3] confirm the presence of such effect in ARMA models too.

Inspired by the method of McLeod and Zhang [32] for testing the presence of a parameter estimate
on the boundary of an MA(q) model, we define the closeness of a point (φ, θ) to the boundary of the
invertible and the causal-stationary regions exploiting the parametrization of an ARMA(p, q) in terms
of ρ and b:

(φ, θ) = (Υ(ρ),−Υ(b)) ,

(φ, θ) ∈ Sp × Sq ⇐⇒ (ρ, b) ∈ (−1, 1)p × (−1, 1)q.

Υ(·) is not one-to-one on the hypercube boundary [4]. However, as elegantly shown in [32], Υ(·) maps
the boundary of (−1, 1)p onto ∂Sp. Since Υ(·) is a continuously differentiable function in [−1, 1]p, the
closeness of an estimate φ ∈ Sp to the non causal-stationary boundary ∂Sp can be defined respectively
in terms of the partial autocorrelations ρ. The same reasoning holds for the moving average part.

As reported in [32], φ ∈ ∂Sp if and only if ‖ρ‖∞ = 1 and similarly θ ∈ ∂Sq if and only if ‖b‖∞ = 1.
Now, by fixing a threshold parameter τ > 0, closeness of (φ, θ) = (Υ(ρ),−Υ(b)) ∈ Sp × Sq to the
boundary ∂Sp × ∂Sq is defined by the following conditions:

(i) (φ, θ) ∈ Sp × Sq is close to ∂Sp if and only if 1− ‖ρ‖∞ < τ ;

(ii) (φ, θ) ∈ Sp × Sq is close to ∂Sq if and only if 1− ‖b‖∞ < τ ;

(iii) (φ, θ) ∈ Sp × Sq is close to both ∂Sp and ∂Sq if and only if 1− ‖ρ‖∞ < τ and 1− ‖b‖∞ < τ .

A point (φ, θ) ∈ Sp × Sq which does not satisfy any of the above conditions (i), (ii), (iii) is defined as a
strictly feasible point of Sp × Sq.

1)See, e.g., https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/KalmanLike and https://bugs.r-
project.org/bugzilla/show_bug.cgi?id=14682
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4. THE PROPOSED APPROACH

We propose to fit causal and invertible ARMA(p, q) models by solving the following bound con-
strained optimization problem

max
ρ,b,σ2

	
(
Υ(ρ),−Υ(b), σ2

)

s.t. ρ ∈ [−1 + ε, 1 − ε]p , b ∈ [−1 + ε, 1 − ε]q , σ ∈ R+. (11)

Optimizing w.r.t. the partial autocorrelation and the partial moving average coefficients avoids the use
of the Jones reparametrization (7), (10). Note that this formulation cuts off a small part of the feasible
space Sp × Sq. However, as highlighted by thorough numerical experiments that we will describe in the
following Section, our formulation provides some nice advantages:

• it allows to save a significant amount of running time, as there is no more the need to compute
Eqs. (7) and (10) p and q times respectively, each time the log-likelihood has to be computed
during the optimization process (note that every gradient computation by finite differences
requires 2(p + q) objective evaluations);

• it allows to avoid solutions too close to the feasibility boundary that typically lead to numerical
errors.

We furthermore propose to include in the objective function of Problem (11) a Tikhonov regularization
term:

max
ρ,b,σ2

	
(
Υ(ρ),−Υ(b), σ2

)
− λ(||ρ||22 + ||b||22)

s.t. ρ ∈ [−1 + ε, 1 − ε]p , b ∈ [−1 + ε, 1 − ε]q , σ ∈ R+. (12)

We will experimentally show in the following that, in our context, this term not only discourages
solutions close to the feasibility boundary, but it also improves the predictive ability of ARMA models.

5. COMPUTATIONAL EXPERIMENTS

In what follows the approximation parameter ε is set to 10−2; we fixed the closeness parameter τ = 2ε
in (i), (ii), (iii), so that it is still possible for models (11) and (12) to produce points that are close to the
border of the original feasible set.

All the experiments have been performed on a dataset of synthetically generated time series. We
simulated a total of 2250 time series of different length l ∈ {100, 1000, 10000} from ARMA (p, q)
Gaussian processes up to a maximum order (p, q) of (5, 5) and standard deviation σ ∈ {0.01, 0.1, 1}.

Specifically, for a given a combination of length, order and standard deviation, we generated 10
time series, each one representing a finite realization of a particular ARMA process with its structural
autoregressive and moving average parameters (φ, θ). Each pair (φ, θ) is selected according to the
methodology described in [18]. This methodology allows to choose (φ, θ) from a uniform distribution
over the feasible set Sp × Sq.

Firstly, we are interested in establishing the differences between solving problem (11) and the
unconstrained one, based on Jones reparametrization, both from the standpoints of computational times
and numerical stability. To this aim we carried out a multi-start strategy: for each time series, the fitting
process is repeated 30 times from different randomly chosen starting points. These starting points are
again obtained by uniform sampling over the feasible region. For a fair comparison, the two considered
methods share the sets of starting points.

Secondly, we investigated the prediction performance of ARMA models close to the boundary. As
usual, the performance is evaluated on a test set, after fitting on training data. Our test set for each time
series is given by the last three observations (short term forecasting scenario). Similarly as above, the
process of model estimation and computation of forecasts is repeated 30 times in a multi-start fashion.
Note that, here, ARMA models have been fitted only by means of the classical Jones methodology.
Indeed, our interest is to characterize both the forecasting performance of ARMA models close to the
border and how frequently they are obtained in the standard setting.
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Table 1. Two sided Wilcoxon signed-rank test. Null hypothesis: the median of the differences of the computational
times tJones− tour is zero

Test statistic P-Value

−34.3807 < 1e−5

Table 2. One sided Wilcoxon signed-rank test. Null hypothesis: the median of the differences of computational
times tJones− tour is negative

Test statistic P-Value

34.3807 < 1e−5

Our last experiment assesses the impact of the 	2 regularization term in the short term forecasting.
For each time series of our dataset, a single starting point to initialize the optimization is selected. The
fitting procedure is then repeated for different values of the regularization hyperparameter λ in Eq. (12).

All the experiments were performed on a machine with Ubuntu Server 20.04 LTS OS, Intel Xeon
E5-2430 v2 @ 2.50GHz CPU and 32GB RAM.

5.1. Fitting Procedure Runtimes

Our method provides a significant reduction of the computational time required to fit a time series
with respect to the unconstrained fitting method of Jones. The time saving is estimated to be about 24%
in relative terms.

This result is corroborated by the non parametric Wilcoxon signed-ranks test [8, 31]. We considered
as fitting time for a time series the average runtime of successful runs (i.e., with no numerical error) of
our multi-start procedure. Results of the Wilcoxon signed-ranks test are reported in Tables 1 and 2.
These results point out that the median of the differences of fitting times between the two methods can
be assumed to be positive, i.e., the constrained method has significantly lower fitting times.

5.2. Numerical Instability

Our fitting method prevents numerical issues during the optimization process of the ARMA exact
likelihood function, thereby ensuring a higher level of computational stability.

The employment of the Jones reparametrization, where exponential operators are present, leads to
a non-negligible probability of arithmetic issues, which almost always are divisions by zero and in rare
cases overflows. Our method does not suffer at all from these issues.

The most critical errors, that completely undermine the fitting process, come from the Kalman Filter
recursions. In general, it is well known that numerical instability often occurs in Kalman Filtering [30],
especially related to the computation of the state covariance matrix.

Our experiments show that the closeness of a point (φ, θ) to the feasibility boundary is related to
numerical instability within the Kalman Filter recursions. In particular, we observed a total of 19
LinAlgError errors (15 by the classical method, 4 by using our model (11)) because of the failed
convergence of the SVD numerical computation.

In Tables 4 and 5 a detailed description of these errors is reported. The error may be due to the
evaluation of the log-likelihood in that point or the computation in the same point of the gradient, since
it is approximated by finite differences.

Two patterns are clear from Tables 4 and 5. Firstly, the classical method by Jones fails 4 times more
frequently than ours. This means that our reformulation protects from the occurrence of most numerical
errors. Secondly, regardless of the type of parametrization employed, it is evident that these numerical
errors are related to points close the boundary ∂Sp × ∂Sq of the feasible set. Furthermore, by observing
the first column of both tables, it seems that most errors inside the unconstrained framework happen
even when fitting low order models.
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Table 3. Occurrence of numerical instability issues per 1000 runs

Method Arithmetic issues Kalman filter errors

Our 0 0.06

Jones reparametrization 2.65 0.22

Table 4. Numerical errors in Kalman filtering when using Jones reparametrization. The first three columns contain
information about the ARMA process that generated the tested series and the series itself (orders p and q, series
length, standard deviation of the white noise generator process). The fourth and fifth columns provide details about
the optimization run: the starting point and the point where the error has been generated are characterized in
terms of closeness to the feasibility boundary, according to the metrics introduced in Section 3. The sixth column
provides the same information associated with the parameters of the model employed to generate the series

Model Length σ Starting point Error point Ground truth point

ARMA(2, 1) 100 0.01 Strictly feasible (iii) Strictly feasible

ARMA(2, 1) 10 000 0.01 Strictly feasible (iii) (i)

ARMA(2, 1) 10 000 0.01 (i) (ii) Strictly feasible

ARMA(2, 1) 100 0.1 Strictly feasible (iii) Strictly feasible

ARMA(2, 1) 100 0.1 (ii) (i) Strictly feasible

ARMA(2, 1) 100 0.1 Strictly feasible (i) Strictly feasible

ARMA(2, 1) 1000 0.1 Strictly feasible (iii) Strictly feasible

ARMA(2, 1) 10 000 0.1 Strictly feasible (iii) Strictly feasible

ARMA(2, 1) 10 000 0.1 Strictly feasible (iii) Strictly feasible

ARMA(2, 1) 100 1 (i) (iii) Strictly feasible

ARMA(2, 1) 1000 1 Strictly feasible (iii) Strictly feasible

ARMA(2, 1) 10 000 1 Strictly feasible (iii) Strictly feasible

ARMA(2, 3) 10 000 1 (ii) (iii) Strictly feasible

ARMA(3, 2) 100 0.01 Strictly feasible (iii) Strictly feasible

ARMA(5, 1) 10 000 1 Strictly feasible (i) Strictly feasible

Table 5. Numerical errors in Kalman filtering when using model (11). The first three columns contain information
about the ARMA process that generated the tested series and the series itself (orders p and q, series length,
standard deviation of the white noise generator process). The fourth and fifth columns provide details about the
optimization run: the starting point and the point where the error has been generated are characterized in terms of
closeness to the feasibility boundary, according to the metrics introduced in Section 3. The last column provides
the same information associated with the parameters of the model employed to generate the series

Model Length σ Start point Error point Ground truth point

ARMA(4, 2) 10 000 1 Strictly feasible (iii) Strictly feasible

ARMA(4, 4) 1000 0.1 Strictly feasible (iii) (ii)

ARMA(5, 5) 100 0.1 Strictly feasible (ii) Strictly feasible

ARMA(5, 5) 1000 0.1 Strictly feasible Strictly feasible Strictly feasible
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Table 6. Results from the two-sided Wilcoxon test at different horizons. Null hypothesis: the median of the
differences of the MASE errors, MASEborder − MASEstrictly feasible, is zero

Error Test statistic P-Value

MASE(3) −4.23197 2.31e−5

Scaled error(1) −1.49874 0.13394

Scaled error(2) −1.67521 0.09389

Scaled error(3) −4.35523 1.33e−5

Table 7. Results from the one-sided Wilcoxon test at different horizons. Null hypothesis: the median of the
differences of the MASE errors, MASEborder − MASEstrictly feasible, is negative

Error Test statistic P-Value

MASE(3) 4.23197 1.16e−5

Scaled error(1) 1.49874 0.06697

Scaled error(2) 1.67521 0.04695

Scaled error(3) 4.35523 < 1e−5

Table 8. Average of ranks between different ARMA models performance w.r.t. different error metrics

Error Jones λ = 0 λ = 1 λ = 2 λ = 4 λ = 8 λ = 16

MASE(3) 4.228 4.201 4.056 3.947 3.882 3.825 3.862

Scaled error(1) 4.022 3.996 4.018 3.999 3.972 3.968 4.025

Scaled error(2) 4.082 4.095 4.01 3.972 3.958 3.935 3.948

Scaled error(3) 4.220 4.226 4.081 3.980 3.885 3.798 3.809

5.3. Forecasting with Almost-Border Models

As reported above, we employed again a multi-start approach to assess the predictive performance
of close to the border ARMA models. For our analysis, we picked time series having at least one strictly
feasible solution and at least a solution that meets one of the conditions (i), (ii), (iii). In doing so, we got
a total of 614 time series with such features.

When multiple strictly feasible solutions are available, we considered the best one according to the
exact log-likelihood value. The same is done when multiple solutions close to the border are obtained for
a single time series. We then computed multi-step ahead predictions with the two selected models for
each time-series.

Differences in predictive performance of these two distinct ARMA models are again investigated by
means of the Wilcoxon signed-ranks test [8, 31]. We employed the mean absolute scaled error (MASE)
[17] to measure the accuracy of forecasts. Indeed, the MASE can be used to compare forecast methods
on a single series and, being scale-free, to compare forecast accuracy across series [16].

In our experiments, MASE at a given forecast horizon h is computed as

MASE(h) =
1

h

∑h
t=n+1 |yt − ŷt|

1
n−1

∑n
t=2 |yt − yt−1|

. (13)

We also reported the single absolute scaled errors for each different forecast horizon h:

Scaled error(h) =
|yn+h − ŷn+h|

1
n−1

∑n
t=2 |yt − yt−1|

. (14)
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Table 9. Results of Friedman test for the difference in forecasting performance of various ARMA models w.r.t.
different error metrics

Error Test statistic P-Value

MASE(3) 78.06724 < 1e−5

Scaled error(1) 1.57091 0.95465

Scaled error(2) 12.13886 0.05894

Scaled error(3) 94.93939 < 1e−5

Table 10. Posthoc analysis of the performance forecasting: pairwise comparison of the MASE(3) error

Jones λ = 0 λ = 1 λ = 2 λ = 4 λ = 8 λ = 16

Jones 1.00000 0.90000 0.10395 0.00100 0.00100 0.00100 0.00100

λ = 0 0.90000 1.00000 0.26546 0.00154 0.00100 0.00100 0.00100

λ = 1 0.10395 0.26546 1.00000 0.60537 0.10031 0.00630 0.04196

λ = 2 0.00100 0.00154 0.60537 1.00000 0.90000 0.48698 0.82448

λ = 4 0.00100 0.00100 0.10031 0.90000 1.00000 0.90000 0.90000

λ = 8 0.00100 0.00100 0.00630 0.48698 0.90000 1.00000 0.90000

λ = 16 0.00100 0.00100 0.04196 0.82448 0.90000 0.90000 1.00000

Results are reported in Tables 6 and 7. The observed P-value in the last row of Table 6 evidences that
significant differences exist in forecast accuracy between strictly feasible ARMA (p, q) models and close-
to-the-border ARMA (p, q) models. The significant differences involve only the MASE (3) error and the
absolute scaled error at horizon h = 3: in both cases the associated P-values are strictly lower than the
default significance level α = 0.05. Furthermore, for these two metrics the one-sided test confirms that
ARMA models close to the feasibility boundary perform poorer in terms of the predictive ability than the
strictly feasible ARMA models.

Considering instead the remaining error metrics, results in Table 6 indicate that at forecast horizon
h = 1 non substantial difference exists in forecast accuracy between the two types of ARMA models.
Differences in predictive ability become more evident as the forecast horizon grows. From Table 6
we observe that at horizon 2, only assuming a significance level α = 0.1, it is possible to deduce a
statistically significant difference between the two ARMA models in forecasting performances.

The main conclusion of this experiment is that ARMA models close to the feasibility boundary
perform poorer in terms of the predictive ability than the strictly feasible ARMA models. The practical
meaning of this result is that caution is needed with close to the border ARMA models when forecasting
is required. This is one of the motivations to modify our fitting model (11) by adding to the objective an
	2 penalty term as in (12). We will discuss in depth the effects of this modification in the next section.

5.4. Forecasting with Regularized ARMA Models

The next and final experiment investigates the effect of the addition of an 	2-regularization term from
a forecasting accuracy perspective. Different values of the regularization hyperparameter λ in Eq. (12)
give rise to different ARMA(p, q) models with diverse forecasting performances.

ARMA models are, in practice, fitted by iterative optimization algorithms that start at preliminary
estimates obtained, for example, with the well-known Hannan and Rissanen (HR) method [14]. We
consider this setting to carry out the experiment, in order to assess the impact of the regularization term
in the common use cases.
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Table 11. Posthoc analysis of the performance forecasting: pairwise comparison of the absolute scaled error at
horizon h = 2

Jones λ = 0 λ = 1 λ = 2 λ = 4 λ = 8 λ = 16

Jones 1.00000 0.90000 0.90000 0.60131 0.46951 0.25145 0.37172

λ = 0 0.90000 1.00000 0.82448 0.48264 0.34176 0.16502 0.25839

λ = 1 0.90000 0.82448 1.00000 0.90000 0.90000 0.90000 0.90000

λ = 2 0.60131 0.48264 0.90000 1.00000 0.90000 0.90000 0.90000

λ = 4 0.46951 0.34176 0.90000 0.90000 1.00000 0.90000 0.90000

λ = 8 0.25145 0.16502 0.90000 0.90000 0.90000 1.00000 0.90000

λ = 16 0.37172 0.25839 0.90000 0.90000 0.90000 0.90000 1.00000

Table 12. Posthoc analysis of the performance forecasting: pairwise comparison of the absolute scaled error at
horizon h = 3

Jones λ = 0 λ = 1 λ = 2 λ = 4 λ = 8 λ = 16

Jones 1.00000 0.90000 0.31753 0.00357 0.00100 0.00100 0.00100

λ = 0 0.90000 1.00000 0.27263 0.00259 0.00100 0.00100 0.00100

λ = 1 0.31753 0.27263 1.00000 0.67435 0.03709 0.00100 0.00100

λ = 2 0.00357 0.00259 0.67435 1.00000 0.73116 0.07136 0.11154

λ = 4 0.00100 0.00100 0.03709 0.73116 1.00000 0.80825 0.90000

λ = 8 0.00100 0.00100 0.00100 0.07136 0.80825 1.00000 0.90000

λ = 16 0.00100 0.00100 0.00100 0.11154 0.90000 0.90000 1.00000

The classical Jones fitting method is compared with models (11) and (12), varying the values of the
regularization parameter λ. For each time series, all optimization algorithms are started at the same
initial point, identified using HR procedure.

We employed the Friedman test [8, 10, 11] to catch the differences between the methods. The test
ranks the fitting methods for each time series separately, the best performing method (lowest error)
getting the rank of 1, the second best rank 2 and so on. The null-hypothesis, states that all the fitting
methods are equivalent and so their ranks should be equal. Table 8 reports the average of ranks over all
the time series in our dataset, w.r.t. the metrics of interest (13) and (14).

We observe from Table 8 that for the MASE(3) and the absolute scaled error at horizon h = 3 the
averages of ranks go down until a value of the hyperparameter λ = 8. For the other two errors the trend
of the averages of the ranks seems quite stationary: this pattern finds confirmation from the results of
Friedman test as it is shown in Table 9.

Friedman test, whose results are reported in Table 9, suggests that the forecasting performance of the
considered fitting models statistically differ (assuming a significance level of α = 0.1) for all the errors
except for the absolute scaled forecasting error at horizon h = 1.

Therefore, based on these results we considered necessary to conduct post hoc-analysis w.r.t. the
MASE(3), the absolute scaled forecasting error at horizon h = 3 and 2 (although the P-value in the
latter case is not negligible).

Post-hoc analysis is performed by means of the Nemenyi test [8, 25]. Critical differences between
two generic methods are assessed in terms of the differences between the averages of the ranks. Results
of the Nemenyi test are reported in Tables 10, 11 and 12.

Regarding the absolute scaled error at horizon h = 2, results from the Nemenyi test indicate no
significant differences between the fitting methods in terms of the forecasting performances. All the
P-values reported in Table 11 are greater than 0.1.
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On the other end, results about absolute scaled error at horizon h = 3 and the MASE(3) are
equivalent. By observing both Tables 10 and 12, no significant difference is found between the two
non regularized methods. Furthermore, no significant differences in forecasting performance have been
identified between both the non regularized methods and the regularized one with λ = 1.

Instead, stronger regularization leads to significantly better forecasts w.r.t. the non regularized
methods. Forecasting performance, as mentioned above, starts to deteriorate as the regularization
hyperparameter grows to λ = 16. In summary, the constrained fitting method with regularization leads
to causal and invertible ARMA models with better short term predictive ability than the non regularized
ones.

6. CONCLUSIONS

Fitting causal and invertible ARMA models by constrained optimization in the partial autocorrelation
and partial moving-average coefficients space has several advantages w.r.t. the classical unconstrained
approach based on the Jones reparametrization. First of all, we observed that our approach leads to a
significant reduction of the fitting times. Moreover, almost-border solutions are often avoided. Such
solutions, as further experiments highlight, are bad both because they lead to numerical errors during
the optimization of the ARMA exact log-likelihood and because they do not perform well at forecasting.

Based on these results we proposed 	2-regularization to discourage almost-border solutions. As
non parametric statistical tests assess, 	2-regularization also improves the short term forecasting
performances of causal and invertible ARMA models.
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