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Abstract
We consider the problem of determining, within an elastic isotropic nanoplate
in bending, the possible presence of an inclusion made of different elastic
material. Under suitable a priori assumptions on the unknown inclusion, we
provide quantitative upper and lower estimates for the area of the unknown
defect in terms of the works exerted by the boundary data when the inclusion
is present and when it is absent.

Keywords: inverse problems, elastic nanoplates, size estimates,
unique continuation

1. Introduction

Over the past three decades, micro- and nano-electromechanical systems (MEMS and NEMS)
have found wide application as sensors, actuators and for vibration control purposes [15]. Due
to their small size and the material properties, they possess superior mechanical, thermal and
electrical performance compared to classical devices, allowing extreme miniaturization, high
reliability, low costs and reduced energy consumption for their operation. These indisputable
advantages have favored their rapid application in strategic areas, such as communications,
biological technologies, mechanics and aerospace.

Nanoplates are the core components of MEMS and NEMS, and their proper functionality is
an essential requirement for the devices. The demand for higher performances and small sizes
(typical size around 1÷ 10× 10−4 m) have led to higher strain/stress states and very challen-
ging operating conditions that can increase the probability of structural failure. Furthermore,
defects such as cracks, internal voids, inhomogeneous material properties and abrasions can
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appear during the manufacturing process and can evolve during service, leading to the activa-
tion of mechanical device failure [12, 20, 31].

For the reasons stated above, the problem of defect identification is attracting increasing
attention from researchers interested in the behavior of MEMS/NEMS devices. In this paper
we consider the inverse problem of determining, within an isotropic elastic nanoplate subjected
to static bending deformation, the possible presence of an inclusion made by different elastic
material from a single boundary data measurement.

Let us formulate the inverse problem. Let us consider a nanoplate in the referential con-
figuration Ω× [−t/2, t/2], where Ω is a plane domain with C3,1 boundary (see theorems 3.5
and 3.6 and definition 2.1 for more details) representing the middle surface of the nanoplate
and t is the uniform thickness, t<< diam(Ω). Let Ω̃ be the subset of Ω corresponding to the
unknown inclusion. It is well known that classical continuummechanics, as a length-scale free
theory, loses its predictive capacity for nanostructures since it is not able to take into account
the presence of size effects in the material response. Here, we shall adopt the simplified strain
gradient theory proposed by Lam et al [23] to model the mechanical behavior of the material in
infinitesimal deformation. Under the kinematic assumptions of Kirchhoff–Love’s plate theory,
the statical equilibrium problem of the nanoplate loaded at the boundary and under vanishing
body forces is described by the following Neumann boundary value problem [21]

(Mαβ +M
h
αβγ,γ),αβ = 0 in Ω, (1.1)

(
Mαβ +M

h
αβγ,γ

)
,α
nβ +

((
Mαβ +M

h
αβγ,γ

)
nατβ

)
,s
+
(
M

h
αβγτατβnγ

)
,ss

−
(
M

h
αβγnγ(τα,sτβ − nα,snβ)

)
,s
=−V̂ on ∂Ω, (1.2)

(
Mαβ +M

h
αβγ,γ

)
nαnβ +

(
M

h
αβγnγ(ταnβ + τβnα)

)
,s

−M
h
αβγnγ(nα,sτβ) = M̂n on ∂Ω, (1.3)

M
h
αβγnαnβnγ =−M̂h

n on ∂Ω. (1.4)

The functions Mαβ =Mαβ(u), M
h
αβγ =M

h
αβγ(u), α,β,γ = 1,2, in the above equations are

the Cartesian components of the couple tensor M= (Mαβ) and the high-order couple tensor

M
h
= (M

h
αβγ), respectively, corresponding to the transverse displacement u. The constitutive

equations of M and M
h
are as follows

M(u) =−(χΩ\Ω̃(P+Ph)+χΩ̃(P̃+ P̃h))D2u, (1.5)

M
h
(u) = (χΩ\Ω̃Q+χΩ̃Q̃)D3u, (1.6)

where P, Ph,Q, P̃, P̃h, Q̃ are the tensors expressing the response of the material and are defined
in detail in section 3. The vectors τ and n are the unit tangent and the unit outer normal to
∂Ω, and s is an arclength chosen on ∂Ω. The loads acting on ∂Ω include the shear force V̂,
the bending moment M̂n and the high-order bending moment M̂h

n . A full description of the
mechanical nanoplate model and the main properties of the direct problem can be found in
section 3.1, to which we refer for details.
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The first question to be asked in approaching our inverse problem is the question of unique-
ness. In particular: does a single boundary measurement of Neumann data {V̂,M̂n,M̂h

n} and
Dirichlet data {u,u,n,u,nn} uniquely determine the unknown inclusion Ω̃? In spite of the sim-
plicity with which it is formulated, this inverse problem is extremely difficult and even in the
simpler context of electrical impedance tomography, which involves a second-order elliptic
equation, a general uniqueness result is missing. We refer to [2, 3] for an up-to-date overview
and an extensive reference list.

In the present note, we discuss another direction of research. In fact, instead of determining
the exact shape and location of Ω̃, we evaluate its size in terms of the data. More precisely we
provide quantitative estimate on the area of the unknown inclusion in terms of the quantities

W= L(u) =−
ˆ
∂Ω

V̂u+ M̂nu,n+M̂
h
nu,nn , (1.7)

W0 = L(u0) =−
ˆ
∂Ω

V̂u0 + M̂nu0,n+ M̂h
nu0,nn, (1.8)

which represent the works exerted by the boundary data when the inclusion Ω̃ is present
or absent, respectively. Here u0 is the transverse displacement of the unperturbed nanoplate
without inclusion, namely u0 satisfies (1.1)–(1.4) when Ω̃ is the empty set.

In order to treat the inverse problem, we first need to analyze the direct one. In section 3.1,
we collect some previous results contained in [24], concerning the well posedness of the direct
problem (see theorem 3.1) and, for the case in which the inclusion is absent, the H4 regularity
up to the boundary of the solution of the Neumann problem (1.1)–(1.4) (see theorem 3.2) and
the H6 regularity in the interior for solutions of the underlying equation (1.1) (see theorem
3.3), under suitable regularity assumptions on the coefficients and on the boundary of Ω.

In section 3.2 we rigorously formulate the inverse problem and state our main a-priori
assumptions. In section 3.3 we present our main results that can be summarized as follows.

(i) In theorem 3.4 we consider the case when Ω̃ is a general measurable set compactly con-
tained in Ω and we provide the following lower bound of its size

|Ω̃|⩾ C

∣∣∣∣W−W0

W0

∣∣∣∣ , (1.9)

where the constant C> 0 is estimated in terms of the a priori data. The main idea under-
lying this estimate is that the integral

ˆ
Ω̃

|D2u0|2 + |D3u0|2 is comparable to |W0 −W| . (1.10)

The above behavior follows from energy estimates for the Neumann problem (1.1)–(1.4)
both when the inclusion is present and when it is absent (see lemma 4.1 for a precise
statement). By using interior regularity estimate for the sixth order elliptic equation we
can control from below the size of Ω̃ in terms of the integral in (1.10) and achieve the
desired bound (1.9).

(ii) In theorem 3.5 we prove an upper bound for the size of Ω̃ under the following fatness
condition on Ω̃ itself. Namely, given h> 0 and denoting Ω̃h = {x ∈ Ω̃ : dist(x,∂Ω̃)> h},
if we assume
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|Ω̃h|⩾
1
2
|Ω̃|, (1.11)

then we have

|Ω̃|⩽ C

∣∣∣∣W−W0

W0

∣∣∣∣, (1.12)

where the constant C> 0 is estimated in terms of the a priori data. Although in order to
obtain (1.12) we still make use of (1.10), in this step a deeper analysis is required. Indeed,
in estimating the integral

´
Ω̃
|D2u0|2 + |D3u0|2 from below, one has to face the possible

vanishing of D2u0 and D3u0 at interior points. In this respect, we prove the following
unique continuation result known as Lipschitz propagation of smallness (see proposition
6.1 for a precise statement).
There exists χ> 1 depending on the a priori data such that, for every ρ> 0 and every
x ∈ Ω for which dist(x,∂Ω)> χρ, we have

ˆ
Bρ(x)

|D2u0|2 ⩾ C
ˆ
Ω

|D2u0|2, (1.13)

where the constant C> 0 is estimated in terms of ρ and the a priori data. From such an
estimate, inequality (1.12) follows by covering Ω̃h by non overlapping squares of side
ϵ= O(h).

(iii) In theorem 3.6, we remove the fatness condition on Ω̃ (compactly contained in Ω) and we
state an upper bound for the size of Ω̃ of the following form

|Ω̃|⩽ C

∣∣∣∣W−W0

W0

∣∣∣∣1/p, (1.14)

where C> 0, p> 1 are estimated in terms of the a priori data.
In this case, in contrast with the fatness condition, we need to introduce a further sophist-
icated argument arising in the theory of Muckenhoupt weight [16] (see proposition 7.2).
By combining the Ap-estimates with a covering argument and (1.10) we end up with the
desired estimate.

Let us recall that the prototype of the present class of inverse problems is the determination
of the size of an inclusion within an electrostatic conductor [8, 9, 11, 22] and that such an
issue has been extended to more complicated equations and systems [4, 5, 10, 14, 18, 19, 24,
25–29]. However, although our strategy belongs to the ones adopted in this line of research,
the treatment of a higher order partial differential equation has required the development of
new mathematical tools.

Indeed, in section 5 we present new estimates of unique continuation in the form of a
doubling inequality and a three sphere inequality for the Hessian of the solution of the unper-
turbed nanoplate. The iterated use of such three sphere inequalities allows us to obtain (1.13).
Moreover, we also provide a global doubling inequality expressed in terms of the known
boundary data (see proposition 7.1) which establishes a bridge with the theory of Mucken-
houpt weight.
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2. Notation

Let P= (x1(P),x2(P)) be a point of R2. We shall denote by Br(P) the disk in R2 of radius r
and center P and by Ra,b(P) the rectangle of center P and sides parallel to the coordinate axes,
of length 2 a and 2 b, namely

Ra,b(P) = {x= (x1,x2) | |x1 − x1(P)|< a, |x2 − x2(P)|< b}. (2.1)

Definition 2.1 (Ck,α regularity). Let Ω be a bounded domain in R2. Given k,α, with k ∈ N,
k⩾ 1, 0< α⩽ 1, we say that a portion S of ∂Ω is of class Ck,α with constants r0, M0 > 0, if,
for any P ∈ S, there exists a rigid transformation of coordinates under which we have P= 0
and

Ω∩Rr0,2M0r0 = {x ∈ Rr0,2M0r0 | x2 > g(x1)},
where g is a Ck,α function on [−r0,r0] satisfying

g(0) = g′(0) = 0,

∥g∥Ck,α([−r0,r0]) ⩽M0r0,

with

∥g∥Ck,α([−r0,r0]) =
k∑
i=0

ri0 sup
[−r0,r0]

|g(i)|+ rk+α
0 |g|k,α,

|g|k,α = sup
t,s∈[−r0,r0]

t̸=s

|g(k)(t)− g(k)(s)|
|t− s|α

.

We use the convention to normalize all norms in such a way that their terms are dimension-
ally homogeneous and coincide with the standard definition when the dimensional parameter
equals one. For instance, given a function u : Ω→ R we denote

∥u∥Hk(Ω) = r−1
0

(
k∑
i=0

r2i0

ˆ
Ω

|Di u|2
) 1

2

(2.2)

where ˆ
Ω

|Dku|2 =
ˆ
Ω

∑
|α|=k

|Dαu|2 (2.3)

and so on for boundary and trace norms.
For any h> 0 we set

Ωh = {x ∈ Ω : dist(x,∂Ω)> h}.
Given a bounded domain Ω in R2 such that ∂Ω is of class Ck,α, with k⩾ 1, we consider as

positive the orientation of the boundary induced by the outer unit normal n in the following
sense. Given a point P ∈ ∂Ω, let us denote by τ = τ(P) the unit tangent at the boundary in P
obtained by applying to n a counterclockwise rotation of angle π

2 , that is

τ = e3 × n, (2.4)

where × denotes the vector product in R3 and {e1,e2,e3} is the canonical basis in R3.
Given any connected component C of ∂Ω and fixed a point P0 ∈ C, let us define as pos-

itive the orientation of C associated to an arclength parameterization ψ(s) = (x1(s),x2(s)),
s ∈ [0, l(C)], such that ψ(0) = P0 and ψ ′(s) = τ(ψ(s)). Here l(C) denotes the length of C.
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Throughout the paper, we denote by w,α, α= 1,2, w,s, and w,n the derivatives of a func-
tion w with respect to the xα variable, to the arclength s and to the unit outer normal n to Ω,
respectively, and similarly for higher order derivatives.

We denote by M2,M3 the Banach spaces of second order and third order tensors and by
M̂2,M̂3 the corresponding subspaces of tensors having components invariant with respect to
permutations of all the indexes.

LetL(X,Y) be the space of bounded linear operators between Banach spaces X and Y. Given
K ∈ L(M2,M2) and A,B ∈M2, we use the following notation

(KA)ij =
2∑

l,m=1

KijlmAlm, (2.5)

A ·B=
2∑

i,j=1

AijBij. (2.6)

Similarly, given K ∈ L(M3,M3) and A,B ∈M3, we denote

(KA)ijk =
2∑

l,m,n=1

KijklmnAlmn, (2.7)

A ·B=
2∑

i,j,k=1

AijkBijk. (2.8)

Moreover, for any A ∈Mn, with n= 2,3, we shall denote

|A|= (A ·A) 1
2 . (2.9)

The linear space of the infinitesimal rigid displacements is defined as

R2 =
{
r(x) = c+Wx, c ∈ R2, W ∈M2, W+WT = 0

}
. (2.10)

We shall assume summation over repeated indexes and in order to simplify our notation,
we will denote by C,C1,C2, . . . positive constants which may vary from step to step.

3. Size estimates results

3.1. The direct problem

Let us consider a nanoplate Ω×
(
− t

2 ,
t
2

)
with middle surface Ω represented by a bounded

domain of R2 and having constant thickness t, t<< diam(Ω). We assume that the boundary
∂Ω of Ω is of class C2,1 with constants r0, M0 and that

|Ω|⩽M1r
2
0, (3.1)

where M1 is a positive constant.
Within the kinematic framework of the Kirchhoff–Love theory in infinitesimal deformation,

the statical equilibrium problem of the nanoplate loaded at the boundary and under vanishing
body forces is described by the following Neumann boundary value problem [21]:(

Mαβ +M
h
αβγ,γ

)
,αβ

= 0 in Ω, (3.2)
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(
Mαβ +M

h
αβγ,γ

)
,α
nβ +

((
Mαβ +M

h
αβγ,γ

)
nατβ

)
,s
+
(
M

h
αβγτατβnγ

)
,ss

−
(
M

h
αβγnγ(τα,sτβ − nα,snβ)

)
,s
=−V̂ on ∂Ω, (3.3)

(Mαβ +M
h
αβγ,γ)nαnβ +

(
M

h
αβγnγ(ταnβ + τβnα)

)
,s

−M
h
αβγnγ(nα,sτβ) = M̂n on ∂Ω, (3.4)

M
h
αβγnαnβnγ =−M̂h

n on ∂Ω. (3.5)

The functions Mαβ =Mαβ(u), M
h
αβγ =M

h
αβγ(u), α,β,γ = 1,2, in the above equations are

the Cartesian components of the couple tensor M= (Mαβ) and the high-order couple tensor

M
h
= (M

h
αβγ), respectively, corresponding to the transverse displacement u(x1,x2), u : Ω→

R, of the point (x1,x2) = x belonging to the middle surface of the nanoplate. To simplify the
presentation, the dependence of these quantities on u is not explicitly indicated in (3.2)–(3.5)
and in what follows.

We assume that the functions Mαβ can be expressed as

Mαβ =−(Pαβγδ +Ph
αβγδ)u,γδ (M=−(P+Ph)D2u)), (3.6)

where the fourth order tensors P= P(x) ∈ L∞(Ω,L(M̂2,M̂2)), Ph = Ph(x) ∈
L∞(Ω,L(M̂2,M̂2)) are assumed to satisfy the symmetry conditions

PA ·B= PB ·A, a.e. in Ω, (3.7)

PhA ·B= PhB ·A, a.e. in Ω, (3.8)

for every A,B ∈ M̂2, and the strong convexity condition

(P+Ph)A ·A⩾ t3ξP|A|2, a.e. in Ω, (3.9)

for every A ∈ M̂2, where ξP is a positive constant.

Concerning the functions M
h
ijk (i, j,k= 1,2), we assume that they can be expressed as

M
h
ijk = Qijklmnu,lmn (M

h
=QD3u), (3.10)

where Qijklmn are the Cartesian components of the sixth order tensor Q=Q(x) ∈
L∞(Ω,L(M̂3,M̂3)), and Q is assumed to satisfy the symmetry conditions

QA ·B=QB ·A, a.e. in Ω, (3.11)

for every A,B ∈ M̂3, and the strong convexity condition

QA ·A⩾ t5ξQ|A|2, a.e. in Ω, (3.12)

for every A ∈ M̂3, where ξQ is a positive constant.
On the loading data V̂ (shear force), M̂n (bending moment) and M̂h

n (high-order bending
moment) appearing in the equilibrium boundary equations (3.3)–(3.5), we require the follow-
ing regularity conditions

V̂ ∈ H−5/2(∂Ω), M̂n ∈ H−3/2(∂Ω), M̂h
n ∈ H−1/2(∂Ω) (3.13)

and the compatibility conditions (see [21])ˆ
∂Ω

V̂= 0,
ˆ
∂Ω

V̂x1 + M̂nn1 = 0,
ˆ
∂Ω

V̂x2 + M̂nn2 = 0. (3.14)
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The weak formulation of the Neumann problem (3.2)–(3.5), with loading data satisfying (3.13)
and (3.14), consists in determining a function u ∈ H3(Ω) (weak solution) such that

a(u,w) = L(w), for every w ∈ H3(Ω), (3.15)

where

a(u,w) =
ˆ
Ω

−Mαβ(u)w,αβ+M
h
αβγ(u)w,αβγ

=

ˆ
Ω

(P+Ph)D2u ·D2w+QD3u ·D3w, (3.16)

L(w) =−
ˆ
∂Ω

V̂w+ M̂nw,n+M̂
h
nw,nn . (3.17)

Finally, in order to identify a unique solution, we assume the following normalization
conditions ˆ

Ω

u= 0,
ˆ
Ω

u,α = 0, α= 1,2. (3.18)

We are now in position to state the existence, uniqueness and regularity results useful in our
analysis. Details of the proofs can be found in [21, 24].

Theorem 3.1 (Existence, uniqueness and H3-regularity, proposition 3.4 in [24]). Let Ω
be a bounded domain in R2 with boundary ∂Ω of class C2,1 with constant r0,M0. Let the
tensors P, Ph ∈ L∞(Ω,L(M̂2,M̂2)) and Q ∈ L∞(Ω,L(M̂3,M̂3)) satisfy the symmetry condi-
tions (3.7), (3.8), (3.11) and the strong convexity conditions (3.9), (3.12), respectively. Let the
data V̂,M̂n,M̂h

n as in (3.13) and satisfying the compatibility conditions (3.14).
The Neumann problem (3.2)–(3.5) admits a unique weak solution u ∈ H3(Ω) satisfy-

ing (3.18) and, moreover,

∥u∥H3(Ω) ⩽ C
(
∥V̂∥H−5/2(∂Ω) + r−1

0 ∥M̂n∥H−3/2(∂Ω) + r−2
0 ∥M̂h

n∥H−1/2(∂Ω)

)
(3.19)

where the constant C> 0 only depends on t
r0
, M0, M1, ξP, ξQ.

We conclude this section with a global and an improved interior regularity result.

Theorem 3.2 (Global H4-regularity, theorem 3.5 in [24]). Let Ω be a bounded domain
in R2 with boundary ∂Ω of class C3,1 with constants r0, M0, and satisfying (3.1). Let the
tensors P, Ph ∈ C0,1(Ω,L(M̂2,M̂2)) and Q ∈ C0,1(Ω,L(M̂3,M̂3)) satisfy the symmetry con-
ditions (3.7), (3.8), (3.11) and the strong convexity conditions (3.9), (3.12), respectively. Let
u ∈ H3(Ω) be the weak solution of the Neumann problem (3.2)–(3.5) satisfying (3.18), where
V̂ ∈ H−3/2(∂Ω), M̂n ∈ H−1/2(∂Ω), M̂h

n ∈ H1/2(∂Ω) are such that the compatibility con-
ditions (3.14) are satisfied.
Then u ∈ H4(Ω) and

∥u∥H4(Ω) ⩽ C
(
∥V̂∥H−3/2(∂Ω) + r−1

0 ∥M̂n∥H−1/2(∂Ω) + r−2
0 ∥M̂h

n∥H1/2(∂Ω)

)
, (3.20)

where the constant C> 0 only depends on t
r0
, M0, M1, ξP, ξQ, ∥P∥C0,1(Ω), ∥Ph∥C0,1(Ω),

∥Q∥C0,1(Ω).

Theorem 3.3 (improved interior regularity, theorem 3.9 in [24]). Let Bσ be an open ball in
R2 centered at the origin and with radius σ. Let u ∈ H3(Bσ) be such that

a(u,φ) = 0 for every φ ∈ H3
0(Bσ), (3.21)

8
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with

a(u,φ) =
ˆ
Bσ

(P+Ph)D2u ·D2φ +QD3u ·D3φ, (3.22)

where the tensors P,Ph ∈ C1,1(Bσ,L(M̂2,M̂2)), Q ∈ C2,1(Bσ,L(M̂3,M̂3)) satisfy the sym-
metry conditions (3.7), (3.8), (3.11) and the strong convexity conditions (3.9), (3.12),
respectively.
Then u ∈ H6(Bσ

8
) and we have

∥u∥H6(Bσ
8
) ⩽ C∥u∥H3(Bσ), (3.23)

where C> 0 only depends on t, ξP, ξQ, ∥P∥C1,1(Bσ)
, ∥Ph∥C1,1(Bσ)

, ∥Q∥C2,1(Bσ)
.

3.2. Formulation of the inverse problem

We consider a nanoplate Ω×
(
− t

2 ,
t
2

)
inside which a possible inclusion Ω̃×

(
− t

2 ,
t
2

)
is

present, where Ω̃ is a measurable, possibly disconnected subset of Ω.
Let us consider elasticity tensors P, P̃, Ph, P̃h ∈ L∞(Ω,L(M̂2,M̂2)) and Q, Q̃ ∈

L∞(Ω,L(M̂3,M̂3)) satisfying the symmetry conditions (3.7), (3.8) and (3.11), respectively.
We shall make the following a-priori assumptions on the elasticity tensors.
(i) Isotropy for P, Ph, Q.
The Cartesian components of P, Ph, Q are given by

Pαβγδ = B((1− ν)δαγδβδ + νδαβδγδ), (3.24)

Ph
αβγδ = (2a2 + 5a1)δαγδβδ +(−a1 − a2 + a0)δαβδγδ, (3.25)

Qijklmn =
1
3
(b0 − 3b1)δijδknδlm+

1
6
(b0 − 3b1)(δik(δjlδmn+ δjmδln)+ δjk(δilδmn+ δimδln))

+Q8(δkn(δilδjm+ δimδjl))+Q9(δjn(δilδkm+ δimδkl)+ δin(δjlδkm+ δjmδkl)), (3.26)

where 2(Q8 + 2Q9) = 5b1.
The bending stiffness (per unit length) B= B(x) is given by the function

B(x) =
t3E(x)

12(1− ν2(x))
, a.e. in Ω, (3.27)

where the Young’s modulus E and the Poisson’s coefficient ν of the material can be written in
terms of the Lamé moduli µ and λ as follows

E(x) =
µ(x)(2µ(x)+ 3λ(x))

µ(x)+λ(x)
, ν(x) =

λ(x)
2(µ(x)+λ(x))

. (3.28)

The coefficients ai(x), i = 0,1,2, are given by (see [21])

a0(x) = 2µ(x)tl20, a1(x) =
2
15
µ(x)tl21, a2(x) = µ(x)tl22 a.e. in Ω, (3.29)

where the material length scale parameters li are assumed to be positive constants. We denote

l=min{l0, l1, l2}. (3.30)

9
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The coefficients bi(x), i = 0,1, are given by

b0(x) = 2µ(x)
t3

12
l20, b1(x) =

2
5
µ(x)

t3

12
l21 a.e. in Ω. (3.31)

(ii) Strong convexity for P+Ph, Q.
We assume the following ellipticity conditions on µ and λ:

µ(x)⩾ α0 > 0, 2µ(x)+ 3λ(x)⩾ γ0 > 0 a.e. in Ω, (3.32)

where α0, γ0 are positive constants. By (3.29), (3.31) and (3.32) we also have

ai(x)⩾ tl2αh
0 > 0, i= 0,1,2, bj(x)⩾ t3l2β h

0 > 0, j= 0,1, a.e. in Ω, (3.33)

where αh
0 = 2

15α0 and β h
0 = 1

30α0.
By (3.32) and (3.33) we obtain the following strong convexity conditions on P+Ph andQ.

For every A ∈ M̂2 we have

(P+Ph)A ·A⩾ t(t2 + l2)ξP|A|2 a.e. in Ω; (3.34)

for every B ∈ M̂3 we have

QB ·B⩾ t3l2ξQ|B|2 a.e. in Ω; (3.35)

where ξP, ξQ are positive constants only depending on α0 and γ0.
(iii) Bounds on the jumps.
Either there exists η > 0, η > 0 and δ > 1, δ > 1 such that

η(P+Ph)⩽ (P̃+ P̃h)− (P+Ph)⩽ (δ− 1)(P+Ph) a.e. in Ω, (3.36)

ηQ⩽ Q̃−Q⩽ (δ− 1)Q a.e. in Ω, (3.37)

or there exists η > 0, η > 0 and 0< δ < 1, 0< δ < 1 such that

η(P+Ph)⩽ (P+Ph)− (P̃+ P̃h)⩽ (1− δ)(P+Ph) a.e. in Ω, (3.38)

ηQ⩽Q− Q̃⩽ (1− δ)Q a.e. in Ω. (3.39)

Let us note that assumptions (ii) and (iii) ensure that P̃+ P̃h and Q̃ are strongly convex
a.e. in Ω.
(iv) Regularity for P, Ph and Q.

We assume P, Ph ∈ C1,1(Ω) and Q ∈ C2,1(Ω), with

∥P∥C1,1(Ω) + ∥Ph∥C1,1(Ω) + r−2
0 ∥Q∥C2,1(Ω) ⩽M2r

3
0, (3.40)

with M2 depending on t
r0
, l
r0
.

On the boundary data appearing in (3.3)–(3.5) we assume

V̂ ∈ H−3/2(∂Ω), M̂n ∈ H−1/2(∂Ω), M̂h
n ∈ H1/2(∂Ω) (3.41)

and we obviously assume the compatibility conditions (3.14).
In what follows we denote by u, u0 the solutions of the equilibrium problem for the

nanoplate (3.2)–(3.5) with and without inclusion, namely u ∈ H3(Ω) is the solution to (3.2)–

(3.5) whenM(u) =−(χΩ\Ω̃(P+Ph)+χΩ̃(P̃+ P̃h))D2u,M
h
(u) = (χΩ\Ω̃Q+χΩ̃Q̃)D3u and

u0 ∈ H3(Ω) is the solution to (3.2)–(3.5) when M(u0) =−(P+Ph)D2u0, M
h
(u0) =QD3u0.

Let us recall that u and u0 are uniquely determined by the normalization conditions (3.18).

10
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Note that the boundary data V̂, M̂n, M̂h
n associated to the problem for u and u0 are the same.

Finally, let us introduce the quantities

W= L(u) =−
ˆ
∂Ω

V̂u+ M̂nu,n+M̂
h
nu,nn , (3.42)

W0 = L(u0) =−
ˆ
∂Ω

V̂u0 + M̂nu0,n+ M̂h
nu0,nn, (3.43)

which represent the work exerted by the boundary data when the inclusion Ω̃ is present or
absent, respectively. By the weak formulation of the corresponding problems, the works W
and W0 coincide with the strain energy stored in the deformed microplate, namely

W=

ˆ
Ω

(χΩ\Ω̃(P+Ph)+χΩ̃(P̃+ P̃h))D2u ·D2u+(χΩ\Ω̃Q+χΩ̃Q̃)D3u ·D3u, (3.44)

W0 =

ˆ
Ω

(P+Ph)D2u0 ·D2u0 +QD3u0 ·D3u0. (3.45)

3.3. Main results

We are now in position to state our size estimates results for nanoplates.

Theorem 3.4 (lower bound of |Ω̃|). Let Ω be a bounded domain in R2 such that ∂Ω is of
C2,1-class with constants r0, M0 and satisfying (3.1). Let Ω̃, Ω̃⊂⊂ Ω, be a measurable subset
of Ω satisfying

dist(Ω̃,∂Ω)⩾ d0r0, (3.46)

where d0 is a positive constant. Let the tensors P, Ph, P̃, P̃h ∈ L∞(Ω,L(M̂2,M̂2)) and Q,
Q̃ ∈ L∞(Ω,L(M̂3,M̂3)) satisfy the symmetry conditions (3.7), (3.8) and (3.11), the strong
convexity conditions (3.9) and (3.12), and either the jump conditions (3.36)–(3.37) or (3.38)–
(3.39). Moreover, let the tensors P, Ph, Q satisfy the regularity conditions iv).
If (3.36)–(3.37) hold, then we have

|Ω̃|⩾ C+
1 r

2
0
W0 −W
W

. (3.47)

If, conversely, (3.38)–(3.39) hold, then we have

|Ω̃|⩾ C−
1 r

2
0
W−W0

W0
. (3.48)

Here the constants C+
1 , C

−
1 depend only on t

r0
, M0, M1, d0, ξP, ξQ, M2, δ, δ.

Theorem 3.5 (upper bound of |Ω̃| for fat inclusions). Let Ω be a bounded domain in R2

such that ∂Ω is of C3,1-class with constants r0, M0 and satisfying (3.1). Let Ω̃ be a measurable
subset of Ω satisfying

|Ω̃h1r0 |⩾
1
2
|Ω̃|, (3.49)

for a given positive constant h1. Let the tensors P, Ph ∈ C1,1(Ω,L(M̂2,M̂2)) and Q ∈
C2,1(Ω,L(M̂3,M̂3)) satisfy the isotropy conditions (3.24), (3.25) and (3.26), respectively,
and let the Lamé moduli µ and λ satisfy the strong convexity conditions (3.32). Let the

11
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tensors P̃, P̃h ∈ L∞(Ω,L(M̂2,M̂2)) and Q̃ ∈ L∞(Ω,L(M̂3,M̂3)) and let us assume the jump
conditions (iii).
If (3.36)–(3.37) hold, then we have

|Ω̃|⩽ C+
2 r

2
0
W0 −W
W0

. (3.50)

If, conversely, (3.38)–(3.39) hold, then we have

|Ω̃|⩽ C−
2 r

2
0
W−W0

W0
. (3.51)

Here the constants C+
2 , C

−
2 depend only on t

r0
, l
r0
, M0, M1, h1, α0, γ0, M2, η, η, δ, δ and on the

ratio

F=
∥V̂∥H−3/2(∂Ω) + r−1

0 ∥M̂n∥H−1/2(∂Ω) + r−2
0 ∥M̂h

n∥H1/2(∂Ω)

∥V̂∥H−5/2(∂Ω) + r−1
0 ∥M̂n∥H−3/2(∂Ω) + r−2

0 ∥M̂h
n∥H−1/2(∂Ω)

. (3.52)

Theorem 3.6 (upper bound of |Ω̃| for general inclusions). Let Ω be a bounded domain in
R2 such that ∂Ω is of C3,1-class with constants r0, M0 and satisfying (3.1). Let Ω̃, Ω̃⊂⊂ Ω, be
a measurable subset of Ω satisfying

dist(Ω̃,∂Ω)⩾ d0r0, (3.53)

where d0 is a positive constant. Let the tensors P, Ph ∈ C1,1(Ω,L(M̂2,M̂2)) and Q ∈
C2,1(Ω,L(M̂3,M̂3)) satisfy the isotropy conditions (3.24), (3.25) and (3.26), respectively,
and let the Lamé moduli µ and λ satisfy the strong convexity conditions (3.32). Let the
tensors P̃, P̃h ∈ L∞(Ω,L(M̂2,M̂2)) and Q̃ ∈ L∞(Ω,L(M̂3,M̂3)) and let us assume the jump
conditions (iii).
If (3.36)–(3.37) hold, then we have

|Ω̃|⩽ C+
2 r

2
0

(
W0 −W
W0

)1/p

. (3.54)

If, conversely, (3.38)–(3.39) hold, then we have

|Ω̃|⩽ C−
2 r

2
0

(
W−W0

W0

)1/p

. (3.55)

Here the constants C+
2 , C

−
2 and p> 1 depend only on t

r0
, l
r0
, M0, M1, d0, α0, γ0, M2, η, η, δ, δ

and on the ratio F given in (3.52).

4. Proof of theorem 3.4

Let us premise the following energy lemma, which states that the work gap |W−W0| is estim-
ated from above and from below by the strain energy of the unperturbed solution u0 stored in
the inclusion Ω̃.

Lemma 4.1 (energy lemma). LetΩ be a bounded domain inR2, such that ∂Ω is of C2,1-class.
Let Ω̃ be a measurable subset of Ω. Let the tensors P, Ph, P̃, P̃h ∈ L∞(Ω,L(M̂2,M̂2)) and Q,
Q̃ ∈ L∞(Ω,L(M̂3,M̂3)) satisfy the symmetry conditions (3.7), (3.8), (3.11), respectively. Let
ξ0, ξ1, ξ0, ξ1, 0< ξ0 < ξ1, 0< ξ0 < ξ1, be such that

12
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t3ξ0|A|2 ⩽ (P(x)+Ph(x))A ·A⩽ t3ξ1|A|2 for a.e. x ∈ Ω, (4.1)

t5ξ0|B|2 ⩽Q(x)B ·B⩽ t5ξ1|B|2 for a.e. x ∈ Ω, (4.2)

for every matrix A ∈ M̂2 and B ∈ M̂3. Let the jumps (P̃+ P̃h)− (P+Ph), Q̃−Q satisfy
either (3.36)–(3.37) or (3.38)–(3.39). Let u,u0 ∈ H3(Ω) be the weak solution to the prob-
lem (3.2)–(3.5), normalized by (3.18), when the inclusion D is present or absent, respect-
ively, for the Neumann data V̂ ∈ H−5/2(∂Ω), M̂n ∈ H−3/2(∂Ω), M̂h

n ∈ H−1/2(∂Ω) that fulfill
the compatibility conditions (3.14).
If (3.36)–(3.37) hold, then

η∗ξ0∗t3

δ∗

ˆ
Ω̃

|D2u0|2 + t2|D3u0|2 ⩽W0 −W⩽ (δ∗ − 1)ξ∗1 t
3
ˆ
Ω̃

|D2u0|2 + t2|D3u0|2; (4.3)

if, conversely, (3.38)–(3.39) hold, then

η∗ξ0∗t
3
ˆ
Ω̃

|D2u0|2 + t2|D3u0|2 ⩽W−W0 ⩽
(1− δ∗)ξ

∗
1 t

3

δ∗

ˆ
Ω̃

|D2u0|2 + t2|D3u0|2. (4.4)

Here η∗ =min{η,η}, δ∗ =max{δ,δ}, ξ0∗ =min{ξ0, ξ0}, ξ∗1 =max{ξ1, ξ1}, δ∗ =min{δ,δ}.

Remark 4.2. Let us note that if the materials constituting the inclusion Ω̃ and the surrounding
material in Ω \ Ω̃ are isotropic with Lamé moduli µ̃, λ̃ and µ, λ, respectively, then the jump
conditions (3.36)–(3.39) can be written in terms of the difference µ̃−µ and κ̃−κ, where

κ̃= 2µ̃(2µ̃+3λ̃)

2µ̃+λ̃
, κ= 2µ(2µ+3λ)

2µ+λ .

Proof. Let us assume conditions (3.36)–(3.37) (i.e. the material of the inclusion Ω̃ is stiffer
than the surrounding material in Ω \ Ω̃) and prove inequalities (4.3). The proof of the estim-
ates (4.4) is similar.

We start by determining some basic identities. Let us denote by u1 ∈ H3(Ω) and u2 ∈ H3(Ω)
the weak solution to (3.2)–(3.5) when the inclusion Ω̃1 or Ω̃2 is present, respectively. Since the
boundary data are the same, for every w ∈ H3(Ω) we haveˆ

Ω

((P+Ph)+χΩ̃1
HP)D

2u1 ·D2w+(Q+χΩ̃1
HQ)D

3u1 ·D3w

=

ˆ
Ω

((P+Ph)+χΩ̃2
HP)D

2u2 ·D2w+(Q+χΩ̃2
HQ)D

3u2 ·D3w, (4.5)

where we have defined

HP = (P̃+ P̃h)− (P+Ph), HQ = Q̃−Q. (4.6)

Note that the tensors HP, HQ satisfy the symmetry conditions (3.7)–(3.8) and (3.11),
respectively.

By subtracting
´
Ω
((P+Ph)+χΩ̃1

HP)D2u2 ·D2w+(Q+χΩ̃1
HQ)D3u2 ·D3w to both sides

of (4.5) we obtainˆ
Ω

((P+Ph)+χΩ̃1
HP)D

2(u1 − u2) ·D2w+(Q+χΩ̃1
HQ)D

3(u1 − u2) ·D3w

=

ˆ
Ω

(χΩ̃2
−χΩ̃1

)(HPD
2u2 ·D2w+HQD

3u2 ·D3w), (4.7)

for every w ∈ H3(Ω).
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Let us choose w= u1 in (4.7). By using the symmetry conditions on P, Ph, Q, HP and HQ,
and considering u1 − u2 as test function in the weak formulation for u1, we have

−
ˆ
∂Ω

V̂(u1 − u2)+ M̂n(u1,n− u2,n)+ M̂h
n (u1,nn− u2,nn)

=

ˆ
Ω

(χΩ̃2
−χΩ̃1

)(HPD
2u2 ·D2u1 +HQD

3u2 ·D3u1). (4.8)

Next, we choose w= u1 − u2 in (4.7). By using (4.8), after simple algebra we obtain the fol-
lowing identity

ˆ
Ω

((P+Ph)+χΩ̃1
HP)D

2(u1 − u2) ·D2(u1 − u2)+ (Q+χΩ̃1
HQ)D

3(u1 − u2) ·D3(u1 − u2)

+

ˆ
Ω̃2\Ω̃1

HPD
2u2 ·D2u2 +HQD

3u2 ·D3u2

=−
ˆ
∂Ω

V̂(u1 − u2)+ M̂n(u1,n− u2,n)+ M̂h
n (u1,nn− u2,nn)

+

ˆ
Ω̃1\Ω̃2

HPD
2u2 ·D2u2 +HQD

3u2 ·D3u2. (4.9)

By choosing Ω̃1 = Ω̃ (i.e. u1 = u) and Ω̃2 = ∅ (i.e. u2 = u0) in (4.9), we obtain the first funda-
mental identity

ˆ
Ω

((P+Ph)χΩ\Ω̃ +(P̃+ P̃h)χΩ̃)D
2(u− u0) ·D2(u− u0)

+

ˆ
Ω

(QχΩ\Ω̃ + Q̃χΩ̃)D
3(u− u0) ·D3(u− u0)−

ˆ
Ω̃

HPD
2u0 ·D2u0 +HQD

3u0 ·D3u0

=−
ˆ
∂Ω

V̂(u− u0)+ M̂n(u,n− u0,n)+ M̂h
n (u,nn− u0,nn) =W−W0. (4.10)

A second fundamental identity is obtained by choosing Ω̃1 = ∅ (u1 = u0) and Ω̃2 = Ω̃ (u2 = u)
in (4.9):

ˆ
Ω

(P+Ph)D2(u0 − u) ·D2(u0 − u)+QD3(u0 − u) ·D3(u0 − u)+
ˆ
Ω̃

HPD
2u ·D2u+HQD

3u ·D3u

=−
ˆ
∂Ω

V̂(u0 − u)+ M̂n(u0,n− u,n)+ M̂h
n (u0,nn− u,nn) =W0 −W. (4.11)

Next, let us choose w= u0 as test function in the weak formulation (3.15) of the Neumann
problem (3.2)–(3.5) when the inclusion Ω̃ is present, obtaining
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ˆ
Ω

((P+Ph)+χΩ̃HP)D
2u ·D2u0+(Q+χΩ̃HQ)D

3u ·D3u0=−
ˆ
∂Ω

V̂u0 + M̂nu0,n+ M̂h
nu0,nn.

(4.12)

Conversely, choosing the solution u of (3.2)–(3.5) when the inclusion Ω̃ is present as test
function in the weak formulation (3.15) when the inclusion is absent, we haveˆ

Ω

(P+Ph)D2u0 ·D2u+QD3u0 ·D3u=−
ˆ
∂Ω

V̂u+ M̂nu,n+ M̂h
nu,nn. (4.13)

By subtracting (4.13) from (4.12), we obtain a third fundamental identityˆ
Ω̃

HPD
2u ·D2u0 +HQD

3u ·D3u0 =
ˆ
∂Ω

V̂(u0 − u)+ M̂n(u0,n− u,n)+ M̂h
n (u0,nn− u,nn).

(4.14)

We are now in position to derive the estimates (4.3).
Using the positivity of P+Ph, P̃+ P̃h, Q and Q̃, from the first identity (4.10) we obtain

W0 −W=−
ˆ
∂Ω

V̂(u0 − u)+ M̂n(u0,n− u,n)+ M̂h
n (u0,nn− u,nn)

⩽
ˆ
Ω̃

HPD
2u0 ·D2u0 +HQD

3u0 ·D3u0 (4.15)

and the estimate from above of the work gapW0 −W in (4.3) easily follows from (3.36)–(3.37)
and from (4.1)–(4.2).

To get the estimate from below of W0 −W, we use the following inequalityˆ
Ω̃

HPD
2u0 ·D2u0 +HQD

3u0 ·D3u0 ⩽ (1+ ϵ)

ˆ
Ω̃

HPD
2(u− u0) ·D2(u− u0)

+

(
1+

1
ϵ

)ˆ
Ω̃

HPD
2u ·D2u

+(1+ ϵ)

ˆ
Ω̃

HQD
3(u− u0) ·D3(u− u0)

+

(
1+

1
ϵ

)ˆ
Ω̃

HQD
3u ·D3u, (4.16)

for every ϵ> 0, ϵ > 0. The above inequality stems from the following arguments. We notice
that

HPD
2u0 ·D2u0 =HPD

2(u0 − u) ·D2(u0 − u)+HPD
2u ·D2u

+ 2HPD
2(u0 − u) ·D2u. (4.17)

By the positivity condition (3.36), we have that

HP

(√
ϵD2(u0 − u)− 1√

ϵ
D2u

)
·
(√

ϵD2(u0 − u)− 1√
ϵ
D2u

)
⩾ 0. (4.18)

By the symmetry properties (3.7), (3.8) we have that

HPD
2(u0 − u) ·D2u=HPD

2u ·D2(u0 − u)

which combined with (4.18) leads

2HPD
2(u0 − u) ·D2u⩽ ϵ HPD

2(u0 − u) ·D2(u0 − u)+
1
ϵ
HPD

2u ·D2u. (4.19)
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By (4.17) and (4.19) we have that

HPD
2u0 ·D2u0 ⩽ (1+ ϵ)HPD

2(u0 − u) ·D2(u0 − u)+

(
1+

1
ϵ

)
HPD

2u ·D2u.

With similar arguments wemay handle the terms involving the sixth order tensorHQ obtaining

HQD
3u0 ·D3u0 ⩽ (1+ ϵ)HQD

3(u0 − u) ·D3(u0 − u)+

(
1+

1
ϵ

)
HQD

3u ·D3u.

The last two inequalities lead to (4.16).

By using the jump conditions (3.36)–(3.37), by choosing ϵ= (δ− 1)−1, ϵ=
(
δ− 1

)−1

in (4.16), and employing identity (4.11) we getˆ
Ω̃

HPD
2u0 ·D2u0 +HQD

3u0 ·D3u0

⩽ (1+ ϵ)

ˆ
Ω̃

(δ− 1)(P+Ph)D2(u− u0) ·D2(u− u0)+

(
1+

1
ϵ

)ˆ
Ω̃

HPD
2u ·D2u

+(1+ ϵ)

ˆ
Ω̃

(δ− 1)QD3(u− u0) ·D3(u− u0)+

(
1+

1
ϵ

)ˆ
Ω̃

HQD
3u ·D3u

⩽max{δ,δ}
{ˆ

Ω

(P+Ph)D2(u0 − u) ·D2(u0 − u)+QD3(u0 − u) ·D3(u0 − u)

+

ˆ
Ω̃

HPD
2u ·D2u+HQD

3u ·D3u

}
=max{δ,δ}(W0 −W). (4.20)

Finally, the estimate from below of W0 −W in (4.3) follows from (4.20) and (3.36)–(3.37).

Proof of theorem 3.4. To fix the ideas, let us assume that the jump conditions (3.36)–(3.37)
hold. Let us estimate the right hand side of (4.3). Let us notice that there exists d∗,0< d∗ < d0,
only depending on M0, such that Ωd∗r0 is of Lipschitz class with constants γr0, γ ′M0, where
0< γ < 1 and γ ′ > 1 only depend on M0, and Ω̃⊂ Ωd∗r0(see [17, lemma 14.16] for details).
By Sobolev Imbedding theorem [1, chapter 5, theorem 5.4]

W0 −W⩽ Cr30

ˆ
Ω̃

|D2u0|2 + r20|D3u0|2 ⩽ Cr30|Ω̃|
(
∥D2u∥2

L∞(Ω̃)
+ r20∥D3u∥2

L∞(Ω̃)

)
⩽ C

1
r0
|Ω̃|∥u0∥2H6(Ωd∗r0 )

. (4.21)

We observe that by a covering argument and interior regularity estimates (3.23) we have

∥u0∥H6(Ωd∗r0 )
⩽ C∥u0∥H3(Ω) . (4.22)

Hence, by (4.21) and (4.22), standard Poincarè inequality (see [25, proposition 3.3]), by (3.34)
and (3.35), we obtain

W0 −W⩽ C
1
r0
|Ω̃|∥u0∥2H3(Ω) ⩽ Cr0|Ω̃|

ˆ
Ω

|D2u0|2 + r20|D3u0|2

⩽ C
|Ω̃|
r20

ˆ
Ω

(P+Ph)D2u0 ·D2u0 +QD3u0 ·D3u0 =
C

r20
|Ω̃|W0,

where C> 0 depends on d0, δ, δ̄, tr0 ,M0,M1, ξP, ξQ,M2. Hence, estimate (3.47) follows.
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5. Doubling and three spheres inequality for the Hessian

This section is devoted to strong unique continuation estimates for solutions to equation (3.2)
for the isotropic case only. Such estimates are given in the form of doubling inequality and
three spheres inequality for the Hessian of the solutions. The latter are crucial tools of unique
continuation needed in the proof of upper bound estimates for the size of both the considered
inclusions. We shall premise the proof of the main result of this section with some auxiliary
results which are contained in [24].

For simplicity of notation in this section we denote by u a weak solution to the partial
differential equation (3.2).

Proposition 5.1 (doubling inequality and three sphere inequality for solutions to (3.2)).
Let P,Ph ∈ C1,1(B1,L(M̂2,M̂2)),Q ∈ C2,1(B1,L(M̂3,M̂3)) be given by (3.24), (3.25), (3.26)
and satisfying the regularity condition (3.40), the strong convexity conditions (3.34), (3.35),
respectively. Let u ∈ H6(B1) be a weak solution to (3.2).
Then there exists an absolute constant R1 ∈ (0,1] such that for every r⩽ s⩽ R1

28 , we haveˆ
Bs

u2 ⩽ CNk
( s
r

)log2(CN
k̄)
ˆ
Br

u2, (5.1)

where N is given by

N=

´
BR1

u2´
BR1/27

u2

and k= 8.
In addition, if 2r⩽ s⩽ R1

28 then we have

ˆ
Bs

u2 ⩽
(
C
ˆ
BR1

u2
)1−θ̃(s,r)(ˆ

Br

u2
)θ̃(s,r)

, (5.2)

where

θ̃(s,r) =
1

1+ 2k log2
s
r

and the constant C> 0 only depends on M2,α0,γ0, t, l.

Proof. See corollary 4.10 in [24].

Lemma 5.2 (Caccioppoli-type inequality). Let us assume that the hypothesis of proposition
5.1 are satisfied. Then, for every r, 0< r< 1, we have

∥Dhu∥L2(B r
2
) ⩽

C
rh

∥u∥L2(Br), ∀h= 1, . . .,6, (5.3)

where C> 0 is a constant only depending on M2,α0,γ0, t, l only.

Proof. For the proof we refer to [24, lemma 4.7].

Let us now recall a Poincaré-type inequality. Let R,r positive numbers such that r⩽ R. For
a given function u ∈ H2(BR) denote

(u)r =
1
|Br|

ˆ
Br

u, (Du)r =
1
|Br|

ˆ
Br

Du (5.4)

17
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and

ũr = u(x)− (u)r− (Du)r · x (5.5)

Proposition 5.3 (Poincaré inequality). There exists a positive absolute constant C such that
ˆ
BR

|ũr|2 +R2
ˆ
BR

|Dũr|2 ⩽ C
R6

r2

ˆ
BR

∣∣D2ũr
∣∣2 , (5.6)

for every u ∈ H2(BR) and for every r ∈ (0,R].

Proof. See [6] and [25, proposition 6.1].

Proposition 5.4 (doubling inequality and three sphere inequality for the Hessian). Let
us assume that the hypothesis of proposition 5.1 are satisfied. Then there exists C> 1, only
depending on M2,α0,γ0, t, l, such that, for every 0< r< R1

211 we haveˆ
B2r

∣∣D2u
∣∣2 ⩽ CN

3k
ˆ
Br

∣∣D2u
∣∣2 , (5.7)

where

N=

∥∥D2u
∥∥2
L2(BR1)

∥D2u∥2
L2
(
BR1/29

) (5.8)

and k= 8.
In addition, if 2r⩽ s⩽ R1

211 then we have

ˆ
Bs

∣∣D2u
∣∣2 ⩽(Cˆ

BR1/2

∣∣D2u
∣∣2)1−θ(s,r)(ˆ

Br

∣∣D2u
∣∣2)θ(s,r)

, (5.9)

where

θ(s,r) =
1

1+ 6k log2
s
r

(5.10)

with k= 8.

Proof. Let

0< 4r<
R2

28
, (5.11)

with R2 =
R1
2 . We define v= ũR2 and we observe that since |D2u|= |D2v| we may as well

prove (5.7) and (5.9) for v instead.
Let us note that v is still a solution to (3.2).
Hence by lemma 5.2 we have that for every r ∈ (0,R1] the following holds

r4
ˆ
B2r

∣∣D2v
∣∣2 = r4

ˆ
B2r

∣∣D2ṽr
∣∣2 ⩽ C

ˆ
B4r

|̃vr|2 . (5.12)

By (5.6) we have
ˆ
Br

|̃vr|2 ⩽ Cr4
ˆ
Br

∣∣D2ṽr
∣∣2 = Cr4

ˆ
Br

∣∣D2v
∣∣2 . (5.13)

18
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Now, denote by

Ñr =

´
BR2

|̃vr|2´
BR2/27

|̃vr|2
. (5.14)

By (5.1) and (5.12)–(5.14) we have

r4
ˆ
B2r

∣∣D2v
∣∣2 ⩽ C

ˆ
B4r

|̃vr|2 ⩽ CÑ3k
r

ˆ
Br

|̃vr|2 ⩽ Cr4Ñ3k
r

ˆ
Br

∣∣D2v
∣∣2 .

Hence, for every r that satisfies 0< 4r< R2
28 , we have

ˆ
B2r

∣∣D2v
∣∣2 ⩽ CÑ3k

r

ˆ
Br

∣∣D2v
∣∣2 . (5.15)

Now we estimate Ñr from above. By lemma 5.2 we have

ˆ
BR2/27

|̃vr|2 ⩾
1
C

(
R2

27

)4ˆ
BR2/28

∣∣D2ṽr
∣∣2 = 1

C

(
R2

27

)4ˆ
BR2/28

∣∣D2v
∣∣2 . (5.16)

Moreover, by triangle inequality and the Sobolev embedding theorem, [17, chapter 7], we get

∥ṽr∥L2(BR2)
⩽ ∥v∥L2(BR2)

+CR2 |(v)r|+CR2
2 |(Dv)r|

⩽ CR2 ∥v∥L∞(BR2)
+CR2

2 ∥Dv∥L∞(BR2)

⩽ C∥v∥H3(BR2)
.

(5.17)

Therefore, by (5.17) and (5.6) we have
ˆ
BR2

|̃vr|2 ⩽ CR4
2

∥∥D2v
∥∥2
L2(BR2)

+CR6
2

∥∥D3v
∥∥2
L2(BR2)

(5.18)

and, by (5.3), we have that
ˆ
BR2

|̃vr|2 ⩽ CR4
2

∥∥D2v
∥∥2
L2(BR2)

+C∥v∥2L2(B2R2)
. (5.19)

Using again (5.6) we have that
ˆ
BR2

|̃vr|2 ⩽ CR4
2

∥∥D2v
∥∥2
L2(B2R2)

. (5.20)

Hence combining (5.20) and (5.16) we have that

Ñr ⩽
C
∥∥D2v

∥∥2
L2(B2R2)

∥D2v∥2
L2
(
BR2/28

) . (5.21)

Now, recalling that R2 =
R1
2 and that |D2v|= |D2u|, by (5.15) we get (5.7).

Finally, by using the same argument used in corollary 4.10 in [24], by (5.7) we obtain (5.9)
easily.
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6. Proof of theorem 3.5

Proposition 6.1 (Lipschitz propagation of smallness). Let Ω be a bounded domain in R2,
such that ∂Ω is of class C3,1, with constants r0,M0 and satisfying (3.1). Let the tensor P,Ph ∈
C1,1(Ω,L(M̂2,M̂2)),Q ∈ C2,1(Ω,L(M̂3,M̂3)), be given by (3.24), (3.25) and (3.26), respect-
ively, and satisfying the ellipticity condition (3.32). Let u0 ∈ H3(Ω) be the unique solution
to the problem (3.2)–(3.5) normalized by (3.18), with Neumann data V̂ ∈ H−3/2(∂Ω),M̂n ∈
H−1/2(∂Ω),M̂h

n ∈ H1/2(∂Ω) satisfying the compatibility condition (3.14). There exists χ> 1
only depending on α0,γ0,M2, t

r0
and l

r0
such that for every s> 0 and for every x ∈ Ωχ sr0 we

have that ˆ
Bsr0(x)

|D2u0|2 ⩾ Cs

ˆ
Ω

|D2u0|2, (6.1)

with Cs > 0 only depending on M0,M1,
t
r0
, lr0 ,α0,γ0,M2,s and on the ratio F given in (3.52).

We premise the following Lemma.

Lemma 6.2. Let Ω be a bounded domain in R2 such that ∂Ω is of class C3,1 with constants
r0,M0 satisfying (3.1). Let the tensors P,Ph ∈ L∞(Ω,L(M̂2,M̂2)),Q ∈ L∞(Ω,L(M̂3,M̂3))
satisfy the symmetry conditions (3.7), (3.8) and (3.11) and the strong convexity assump-
tions (3.9) and (3.12). Let u0 ∈ H3(Ω) be the unique weak solution to problem (3.2)–(3.5), sat-
isfying the normalization condition (3.18) with the boundary data satisfying (3.13) and (3.14).
We have

∥V̂∥H−5/2(∂Ω) + r−1
0 ∥M̂n∥H−3/2(∂Ω) + r−2

0 ∥M̂h
n∥H−1/2(∂Ω) ⩽ C∥u0∥H3(Ω), (6.2)

where C> 0 depends on M0,M1,∥P∥L∞(Ω),∥Ph∥L∞(Ω),∥Q∥L∞(Ω).

Proof. Let us estimate the first term on the left hand side of (6.2). Similar arguments allow to
estimate the other two terms. Given g ∈ H5/2(∂Ω), by extension results there existsw ∈ H3(Ω)
be such that w= g,w,n = 0,w,nn = 0 on ∂Ω, and

∥w∥H3(Ω) ⩽ C∥g∥H5/2(∂Ω), (6.3)

where C> 0 depends on M0,M1 (see for example [30]).
We haveˆ

∂Ω

V̂g=
ˆ
∂Ω

V̂w+ M̂nw,n+ M̂h
nw,nn =−

ˆ
Ω

(P+Ph)D2u0 ·D2w+QD3u0 ·D3w. (6.4)

By (6.4), Cauchy–Schwartz inequality and the a priori regularity bound (3.40) we deduce
ˆ
∂Ω

V̂g⩽ Cr50
(
∥D2u0∥L2(Ω) · ∥D2w∥L2(Ω) + r20∥D3u0∥L2(Ω) · ∥D3w∥L2(Ω)

)
⩽ Cr0∥u0∥H3(Ω) · ∥w∥H3(Ω) ⩽ Cr0∥u0∥H3(Ω) · ∥g∥H5/2(∂Ω). (6.5)

Therefore, by (6.5),

∥V̂∥H−5/2(∂Ω) = sup
∥g∥

H5/2(∂Ω)
=1

1
r0

ˆ
∂Ω

V̂g⩽ C∥u0∥H3(Ω). (6.6)
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Proof of proposition 6.1. Let us assume for this proof r0 = 1. By following the lines of the
proof of proposition 5.2 in [25], a process of iteration of the three spheres inequality (5.9) leads
to

∥D2u0∥L2(Ω(χ+1)s))

∥D2u0∥L2(Ω)

⩽ C
s

(
∥D2u0∥L2(Bs(x))

∥D2u0∥L2(Ω)

)θ0
L−1

(6.7)

for every s⩽ s0
χ . Here θ0 ∈ (0,1), C> 0 and χ> 1 only depend on α0,γ0,M0,M1,M2, t, l; s0

only depends onM0 and is such that Ωχ s is connected for s⩽ s0
χ (see for instance Proposition

5.5 in [7]); moreover, the parameter L is such that 0< L< M1
π s2 .

Let us rewrite the left hand side of (6.7) as follows

∥D2u0∥2L2(Ω(χ+1)s))

∥D2u0∥2L2(Ω)

= 1−

´
Ω\Ω(χ+1)s

|D2u0|2´
Ω
|D2u0|2

. (6.8)

By Hölder and Sobolev inequalities we have that

∥D2u0∥2L2(Ω\Ω(χ+1)s)
⩽ |Ω \Ω(χ+1)s|

1
2 ∥D2u0∥2L4(Ω\Ω(χ+1)s)

⩽ Cs
1
2 ∥D2u0∥2H1/2(Ω) ⩽ Cs

1
2 ∥u0∥2H3(Ω), (6.9)

where C> 0 only depends on M0,M1, α0, γ0, M2, t, l.
Let us notice that in the last step we have used the bound

|Ω \Ω(χ+1)s|⩽ Cs, (6.10)

where C> 0 only depends on M0 (see [8]).
Let us recall the following interpolation inequality: for any u ∈ H4(Ω), we have (see [17,

theorem 7.25])

∥u∥H3(Ω) ⩽ C∥u∥
1
2
H2(Ω)

∥u∥
1
2
H4(Ω)

(6.11)

where C> 0 depends on M0,M1 only.
By (6.9), a standard Poincarè inequality, (6.11), (3.20) and lemma 6.2, we have

´
Ω\Ω(χ+1)s

|D2u0|2´
Ω
|D2u0|2

⩽ Cs
1
2

∥u0∥2H3(Ω)

∥u0∥2H2(Ω)

≤ Cs
1
2

(∥u0∥H4(Ω)

∥u0∥H3(Ω)

)2

⩽ Cs
1
2F 2 ⩽ 1

2
(6.12)

for s⩽ s̄, where s̄ only depends on M0,M1, t, l,α0,γ0,M2 and F. Finally, the thesis follows
from (6.7), (6.8) and (6.12).

Proof of theorem 3.5. We can cover Ω̃h1r0 with internally non-overlapping closed squares Qk

of side ϵr0, where k= 1, . . . ,L and ϵ=min
{

2h1
χ+

√
2
, h1√

2

}
, where χ> 1 has been defined in

proposition 6.1. By construction, all the squares are contained in Ω̃ and |Ω̃h1r0 |⩽ Lϵ2r0 . Let k̄
be such that

´
Qk̄
|D2u0|2 =mink=1,...,L

´
Qk
|D2u0|2. By the fatness assumption (3.49), we have

ˆ
Ω̃

|D2u0|2 ⩾
|Ω̃|
2r20ϵ

2

ˆ
Qk̄

|D2u0|2 . (6.13)
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Let x be the center of the squareQk. By applying the Lipschitz propagation of smallness estim-
ate (6.1) with x= x̄ and s= ϵ

2 , we have

ˆ
Ω̃

|D2u0|2 ⩾
C|Ω̃|
r20

ˆ
Ω

|D2u0|2, (6.14)

withC> 0 only depending on h1,α0, γ0,M0,M1,M2, t
r0
, l
r0
,F. By (6.14), by applying Poincarè

inequality, interpolation inequality (6.11), the regularity estimate (3.20), lemma 6.2, (4.1)–
(4.2) and the weak formulation of the problem (3.2)–(3.5), we have

ˆ
Ω̃

|D2u0|2 ⩾ C
|Ω̃|
r40

∥u0∥2H2(Ω) ⩾ C
|Ω̃|
r40

∥u0∥2H3(Ω)

∥u0∥2H4(Ω)

∥u0∥2H3(Ω)

⩾ C|Ω̃|F−2(∥D2u0∥2L2(Ω) + r20∥D3u0∥2L2(Ω))⩾ C|Ω̃|F−2r−5
0 W0,

(6.15)

where C> 0 depends on M0,M1,
t
r0
, lr0 ,α0,γ0,M2,h1. Estimates (3.50) and (3.51) follow

from (6.15) and from the left hand side of (4.3) and (4.4) respectively.

7. Proof of theorem 3.6

Proposition 7.1 (doubling inequality for the Hessian in terms of the boundary data).
Under the hypothesis of theorem 3.6, let u0 ∈ H3(Ω) be the unique solution to (3.2)–(3.5) sat-
isfying (3.18), with V̂,M̂n,M̂h

n satisfying (3.13) and (3.14). There exists a constant θ,0< θ < 1,
only depending on α0,γ0,M2,

t
r0
, lr0 , such that for every r̄> 0 and for every x0 ∈ Ωr̄r0 , we have

ˆ
B2r(x0)

|D2u0|2 ⩽ K
ˆ
Br(x0)

|D2u0|2 (7.1)

for every r,0< r< θ
2 r̄r0, where K> 0 only depends onα0,γ0,M2,M0,M1, r̄, tr0 ,

l
r0
and the ratio

F given by (3.52).

Proof. By applying a scaling argument to (5.7) and (5.8), there exists an absolute constant
θ,0< θ < 1 such that for every r̄> 0 and for every x0 ∈ Ωr̄r0 we have

ˆ
B2r(x0)

|D2u0|2 ⩽ K
ˆ
Br(x0)

|D2u0|2 (7.2)

for every r,0< r< θ
2 r̄r0, where K> 0 only depends on α0,γ0,M2,

t
r0
, lr0 and r̄ and the increas-

ingly on the ratio

N=

´
B̄rr0 (x0)

|D2u0|2´
B r̄r0

29
(x0)

|D2u0|2
. (7.3)

By applying (6.1) to bound from below the denominator, we trivially obtain the desired bound.

Proposition 7.2 (Ap property). Let the assumptions of proposition 7.1 be satisfied. For every
r> 0 there exist B> 0 and p> 1 such that for every x0 ∈ Ωrr0 we have
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(
1

|Br(x0)|

ˆ
Br(x0)

|D2u0|2
)(

1
|Br(x0)|

ˆ
Br(x0)

|D2u0|−2/(p−1)

)p−1

⩽ B,

for every r, 0< r⩽ ϑ

2
rr0, (7.4)

where ϑ is as in proposition 7.1 and where B, p only depend on α0,γ0,M2,M0,M1, r̄, tr0 ,
l
r0
and

the ratio F given by (3.52).

Proof. In view of the results in [13], it is sufficient to prove a reverse Hölder’s inequality for
|D2u0|2. Let us introduce

v0 = u0 + ax1 + bx2 + c, (7.5)

such that ˆ
B2r(x0)

v0dx= 0,
ˆ
B2r(x0)

v0,α dx= 0, α= 1,2. (7.6)

By interior regularity estimates (see, for instance, [25, theorem 8.3]), by Poincaré inequality
(see, for instance, [25, proposition 3.3]) and by proposition 7.1 we have

∥D2u0∥L∞(Br(x0)) = ∥D2v0∥L∞(Br(x0)) ⩽
C
r2
∥v0∥H2(B2r(x0))

⩽ C∥D2v0∥L2(B2r(x0)) = C∥D2u0∥L2(B2r(x0)) ⩽ C∥D2u0∥L2(Br(x0)), (7.7)

where C> 0 only depends on α0,γ0,M2,M0,M1, r̄, tr0 ,
l
r0

and the ratio F given by (3.52).

Proof of theorem 3.6. Let us cover Ω̃ with internally non overlapping closed cubes Qj, j =
1, . . .,J, with side ϵ= θd0

4
√

2
r0, where θ < 1 has been introduced in proposition 7.1. Let p> 1 be

the exponent introduced in proposition 7.2. By Hölder’s inequality we have

|Ω̃|⩽
(ˆ

⋃J
j=1Qj

|D2u0|
− 2

p−1

) p−1
p (ˆ

Ω̃

|D2u0|
2
) 1

p

. (7.8)

By applying proposition 7.2, with r̄= d0
2 to the balls Bj circumscribing each Qj, j = 1, . . .,J,

we have(ˆ
⋃J

j=1Qj

|D2u0|
− 2

p−1

) p−1
p

⩽

π
2
ϵ2

J∑
j=1

1
|Bj|

ˆ
Bj

|D2u0|
− 2

p−1


p−1
p

⩽

π
2
ϵ2

J∑
j=1

 B
1

|Bj|
´
Bj
|D2u0|2

 1
p−1


p−1
p

⩽
π
2

(
Jϵ2
) p−1

p B
1
p ϵ2/p

minj
(´

Bj
|D2u0|2

) 1
p

,

(7.9)

where the constants p and B only depend on α0, γ0,M2,M1,M0, t
r0
, lr0 , d0 and the ratio F given

by (3.52). By (3.1) we have

Jϵ2 =
J∑
j=1

|Qj|⩽ |Ω|⩽M1r
2
0. (7.10)
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Consequently, from (7.8)–(7.10) and recalling the definition of ϵ, we have

|Ω̃|⩽ Cr20

 ´Ω̃ |D2u0|
2

´
B̄j
|D2u0|2

 1
p

, (7.11)

with j such that
´
B̄j
|D2u0|

2
=minj

´
Bj
|D2u0|

2
.

By proposition 6.1, by standard Poincarè inequality, by the interpolation inequality (6.11),
by (6.2), (3.20), (3.40) and (3.45), we have

ˆ
B̄j

|D2u0|
2 ⩾ C

ˆ
Ω

|D2u0|
2 ⩾ C

r20
∥u0∥2H2(Ω) ⩾

C

r20

(∥u0∥H3(Ω)

∥u0∥H4(Ω)

)2

· ∥u0∥2H3(Ω)

⩾ CF−2

(ˆ
Ω

|D2u0|
2
+ r20|D3u0|

2
)
⩾ C

r30
W0. (7.12)

By (7.11) and (7.12) we have

|Ω̃|⩽ Cr20

(
r30
´
Ω̃
|D2u0|

2

W0

) 1
p

, (7.13)

with the constant C> 0 only depending on α0, γ0,M2,M1,M0, t
r0
, lr0 , d0 and the ratio F given

by (3.52).
Finally, from the left hand side of (4.3) and (4.4) and from (7.13) we end up with the upper

bounds for |Ω̃| in (3.54) and (3.55).
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