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In the simplest inflationary model V ¼ 1
2
m2ϕ2, we provide a prediction accurate up to 1% for the

spectral index ns and the tensor-to-scalar ratio r assuming instantaneous reheating and a standard thermal
history: ns ¼ 0.9668� 0.0003 and r ¼ 0.131� 0.001. This represents the simplest and most informative
point in the ðns; rÞ plane. The result is independent of the details of reheating (or preheating) provided the
conversion to radiation is sufficiently fast. A slower reheating or a modified postinflationary evolution
(with an equation of state parameter w ≤ 1=3) pushes towards smaller ns (and larger r), so that our
prediction corresponds to the maximum ns (and minimum r) for the quadratic potential. We also derive
similar results for a general V ∝ ϕp potential.
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I. INTRODUCTION

Recently, the BICEP2 collaboration [1] has detected
B-modes in the polarization of the cosmic microwave
background (CMB) at large angular scales. This signal
has been interpreted both as a detection of primordial
gravitational waves and as microwave emission by polar-
ized dust [2]. Although we have to wait for the dust to
settle, this detection motivates us to explore the conse-
quences of a large tensor-to-scalar ratio r. One relevant
point is that if r ∼Oð0.1Þ, it will be possible in future
observations to ultimately measure rwith a precision of 1%
[3]. This precision requires both to go to second order in
slow roll and to know the number of e-folds N up to
ΔN ∼ 0.5 [4]. Thus, one has to specify the details of
reheating (for a recent study see [5]) and include subleading
corrections in the predictions of r and ns, which are usually
neglected.
In this paper we focus on the inflationary model

V ¼ 1
2
m2ϕ2, both because it is simple and because it is

the only case in which predictions can be made without
further assumptions about the behavior of the potential
between the inflationary region and the final minimum. We
provide improved formulas for ns and r that are correct up
to 1% relative errors, in the limit of fast reheating (the
details turn out to be irrelevant as long as the energy is
transferred to radiation fast enough) and with a standard
expansion history after inflation. Deviations from this
scenario, such as a slower reheating, entropy injections
due to phase transitions, higher number of degrees of
freedom at reheating, additional periods of matter domi-
nance or inflation, move the predictions in the direction of
higher r and lower ns. In this sense, the values for ns and r

we provide are the “endpoint” on the line in the ðns; rÞ plot
for V ¼ 1

2
m2ϕ2, corresponding to the largest possible N.

This point deserves special attention, because in some
sense it is the most informative place in the ðns; rÞ plane: if
data eventually converge there, it will be possible to have
strong bounds on any deviation from this minimal scenario.

II. PREDICTIONS FOR INSTANTANEOUS
REHEATING

In order to determine the point in the ðns; rÞ plane that
corresponds to the limit of instantaneous reheating, we will
start the calculation in the usual way and refine some of the
steps. Take a mode with comoving momentum k�, which
crosses the horizon during inflation when the scale factor is
a�, k� ¼ a�H�. We want to compare the wavelength of this
mode with the size of the horizon today,

k�
a0H0

¼ a�
aend

aend
arh

arh
a0

H�
H0

; ð1Þ

where aend is the scale factor at the end of inflation and arh
the scale factor when radiation starts to dominate. Of course
this splitting in various phases is somewhat arbitrary and
one expects to introduce errors of order ΔN ∼ 1. However,
we will show later, using numerical solutions, that our
analytical calculations are accurate up to 1%. In our
analytical calculation, we will assume instantaneous reheat-
ing: aend ¼ arh. Under these assumptions Eq. (1) becomes

k�
a0H0

¼ e−N
arh
a0

H�
H0

; ð2Þ
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where N is the number of e-folds from the moment the
mode k� crosses the horizon until the end of inflation. Let
us calculate the different terms on the rhs of Eq. (2).
The number of e-folds is given by

N ¼
Z

tend

t�
Hdt ¼

Z
ϕ�

ϕend

1ffiffiffiffiffiffiffiffi
2ϵH

p dϕ
Mpl

: ð3Þ

The slow-roll parameter ϵH is related to the derivatives of
the potential as

ϵH ≡ −
_H
H2

¼ ϵV

�
1 −

4

3
ϵV þ 2

3
ηV

�
; ð4Þ

where ϵV and ηV are defined as

ϵV ≡ 1

2
M2

pl

�
V 0

V

�
2

; ηV ≡M2
pl
V 00

V
: ð5Þ

For V ¼ 1
2
m2ϕ2, we have ϵV ¼ ηV ¼ 2M2

pl=ϕ
2, and the

number of e-folds from Eq. (3) is given by

N ¼ 1

4

ϕ2� − ϕ2
end

M2
pl

þ 1

3
log

ϕ�
ϕend

þ � � � : ð6Þ

The first term is the standard result, while the second is the
next to leading order in the slow-roll expansion. Notice that
typically, given that ϕ� ≫ ϕend, both ϕ2

end and the loga-
rithmic correction are dropped in the usual calculation, but
we are going to keep them here. Of course, the formula
above must break down towards the end of inflation
because higher slow-roll corrections (encoded in þ � � �)
become important. Naively this can change the result for
the number of e-folds by order one. However, as we will
show later, Eq. (6) appears to be an excellent approximation
to the numerical solutions.
The first fraction on the rhs of Eq. (2) can be evaluated

using entropy conservation. Here we are assuming that
none of the processes in the early Universe lead to an
entropy injection. This is a good approximation for the
known phase transitions (electroweak and QCD). If entropy
is conserved, then

grh� a3rhT
3
rh ¼ a30T

3
γ

�
2þ 4

11
gν�

�
; ð7Þ

where grh� is the number of degrees of freedom at the end of
inflation, gν� the number of degrees of freedom of neutrinos,
Tγ the temperature of the CMB photons today, and we have
set the temperature of neutrinos to T3

ν ¼ 4
11
T3
γ . For the three

neutrino species, gν� ¼ 21=4, and the first ratio on the rhs of
Eq. (2) becomes

arh
a0

¼ Tγ

Trh

�
43

11grh�

�
1=3

: ð8Þ

To calculate the temperature at the beginning of radiation
dominance, we will assume that inflation ends when ä ¼ 0.
Although this definition is arbitrary, one can check that
analytical results with different choices of the point where
inflation ends (some popular choices are ϵV ¼ 1 or
ϕend ¼ 1Mpl) give the same predictions within the preci-

sion we are working at. Assuming that _ϕ has the attractor
value _ϕ ¼ −

ffiffiffiffiffiffiffiffi
2=3

p
mMpl, from the relation

_H ¼ ä
a
−H2 ¼ −

1

2

_ϕ2

M2
pl

; ð9Þ

one finds that inflation ends at ϕend ¼
ffiffiffiffiffiffiffiffi
4=3

p
Mpl. The

energy density at the end of inflation is

ρend ¼
1

2
m2ϕ2

end þ
1

2
_ϕ2 ¼ m2M2

pl: ð10Þ

In our toy model this energy density is instantaneously
converted into radiation with temperature

Trh ¼
�
30m2M2

pl

π2grh�

�1=4

: ð11Þ

This fixes the ratio arh=a0.
The last fraction on the rhs of Eq. (2) depends on H�,

H� ¼
m
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3

2

ϕ2�
M2

pl

s
≈

mϕ�ffiffiffi
6

p
Mpl

: ð12Þ

The mass of the inflaton is determined from the normali-
zation of the power spectrum

Δ2
ζ ¼

k3

2π2
Pζ ¼

1

96π2
ϕ4�
M4

pl

m2

M2
pl

: ð13Þ

Replacing all previous results in Eq. (2), we obtain a
relation between ϕ� and k�,

log
k�

a0H0

¼ 1

4

ϕ2
end − ϕ2�
M2

pl

−
1

3
log

ϕ�
ϕend

þ log
Tγ

H0

−
1

12
log grh� þ 1

4
logΔ2

ζ þ log
4πð43=11Þ1=3

28801=4
:

ð14Þ
Setting grh� ¼ 106.75, H0 ¼ 1.5 × 10−42 GeV, Tγ ¼

0.235 × 10−12 GeV, and Δ2
ζ ¼ 2.19 × 10−9

1 [6] we get

1Strictly speaking, this value of Δ2
ζ is given for

k ¼ 0.05 Mpc−1. Although k� can be different from this scale,
Δζ appears only inside logarithms and the error one makes is
much smaller than the precision we want to achieve.
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log
k�

a0H0

¼ −
1

4

ϕ2�
M2

pl

−
1

3
log

ϕ�
Mpl

þ 63.3: ð15Þ

The logarithmic contribution in this equation is very small
and a very good approximate solution is

ϕ�
Mpl

¼ α −
2

3α
log α; α ¼ 2

�
63.3 − log

k�
a0H0

�
1=2

:

For the pivot scale k� ¼ 0.002 Mpc−1, the numerical value
for α is α ¼ 15.6. Once ϕ� is known, it is an easy exercise
to calculate the tensor-to-scalar ratio and the spectral index.
For a quadratic potential ϵV ¼ ηV, and at second order in
slow roll [7],

r ¼ 16ϵV

�
1 −

2

3
ϵV þ 2CϵV

�
;

ns ¼ 1 − 4ϵV − ϵ2V

�
8Cþ 14

3

�
; ð16Þ

where C ¼ −2þ log 2þ γ and γ ¼ 0.75521… is Euler-
Mascheroni constant. The prediction for the endpoint of the
quadratic inflationary potential in the limit of instantaneous
reheating is

ns ¼ 0.9668� 0.0003; and r ¼ 0.131� 0.001; ð17Þ

for k� ¼ 0.002 Mpc−1. This point corresponds to the
number of e-folds N ¼ 60.7� 0.5.
What happens if the postinflationary evolution is modi-

fied? A slower reheating gives a lower N. The same
happens if we increase the number of relativistic degrees
of freedom at reheating. The dependence of N on g� is
anyway very mild, N ∼ − 1

12
log g�, see Eq. (14), and one

should vary g� by orders of magnitude to get a relevant
effect. Another effect that pushes towards a smaller value of
N is entropy injection during the thermal history of the
Universe. For example this happens with a first-order phase
transition or when a massive particle goes out of thermal
equilibrium before decaying. Notice also that a standard
equation of state w ≤ 1=3 before thermalization pushes
again towards smaller values of N. The only way to get to
larger values is to have w > 1=3 after inflation, which is a
somewhat exotic possibility.2 Therefore, the point in the
ðns; rÞ plane defined by Eq. (17) corresponds to the
maximum value of N for the quadratic potential.

III. NUMERICAL CHECKS

The predictions for ns and r are derived under a number
of assumptions. Given the level of precision we are working
at, one might be worried that the corrections to the
analytical calculation are large enough to spoil the final
result. There are several possible sources of errors and we
discuss them in this section.
The first one is the issue of matching different phases of

evolution before thermalization. One would expect a sharp
matching between different phases to give an error of order
ΔN ∼ 1, and this would be relevant for the precision we
want to achieve. The other problem is that it is not obvious
how our final result depends on the details of reheating or
preheating. To address these two questions we numerically
solved a toy model that describes the evolution of the
inflaton field and of radiation with energy density ρr,

ϕ̈þ 3H _ϕþ Γ _ϕþm2ϕ ¼ 0;

_ρr þ 4Hρr − Γ _ϕ2 ¼ 0;

3M2
plH

2 ¼ 1

2
ðm2ϕ2 þ _ϕ2Þ þ ρr: ð18Þ

Γ is a constant that characterizes the efficiency of the
transfer of energy from the inflaton field to radiation. Of
course, this is not a realistic model, especially when
preheating effects are relevant, but it will be sufficient to
show that the details of the transition are not relevant,
provided it is fast enough.
In Fig. 1 we show how the total energy density depends

on logðaÞ. The initial conditions for the numerical inte-
gration are ϕin ¼ 15Mpl, _ϕin ¼ −

ffiffiffiffiffiffiffiffi
2=3

p
mMpl (i.e. on the

FIG. 1 (color online). Energy density as a function of logðaÞ.
Green dot-dashed line: the standard analytical result. Red solid
line: analytical result using Eq. (6). The grey region corresponds
to numerical solutions between Γ ¼ m=10 and Γ ¼ m=1000. The
improved analytical formula is within 0.3 e-folds from the
numerical solutions for this range of Γ.

2For example one can have a period of kinetic domination
(w ¼ 1) after the end of the slow-roll regime: after that the
inflaton can get trapped in a minimum and reheat the Universe.
Even if we allow for values of w larger than 1=3, one can still get
an absolute bound on the value of N. This is achieved in the
extreme case where w ≫ 1 from the end of inflation until Big
Bang nucleosynthesis: the maximum value is N ≈ 100 and this
corresponds to ns ¼ 0.98 and r ¼ 0.08.
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attractor solution) and ρrðainÞ ¼ 0. We take ain ¼ 1,
m ¼ 6 × 10−6Mpl, and turn on Γ when ä ¼ 0 (we are
going to comment on this choice later). Fig. 1 shows the
numerical results for a range of Γ from Γ ¼ m=1000 (cyan
dotted line) to Γ ¼ m=10 (blue dashed line), while the
analytical solution, using Eq. (6), is represented by the red
solid line. For this range of parameters analytical and
numerical results agree within ΔN ¼ 0.3, once radiation
dominance is reached. This agreement is better than what
one would naively expect and justifies the use of the
analytic formula. Therefore, as long as Γ≳m=1000, the
transition to radiation can be considered instantaneous in
order to make predictions with 1% accuracy. We also plot
the result using the standard analytical formula Eq. (6)
without the logarithmic term (green dot-dashed line).
The difference compared to numerical solutions is
ΔN ≈ 1, and it is not accurate enough for the precision
we are working at.
In Fig. 2 we plot the expansion logðaÞ required to reach a

fixed final energy density (in radiation dominance) as a
function of Γ, for fixed initial conditions. We note that it
flattens out for sufficiently large values of Γ, indicating that
the number of e-folds N becomes insensitive to Γ in that
regime.3 To assess the relevance of our choice of turning on
Γ when ä ¼ 0, in Fig. 2 we also plot the curves corre-
sponding to the conditions ϵ ¼ 1 and H ¼ m. The alter-
native conditions give a negligible difference in the amount
of expansion. For small values of Γ the curve steepens
and approximately approaches the analytical expectation
a ∝ Γ−1=6.
One may wonder whether our results apply when the

energy transfer to radiation occurs through a preheating
stage. In this case the energy is efficiently converted to light
particles and the equation of state quickly approaches
w ¼ 1=3, even if the complete thermalization of the system
will occur much later [8]. To verify that, within the required
accuracy, the phenomenological model of Eq. (18) gives
results which are quite similar to what happens with
preheating; we plot in Fig. 3 the evolution of the equation
of state w for several values of Γ [for which our prediction
(17) applies; see Fig. 1]. This can be compared with the
analogous results of [8,9]: in both cases the equation of
state reaches w ∼ 1=3 in approximately three e-folds.
Therefore preheating models, for a wide range of cou-
plings, give a sufficiently fast reheating and lead to our
result (17).
It is worth stressing that preheating makes an efficient

conversion to radiation rather natural and compatible with
the approximate shift symmetry that keeps flat the inflaton
potential. Indeed a coupling g2ϕ2χ2 induces a quick
conversion to χ particle for g2 ≳ 10−10. For these small

couplings one can safely neglect the radiative corrections to
the quadratic potential [8].

IV. OTHER MONOMIAL POTENTIALS

Everything we have said so far can be generalized to
other monomial potentials V ¼ M4−pϕp (we focus on
p ≤ 2, given the present experimental bounds). However,
unlike the case of a quadratic potential, we expect that a
generic monomial cannot be extrapolated to the origin. In
particular, we expect the potential to steepen approaching
the minimum: this steepening increases N and can thus
push the predictions beyond the would-be endpoint of the

FIG. 2 (color online). Dependence of the expansion of the
Universe logðaÞ on Γ for fixed initial conditions and fixed final
energy density (in radiation dominance). Different curves are
obtained for different choices of time at which the inflaton starts
to decay.

FIG. 3 (color online). Evolution of the equation of state
(averaged over a period of oscillation) as a function of logðaÞ
for different values of Γ.

3The mild raise at large Γ of the curve corresponding toH ¼ m
is due to the friction induced on the inflaton by the production of
radiation.
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exact ϕp potential. In the following we assume that the
modification of the potential happens at ϕ ≪ Mpl, so that it
does not affect the predictions. Otherwise one should have
control of the shape of the potential until the final minimum
[10–12].
Equation (14) generalizes to

log
k�

a0H0

¼ 1

2p
ϕ2
end − ϕ2�
M2

pl

þ 3p − 10

12
log

ϕ�
Mpl

þ 1

3
log

ϕend

Mpl
þ log

Tγ

H0

−
1

12
log grh� þ 1

4
logΔ2

ζ

þ log
2πð43=11Þ1=3 ffiffiffiffi

p
p

5401=4ðp= ffiffiffi
3

p Þp=4 ; ð19Þ

with ϕend ¼ p=
ffiffiffi
3

p
Mpl. For instance, in the cases of

V ∝ ϕ and V ∝ ϕ2=3, motivated by string-theory mono-
dromy [10–12], the predictions for the endpoint are

p ¼ 1∶ ns ¼ 0.9749; r ¼ 0.0664; N ¼ 60.0;

p ¼ 2=3∶ ns ¼ 0.9776; r ¼ 0.0446; N ¼ 59.7:

Independently of p, ns − 1 and r have relative errors ≲1%.

V. CONCLUSIONS

For a generic potential it is of limited interest to consider
second-order slow-roll corrections or changes in the num-
ber of e-folds ΔN ≃ 1, because the effects are degenerate
with small changes in the shape of the potential. However,
this is relevant for the “simplest” inflationary model, i.e.
V ∝ ϕ2 with fast reheating, and one can make predictions
with 1% accuracy. This represents in some sense the most
informative point in the ðns; rÞ plane: if future data will be
compatible with it, we will be quite confident about the
inflationary potential, the reheating process, and the fol-
lowing thermal history.
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