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Abstract: Light carrying orbital angular momentum con-
stitutes an important resource for both classical and quan-
tum information technologies. Its inherently unbounded
nature can be exploited to generate high-dimensional
quantum states or for channel multiplexing in classical and
quantum communication in order to significantly boost
the data capacity and the secret key rate, respectively.
While the big potentials of light owning orbital angular
momentum have been widely ascertained, its technologi-
cal deployment is still limited by the difficulties deriving
from the fabrication of integrated and scalable photonic
devices able to generate and manipulate it. Here, we
present a photonic integrated chip able to excite orbital
angular momentum modes in an 800 m long ring-core fiber,
allowing us to perform parallel quantum key distribution
using two and three different modes simultaneously. The
experiment sets the first steps towards quantum orbital
angular momentum division multiplexing enabled by a
compact and light-weight silicon chip, and further pushes
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the development of integrated scalable devices supporting
orbital angular momentum modes.
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nication; quantum key distribution; silicon photonics.

1 Introduction

Since 1992, when L. Allen and colleagues discovered that
Laguerre—Gaussian beams have a well-defined orbital
angular momentum (OAM) [1], an enormous amount of
research has been carried out to better understand and
manipulate light owning a nonzero OAM [2]. Optical beams
possessing a well-defined OAM are characterized by the
azimuthal phase dependence e“?, where 77 is the OAM
carried by each photon, with 7 being the reduced Planck
constant; # is the topological charge, an integer that
specifies the OAM value, and ¢ is the azimuthal angle.
Such helical phase twists along its propagation axis and
determines the cancellation of the light beam at the axis
itself, thus resulting in a “doughnut” intensity profile. It is
thanks to these special features, i.e., intensity and phase
structures, that light owning an OAM has been applied
in many fields of optics, e.g., optical trapping [3, 4] or
quantum information [5, 6]. In the last decade, OAM has
been largely investigated in the field of fiber-based optical
communication, both classical and quantum, achieving
unprecedented results that have forecast its exploitation
to real-case scenarios [7-9]. It has shown great potentials
in communication systems due to the unbounded nature
of the topological charge # and the inherent orthogonality
between optical modes or quantum states. Indeed, these
characteristics are exceptional resources for optical mode
multiplexing and high-dimensional quantum communi-
cation: the former aims to overcome the channel capacity
crunch in classical communication systems [10, 11] or to
boost photon information efficiency in the quantum ones
[8]; the latter, uses quantum states encoded in a large
Hilbert space, i.e., high-dimensional quantum states, as
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they can tolerate higher noise thresholds, thus they are use-
ful for communications over noisy channels or in extreme
conditions, such as photon starving or detector saturation
regimes [12, 13]. Nonetheless, despite the results achieved
hitherto, applications of OAM beyond proof-of-principle
experiments require the development of integrated devices
able to generate, transmit, and manipulate such a degree
of freedom. On-chip generation of OAM modes both for
classical and quantum applications, have been demon-
strated using star couplers [14], microring resonators [15],
and controlled phase arrays [16]. Also, the transmission
of OAM modes through a silica chip has been investigated
[17], as well as the combination of an integrated optical
emitter and a ring-core fiber for classical communication
[18].

In this work, we exploit a photonic integrated emitter
based on the star-coupler technology to seed an 800 m
long ring-core fiber with a three-times OAM multiplexed
quantum key distribution (QKD) protocol, using time-bin
encoded states. We believe our work further closes the
gap between proof-of-principle experiments and concrete
deployment of OAM-based technologies, thus foreseeing
them as a near-future reach (Figure 1).

2 Excitation of the orbital angular
momentum fiber modes

The main goal of our experiment is to spatially multi-
plex and transmit time-bin encoded QKD signals using
the OAM degree of freedom. In this regard, a fundamental
role is played by our integrated device, which is a silicon-
on-insulator chip that, given an input, outputs a ring of
Gaussian spots with a well-defined relative phase [19]. The
OAM chip function is to imitate the radial phase pattern and
characteristics of a definite OAM mode. The overall field
will excite the intended OAM mode in the fiber upon cou-
pling with a coupling efficiency which corresponds to the
overlap of the output field with the OAM mode. Figure 2(a)
and (b) shows the fabricated device and its output. The
chip consists of three main parts: the input grating cou-
plers, a star coupler and a ring of output couplers, and it
supports the multiplexing to OAM modes within # = —7 to
¢ = +7. There are 15 input grating couplers with a 500 pm
adiabatic taper, whose spacing is 127 pm that is compatible
with commercially available fiber arrays. Each input can
be labeled with integers ranging from —# to +Z.

The star coupler [14], schematically shown in Figure
2(c), is an optical element that distributes an incoming
signal into K output waveguides with phase differences
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of Ap = 2z¢ /K for neighboring output waveguides, so
that the total phase difference across all output waveguides
is 2z¢, where £ depends on the chosen input waveguide.
In our case, 7 lies within —7 and +7 and K = 26 arranged on
ring with 325.5 pm diameter. The input and output waveg-
uides are spread at equidistant angles Aa¢ = 0.3° and
Apf = 0.48°, respectively. The 26 output ports are con-
nected to a ring of 26 grating couplers oriented in the same
direction allowing coupling of the light at 15° angle. Figure
2(b) shows an image of the 26 grating couplers output.
The optical path length of the 26 waveguides between the
star coupler and the ring of output couplers are identical,
nonetheless, each waveguide is supported with a thermal
heater that allows for phase compensation to account for
fabrication tolerances. The chip has approximately 22 dB
of losses, stemming from input coupling loss, waveguides
and other components losses, and output grating couplers
losses.

A specific OAM fiber mode +7# can be excited by inject-
ing light into the respective +7 input, so that the output
ring of Gaussian spots is generated, whose total phase
difference is 2z7. The injection of light into more inputs
simultaneously enables the excitation of different OAM
fiber modes, thus realizing the OAM mode multiplexing.

3 Experimental setup

The QKD protocol we implemented and multiplexed using
OAM modes is the three-state time-bin protocol, where we
have used the 1-decoy technique and carried out the finite
key analysis [20]. The experimental setup we realized is
shown in Figure 1. A continuous wave laser at 1554.13
nm, channel 29 of the International Telecommunication
Union-Telecommunication Standardization Sector (ITU-T),
is carved to form a train of pulses at a repetition rate of 595
MHz, which are subsequently attenuated to reach the sin-
gle photon level and form the time-bin qubits exploited
in the experiment. The carving procedure is performed
by two cascaded intensity modulators, shown as one in
Figure 1, controlled by a field programmable gate array
(FPGA), which generates electrical signals according to a
pseudo-random binary sequence of length 1 =212 — 1.

It should be noted that to block the loopholes and
guarantee the security of the real QKD implementation,
quantum states should be phase randomized and the
pseudo-random sequence should be replaced with a quan-
tum random number generator [21]. Furthermore, in addi-
tion to providing the electrical signals driving the intensity
modulators, the FPGA generates an electrical signal, of
width 1.68 ns and a repetition rate of 145.358 KHz, which
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Figure 1: Realization of OAM multiplexing, time-bin encoding quantum key distribution.

(@) Experimental setup. IM: intensity modulator; VOA: variable optical attenuator; BS: beam-splitter; PBS: polarization beam-splitter; QWP:
quarter-wave plate; SLM: spatial light modulator; Di: ith detector. (b) Schematic of the photonic integrated device. (c) X basis measurement
setup. PLL: phase-locked loop; DWDM: dense wavelength-division-multiplexing; PM: phase modulator; PS: phase shifter; FM: Faraday

mirror; APD: avalanche photodiode; PLL: phase-locked loop.

Figure 2: Compact and scalable design of photonic integrated chips.

(@) Picture shows the photonic integrated device used in the experiment. (b) Infrared image of the grating couplers output. The 26 output are
arranged on a ring of 325.5 um. (c) Schematic of the star-coupler structure.

is used for clock synchronization. However, due to source
and receiver physically situated remote, an optical syn-
chronization scheme was implemented. Following the cas-
caded intensity modulators, the quantum state signal is
then split by using a 1 by 4 beam-splitter and fed to the
integrated chip. Since the integrated chip is polarization
sensitive, polarization controllers are used to maximize
coupling of individual signals into the chip. Finally, the
chip output is collimated, and its polarization is trans-
formed from linear to circular by the combination of a
polarization beam-splitter and a quarter-wave plate. After
that, the chip output is coupled into the ring-core fiber, cor-
responding to the quantum channel, exciting the desired
OAM modes, each of them generating an independent
key. For the purpose of this demonstration, we choose
2(3) modes, —7 and —5 (=7, —5 and +6) which showed
a crosstalk as low as ~ —12 dB (~ —18 dB), see Figure 3.
The OAM modes crosstalk stems from misalignment of the
chip output to the OAM fiber, mismatch of the chip outputs
relative phase induced by the heaters, as well as bends and
twists of the fiber itself. Since the group velocity of each

mode in the OAM carrying fiber is different for each of them,
the mode crosstalk can be directly measured and optimized
with a time-of-flight measurement [8]. A further analysis of
crosstalk was performed via power measurement. Exciting
only one mode at a time, a spatial light modulator (SLM)
is used to demultiplex the output with various modes. The
power coupled to the single mode fiber is then compared
with the excited mode and crosstalk is measured. In our
case, a further optimization has been possible by perform-
ing multiple runs of phase optimization for the chip output
[22]. At the receiver, Bob, OAM modes demultiplexing is
performed by means of an SLM and one mode at a time.
The Gaussian beam obtained from the SLM conversion is
then coupled to a single mode fiber, which also filters out
the unwanted modes residue. A combination of & 40 meter
long patch cord fibers connects the signal to the SNSPDs
where the same fiber is used to share the optical clock
synchronization signal. Three DWDMs are used to multi-
plex (one) the clock signal, Ch33 (ITU-T), and demultiplex
(two) the quantum signal from the optical clock distribu-
tion. Following the DWDMs, a 90:10 beam-splitter marks
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Figure 3: Mode crosstalk matrix in OAM fiber. On the x axis, we
report the inputs mode (-7, —5 and 6). On the y axis we report the
output mode (—7, —5 and 6). The measurement has been normalized
per each mode.

the beginning of the passive measurement stage. The 90%
output, corresponding to the Z basis, is detected directly
with a superconducting nano-wire single photon detector
(SNSPD), while the 10% output, corresponding to the X
basis, is redirected to an unbalanced Michelson interfer-
ometer with 800 ps time delay in one arm with respect to
the other one, see Figure 1(c). The fiber-based Michelson
interferometer consists of two Faraday rotator mirrors, a
polarization controller, adjustable delay-line, and a piezo-
electric phase shifter. To compensate for the relative phase
drift of the interferometer arms, a phase lock loop is imple-
mented [23]. A monitor laser (PLL laser) is mixed with the
10% part of the signal via a dense wavelength-division-
multiplexing (DWDM) device and sent to the interferome-
ter. At the interferometer output, asecond DWDM separates
the QKD signal and the PLL laser. By monitoring the PLL
laser power with an avalanche photodiode it is then pos-
sible to actuate the phase shifter inside the interferometer
and stabilize the interference fringes. To maximize the
efficiency and the key-rate, SNSPDs were used with 83%
efficiency, ~50 counts per second of dark counts, and 33
ps of dead-time. Detection events and their time of arrival
are registered by a time to digital converter with temporal
resolution of 1 ps.

4 Results

One key parameter for QKD protocols is the quantum bit
error rate (QBER). In particular, minimizing mode crosstalk
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is crucial for having low error rate in the QKD experiment.
In this way, indeed, the error reconciliation part has less
impact on the final secret key rate. In Figure 3, we report
the results of the mode crosstalk measurements after 6
rounds of phase optimization followed by the alignment
of the chip output to the OAM fiber. We then proceed to
the implementation of the QKD experiment by sending all
the modes at the same time and by demultiplexing one
mode at a time. The channel loss is measured around 1
dB for 800 m of ring-core fiber, however, the signal and
key rate suffered from an average 15 dB of coupling losses
after the OAM-to-Gaussian mode conversion, and 9.15 dB
of extra loss due to the optical synchronization scheme
implemented.

Since the coupling losses of the demultiplexd light as
well as the achievable QBERs were different for each mode
due to the different amount of crosstalk, we estimated the
optimal mean photon number in each case by using ad-hoc
software simulation. These values are reported in Tables 1
and 2 for the multiplexing of 2 and 3 QKD signals, respec-
tively. The QBER also suffered from background noise due
to the optical synchronization scheme, which added = 4
kcounts/s in the Z basis and ~ 200 kcounts/s in the X
basis. The secret key rate values obtained in each mode
are shown in Figure 4. Each point has been measured for 5
min. In addition, in order to test the overall stability of the
entire system, we decided to acquire a long measurement
of the multiplexing quantum system. In Figure 5, the long-
term stability of key-generation basis QBER, Q,, and the
security check, Qy, are presented. Data acquisition during
a course of 75 min, while monitoring mode 7 with mean
photon number set to ¢ = 0.24, shows a QBER of less than
2% in the Z basis and 6% in the X basis. It should be noted
that the system is stable for more than an hour and the
overall QBER improves during the measurement process.
From previous experiences with a similar setup, we can
confirm that this effect is due to the phase drift of the

Table 1: Experimental mean photon numbers for the 2-mode
multiplexing demonstration as well as QBERs and SKR attained for
each mode.

Mode 7 Mode 5
Uy 0.26 0.36
s 0.13 0.13
QBERZ‘(1 2.15 1.35
QBER;, 2.13 2.00
QBERXM1 4.23 3.53
QBERXMZ 4.08 4.12
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Table 2: Experimental mean photon numbers for the 3-mode
multiplexing demonstration as well as QBERs and SKR attained for
each mode.

Mode 7 Mode 6 Mode 5
Uy 0.28 0.41 0.46
Uy 0.18 0.28 0.305
QBERZ“1 1.81 4.47 2.30
QBERZM 1.92 4.28 2.09
QBERXu1 6.24 6.75 5.89
QBERy 6.02 7.59 6.71

«10% SKR per Mode

SKR [bit/s]
l\_) - (o))

Mode

Figure 4: Secret key rate experimentally achieved for the 2-mode
(top) and 3-mode (bottom) multiplexing.
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Figure 5: Stability of the QKD system. The graph represents
variation of QBER measured in the X and Z basis for a duration of
approximately 75 min. The averaging points represent average QBER
obtained every 75 s.
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heaters in the chip and to the intrinsic stabilization of our
measurement apparatus.

5 Discussion

In this work, we have successfully demonstrated the simul-
taneous transmission of three different QKD signals multi-
plexed using OAM fiber modes excited by an integrated
photonic chip. Despite the results achieved, multiple
improvements should be considered for further deploy-
ment of this technology. In particular, improvements on
the fabricated silicon photonic chip can be considered. For
QKD purposes, for instance, the opto-electronic modules
as phase and intensity modulators can be implemented
directly on the structure of the chip to form a stand-alone
source [24]. In addition, since the current chip structure
only supports one polarization, integrating 2-dimensional
grating coupler (2DGC) will enable the chip to propagate
orthogonal modes, TM and TE, which will enable new
applications such as high dimensional quantum commu-
nication. Furthermore, to reduce the losses due to the
integrated device, more efficient grating couplers with alu-
minium mirrors could be added [25]. An important factor
that impairs the fiber modes extinction ratio is the rela-
tive phase of each output port on the chip. In the current
configuration, the phase can be controlled and manipu-
lated through thermo-optics modules. Carrier depletion
modules, as a substitute to thermo-optics modules, can
be investigated to increase the extinction ratio. Indeed,
due to the low sensitivity of thermo-optics modules, in our
experiment the mode crosstalk increased with the number
of active modes, thus increasing the overall QBER and low-
ering the final secret key rate achievable in the 3-mode test
in comparison with 2-mode one. In fact, by exploiting the
space division multiplexing (SDM) approach, as demon-
strated by D. Bacco and colleagues [26], the expected key
rate should follow the simple relation R = N s Ry, where
N is the number of multiplexed channels considered in
the system, and R, is the secret key rate. In our proof-of-
concept, unfortunately, due to the high mode crosstalk this
relation could not be demonstrated. Finally, a better con-
trol over the mode crosstalk would also allow us to excite
more than three modes simultaneously, thus increasing
the overall secret key rate of the protocol.

Furthermore, the relatively high loss of the OAM chip
can be attributed to multiple origins. Namely, the two grat-
ings, each contributes 3-4 dB of loss, 3 dB due to ~ 1 cm
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waveguide, and the STAR coupler which simulation and
measurements suggest to be responsible for 67 dB of loss.
Additionally, we observe a slightly mismatch between the
chip input spacing and our fiber array. We optimized the
coupling such that the output powers at all modes are
balanced.

The characterization of the optical modes at the chip
output is also a further step to consider. Indeed, the star
coupler structure in principle allows for the direct gener-
ation of optical modes carrying an OAM. In that case, our
integrated device would be regarded as a multiple OAM
modes emitter, and it could be implemented in designs for
quantum application, for instance as an integrated source
ofhigh-dimensional OAM entangled states or for free-space
quantum protocols.

The OAM chip can effectively be used as an OAM
DEMUX device since it forms a passive element. In prin-
ciple, the light coupled back to the chip is sampled
through the 26 ports. Given that thermo-optical modula-
tors adjusted the relative phase between these ports such
that it matches with the phase pattern of the input OAM
mode, the light will interfere constructively on the cor-
responding output in the STAR coupler, translating the
chip as an OAM DEMUX device. However, it should be
noted that the relatively high loss value renders it cur-
rently inefficient specially for QKD purposes. In future
the same device could be used for this purpose as well.
Furthermore, the 9.15 dB loss due to the optical synchro-
nization signal can be avoided if clock recovery techniques
from data such as [27] or a separate channel to share the
clock is used. Summarizing, in our work we have excited,
through an integrated silicon chip, OAM fiber modes that
have been then used to simultaneously multiplex quan-
tum signals. As a concrete application, we have used the
OAM multiplexed signals for demonstrating a QKD proto-
col based on time-bin encoding, showing the applicability
of our system. These results are of fundamental impor-
tance for further developments of OAM related integrated
technologies for quantum communication.
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