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Background: Previous studies showed that the epidemic of carbapenem-resistant Klebsiella pneumoniae (CR-
KP) observed in Italy since 2010 was sustained mostly by strains of clonal group (CG) 258 producing KPC-type
carbapenemases. In the framework of the National Antibiotic-Resistance Surveillance (AR-ISS), a countrywide
survey was conducted in 2016 to explore the evolution of the phenotypic and genotypic characteristics of CR-KP
isolates.

Methods: From March to July 2016, hospital laboratories participating in AR-ISS were requested to provide con-
secutive, non-duplicated CR-KP (meropenem and/or imipenem MIC >1 mg/L) from invasive infections. Antibiotic
susceptibility was determined according to EUCAST recommendations. A WGS approach was adopted to charac-
terize the isolates by investigating phylogeny, resistome and virulome.

Results: Twenty-four laboratories provided 157 CR-KP isolates, of which 156 were confirmed as K. pneumoniae
sensu stricto by WGS and found to carry at least one carbapenemase-encoding gene, corresponding in most
cases (96.1%) to blaKPC. MLST- and SNP-based phylogeny revealed that 87.8% of the isolates clustered in four
major lineages: CG258 (47.4%), with ST512 as the most common clone, CG307 (19.9%), ST101 (15.4%) and
ST395 (5.1%). A close association was identified between lineages and antibiotic resistance phenotypes and
genotypes, virulence traits and capsular types. Colistin resistance, mainly associated with mgrB mutations, was
common in all major lineages except ST395.

Conclusions: This WGS-based survey showed that, although CG258 remained the most common CR-KP lineage
in Italy, a polyclonal population has emerged with the spread of the new high-risk lineages CG307, ST101 and
ST395, while KPC remained the most common carbapenemase.

Introduction

According to estimates elaborated by the ECDC, over 200 000
infections and nearly 11 000 deaths due to antibiotic-resistant
bacterial pathogens occurred in Italy in 2015, with a large
proportion of the total burden caused by carbapenem- or
colistin-resistant Gram-negative species (Escherichia coli,

Klebsiella pneumoniae, Acinetobacter spp. and Pseudomonas
aeruginosa).1

During the past decade, carbapenem-resistant K. pneumoniae
(CR-KP) emerged and spread worldwide as a major antibiotic-
resistant threat, causing infections associated with high mortality
rates,2 and becoming endemic in many countries across
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Europe.3–5 In Italy, the proportion of CR-KP among invasive iso-
lates rose dramatically from 1% in 2009 to 15% in 2010 and to
34% in 2016, with a slight decrease (27%) in 2018.6

In the early phases, the CR-KP epidemic observed in Italy was
found to be mostly associated with the expansion of high-risk
clones of ST512 and ST258, included in the clonal group (CG) 258,
producing KPC-type carbapenemases.3,7–10 Later epidemiological
studies have shown the emergence of other KPC-producing
high-risk clones, such as ST307, outcompeting CG258 in some
geographical areas.11–13

In this study, we report the results of the characterization of a
nationwide collection of CR-KP invasive isolates obtained in the
framework of the National Antibiotic-Resistance Surveillance
(AR-ISS).14 The genetic diversity of CR-KP isolates was explored by
WGS, which is currently considered the gold standard for molecu-
lar epidemiology investigations.15

Methods

Study design and isolates

Thirty hospital laboratories participating in the AR-ISS, located in different
areas of Italy (Figure 1), were enrolled to collect all consecutive, non-

duplicated clinical isolates of K. pneumoniae from blood or CSF exhibiting a
meropenem and/or imipenem MIC >1 mg/L, during the period March–July
2016. Isolates showing the requested criteria were defined as CR-KP for the
purpose of this study.

Bacterial identification and in vitro susceptibility testing were performed
by the participating hospital laboratories using routine methods.3

At reference laboratories (Istituto Superiore di Sanità and University
of Florence), antimicrobial susceptibility testing was carried out by refer-
ence broth microdilution using lyophilized custom plates (Merlin
Diagnostika, Germany), and by reference agar dilution for fosfomycin.16

Results were interpreted according to the 2020 EUCAST clinical
breakpoints (v. 10.0).16 For tigecycline, results were interpreted using
the E. coli breakpoints.16

WGS and bioinformatics analyses
Total genomic DNA was extracted from cultures using Qiagen
QIAsymphony (QIAGEN, Hilden, Germany) and sent to the Wellcome
Sanger Institute in Cambridge (UK) for WGS.

Shotgun libraries were prepared using the NEB Ultra II custom kit and
were subjected to WGS with the HiSeq X10 platform (Illumina, Inc., San
Diego, CA, USA), using a 2%150 bp paired-end approach. Sequence reads
were processed as previously described.17

Figure 1. Genetic diversity of carbapenemase-producing K. pneumoniae isolates and distribution among the Italian laboratories. Left panel: core gen-
ome SNP-based phylogenetic tree of 156 K. pneumoniae isolates and main features, including ST, type of carbapenemase, aminoglycoside resistance
determinants and virulence factors. For each group of features, sorted from the most to the least represented, a colour-based key is given. Right
panel: Italian laboratories providing CR-KP isolates and distribution of the most common lineages, indicated by dots following the colours of the ST
feature key. AAC(60)-Ib*, corresponds to the L119S variant of AAC(60)-Ib. Laboratory codes: A, Ancona; B, Area Vasta Romagna; C, Aversa; D, Bari; E,
Bergamo; F, Bolzano; G, Catania; H, Cosenza; I, Cuneo; J, Florence; K, Foggia; L, Lecco; M, Milan (including M1, Legnano; M2, Milan IRCCS; M3, Milan
Istituto Tumori); N, Naples; O, Reggio Calabria; P, Rome; Q, Sanremo; R, Siena; S, Turin; T, Udine; U, Venice; and V, Vercelli. This figure appears in colour
in the online version of JAC and in black and white in the print version of JAC.
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In silico analyses were performed using dedicated tools available at the
Center for Genomic Epidemiology (https://cge.cbs.dtu.dk/). Sequence com-
parisons were performed using BLAST (https://blast.ncbi.nlm.nih.gov/Blast.
cgi). The global phylogenetic relatedness was investigated by generation of
core genome SNP-based phylogenetic trees, using Roaryand IQ-TREE
v1.6.12 applying a generalized time reversible (GTR) model.18–20 The same
analysis was performed on isolates belonging to the four major lineages
CG258, CG307, ST101 and ST395. For the purpose of this study, only isolates
belonging to ST258 and to single- or double-locus variants of ST258
carrying the tonB79 MLST allele were included in CG258 (e.g. ST11 was
excluded), in order to analyse only the most phylogenetically related mem-
bers.21 Strains belonging to ST307 and to the single-locus variant ST2975
were included in CG307. Capsular types and virulence loci were analysed
using Kleborate (https://github.com/katholt/Kleborate).

Data availability
All raw sequences are available at the European Nucleotide Archive under
the study accession number PRJEB22890. Individual accession numbers for
de novo assemblies and genetic features of sequenced strains are detailed
in Table S1 (available as Supplementary data at JAC Online).

Results and discussion

CR-KP isolates and antibiotic resistance profiles

In the period from March to July 2016, 24 out of 30 enrolled hos-
pital laboratories isolated 157 CR-KP and sent them to the refer-
ence laboratories for phenotypic characterization and analysis. Six
out of the 30 enrolled hospital laboratories did not isolate CR-KP.
Each of the 24 laboratories collected a number of isolates ranging
from 1 to 28. A similar number of CR-KP isolates was obtained from
laboratories located in North, Central and South Italy (Table 1),
ensuring a homogeneous geographical representation. By WGS,
156 CR-KP isolates were identified as K. pneumoniae sensu stricto
and one as Klebsiella variicola that was not included in subsequent
analysis.

Antibiotic susceptibility tests showed that resistance rates to
carbapenems ranged from 91.7% to 100%. Most isolates were
resistant to ciprofloxacin (97.5%), chloramphenicol (84.0%) and
trimethoprim/sulfamethoxazole (71.8%), while lower resistance
rates were observed to aminoglycosides (gentamicin, 40.4%; ami-
kacin, 55.1%), tigecycline (49.4%) and colistin (40.4%) (Table 2).
The rate of colistin resistance was similar to that previously
reported by Monaco et al.4 for CR-KP isolates collected in 2013–14.
Since the use of colistin has recently been reduced due to the avail-
ability of novel antibiotic–inhibitor combinations to treat infections
due to KPC-producing K. pneumoniae (KPC-KP),22 further national
surveys will be required to investigate the evolution of colistin
resistance. Fosfomycin and ceftazidime/avibactam were the
most active agents, with resistance rates of 17.3% and 2.6%,
respectively (Table 2).

All isolates contained at least one carbapenemase-encoding
gene, corresponding in most cases (96.1%) to blaKPC, with a higher
prevalence of blaKPC-3 (85.3%,) versus blaKPC-2 (14.7%) (Table 1 and
Table S1). In one isolate, blaKPC-3 was detected together with
blaOXA-48. Among the remaining isolates, three (1.9%) were posi-
tive for blaVIM-1, two (1.3%) for blaOXA-48 and one for both blaNDM-1

and blaOXA-48 (Figure 1 and Table 1). KPC-KP isolates were detected
in all the hospital laboratories, confirming a countrywide endem-
icity in line with data previously reported by EuSCAPE5,23 and by

several Italian studies.3,7 These results confirm that, 6 years after
the start of the epidemic diffusion of CR-KP in Italy, the main
mechanism of carbapenem resistance remained the production of
KPC-type carbapenemases, while the presence of other carbape-
nemases was limited to sporadic cases.

Population structure and resistance patterns of the
major CR-KP lineages

The core genome SNP-based phylogeny and the MLST analyses
conducted on the 156 CR-KP isolates revealed the presence of 23
STs, of which three were newly assigned (ST3498, ST3499 and
ST3500) (Table 1 and Table S1).

The majority of isolates (87.8%) clustered in four major line-
ages: CG258 (n = 74), mainly represented by ST512 (n = 67); CG307
(n = 31), mostly represented by ST307 (n = 30); ST101 (n = 24); and
ST395 (n = 8). The remaining isolates belonged to ST11 (n = 3),
ST15 (n = 3), ST147 (n = 2) and to 11 other STs (one isolate each)
(Figure 1 and Table 1).

The four major lineages showed some noteworthy differences
in terms of geographical distribution and resistance traits. In par-
ticular, CG258, CG307 and ST101 had a broader geographical
distribution compared with ST395 (Figure 1); each of the four
lineages showed a specific and conserved pattern of antibiotic
resistance-encoding genes (Figure 1 and Table S1). The antibiotic
resistance profiles were similar for the antibiotics tested, with the
exception of aminoglycosides and colistin. In CG258 isolates,
amikacin resistance was much higher than gentamicin resistance;
conversely, in CG307 and ST395 isolates, gentamicin resistance was
higher than amikacin resistance, while in ST101 resistance was high
to both aminoglycosides (Table 2). Colistin resistance was common
among CG258 (43.2%), CG307 (48.4%) and ST101 (58.3%) isolates,
but was not detected in ST395 (Table 2). Mutational events occurring
in the mgrB locus represented the most frequent mechanism of
colistin resistance (Table S1). The heterogeneous mutational events
suggested that colistin resistance was not associated with clonal
expansion, but rather with the local independent acquisition of
several distinct mutations.

CG258 isolates

CG258 isolates exhibited the largest variability in core genome
SNPs (SNP variation 0–1292; mean 187; median 63) if compared
with isolates belonging to the other major lineages (Figure 2). SNP
analysis identified 10 intralaboratory and three interlaboratory
clusters of isolates (SNP variation 0–20) (Figure 2).

As for the capsular biosynthesis locus (KL), isolates belonging
to ST512 and ST258 were consistently associated with KL107
(wzi-154) and KL106 (wzi-29), respectively, while in a previous
study both KLs were identified in ST258.7

Concerning the resistome, the aminoglycoside resistance gene
aac(60)-Ib was detected in 92.3% of the isolates, and likely
accounted for the high rate of amikacin resistance observed in this
CG (Table S1).

The yersiniabactin-encoding locus (ybt) was detected in seven
isolates, while the aerobactin locus (iuc) was found in a single
isolate (Figure 1 and Table S1). These accessory loci for acquired
siderophores are well-known genetic traits associated with
increased virulence in K. pneumoniae.24
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CG307 isolates

CG307 isolates showed a lower core genome diversity (SNP vari-
ation 13–323; mean 99; median 83) compared with CG258
(Figure 2). Small clusters of isolates were identified, including four
intralaboratory (SNP variation 13–20) and one interlaboratory
(SNP variation 14–21) (Figure 2).

The aminoglycoside resistance gene aac(3)-IIa was present in
58.1% of the isolates, and likely accounted for the higher rate of
gentamicin resistance observed in this CG (Table S1). All ST307 iso-
lates carried the KL102 (wzi-173) locus. The ybt locus was detected
in the majority of the isolates (70.9%, n = 22) (Figure 1 and Table
S1).

ST101 isolates

Isolates belonging to ST101 exhibited a core genome diversity
comparable to that of ST307 isolates (SNP variation 0–518; mean

95; median 64) (Figure 2). Two intralaboratory clusters of isolates
and a small interlaboratory cluster were observed (SNP variation
0–21) (Figure 2).

All ST101 isolates were associated with the KL17 (wzi-137)
locus. The 16S rRNA methylase ArmA, conferring a broad spectrum
of resistance to aminoglycosides, was present in most isolates
(n = 19; 79%). The ybt locus was detected in almost all ST101
isolates (n = 23; 95.8%) (Figure 1 and Table S1).

ST395 isolates

ST395 isolates showed a core genome diversity slightly higher
than the other major lineages (SNP variation 10–974; mean 277;
median 65). ST395 isolates were mainly collected from a single
hospital laboratory, where a clonal expansion event was observed
(SNP variation 0–23) (Figure 2). All ST395 isolates carried the KL2
(wzi-2) locus and the iuc and ybt loci (Figure 1 and Table S1).

Table 1. Main characteristics (STs and carbapenemase genes) of 156 CR-KP isolates collected by 24 hospital laboratories participating in the AR-ISS
located in different areas of Italy

Geographical area
(number of isolates, %) Laboratoriesa

Number of
isolates ST (number of isolatesb, type of carbapenemase)

North (50, 32%)

E 4 512 (2, KPC-3), 258 (KPC-2), 307 (KPC-2)

F 3 512 (KPC-3), 23 (VIM-1), 253 (VIM-1)

I 5 512 (4, KPC-3), 101 (NDM-1/OXA-48)

L 4 307 (KPC-3; KPC-2), 17 (KPC-2), 3500 (KPC-2)

M1 1 258 (KPC-2)

M2 3 101 (KPC-2), 307 (KPC-3), 512 (KPC-3)

M3 2 512 (2, KPC-3)

Q 4 101 (4, KPC-2)

S 16 512 (11, KPC-3), 14 (KPC-3), 15 (KPC-3), 307 (KPC-2), 395

(OXA-48), 3499 (KPC-3)

T 3 307 (3, KPC-2)

U 1 307 (KPC-3)

V 4 101 (2, KPC-2), 15 (KPC-3), 512 (KPC-3)

Centre (48, 31%)

A 5 512 (2, KPC-3), 37 (KPC-3), 101 (KPC-3), 307 (KPC-3)

B 6 512 (5, KPC-3), 2975 (KPC-3)

J 19 512 (13, KPC-3), 101 (2, KPC-2), 395 (KPC-3), 1507 (KPC-3), 1519

(KPC-3), 3498 (KPC-3)

P 16 307 (4, KPC-3; KPC-3/OXA-48), 512 (5, KPC-3), 101 (KPC-3; VIM-1), 147

(2, KPC-3), 15 (KPC-3), 45 (KPC-3)

R 2 307 (2, KPC-3)

South (58, 37%)

C 1 307 (KPC-3)

D 28 512 (11, KPC-3), 101 (9, KPC-3), 11 (3, KPC-3), 307 (3, KPC-3),

745 (KPC-3), 2185 (KPC-3)

G 8 395 (5, KPC-3; OXA-48), 258 (2, KPC-2)

H 1 101 (KPC-3)

K 10 512 (8, KPC-3), 16 (KPC-3), 307 (KPC-3)

N 9 307 (7, KPC-3; KPC-2), 512 (KPC-3)

O 1 101 (KPC-3)

aFor Laboratory codes, see legend to Figure 1.
bWhen the number of isolates is equal to 1, not reported.
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Conclusions

To our knowledge, this study represents the first implementation
of WGS for the surveillance of CR-KP in Italy, an action compliant
with the high-priority recommendations of the ECDC for public
health surveillances.15,25 In this context, insights into the popula-
tion structure, resistome and virulome of CR-KP circulating in Italy
are provided, highlighting the emergence of high-risk lineages. The
present findings suggest a significant evolution in the epidemi-
ology of KPC-KP, from a predominance of the hyperepidemic
CG258 towards a polyclonal population structure with the emer-
gence of CG307 and ST101, as recently shown in some areas of the
country.3,7,11,26,27 Analysis of the population structure of the four
major lineages identified clusters of isolates that suggested a local
clonal expansion. We did not perform any outbreak investigation
in the hospitals served by the laboratories; however, similar find-
ings were previously reported in the EuSCAPE study17 where iso-
lates from the same hospital or from hospitals in the same country
were generally found to be more closely related than isolates
obtained in different countries.

Despite such an epidemiological shift, KPC production remains
the most common mechanism of resistance to carbapenems,
although it is no longer associated only with CG258, but also with
three additional lineages, CG307, ST101 and ST395, that due to
their genetic traits and the ability to disseminate can also be con-
sidered ‘high-risk lineages’. Several recent studies indicated that
ST307 is an emerging clone worldwide, with the ability to adapt to
hospital settings, outcompeting CG258.12,13,28,29 ST101 is an
emerging clone at the global level,26,30–32 while the distribution of
ST395 appears still limited at present.27,33

The present data provide a snapshot of the evolution of CR-KP
in Italy and can be considered as a baseline for future WGS-based
surveys in Italy and on a wider scale.
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All isolates (%) (n = 156) CG258 (%) (n = 74) CG307 (%) (n = 31) ST101 (%) (n = 24) ST395 (%) (n = 8)

S I R S I R S I R S I R S I R

Meropenem 0.0 8.3 91.7 0.0 0.0 100.0 0.0 19.4 80.6 0.0 4.2 95.8 0.0 25.0 75.0

Imipenem 1.9 1.9 96.2 0.0 0.0 100.0 0.0 3.3 96.7 0.0 4.2 95.8 12.5 12.5 75.0

Ertapenem 0.0 – 100.0a 0.0 – 100.0 0.0 – 100.0 0.0 – 100.0b 0.0 – 100.0

Ceftazidime/

avibactam

97.4 – 2.6 100.0 – 0.0 100.0 – 0.0 91.7 – 8.3 100.0 – 0.0

Gentamicin 59.6 – 40.4 85.1 – 14.9 41.9 – 58.1 20.8 – 79.2 12.5 – 87.5

Amikacin 44.9 – 55.1 21.6 – 78.4 93.5 – 6.5 16.7 – 83.3 87.5 – 12.5

Ciprofloxacin 1.9 0.6 97.5 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0
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S, susceptible, standard dosing regimen; I, susceptible, increased exposure; R, resistant.
aPercentage calculated on 153 isolates, as for 3 isolates susceptibility testing yielded an MIC �1 mg/L that did not allow categorization of these iso-
lates as S or R.
bPercentage calculated on 23 isolates, as for 1 isolate susceptibility testing yielded an MIC�1 mg/L.
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