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ABSTRACT ARTICLE HISTORY
This work presents a sinkhole susceptibility and risk assessment Received 17 May 2022
mapping in Guidonia-Bagni di Tivoli plain (ltaly), a travertine sink- Accepted 10 August 2022
hole-prone area where sudden occurrences of sinkholes have
happened in past and recent times. We collected a point-like sink-
hole inventory and we considered a series of different sinkhole- ; o

i machine learning;
controlling and precursory factors over the study area, related to maximum entropy
its geo-litho-hydrological setting and to its terrain deformational algorithm; Guidonia-
scenario, i.e. ground motion rates derived from InNSAR COSMO- Tivoli plain
SkyMed imagery. A sinkhole susceptibility map was produced
through a machine learning model, namely Maximum Entropy
algorithm (MaxEnt). Results highlight that the most determining
factors for sinkhole formation are the lithology, the travertine
thickness, groundwater and the land use. The sinkhole susceptibil-
ity map was then combined with data on vulnerability and ele-
ments-at-risk economic exposure in order to provide a sinkhole
risk map of the area. The outcomes show that areas at higher risk
covers about 2% of the total study area and primarily relies on
the zoning of the main urban fabric. In particular, it is worth to
highlight that 5% of the whole road-network pavement and 27%
of all the residential buildings fall into High and Very High risk
classes. Overall, results of this work demonstrate capabilities of
machine learning models to assess sinkhole susceptibility for pre-
dicting potential sinkhole areas, and provide a sinkhole risk map,
along with information on urban environment, as a useful tool for
urban planning and geohazard risk management.

KEYWORDS
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1. Introduction

Sinkholes are depressions in the ground caused by some forms of lowering or sudden col-

lapse of the surface layer, induced by the erosion of subsurface rocks (Billi et al. 2016).
Sinkholes are usually classified with respect to the ground failure mechanisms and the

involved material. In accordance with their formational processes, solution sinkholes,
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collapse sinkholes, deep piping and suffosion sinkholes can be distinguished (Waltham
et al. 2005).

Sinkholes result from different concurrent or sequential processes such as hydrogeo-
logical processes, e.g. subsurface dissolution by groundwater flow, and mechanical proc-
esses, e.g. downward gravitational movement of the overlying material. Thus, several
mechanisms can trigger sinkholes: whilst the process of gradual chemical dissolution of
soluble rocks (e.g. carbonate or evaporite) can cause a sinkhole (Watson et al. 2019),
many factors can favour sinkholes to develop (Yilmaz 2007). The hydrographical setting
is considered as a conditioning factor for sinkhole occurrence in many scientific works
that analyze the drainage system and the hydrological conditions for channel, voids and
collapse formation in karst (e.g. Galve et al. 2009; Ciotoli et al. 2016; Ozdemir 2016;
Intrieri et al. 2018; Kaufmann and Romanov 2019; Al-Halbouni et al. 2021). Groundwater
circulation and the hydrogeological setting are relevant facets for sinkholes occurrence, as
the presence of water in the subsoil can generate hydrofracturing and karst processes, fos-
tering cavities and ground collapses (Gutiérrez et al. 2014). Sinkhole formation can be
also triggered by geothermal and seismic processes (Del Prete et al. 2010; Billi et al. 2016,
200; La Rosa et al. 2018) or can be induced by tectonic elements, i.e. faults that represent
preferred pathways for the rising of deep fluids (Santo et al. 2012). Moreover, extensive
literature shows that many anthropogenic activities, such as groundwater withdrawal,
building works, irrigation and dewatering for mining activities greatly increase the occur-
rence of new sinkholes (Parise and Vennari 2013; Taheri et al. 2015).

Sinkhole occurrence in urbanized areas is a major hazard that can cause relevant eco-
nomic and social damage in terms of losses in human lives, and severe injuries to struc-
tures and infrastructures (Galve et al. 2011; Ammirati et al. 2020). Sinkholes are an
increasingly serious urban-planning problem worldwide: some examples to be mentioned
are in the USA in America (e.g. Gao and Alexander 2008; Kim et al. 2020), Italy and
Spain in Europe (e.g. Galve et al. 2009; Del Prete et al. 2010; Rispoli et al. 2020; Esposito
et al. 2021), Iran, Turkey and China in Asia (e.g. Kemmerly 1993; Jiang et al. 2005; Nof
et al. 2013; Orhan et al. 2020; ), South Africa in Africa (Theron et al. 2017). Furthermore,
when sinkholes occur on agricultural lands, they also can cause reduction of arable land,
damage to factories and rural buildings and thus can determine relevant economic impact
for cultivation activity (Ozdemir 2016; Dursun 2022).

In order to assess sinkholes hazard and risk, it is essential to map the spatial likelihood
of these collapsing events with the aim of preventing damages and managing land-use
activities in sinkhole-prone areas. Nevertheless, this is a complex and difficult task since
the formation of sinkholes is often sudden and unpredictable. The first step towards an
accurate sinkhole risk evaluation is the production of a susceptibility zonation map. The
susceptibility of an area to a certain phenomenon is defined as the spatial predisposition
of that area to the phenomenon occurrence on the basis of local geoenvironmental factors
(Guzzetti et al. 2006). Such susceptibility zonation relies on the principle of actualism,
according to which future phenomena will happen under the same conditions that caused
the past ones (Bianchini et al. 2016). A sinkhole susceptibility zoning map based on pre-
dictive analyses through a probabilistic approach is fostered to study the interactions
between existing sinkholes, environmental conditioning factors and future potential occur-
rences, for urban planning and geohazard management purposes.

A sinkhole susceptibility map aims to detect areas potentially affected by sinkhole
occurrence, starting from existing archives or inventories of sinkholes (Guarino et al.
2017; Tufano et al. 2022) in order to know where they happened in the past, and from
the identification of the main controlling factors.
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In scientific literature, sinkhole susceptibility mapping has been performed in the last
decade by using GIS (Geographic Information System) technology and various methods,
i.e. heuristic approaches based on geo-morphologic expertise and geophysics (Forth et al.
1999; Kaufmann and Quinif 2002; Koutepov et al. 2008; Pazzi et al. 2018; Watson et al.
2019), statistical approaches such as logistic regression (Ozdemir 2016) analytic hierarchy
process (Jiang et al. 2005; Taheri et al. 2015), frequency ratio (Yilmaz 2007; Galve et al.
2011), artificial neural networks (Kim et al. 2020). These methods provide sinkhole sus-
ceptibility maps as spatially continuous and simply accessible tools for the management of
sinkhole-related hazard (Galve et al. 2009). In some cases, Ground-Based Interferometric
Synthetic Aperture Radar systems (GB-InSAR) and satellite InSAR data have been also
included in susceptibility and hazard approaches as measurements of ground motion rates
for detecting land subsidence and sinkhole precursory deformation (e.g. Nof et al. 2013;
Intrieri et al. 2015; Theron et al. 2017; Esposito et al. 2021).

In this work, we explore a new approach for sinkhole susceptibility mapping by means
of a machine learning algorithm named MaxEnt (Maximum Entropy) based on maximum
entropy modelling. This algorithm has been originally conceived for biodiversity and ecol-
ogy modelling, but it can be successfully applied for analyzing other complex environ-
mental problems (Coban et al. 2020; Phillips et al. 2021) and hazards, such as landslides
(Felicisimo et al. 2013; Di Napoli et al. 2020; Raso et al. 2020). To our knowledge,
Maximum Entropy machine learning method has not been exploited for modelling sink-
hole zonation maps.

Beyond susceptibility, risk assessment requires computing the vulnerability and the
exposure of the elements at risk over the study area. Sinkhole risk assessment models
have been developed in scientific literature to evaluate the expected degree of damage and
loss that are inherent to the sinkhole hazard for a given area, by taking into account the
zoning and characterization of sites in terms of the hazard within a framework of well-
defined predisposing factors, the types of land development (Buttrick and Van Schalkwyk
1998) and the economic exposure and costs of indirect financial damage (Giampaolo
et al. 2016; Toulkeridis et al. 2016).

Since such a risk evaluation requires the parameterization and the combination of a
high number of detailed geomorphological and socio-economic factors, it is usually per-
formed qualitatively and at a local scale by the research community, while only a few
works deals with large scale risk assessment, e.g. Jiang et al. (2005), who present a
national-scale sinkhole risk assessment in China or Gao and Alexander (2008), who pro-
vide a sinkhole zoning assessment over the whole Minnesota, USA.

The vulnerability accounts for the likelihood to damage of the assets exposed to the
geohazard and can be defined as the degree of loss experienced by the elements at risk
for a given intensity (Glade and Crozier 2005). The exposure represents the stock of prop-
erty and infrastructure exposed to the geohazard, and it includes location, types, attrib-
utes, and socio-economic value of the assets.

The sinkhole vulnerability corresponds to the expected degree of damage due to sinkhole
impact on a human element, ranging from 0 (no damage) to 1 (total disruption). It
depends on both the intensity of the phenomenon, and on the resistance of different ele-
ments at risk (EAR) on the territory. A few sinkhole vulnerability classification systems
have been proposed in scientific literature. Relationships can be constructed by establishing
a correspondence between vulnerability and the intensity of the hazardous process, e.g.
sinkhole type and size. For instance, Buttrick and Van Schalkwyk (1998) studied sinkholes
in South Africa and considered the sinkhole diameter and depth as reference data for the
intensity of the phenomenon. Another approach consists in classifying the EAR based on
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the main land use and structures (urban, industrial, agricultural infrastructures) and their
importance in the local economy (Papathoma-Kohle et al. 2007). For instance, Bianchi
Fasani et al. (2013) subdivided the elements at risk into a simple system of four classes,
accounting for scattered or continuous urban fabric, construction and foundation type, and
hierarchical order of roads. Otherwise, vulnerability can be assessed on the basis of data
about economic and human losses caused by sinkholes in the past or by numerical model-
ing (Gutiérrez et al. 2014). In this work the vulnerability to sinkholes over the study area
has been derived by solely considering the type of the different Elements At Risk (EAR).

Results of sinkhole susceptibility mapping area were integrated with data on the vul-
nerability of the elements at risk, whose values were calculated according to the typology
of the exposed land use and structures, and to the economic exposure derived from
cadastral inventories, market and income values and bibliographic references, in order to
produce a sinkhole risk zonation map.

The study area of this work is the Guidonia-Bagni di Tivoli plain (central Italy), which
is an area historically threatened by sinkholes occurrence (Billi et al. 2016). The geo-
hydrogeological and structural features of the Guidonia-Bagni di Tivoli plain make the
area prone to various karst and hyperkarst processes (Nisio et al. 2007; Centamore et al.
2009; Floris et al. 2014; Ozdemir 2016). Buried collapse and deep piping sinkholes filled
with soil and regolith are common in the travertine substratum of this geothermal-seismic
area. Moreover, travertine quarry activities in the area and the load of buildings due to
urbanization accelerate the development of subsurface cavities in the travertine plateau
(De Ritis et al. 2020).

Many buildings have been recently damaged due to ground subsidence and sinkholes
(Brunetti et al. 2013; Rinalduzzi et al. 2017). The available sinkhole inventory includes
poorly quantitative geometrical data on sinkholes (e.g. lacking information about depth
and size of mapped collapses) and it comprises different information records of modern
sinkholes occurrences as well as surveys of locations of ancient sinkholes from biblio-
graphic references.

Overall, our research aims at illustrating the development of sinkhole risk mapping in
the study area by quantitatively assessing the sinkhole controlling factors and their spatial
distribution throughout machine learning model, and by evaluating in GIS environment
the associated risk in terms of expected value of loss, as a useful tool for urban planning
and geohazard risk management.

The assumptions and methodologies presented in this work could be reproduced in
other test areas where few information is available on sinkhole occurrences due to a large
scale of analysis or to scant or incomplete sinkhole inventory (e.g. poor availability of
quantitative geometric data on sinkhole events), in order to check the used modelling per-
formance in different environmental and geological settings.

2, Study area

The selected study area of the work extends over an area of about 38km” within the
Guidonia-Bagni di Tivoli plain, which is located in a Plio-Pleistocene, geothermally- and
seismically-active basin, near Rome, in Lazio region (central Italy), also known by the
name of Acque Albule basin (Figure 1la). This area is characterized by a thick deposit of
late Pleistocene thermogenic travertine, which has been historically quarried, and it is
threatened by land subsidence and sinkholes, due to collapse for water percolation in
karst travertine structures and to dissolution and deep piping for the upwelling of miner-
alized high-pressure water (Billi et al. 2016; Ciotoli et al. 2016).
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Figure 1. (a) Geographical location of the study area; (b) Geological framework map the Guidonia-Bagni di Tivoli
plain; (c) Conceptual model of the hydrogeological and structural asset of the Acque Albule basin, depicted as hypo-
thetical 2D cross-section with general N-S direction. The red-frame refers to a potential buried deep piping sinkhole
example, which is shown more in the detail in the right box (d). Legend: (1) Holocene deposits; (2) Lithoid travertine;
(3) sail fill; (4) Colluvial deposits; (5) Pleistocene clayey deposits; (6) Pliocene deposits; (7) Meso-Cenozoic carbonate
deposits; (8) Thermal source; (9) Discharge and leakage of confined aquifer; (10) upwelling and leakage of thermal
water; (11) Tectonic discontinuities; (12) water level of shallow aquifer; (13) main recharge and water flow direction;
(14) Soil; (15) Poorly-cohesive travertine. The Layers 14 and 15 of box (d) are not drawn in box (c) due to the scale of
the image (mod. from La Vigna (2009) and from De Ritis et al. (2020).

2.1. Geological and geomorphological setting

The study area is located in the Acque Albule hydrothermal basin, which is a N-S elon-
gated sedimentary depression originated during the post-orogenic extensional tectonic
phase of central Apennines. The basin is bordered southwards and westwards by the
Aniene River alluvial plain (Figure 1b). From a tectonic point of view, the Acque Albule
basin is considered a pull-apart basin located along the deeper branch of a N-S strike-slip
right-lateral fault (‘Sabina fault’) that crosses the Cornicolani mountains, cuts the Aniene
valley orthogonally and ends in the northern part of the Colli Albani (Gasparini et al.
2002; Faccenna et al. 2008).

The Acque Albule stratigraphical sequence, from bottom to top, is made of Meso-
Cenozoic marine limestones, which also border the basin northwards and eastwards, cov-
ered by Plio-Pleistocene arenaceous deposits (i.e. Plio-Pleistocene lower marine clays and
clayey sandstones, and upper continental sandy and conglomeratic deposits) and by
Pleistocene volcanic products derived from the nearby Colli Albani and Sabatini volcanic
districts. This sequence is overlapped by a large and thick travertine body of late
Pleistocene age and thermogenic origin related to the latest magmatic manifestations of
the volcanic complex and tectonic strike-slip activity, with an average thickness of 50 m
and a maximum of 85m along a N-S oriented strike-slip fault zone (Gasparini et al.
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2002). Travertine is composed of a compact lithoid deposit, usually covered by a few
meters of poorly-cohesive younger travertine and by regolith and soil with a thickness of
few decimeters to a few meters. Holocene alluvial deposits of the Aniene river finally
cover most of the plain (Argentieri et al. 2015; Billi et al. 2016).

2.2. Hydrogeological conceptual model

The present hydrogeological, geothermal and structural asset of the Acque Albule Basin is
depicted as a hypothetical 2D cross-section in Figure 1c. The hydrogeology of the basin is
characterized by two main hydraulically-connected aquifers: the deep-confined one corre-
sponds is hosted in Meso-Cenozoic thick carbonate succession, and the shallow one is
composed of massive and highly porous Pleistocene travertine plateau, it is unconfined in
most of the basin (somewhere locally semi-confined by low-hydraulically conductive sur-
face sediments) and it is, at present, strongly dewatered by the water pumping needed to
quarry deep travertine banks (Brunetti et al. 2013; Floris et al. 2014; Bozzano et al. 2015).
The two aquifers are separated by a non-continuous aquiclude of Pleistocene clayey and
sandy low-permeability deposits.

The hydraulic regime of the area is dominated by groundwater that infiltrates through
the surrounding fractured carbonate massifs, which represents a large lateral recharge
area, by the presence of striking faults and by groundwater discharge into the
Aniene River.

In particular, the hydraulic circuit of the Acque Albule basin involves two groundwater
circulations. The first, deep circulation mostly occurs within the carbonate bedrock,
recharged by Cornicolani Mts area located N and NE of the basin, and slightly recharges
surface deposits and remains confined by the clayey-sandy aquiclude. At deep levels, this
huge amount of groundwater that travels in the carbonate karst aquifers is partly heated
and enriched by CO, and other gases deriving from nearby hydrothermally-active vol-
canic district (Billi et al. 2016). The waters mix with warmer endogenic fluids that rise
along the faults that produced the basin and dissected the Meso-Cenozoic sequence
(Faccenna et al. 2008). The second, shallower circulation moves mainly N-S within the
travertine aquifer and the recent deposits. It is recharged directly by rainfall, laterally by
few overflowing from Cornicolani Mts carbonate aquifer and mainly by the upwelling of
thermal-mineralized waters from the deep circuit. This rising of deep hydrothermal waters
along tectonic discontinuities causes a mixing with shallower waters and produces many
hydrothermal springs. The main N-S§ trending fault zone acts as preferential pathways for
the upward movement of such deep fluids and most springs occur along this fault, which
is partly covered by the travertine body (Faccenna et al. 2008; Brunetti et al. 2013).
Furthermore, it is a seismically-active fault: seismic studies in the area documented that
in 2001 low-magnitude shallow earthquake hypocenters (2km deep at the most) were
aligned along this tectonic structure in the basin and defines a striking seismically-active
fault zone between about 1.5 and 0.5km of depth beneath the travertine (Gasparini
et al. 2002).

Other hydrothermalism processes also occur in the quarry areas because the quar-
ries themselves are located on sites that are characterized by thermal rising, and also
because the strong dewatering for mining activities make some hydrothermal waters
to draw back into the quarry area according to the strong hydraulic gradient
established.
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2.3. Sinkhole occurrence and inventory

The Guidonia-Bagni di Tivoli plain is an already well-known sinkhole area as it is a geo-
thermal-seismic area characterized by intense karst processes (Billi et al. 2016).

Just after or concurrently the late Pleistocene last volcanic phase of the nearby Colli
Albani, a huge subsurface thermal groundwater, enriched in endogenic chemical elements
from the volcanic complex circulated through the voids of Meso-Cenozoic marine lime-
stones and produced the thermogenic Tivoli travertine. This pressurized and aggressive
geothermal fluid circulation is still active and produces the carbonate chemical dissolution
and bottom-up erosion processes of jointed strata that can trigger the sinkholes (Billi
et al. 2016).

The outcropping travertine near the Aniene River has been quarried since Etruscan
and Roman times (I millennium BC) and mining has been active also during
Renaissance. From the early twentieth century and mainly from the 1950s, the quarry
area has been enlarged northwards, and new wider and deeper quarries have been open
between Villalba and Villanova (Floris et al. 2014).

The current extraction process is facilitated by an extensive system of sumps and
pump stations for dewatering the travertine aquifer and permitting mining operations at
the pit floor. Such groundwater abstraction activities contribute to subsidence and thus to
potential sinkhole occurrence (Brunetti et al. 2013). Furthermore, seismic shaking due to
seismically-active shallow faults could have played a concurrent role in producing sudden
ground collapses (Billi et al. 2016).

Sinkholes and similar surface karst phenomena as well as subsidence have been well
documented in the Acque Albule Basin since historical times (Nisio et al. 2007). The area
is characterized by different sinkhole typologies, mainly cave and cover collapse sinkholes
and deep piping sinkholes (Waltham et al. 2005; Nisio et al. 2007; Caramanna et al. 2008).
The cave collapse sinkhole develops in the outcropping lithoid travertines through the brit-
tle deformation of bedrock karst material, while the cover collapse sinkhole refers to the
quick sinking of unconsolidated cover deposits. The process is due to the percolation of
water through the shallower layers that tends to widen the fractures and voids within the
travertine and evolves with the subsequent collapses of the cave roof. The deep piping
sinkholes occur in the travertine and are caused by the rising of pressurized and mineral-
ized waters, which lead to the formation of a conduit or funnel, even at great depth
(Figure 1d). In this type of sinkhole a reversed hypogeum erosion and propagation pro-
cess develops from the bottom upwards and it is facilitated by the presence of faults that
can represent preferential pathways for the ascension of carbonate-rich thermal waters
and gases (Ciotoli et al. 2016).

Many sinkholes in the Guidonia Bagni di Tivoli are buried sinkholes since they are
totally filled by unconsolidated deposits and regolith that have been compacted under the
load of construction, and thus are hidden and apparently relict. Nevertheless, in both
cases of collapse sinkholes or deep piping sinkholes, suffosion and other downward washing
processes may lead to the sinkhole rejuvenation with reactivation of buried sinkholes and
formation of new surface depressions. Hydrothermal fluid circulation or seismic shaking
could also favor this sinkhole rejuvenation (Billi et al. 2016).

Some filled sinkholes and other karstic cavities are clearly visible along quarry walls
(Billi et al. 2016). Many hidden sinkholes are obliterated by quarrying activities or even
by overbuilding, which makes some recent buildings slowly sink (Brunetti et al. 2013; De
Filippis et al. 2013; Floris et al. 2014; Bozzano et al. 2015). Villalba, Villanova and Bagni
di Tivoli villages have been experiencing strong subsidence and are affected by fractures
and building damage. The subsidence process started to affect buildings in the 1980s and
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Figure 2. Point-like sinkhole inventory overlapped on orthophoto referred to June 2021. Photos on the left referred
to: Regina and Colonnelle lakes (from Bing Maps© Microsoft) (1), St. Giovanni Lake (from Falcioni 2018) (2),
Travertine quarrying areas (3) and deposits (from Street View © Google) (4).

increased at the beginning of the 2000s, even causing the evacuation of some houses and
public buildings (Bozzano et al. 2015). Some sinkholes are presently lakes (e.g. Regina and
Colonnelle lakes, actually acting as springs) or are former lakes that are dried, nowadays.
Therefore, sinkholes appear irregularly distributed over the basin, potentially due to lack-
ing information in many areas that are covered or obliterated by buildings, quarries,
or vegetation.

Regarding the availability of existing sinkhole inventory in the Guidonia-Bagni di
Tivoli area, previous works reported numerous sinkholes characterized by sub-circular
shape and diameters ranging between a few meters and 1km. In particular, Billi et al.
(2016) provided mapping of either recently-visible sinkholes by means of aerial photo-
graphs, Digital Elevation Models (DEMs), past geomorphologic studies, field surveys and
historical documents, either relict sinkholes by detailed subsurface studies through electric
resistivity tomography (ERT), penetration methods (DPSH), and borehole logs.

The mapped sinkholes considered for this study account for 203 elements (points or
polygons depending on the data sources) shown in Figure 2. In particular, 191 mapped
geometries were derived from the work of Billi et al. (2016) and converted into points as
polygon centroids, while additional 12 sinkholes were collected from the Italian National
Institute for Environmental Protection and Research (ISPRA) which manages a database
of point-wise sinkhole locations over the whole Italian territory (ISPRA 2022).

3. Methodology and data

We performed a GIS-based procedure for computing and mapping the sinkhole suscepti-

bility and risk on the study area. The workflow consists of different steps (Figure 3).
Firstly, we considered eight geoenvironmental conditioning factors for sinkhole occur-

rence. They are seven controlling factors, i.e. lithology, land use, soft soil thickness,
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Figure 3. Methodological flowchart of the research work.

travertine thickness, hydrography, groundwater levels, distance to faults, and one precur-
sory factor, i.e. InSAR ground motion rates. These factors, together with the sinkhole
inventory map shown in Figure 2, were used as input parameters for producing the sink-
hole susceptibility map on the Guidonia-Bagni di Tivoli area. For this elaboration we
exploited the MaxEnt software package (Phillips et al. 2021).

The factors contribution in the model was computed through some evaluation metrics,
i.e. response curve outputs and Jackknife plots of each used environmental variable. An
accuracy assessment on the susceptibility map was also performed within MaxEnt through
empiric receiver operating characteristics (ROC) analysis for examining the precision of
the method and its predictive capacity.

Secondly, we collected data on the elements at risk of the study area. These data were
derived from the geo-topographical cadastral database of structures and infrastructures at
municipal scale distributed by the Lazio Region, merged with the land use map. Thus,
this layer includes a classification of properties and facilities exposed to risk according to
their nature and functionality. The quantification of the vulnerability was then performed
by assigning a percentage of expected damage for each type of element at risk, whereas
the economic exposure values were collected from the national real estate market values,
to produce the related maps over the whole study area. The integration of the results
from the different maps was implemented in a GIS environment and led to the elabor-
ation of the sinkhole risk map of the Guidonia-Bagni di Tivoli area.

3.1. Machine learning algorithm MaxEnt

The used machine learning algorithm MaxEnt (Maximum Entropy) is based on the prin-
ciple of maximum entropy, as its name implies, for the best approximation of a probabil-
ity distribution (Jaynes 1957). Entropy, as introduced by Shannon (1948), is defined as
the expected value of the self-information of a variable, thus it refers to the amount of
information in that variable.

3.1.1. Operating principles and process
The MaxEnt model was originally conceived as a general predictive approach in biodiver-
sity studies for modelling presence-only data (that are spatial data where the presence of
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an event on a location, if known, is certain, but its absence is not, as it can be due to
lacking information) in the species distribution, but it is suitable for all applications
involving presence-absence datasets (Phillips et al. 2006). Therefore, the algorithm has
been also used as data-driven model for susceptibility mapping of geological phenomena,
e.g. landslides (Convertino et al. 2013; Felicisimo et al. 2013; Di Napoli et al. 2020;
Javidan et al. 2021).

The MaxEnt model estimates the spatial distribution of an event by finding the distri-
bution that has the highest entropy and that is subject to a series of environmental condi-
tioning factors characterizing the events (Phillips et al. 2006).

In particular, the method compares the probability density functions of each environ-
mental input variable (in our case, the chosen conditioning factors) at the event occur-
rences (in our case, the sinkhole locations) and at any other location on the study area,
and computes the difference as ‘relative entropy’ (Convertino et al. 2013; Kornejady et al.
2017). Then the MaxEnt algorithm analyses the probability density functions of the envir-
onmental variables, transformed into logistic values, and finds the one that maximizes the
entropy of information, in order to forecast the sinkhole event by spatially mapping its
probability to occur, i.e. the susceptibility.

On the Guidonia-Bagni di Tivoli study area, the sinkholes inventory was randomly
split into a training set (70% of the total inventory) used for the model itself, and a test-
ing set (30%) employed to validate the predictive capacity of the method.

The MaxEnt algorithm was used by elaborating the average of 6 repeat models and
1000 iterations for each model, in order to tune the system performance and search for
the best result. Thus, the result of these elaborations was an average susceptibility map
based on six maps each calculated on the result of 1000 iterations. Within MaxEnt, the
cloglog (complementary log-log regression) logistic model was used (Phillips et al. 2021)
and combined with the bootstrapping system (that means that training data are selected
by random sampling and by re-entry of the points of presence, so that each point of pres-
ence can be sampled many times for each set).

3.1.2. Factor contribution metrics and accuracy assessment

The MaxEnt algorithm allowed the calculation of the weights for each class of every con-
ditioning factor used as an environmental variable in the model by means of response
curve graphs. In particular, if the variable is continuous, the output is actually a response
curve, while if the variable is categorical, the output is a histogram. These graphs show
how the probability of predicted presence changes as the value of each environmental
variable changes, while keeping all the other variables at their average value.

Furthermore, a jackknife test was performed to further check the contribution of each
environmental variable in the model calculation developed by MaxEnt. Jackknife is a
resampling method that estimates the variability of a statistic from the variability of that
statistic across subsamples plot (Sinharay 2010). The Jackknife test removes one variable
at time and records the change in the chosen AUC evaluation metric. The plot provides
two values for each variable: the first one is the AUC value that would be obtained using
only that variable, while the second one is the AUC values obtained considering all the
other variables except that one. The importance of the input environmental variables
within MaxEnt can be also listed by extracting two metrics named ‘percent contribution’
and ‘permutation importance’. The ‘percent contribution’ values derive from the training
process and the particular path that the MaxEnt algorithm uses to get to the best solution:
while the MaxEnt model is being trained, it keeps track of which environmental variables
are contributing to fitting the model. Each step of the MaxEnt algorithm increases the
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gain of the model by modifying the coefficient for a single feature; the software assigns
the increase in the gain to the environmental variables that the feature depends on and
convert values to percentages at the end of the training process providing ‘percent contri-
bution’ for each variable (Phillips et al. 2006). The ‘permutation importance’ of each vari-
able depends only on the final MaxEnt model, not the path used to obtain it: for each
environmental variable in turn, the values on training presence and background data are
randomly permuted. The model is re-evaluated on the permuted data, and the resulting
decrease in training AUC is computed and normalized to percentages. A large decrease
indicates that the model depends heavily on that variable (Phillips et al. 2006).

The accuracy assessment of the produced sinkhole susceptibility map implies the evalu-
ation of the finest combination map from the processed tests within MaxEnt and was per-
formed by empiric ROC analysis and cross-comparison of the area under curve
(AUC) values.

3.2. Conditioning and precursory factors for sinkhole susceptibility

According to the most representative morphological and spatial features of the study area
with regard to sinkhole phenomena, we selected the eight conditioning and precursory
factors. All the factors, either classified as categorical or numerical discrete data, were
computed as thematic layer with the same 10m cell-size to be used as input data for
MaxEnt. In particular, those categorical data (lithology, land use, hydrography) that con-
tain a finite number of categories were rasterized. Those maps that contain a spatially dis-
continuous information (i.e. point-wise and counter-lines maps) were spatially
interpolated to obtain a continuous thematic layer: more in detail, such vectorial linear
elements (faults, groundwater, soft soil and travertine thickness lines) and point-like ele-
ments (ground motion rates of InSAR benchmarks) were converted into continuous sur-
face maps by means of the Inverse Distance Weighted tool in GIS environment
(Figure 4).

3.2.1. Lithology

Lithology is an intrinsic factor in the problem of sinkholes as these phenomena preferen-
tially occur in specific lithological situations that involve soluble rocks. Thus, the lithotype
data can provide indications in advance about possible locations of sinkhole formation.
The geolithological map of the Guidonia-Bagni di Tivoli study area was collected from
Lazio Region authority (Figure 4). The lithotypes cropping out in the area have been
grouped into 10 lithological classes. The most representative lithology is the travertine
that outcrops in the central portion of the area and extends up about 20 km” (nearly 70%
of the whole basin).

3.2.2. Land use

The land use map of the study area, derived from merging levels 2 and 3 of the CORINE
Land Cover map (European Environment Agency 2007), shows that croplands and semi-
natural zones cover most of the study area (Figure 4). The travertine quarry area currently
extends over an area of about 4km’. The most significant built-up zones of the study
area correspond to Collefiorito, Guidonia-Montecelio, Bagni di Tivoli, Villalba and
Villanova villages.
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Figure 4. Maps of the eight conditioning and precursory factors chosen for assessing the sinkhole susceptibility over
the study area. These maps are referred to the categorical and discrete data as they were available over the study
area. Then, all the factor maps were converted into continuous surface raster maps with the same 10 m cell-size to be
used as input data for MaxEnt algorithm.



GEOCARTO INTERNATIONAL 13

3.2.3. Soft soil thickness

Soft soils correspond to compressible recent alluvial deposits that constitute the terrain
surface layer throughout the plain. Data referred to the thicknesses of these soils were
obtained from (Bozzano et al. 2015), who showed that the thickest stratigraphical layers
correspond to the areas affected by the highest rates of ground lowering, due to water
pressure decrease and consolidation processes (Figure 4).

3.2.4. Travertine thickness

The thickness of the travertine in the area was reproduced as discontinuous thickness
contour lines derived from the work of Faccenna et al. (2008), who created a travertine
thickness map by interpolating data of 114 boreholes. The map shows that the highest
thickness is in the center of the study area (up to 90 m) and inside the quarry area, and
decreases moving away from them (Figure 4).

3.2.5. Fault setting

The main N-S striking fault beneath the Acque Albule basin has a right-lateral strike-slip
kinematics and is partly covered by the travertine plateau. Other associated faults are NE-
striking with an oblique to normal kinematics and other inferred or blanketed minor tec-
tonic discontinuities (Gasparini et al. 2002; Faccenna et al. 2008; Rinalduzzi et al. 2017).
The used thematic layer for the structural setting of the study area is the spatial distance
from faults (in meters) represented as an interpolated continuous surface map (Figure 4).

3.2.6. Hydrography

In the Guidonia-Bagni di Tivoli plain, the surface hydrographic network is poorly devel-
oped, probably for the presence of a well-developed sub-surface karst network in the
Pleistocene travertine deposit. Many relict sinkholes are presently lakes. The Aniene River
is the major hydrographic feature in the area, as it drains the majority of surface and sub-
surface waters (Rinalduzzi et al. 2017). The map of the surface hydrographic network of
the study area was obtained from Lazio Region authority (Figure 4).

It is worth stating that hydrographic data were managed as categorical data: indeed, in
this case, before converting data into a raster layer, the map was transformed into a
matrix of presence-absence of the hydrographic element with an applied buffer of 50 m,
without generating a map of the distances from the element since the effect of hydrog-
raphy is much more limited around the element itself.

3.2.7. Groundwater

The piezometric data were taken from the most recent available cartography of Guidonia-
Montecelio municipality that dates back to 2016 (Figure 4). The water table contour lines
displayed refer to the depth to groundwater of the shallow aquifer from ground level in
meters above sea level. Despite the huge deep water recharge, the shallow aquifer is char-
acterized by cone of depression due to water abstraction in the travertine mining area,
where a strong distortion of the contour lines induced by the quarrying-related dewater-
ing activities is evident (De Filippis et al. 2013). Several geothermal springs and gas vent-
ing structures are present in the area, mainly located along the tectonic discontinuities
(Faccenna et al. 2008; Brunetti et al. 2013).

3.2.8. Satellite InSAR data
Satellite PSI (Persistent Scatterer Interferometry) InSAR data are point-wise ground
deformation measurements extracted through the processing of a long temporal data stack
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of remotely sensed SAR images acquired by space-borne systems (Crosetto et al. 2016).
The analysis of ground movements revealed by PS (Persistent Scatterers) radar bench-
marks in terms of spatial and temporal patterns of velocity (mm/year) can support the
evaluation of subsidence rates with millimetric accuracy over time.

On the Guidonia-Bagni di Tivoli study area, the available PSI ground deformation data
derive from 274 SAR images acquired in X-band in both orbits (ascending and descend-
ing) by COSMO-Skymed (ASI, Italian Space Agency) constellation in the span time
2017-2020 and processed through the CPT (Coherent Pixel Technique) approach (Mora
et al. 2003) The PSI yearly average velocities measured along the satellite LOS (Line Of
Sight) were decomposed into their horizontal and vertical components, by following pro-
cedures proposed by Notti et al. (2014). The decomposition revealed a main vertical direc-
tion of displacement with a negligible horizontal component, as already indicated by past
works in the study area (e.g. Bozzano et al. 2015). The map of vertical movements pro-
vides subsidence rates from 10 to 20 mm/year located in the central part of the study area
and referred to human-made structures and infrastructures (Figure 4).

3.3. Elements at risk (EAR) exposure and vulnerability

The EAR exposure and sinkhole vulnerability maps over the Guidonia-Bagni di Tivoli
plain were derived from cadastral and topographic databases and from market income
values, as well as from bibliography.

Information on the size (diameter) of sinkholes on the study area was missing since
the inventoried sinkholes used for the predictive model almost exclusively consist of
point-like data. Thus, the empirical intensity of sinkholes based on their average diameter
could not be considered. Therefore, it was assumed that the impact of a sinkhole on
structure/infrastructure would highly damage the economic productivity and serviceability,
regardless of the collapse diameter.

Hence, the vulnerability to sinkholes over the study area was derived by solely consid-
ering the type of the different Elements At Risk (EAR). In this perspective, the vulnerabil-
ity map indicates the degree of expected economic and human losses due to sinkhole
activity in each portion of the territory, by considering the ‘strategic’ usability of exposed
EAR, as defined by Solari et al. (2018).

The vulnerability map in the Guidonia-Bagni di Tivoli area was constructed by assign-
ing values to different EAR based on the identification of the areas and structures where
sinkhole-related direct and indirect damage is expected to reach higher values.

Firstly, the EAR catalogue of the study area was collected from national geo-topo-
graphic databases which contain information about private buildings, economic and
industrial activities, public service utilities and infrastructures. This catalogue only
includes simple information about the location and the type of the structures: neither the
structural state, maintenance status, construction type nor human occupancy of buildings
were available. This vector database (DB) of buildings and linear elements (road network
or other transportation paths) was merged with the polygons of the second-level CORINE
Land cover map to classify the EAR types. Thus, the quantification of the vulnerability
was performed by assigning a percentage of expected damage to the EAR, for each type
of element at risk. The vulnerability values were chosen according to various classifica-
tions already proposed in the scientific literature for geohazards (usually for landslide
events) (Catani et al. 2005; Papathoma-Kohle et al. 2007; Bianchini et al. 2017; Solari
et al. 2018).
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The exposure of the EAR refers to the monetary value, ie. the price or current value
of the asset, to be based on potentially lost earnings. These values were extracted from the
Italian OMI (Osservatorio Mercato Immobiliare — Real Estate Market Observatory) data-
base; the real estate quotas identify, for homogeneous territorial area of each Italian muni-
cipality, a minimum and maximum range of the average market and rental values, per
unit of surface area in euro per m’ by type of property and state of conservation for resi-
dential buildings. In addition, an exposure value was also assigned to all the other struc-
tures, road network and areas of the CORINE land cover map, according to web
bibliographic values (e.g. Catani et al. 2005; Pellicani et al. 2014; Perino et al. 2018) and
to the ‘Average Agricultural Values’ derived from the OMI database that contain an esti-
mate of the value in €/ha of agricultural land referred to the year 2020, in order to assign
exposure value to all the assets of the area.

3.4. Sinkhole risk map

The sinkhole risk map over the study area was computed in GIS environment by the
combination of the three component rasterized maps, i.e. susceptibility, exposure, and vul-
nerability, with the same 10m cell-size resolution. In particular, the three layers were
combined by using the Raster Calculator tool of ArcGIS, based on the formula of Risk
(Risk = Susceptibility*Vulnerability*EAR Exposure) in its strict sense.

The sinkhole risk map was classified and grouped into five classes (‘very high’, ‘high’,
‘moderate’, ‘low’, ‘very low’) for visual interpretation by using natural intervals classifica-
tion in GIS environment (Jenks 1989).

4. Results
4.1. Susceptibility zoning map

The sinkhole susceptibility map of the study area was produced as MaxEnt output map
(Figure 5a). The map is a 10m cell-size raster layer with continuous values from 0 to 1.
The most susceptible areas are located south of Guidonia-Montecelio village, NE of
Villalba village, in the central area of the travertine quarry area, and in the semi-natural
area in the SW edge of the study area, W of Bagni di Tivoli village (Figure 5a).

Regarding the accuracy assessment of the modeled susceptibility map, the AUC value
for the testing data is 0.857, demonstrating a good prediction ability of the model
(Figure 5b).

Regarding the response curves of the eight conditioning and precursory factors used as
environmental variables in the model (Figure 5c), the response curve of lithology shows
that the travertine reveals the highest relative weight since the presence of potentially
karstic rock is an essential requisite for the development of dissolution-induced sinkholes.
The other two most relevant lithologies are pozzolana and colluvial deposits. The first one
is important because it is not very widespread on the study area, but it outcrops close to
areas with a high density of sinkholes; the second one, in addition to being the most
widespread lithology in the area after travertine, it is also deposited on it and therefore
could collapse due to the underlying travertine. This results also demonstrates the effect-
iveness of the model to represent well the input data in/close to the sinkhole areas.

The land cover/use classes that mostly influence the predictive model are the quarry
areas and the continuous urban fabric. This latter land-use class shows a reduced areal
extension, but a high mapped sinkholes density. The high weight of this factor could be
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Figure 5. (a) Sinkhole susceptibility map of the study area; (b) AUC value of the ROC analysis (stddev = standard devi-
ation); (c) Response curves (RC) and histograms (H) for the used variables. In RC, the red line represents the average
value of the computed six repeats of the test, the blue area shows the average value +stddev. In H, the light blue
bar represents the model without the variable. The blue bar represents the model with the only variable. The red bar
represents the final output. (Lithology classes: 1= Landfill; 2=Clay, 3=Sand, 4=Tuff, 5=Silt, 6= Lithic tuff,
7 =Pozzolana, 8=Colluvial deposit, 9 =Travertine, 10=Gravel/Sand, 11=Sandstone; Land use classes: 1=
Continuous urban fabric, 2= Scattered urban fabric; 3= Industrial areas; 4= Quarry areas; 5= Orchards; 6 =" Olive
groves; 7= Grass and pasture; 8 = Agricultural areas; 9 = Cropland, 10 = Scrubs; 11 = Semi-natural areas.).

related to the easier evidence of a sinkhole occurred on built-up populated areas where it
can be effortlessly observed and reported.

The response curve of the soft soil thickness shows that the spatial likelihood of sink-
holes decreases where thickness is higher than 8-10 m, indicating that the cover thickness
should be relatively thin, since cavities rooted in the travertine bedrock have to propagate
upwards to reach the surface and produce a sinkhole. Conversely, the travertine thickness
is a key factor especially where thickness is higher, i.e. up to 70-85 meters. This is con-
firmed by comparing the susceptibility map with the travertine thickness map (Figures 4
and 5a), since an abrupt increase of the susceptibility value is noticed in correspondence
to the maximum thickness values (i.e. higher than 80 m).

The hydrography histogram divides the result into the water body presence (value 1)
or absence (value 0), being the latter one referred to higher susceptible ranges even if out-
put seems to be not very clear. Concerning the response curve of groundwater levels,
lower values turn out to be more relevant for sinkhole susceptibility since shallow levels
entirely lie in the susceptible travertine layer while deeper levels lie in the Plio-Pleistocene
or Mesozoic deposits.

The distance to fault seems to be influent for sinkhole susceptibility within a range of
one kilometer, whereas beyond this threshold the weight of the parameter promptly
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decreases in the model. This is because fault zones in travertine and carbonate rocks are
commonly characterized by higher hydraulic conductivity and may act as preferential
pathways for geothermal fluids that may increase groundwater aggressiveness.

InSAR ground motion rates show poor correlation with potential sinkhole develop-
ment: the response curve is quite noisy, even if it records a peak for vertical velocities
between —10 and —5 mm/year. Basically, the deformation measured by satellite radar data
confirmed the subsiding movements historically reported in the area even by past InSAR
data (Nisio et al. 2007; Ciotoli et al. 2016; De Ritis et al. 2020).

By observing the jackknife histogram plot and the summary table of the eight used var-
iables, and by considering both the AUC values ‘with only variable’ and ‘without variable’,
the results of the jackknife test show that the most determining factors are the lithology,
the travertine thickness, groundwater and the land use, whereas soft soil thickness and
the hydrology represent the least important factors for the calculation (Figure 6).

The range of continuous values of the sinkhole susceptibility map has then been div-
ided into five classes of susceptibility (very low, low, medium, high, very high) by using
the natural breaks method. This classification was made to enable the cross-comparison
of the susceptibility map with the sinkhole inventory and to compute statistics of mapped
sinkhole locations in each susceptibility class. The resulting outcomes demonstrate the
good predictive ability of the used model (Figure 7). In particular, out of 202 total sink-
holes present in the area, an amount of 95 occurrences falls into the areas classified with
Very High sinkhole susceptibility (about 47%) and 71 occurrences fall into the high sus-
ceptibility class (about 35%). 23 sinkholes, corresponding to 11% of the total, fall into the
medium susceptibility class, while the remaining 7% is divided into Low or Very Low sus-
ceptibility classes (Figure 7).
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Figure 7. Sinkhole database overlapped on sinkhole susceptibility map. Pie chart of the number and percentage of
mapped sinkholes in each susceptibility class.

4.2. Vulnerability and exposure of elements at risk

The sinkhole vulnerability intended as the expected degree of damage due to sinkhole
impact on human elements was computed and produced as a map over the Guidonia-
Bagni di Tivoli plain (Figure 8).

The proposed vulnerability map in the Guidonia-Bagni di Tivoli area (Figure 8b)
includes different values of expected economic and human losses due to sinkholes
assigned to different EAR (Figure 8a) on the territory. In particular, by taking into
account the importance within society and usability of exposed EAR to sinkhole events,
the higher percentages of expected damage were assigned to strategic structures that
would contain population (e.g. hospitals, schools, residential buildings). High vulnerability
values were also assigned to the roads and road internal network by bearing in mind the
significant indirect impact in functionality loss on transportation paths produced by
potential sinkhole (Table 1).

The exposure of the EAR referred to the monetary value over the study area includes 7
real estate value classes of OMI zonation over the study area used for the EAR exposure
calculation of residential buildings, with values ranging from around 1200 €/m? to around
1600 €/m* (Figure 8c). The other exposure values derived from the OMI database or web
bibliographic values assigned to all the other structures were lower, e.g. areas of the
CORINE land cover map, up to a minimum value of 0.2-50 €/m” range class for the agri-
cultural and semi-natural areas. The output of this merging procedure is a continuous
rasterized exposure value map over the whole study area (Figure 8d).

4.3. Risk assessment map

The output sinkhole risk map on the Guidonia-Bagni di Tivoli study area is a raster sur-
face with 10-m cell size resolution based on five classes of risk, named very low, low,
medium, high, and very high (Figure 9).
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Figure 8. (a) Close-up of the study area that shows the map of EAR type. Numbered EAR and Land Use types refer
to Table 1; the up-right box shows the location of the close-up; (b) Sinkhole Vulnerability map of the study area; (c)
Zonation and values (€/m?) of OMI Real Estate database; (d) Exposure value (E/m?).

Overall, it can be noted that the mapping of areas with higher risk (High and Very
High risk classes) covers about 2% of the total study area and primarily relies on the zon-
ing of the main urban fabric, since both the potential damage (the product of vulnerabil-
ity and EAR exposure) and the susceptibility pivot on the land use and thus on the built-
up area distribution. The Medium Risk class encompasses a percentage of about 3% of
the total study area, whereas 89% refers to the Very Low risk class.

Basically the risk is higher in the most susceptible and vulnerable urbanized areas, i.e.
in the Villanova, Bagni di Tivoli and Villalba villages, whereas it decreases in areas char-
acterized by lower susceptibility and vulnerability. In particular, it is worth to highlight
that 5% of the whole road-network pavement (including roads and internal roads) and
27% of all the residential buildings fall into High and Very High risk classes.

In particular, the numbers of manufacts of different functional type characterized by
different risk values were computed (Table 2): for these statistics we assigned a risk class
value to each manufact by considering the spatial majority of cell values of the risk class
that fall into the manufact.

It is worth to highlight that, besides 484 residential buildings in Very High Risk Class
and 985 in High Risk Class, some strategic structures of social and collective relevance are
also located in areas of High and Very High Risk, ie. five schools, one administrative
building, two religious complexes, one social security edifice and one touristic complex.
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Table 1. Vulnerability values in percent for each element at risk (EAR) type.

DB EAR type Vulnerability value (%)
1 Industrial building 50
2 Parks and sport centers 50
3 Commercial building 50
4 Agricultural stable and breeding farm 50
5 Airport station 55
6 Railway station 55
7 Cultural and media-related building 60
8 Church/Religious complex 60
9 Public/administrative building 60
10 Residential building 75
1 Social security edifices 60
12 Schools 80
13 Hospitals and health centers 90
14 Touristic complex 70
15 Parking areas 80
16 Roads 100
17 Internal road network 100
Corine land cover Vulnerability value (%)
18 Agricultural land with significant areas of natural vegetation 10
19 Orchards 40
20 Olive groves 40
21 Croplands 20
22 Semi-natural areas 20
23 Shrubs 10
24 Grass and pasture 30
25 Quarry areas 10
26 Scattered urban fabric 45
27 Continuous urban fabric 45
28 Industrial areas 35

Risk class

[ very Low
[Low

[ IMedium
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Figure 9. Sinkhole Risk map of the study area.
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Table 2. Number of manufacts of each EAR type in each risk class.

DB EAR type Very Low Low Medium High Very High
1 Industrial building 294 84 56 2 0
2 Parks and sport centers 0 3 4 2 0
3 Commercial building 2 0 2 0 0
4 Agricultural stable and breeding farm 5 0 0 0 0
5 Airport station 5 0 0 0 0
6 Railway station 1 1 0 0 0
7 Cultural and media-related building 2 0 1 0 0
8 Church/Religious complex 2 4 2 2 0
9 Public/administrative building 0 0 0 1 0
10 Residential building 1296 1858 1196 985 484
1 Social security edifices 0 0 0 1 0
12 Schools 2 4 6 4 1
13 Hospitals and health centers 2 0 1 0 0
14 Touristic complex 1 0 0 0 1
15 Parking areas 439 0 0 0 0

5. Discussion

In this work, the sinkhole risk assessment on the Guidonia-Bagni di Tivoli area was per-
formed through the evaluation of each risk sub-component, i.e. susceptibility, vulnerability
and exposure of the subjected elements at risk.

The Guidonia-Bagni di Tivoli plain is a well-known sinkhole area with outcropping
Plio-Pleistocene marine sediments, volcanic deposits and thermogenic travertine. It is a
typical multi-hazard scenario, with extensive cases of subsidence and historical occurrence
of sinkholes filled with ground and regolith under the load of multi-story buildings in a
geothermal-seismic setting. Nevertheless, to our knowledge, a comprehensive sinkhole risk
map had not been produced yet.

In such an area, characterized by hidden sinkholes or similar karst structures in the
shallow subsurface of densely populated surface, a sinkhole risk map is a useful tool to
manage or at least assess this environmental source of hazard. In particular, it can help to
understand the spatial distribution and dynamics of sinkhole phenomena and hopefully to
forecast their occurrence, particularly in the parts of the basin where active movements
have caused damages to buildings and infrastructures.

The first important step in sinkhole risk analysis is the construction of a comprehen-
sive cartographic sinkhole inventory. Sinkhole databases should include information on
the location of sinkholes limits, chronology, morphometric parameters, and underlying
structures (Gutiérrez et al. 2014; Kleinhans and Van Rooy 2016). Sinkhole inventory
seems to be a primary data source in training the model. In this work we rely on previ-
ously mapped sinkholes from bibliographic data sources (ISPRA database and previous
works, i.e. Billi et al. 2016) and we manage the sinkhole occurrence as point-like location
data. This has decreased the detail of the analysis, but it was considered both necessary as
input data for MaxEnt model, and reasonable when working over large area. Moreover,
since chronological information was not available on all the inventoried sinkholes, then
the sinkhole hazard has been represented by a sinkhole susceptibility, which only identi-
fies areas potentially affected by phenomena and does not imply an occurrence time or
frequency for the events (Dai et al. 2002; Galve et al. 2011). A relevant future perspective
could include on-site investigation on the study area to search for present in-situ evidence
and thus a fieldwork could be required to identify current sinkholes as lacking in this
research that only considers already mapped past sinkholes derived from literature.

The sinkhole susceptibility assessment was performed by means of maximum entropy
algorithm through the MaxEnt model. This machine learning algorithm is a data-driven
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model that has been already used for geohazard susceptibility mapping and that has
revealed its effectiveness. In scientific literature it has been compared with various other
modeling and has been evaluated as an excellent predictive approach, since it provides a
continuous distribution model and has a very stable confidence interval system (Phillips
et al. 2006; Townsend Peterson et al. 2007; Kaky et al. 2020). The MaxEnt approach is
based upon a probabilistic framework and in our work was chosen with the purpose of
using a machine learning algorithm that generates predictions from an incomplete set of
information. The MaxEnt algorithm is a presence-only model, exploited where presence
data are abundant, but absence data are hard to obtain and often unreliable due to insuf-
ficient survey effort. To counter the lack of absences, MaxEnt uses a background sample
to contrast the distribution of presence data along environmental gradients against the
distribution background points, randomly drawing from the study area (Gomes
et al. 2018).

The limitation of this open-source tool of managing only point-wise data was, in our
case, aligned with the lack of information concerning the actual size of the sinkhole
events. Several conditioning and causative factors for the observed historical sinkhole
occurrence and subsidence have been considered in the Guidonia-Bagni di Tivoli study
area. Results of susceptibility modelling show that the presence and the thicknesses of
travertine, as well as the distance to fault and the groundwater exploitation are the main
causal factors for sinkhole occurrence and outline a physical understanding of sinkhole
formation in the study area. In particular, the importance of the different causal factors
has been highlighted through the analysis of the resulting sinkhole susceptibility map and
jackknife tests. Such graphs clearly indicate the relevant role of two environmental varia-
bles, i.e. the lithology and the thickness of the travertine, which are inter-correlated
parameters. The most susceptible areas to sinkholes are found in correspondence to the
maximum travertine thickness values, i.e. higher than 80 m, and where soft soil thickness
is thin since this situation can facilitate the upward propagation of cavities within traver-
tine bedrock. This is also in agreement with other studies of geomechanical modelling
that analyzed the conditions of sinkhole formation depending on the rock mechanical
parameters, cover thickness and depth of solution zone (e.g. Kleinhans and Van Rooy
2016; Al-Halbouni et al. 2019). It is worth to highlight that ground collapses are influ-
enced not only by lithology, i.e. travertine, but actually by the rock mechanical conditions.
In this regard, previous works (De Ritis et al. 2020) carried out detailed geophysical-geo-
technical studies on the area, and correlated ground surface variations (undulations, small
sinkholes and fractures) with the presence of disarticulated travertine blocks in the strati-
graphical sequences.

The presence of fault systems also plays a relevant role for facilitating the water circu-
lation and thus the propagation of collapse phenomena. In particular, tectonic discontinu-
ities coupled with the poor rock mechanical characteristics could increase the upward
migration of deep piping sinkholes from the triggering point towards the soil surface, as
also demonstrated in scientific literature (Caramanna et al. 2008).

Secondarily, also the land use classes of quarry areas and the continuous urban fabric
turns out to be a relevant conditioning factor in sinkhole susceptibility mapping on the
study area. This could be related to the easier evidence of a sinkhole occurred on urban-
ized areas, but it is also in agreement with previous works on sinkhole formation on the
Guidonia-Bagni di Tivoli basin (e.g. Brunetti et al. 2013; Bozzano et al. 2015) which
pointed out that the continuously growing urbanization with related overloads, as well as
groundwater pumping due to anthropic causes (e.g. the travertine quarry activities, ther-
mals spa, and several agricultural and domestic wells) are among the main sinkhole causal
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factors in the area. This facet underlines the problem of the urban development above
sinkholes, which were obliterated by buildings at the time of construction but could deter-
mine new subsidence with the overloading.

Groundwater is also a relevant parameter for sinkhole potential occurrence. In particu-
lar, the water pumping accelerates groundwater flow in the areas affected by cones of
depression and causes drainage of karst conduits. Moreover, the thermal aggressive
groundwater in fractured and karstified travertine would favor dissolution and bottom-up
erosion processes and would reduce the mechanical strength and bearing capacity.
However, not all data on water exploitation are available, since some wells are not notified
to the Environmental Local Authorities, so a complete quantification of these water
amount is not possible. From this point of view, even other hydrogeological factors may
play a significant role in sinkhole development, including aquifer permeability, transmis-
sivity, flow direction, etc., but we did not take in account these kinds of information in
our work because comprehensive data are missing, so we consider this aspect as a con-
stant in the whole study area.

The slow-moving ground deformations estimated by InSAR data confirmed the vertical
downward movement already documented in the area. These data could not monitor the
rapid sinkhole occurrence due to the intrinsic limitations of interferometric techniques,
but could be likely correlated to downward gravitational movement of the overlying
material or to an incipient vast ground sinking related to compaction or a larger karst
depression (e.g. Intrieri et al. 2018; Nof et al. 2013; Esposito et al. 2021).

In terms of vulnerability and potential damage, it is worth highlighting that the sink-
holes may cause both direct and indirect losses. For instance, when a sinkhole occurred
on a transportation infrastructure, the direct damage corresponds to the injuries caused
by the event and by the cost of repairing or reconstructing the road. On the other hand,
the indirect losses (i.e. the impact on the economic productivity caused by the temporal
loss in serviceability, or resulting delay in the transportation of people and goods),
although difficult to estimate, are frequently higher than the direct ones (Gutiérrez et al.
2014).The maps of vulnerability and EAR exposure value related to sinkhole events over
the study area were based on quite accurate and updated values derived from different
sources with different detail and scale, i.e. geo-topographic databases, real estate market
databases, bibliographic information. On one hand, the exploitation of accurate and
updated values from the real estate market database that includes quotas in €/m> of the
average market and rental values of buildings, as well as current Average Agricultural
Values permitted to reach fine exposure values for assessing the potential damage over
the study area. An economic exposure value was specifically assigned to the road network
according to bibliographic data on construction or renovation costs of regional and local
roads (Pellicani et al. 2014; Solari et al. 2018). Also, we assumed the highest impact of a
sinkhole event on structure/infrastructure in terms of serviceability loss, regardless of the
collapse diameter. On the other hand, in our work the intensity of sinkholes was not
computed due to missing information about the sizes of mapped collapses, and it was
assumed as maximum for all the phenomena. Likewise, in this work the available EAR
database only includes simple information about the type of structures over the study
area: neither the structural state of the manufacts nor data about the occupancy of build-
ings were available at this working scale. More accurate and complete data on the geomet-
rical dimensions (diameters, depths) of sinkholes and on the characteristics of buildings
and inhabitants surely would permit to compute the vulnerability more objectively, and
overall should be better tackled within the sinkhole risk evaluation practices.
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Once the sinkhole risk map is generated, various methods for map classification exist
and are available within GIS software such as natural breaks, equal interval, equal area,
quantiles, geometrical interval, standard deviation. They are chosen depending on the
conditions and distribution of the specific data population over the study area. For
instance, the equal intervals or equal area classification methods work reasonably well on
data that are normally distributed, while the quantile classification is more applicable for
positive or negative skewed data. The natural breaks method divides the classes for group-
ing similar values and maximizing the differences, so that class boundaries are placed
where the greatest difference between classes is found. Accordingly, in this work the clas-
sification of sinkhole risk was applied by using natural breaks (Jenks 1989), in order to
avoid polarising the data. The same approach has been commonly used in similar studies
on sinkhole susceptibility and risk mapping (e.g. Yilmaz 2007; Taheri et al. 2015).

Risk maps can vary, depending on the data layers that are inserted. Overall, over the
Guidonia-Bagni di Tivoli study area the sinkhole risk assessment map that relies on the
computed susceptibility, vulnerability and exposure, reaches up a reasonable precision
thanks to the suitable cartography used for EAR structures and infrastructures, and high-
lights the critical areas related to the continuous urban fabric, and lower values of specific
risk in areas classified as highly susceptible but without vulnerable elements. As a result,
the sinkhole risk map displays the most significant sinkhole-prone areas to be monitored
and controlled in order to avoid damage to population and structures, and thus can sup-
port urban planning and environmental management strategies at a municipal scale.

6. Conclusions

Sinkhole occurrence, especially in urbanized areas, is a major hazard that can cause sig-
nificant economic and social damage in terms of losses and injuries to services, structures
and infrastructures. In this work we presented a sinkhole susceptibility and risk
assessment mapping in Guidonia-Bagni di Tivoli plain, near Rome, in Central Italy where
sudden sinkholes have historically and recently occurred.

We took into consideration a simple point-like sinkhole database from literature due
to lacking data about depth and size of mapped collapses and a series of environmental
sinkhole-conditioning factors on the study area. A sinkhole susceptibility map was pro-
duced by means of maximum entropy algorithm through MaxEnt model. Results of the
study reveal that the presence and thicknesses of travertine, the presence of faults and
the groundwater exploitation are the main causal factors for sinkhole occurrence in the
Guidonia-Bagni di Tivoli area. Also the land use classes of quarry areas and continuous
urban fabric turns out to be a relevant conditioning factor in sinkhole susceptibil-
ity mapping.

The sinkhole risk map of the study area was classified into five risk classes (Very low,
Low, Medium, High, Very high) and it reveals that areas within the two higher ones cover
up nearly 2% of the total area and primarily relies on the zoning of the main urban fabric
(Villanova, Bagni di Tivoli and Villalba villages). In particular, a percentage of 27% of all
the residential buildings of the area and 5% of the whole road-network pavement fall into
High and Very High risk classes. The Medium risk class of the sinkhole risk zonation
map covers a percentage of about 3% of the Guidonia-Bagni di Tivoli study area, whereas
89% refers to the Very Low risk class.

Overall, the outcomes of the work show the development of sinkhole risk mapping in
the study area by quantitatively assessing the main sinkhole controlling factors and sink-
hole susceptibility throughout the machine learning MaxEnt model, even with basic input
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data, and by evaluating in GIS environment the associated risk as a useful tool for urban
planning and risk management purposes.
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