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Abstract. In the present paper we study the perturbed sampling Kan-
torovich operators in the general context of the modular spaces. After
proving a convergence result for continuous functions with compact sup-
port, by using both a modular inequality and a density approach, we
establish the main result of modular convergence for these operators. Fur-
ther, we show several instances of modular spaces in which these results
can be applied. In particular, we show some applications in Musielak–
Orlicz spaces and in Orlicz spaces and we also consider the case of a
modular functional that does not have an integral representation gener-
ating a space, which can not be reduced to previous mentioned ones.
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1. Introduction

In [12] the authors have introduced the generalized sampling Kantorovich op-
erators perturbed by multiplicative noise, in order to model the presence of
a possible perturbation in the reconstruction process of a given function. A
typical example of noise source is a “Speckle” type noise: this is a disturbance
that typically affects SAR (Synthetic Aperture Radar) remote sensing systems
(see, e.g., [25,28]), but many others can be described.

In details, the family of operators above mentioned are of the form:
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(
Kχ,G

w f
)
(x) :=

∑
k∈Z

χ(wx − k)

∫ (k+1)/w

k/w

gk,w(u) f(u) du

∫ (k+1)/w

k/w

gk,w(u) du

, (I)

where gk,w, k ∈ Z, w > 0 are locally integrable functions which represent
multiplicative noise sources.

For the above operators (I), pointwise, uniform and modular convergence
in Orlicz spaces have been studied in [12], where the last ones include, as
particular cases, the Lp, the Zygmund, the exponential spaces, and others. It
is easy to see that in case that gk,w, k ∈ Z, w > 0 are constant functions, then
(I) reduces to the well-known sampling Kantorovich operators of the form:

(
Kχ,

w f
)
(x) :=

∑
k∈Z

χ(wx − k)
∫ (k+1)/w

k/w

f(u) du,

which can be considered as an Lp version of the generalized sampling operators,
introduced by P.L. Butzer and his school at RWTH-Aachen (see [6,7,9]).

For references about the approximation properties of sampling Kantor-
ovich operators, see, e.g., [2,10,11,13–21,33,35], while for operators of Kan-
torovich type, see, e.g., [22,24].

The aim of this work is to extend the study in the more general context
of modular spaces.

The theory of modular spaces has been introduced by Nakano in [32], and
then extensively studied by Musielak and Orlicz [29,31]. This setting, among
the Orlicz spaces, includes also the weighted Orlicz spaces, the Musielak–Orlicz
spaces and the case in which the modular has not an integral representation,
as it happens instead in the previous mentioned cases (see, e.g., [3]). Although
modular spaces were first introduced by Nakano, a systematic study of these
spaces has been carried forward by Musielak and Orlicz [31], by Musielak
[29,30], and successively by other authors (see, e.g., [1,5,26,27]).

This study is motivated by the goal of formulating a unifying theory
for the convergence of operators (I) allowing us to obtain, as special cases,
instances not examined up to now, such as Musielak–Orlicz spaces, weighted
Orlicz spaces and others, above mentioned. For references of this topic, the
reader can see the monographs [3,23,29,34].

However, the elegance and the generality of this unifying structure has
a price to pay. In fact, since the modular functional on which the modular
spaces are built has very weak properties (the concept of modular is in fact
much more general than the concept of norm), it is necessary to make a series
of assumptions, which are satisfied in several particular cases, or alternatively,
we will provide sufficient conditions that guarantee their validity; this is com-
pletely natural working in this abstract setting. On the other hand, being able
to recover from the general theory the results obtained in a variety of settings
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(such as Lp, Zygmund, exponential, Orlicz, Musielak–Orlicz spaces, etc), is
not only very beneficial, but also unifying.

The paper is organized as follows. In Sect. 2, we introduce some nota-
tions and preliminaries useful for what follows and we define the operators(
Kχ,G

w

)
w>0

. In Sect. 3, we obtain the convergence results. Namely, as first

step in order to prove the main convergence result for the operators under
study, we prove a modular convergence theorem for continuous functions with
compact support; then by using a modular-type inequality here obtained, and
a density result of the space of continuous functions with compact support in
the modular spaces (with respect to the modular topology), we establish the
desired convergence result in modular spaces. In the last Sect. 4, we provide
several examples of modular spaces where the theory holds, discussing in de-
tails the various setting, including the case in which the modular has not an
integral representation. Finally, we briefly mention some examples of kernels
satisfying the assumptions used in the results obtained along the paper.

2. Notations and Preliminaries

Let Ω = (Ω,ΣΩ, μΩ) be an arbitrary measure space and let X(Ω) be the
corresponding vector space of all ΣΩ-measurable real-valued functions on Ω.
A functional ρ : X(Ω) → R̃

+
0 is said to be a modular on X(Ω) if the following

conditions hold:

(ρ1) ρ(f) = 0 if and only if f = 0 μΩ-a.e. in Ω;
(ρ2) ρ(−f) = ρ(f) for every f ∈ X(Ω);
(ρ3) ρ(αf + βg) ≤ ρ(f) + ρ(g) for every f, g ∈ X(Ω) and α, β ∈ R

+
0 with

α + β = 1.

The functional ρ generates the modular space Lρ(Ω) defined as follows:

Lρ(Ω) :=
{

f ∈ X(Ω) : lim
λ→0

ρ(λf) = 0
}

.

We note that Lρ(Ω) is a vector subspace of X(Ω), and we can define the
following notion of modular convergence:

a net of functions (fw)w>0 ⊂ Lρ(Ω) is modularly convergent to a function
f ∈ Lρ(Ω), if there exists λ > 0 such that

lim
w→+∞ ρ

(
λ(fw − f)

)
= 0. (2.1)

This convergence induces a topology on Lρ(Ω), called modular topology.
Moreover if (2.1) holds for every λ > 0 and if the modular ρ is convex, we

will say that the convergence is with respect to the Luxemburg-norm, defined
as:

‖f‖ρ = inf{u > 0 : ρ(f/u) ≤ 1}.
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We can also introduce a subspace of X(Ω), that is the space of finite elements,
denoted by Eρ(Ω) and defined as:

Eρ(Ω) :=
{
f ∈ X(Ω) : ρ(λf) < +∞ for every λ > 0

}
.

It is well-known that if the modular ρ is a convex functional, the following
inclusion is true:

Eρ(Ω) ⊂ Lρ(Ω).
For the above concepts and further notions of modular spaces, see, e.g.,

[3,24,29,34].
Now we recall the following important properties concerning modular

functionals.
We say that the modular ρ is:

(a) monotone if |f | ≤ |g| implies ρ(f) ≤ ρ(g), for every f, g ∈ X(Ω);
(b) finite if the characteristic function 1X of every measurable set X of finite

μΩ-measure belongs to Lρ(Ω);
(c) strongly finite if every 1X as above belongs to Eρ(Ω);
(d) absolutely finite if ρ is finite and if for every ε, λ0 > 0 there exists a δ > 0

such that ρ(λ01Y ) < ε, for every Y ∈ ΣΩ with μΩ(Y ) < δ;
(e) absolutely continuous if there is an α > 0 such that for every f ∈ X(Ω)

with ρ(f) < +∞, the following two conditions hold:
(i) for every ε > 0 there exists a measurable set X ⊂ Ω with μΩ(X) <

+∞ such that ρ(αf1Ω\X) < ε;
(ii) for every ε > 0 there exists δ > 0 such that ρ(αf1Y ) < ε, for all

measurable sets Y ⊂ Ω with μΩ(Y ) < δ.
We note that if ρ is convex, then any strongly finite modular is finite.

In this paper we consider the spaces R = (R,ΣR, μR) and Z = (Z,ΣZ, μZ),
where μR and μZ are the Lebesgue and the counting measures respectively, and
ΣR and ΣZ are the corresponding σ-algebras. Moreover we denote by ρR and
ρZ two modulars on X(R) and X(Z).

In the following we give the definition of kernel, used in order to define
the operators we deal with.

A function χ : R → R is called kernel if it satisfies the following assump-
tions:
(χ1) χ ∈ X(R) and it is bounded in a neighbourhood of the origin;
(χ2) for every u ∈ R, there holds:∑

k∈Z

χ(u − k) = 1;

(χ3) there exists β > 0 such that

mβ(χ) := sup
u∈R

∑
k∈Z

|χ(u − k)||u − k|β < +∞.

We recall that from the definition of the kernel, it is possible to prove the
following properties (see [2]):
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(i) m0(χ) := supu∈R

∑
k∈Z

|χ(u − k)| < +∞;
(ii) for every γ > 0 we have:

lim
w→+∞

∑
|u−k|>γw

|χ(u − k)| = 0,

uniformly with respect to u ∈ R;
(iii) for every γ > 0 and ε > 0, there exists a constant M > 0 such that∫

|x|>M

w|χ(wx − k)| dx < ε,

for sufficiently large w > 0 and k ∈ Z such that k/w ∈ [−γ,+γ].
Now we introduce the following compatibility condition between the ker-

nel χ and the modulars ρR and ρZ.
We will say that the kernel χ is compatible with the modulars ρR and

ρZ, if there exist two positive constants D1,D2 and a net (bw)w>0 ⊂ R
+
0 with

bw → 0 as w → +∞, such that

ρR

(∑
k∈Z

hk|χ(w · −k)|
)

≤ 1
w

D1ρZ(D2h) + bw, (2.2)

for any non-negative h ∈ X(Z), h = (hk)k∈Z and for sufficiently large w > 0.

Remark 2.1. We note that the above compatibility condition is a particular
case of the general condition introduced in [27], and it is often used in order
to study approximation results for operators in modular spaces.

In order to prove the convergence results of the next section, we also
need to introduce an additional assumption which relates the kernel χ with
the modular ρR.

We assume that for any fixed ν > 0 and a > 0, there exist a positive
constant L and a measurable set S ⊂ R, with μR(S) < +∞ such that

ρR

⎛
⎝a1R\S(·)

∑
k∈[−νw,+νw]

|χ(w · −k)|
⎞
⎠ ≤ L, (2.3)

for sufficiently large w > 0, where 1R\S denotes the characteristic function of
the set R\S.

Remark 2.2. Note that if χ has compact support, it is easy to prove that the
assumption (2.3) is satisfied (see, e.g., [20]).

In the following, we denote by C(R) the space of all bounded and uni-
formly continuous functions, equipped by the usual sup-norm ‖ · ||∞ and by
Cc(R) the space of all continuous functions with compact support.

Now we recall here two known theorems. The first one represents a version
of the Lebesgue dominated convergence theorem in the setting of modular
spaces.
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Theorem 2.3 [30]. Let ρR be a monotone, finite and absolutely continuous
modular on X(R). Let (fw)w>0 ⊂ X(R) be a net of functions such that fw →
0, a.e. in R, as w → +∞. Suppose in addition that there exixts a function
g ∈ LρR

(R) such that ρR(3g) < +∞ and |fw(x)| ≤ g(x), a.e. in R, for every
w > 0. Then ρR(fw) → 0, as w → +∞.

The next theorem is instead a density result.

Theorem 2.4 [26]. Let ρR be an absolutely continuous, monotone and abso-
lutely finite modular on X(R). Then

Cc(R) = LρR
(R),

where the bar represents the closure with respect to the modular topology on
LρR

(R).

Now we are able to recall the definition of the class of operators intro-
duced in [12].

Definition 2.5. We define by
(
Kχ,G

w

)
w>0

the family of generalized sampling

Kantorovich operators perturbed by multiplicative noise, such that

(
Kχ,G

w f
)
(x) :=

∑
k∈Z

χ(wx − k)

∫ (k+1)/w

k/w

gk,w(u) f(u) du

∫ (k+1)/w

k/w

gk,w(u) du

,

where G := (Gw)w>0 is a family of noise sequences, with Gw = (gk,w)k∈Z,
gk,w : R → R

+ are locally integrable noise functions, while f : R → R is
such that gk,wf are locally integrable and the series above is convergent for
every x ∈ R. We simply call the operators Kχ,G

w as the perturbed sampling
Kantorovich operators.

It is easy to see that the above operators Kχ,G
w are well-defined if, e.g., f

is a bounded function (see, e.g., [12] again).
Now we recall the following theorem concerning the pointwise and the

uniform convergence of the above operators.

Theorem 2.6 [12]. Let f ∈ X(R) be a bounded function which is continuous at
x ∈ R. Then

lim
w→+∞

(
Kχ,G

w f
)
(x) = f(x).

Furthermore, if f ∈ C(R), then

lim
w→+∞ ‖Kχ,G

w f − f‖∞ = 0.
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3. Convergence Results

We now prove a modular convergence theorem for continuous functions with
compact support on R.

Theorem 3.1. Let ρR be a convex, monotone, strongly finite and absolutely
continuous modular on X(R). Moreover let χ be a kernel which satisfies as-
sumption (2.3) together with ρR. Then for any f ∈ Cc(R) and for every λ ∈ R,
with 0 < λ ≤ α/2, where α is the parameter of the absolute continuity of ρR,
there holds:

lim
w→+∞ ρR

(
λ(Kχ,G

w f − f)
)
= 0.

Proof. Since f ∈ Cc(R), let ν̄ > 0 such that supp f ⊂ [−ν̄,+ν̄] =: T .
Now we can fix ν > ν̄ + 1 and let us consider the interval [−ν,+ν]. Then
if k /∈ [−νw,+νw], we have for sufficiently large w > 0 that [−ν,+ν] ∩
[−k/w,+k/w] = ∅, and so:

∫ (k+1)/w

k/w

gk,w(u)f(u) du = 0.

By the arguments above, the definition of the perturbed sampling Kantorovich
operators reduces to:

(
Kχ,G

w f
)
(x) =

∑
k∈[−νw,+νw]

χ(wx − k)

∫ (k+1)/w

k/w

gk,w(u)f(u) du

∫ (k+1)/w

k/w

gk,w(u) du

, x ∈ R.

Now since f ∈ Cc(R), obviously f ∈ X(R) and this condition, together with
(χ1) and the hypothesis on G, implies that Kχ,G

w f ∈ X(R) and so Kχ,G
w f −f ∈

X(R). Further, by using the monotonicity of ρR, property (ρ3) of the modulars
and the condition gk,w(u) ≥ 0 for every u ∈ R, k ∈ Z and w > 0, we can write
what follows:

ρR

(
Kχ,G

w f − f
)

= ρR

⎛
⎜⎜⎜⎝

∑
k∈[−νw,+νw]

χ(w · −k)

∫ (k+1)/w

k/w

gk,w(u)f(u) du

∫ (k+1)/w

k/w

gk,w(u) du

− f(·)

⎞
⎟⎟⎟⎠

≤ ρR

⎛
⎜⎜⎜⎝

∑
k∈[−νw,+νw]

|χ(w · −k)|

∫ (k+1)/w

k/w

gk,w(u)|f(u)| du

∫ (k+1)/w

k/w

gk,w(u) du

+ |f |

⎞
⎟⎟⎟⎠

≤ ρR

⎛
⎝2‖f‖∞

∑
k∈[−νw,+νw]

|χ(w · −k)|
⎞
⎠ + ρR(2|f |)
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≤ ρR

⎛
⎝2‖f‖∞

∑
k∈[−νw,+νw]

|χ(w · −k)|
⎞
⎠ + ρR(2‖f‖∞1T ),

where 1T is the characteristic function of the interval T with μR(T ) = 2ν̄ <
+∞.

For the first term by applying assumption (2.3) with ν fixed above and
a := 4‖f‖∞, there exists L > 0 and a measurable set S ⊂ R with μR(S) < +∞,
such that

ρR

(
4‖f‖∞1R\S(·)

∑
k∈[−νw,+νw]

|χ(w · −k)|
)

≤ L, (3.1)

for sufficiently large w > 0. Recalling that 1S , 1T ∈ EρR
(R) since ρR is strongly

finite, by using again (ρ3) and the monotonicity of ρR, property (i) of the kernel
and (3.1), we finally obtain:

ρR(Kχ,G
w f − f) ≤ ρR

(
4‖f‖∞1S(·)

∑
k∈[−νw,+νw]

|χ(w · −k)|
)

+ ρR

(
4‖f‖∞1R\S(·)

∑
k∈[−νw,+νw]

|χ(w · −k)|
)

+ ρR(2‖f‖∞1T )

≤ ρR

(
4‖f‖∞1S(·)m0(χ)

)
+ L + ρR(2‖f‖∞1T ) < +∞,

for sufficiently large w > 0.
Now we denote by α > 0 the constant of the absolute continuity of ρR

and let ε > 0 be fixed. In correspondence to ε/2, from property (i) of condition
(e) of the absolute continuity of the modular, we obtain that there exists a
measurable subset X ⊂ R, with μR(X) < +∞, such that

ρR
(
α(Kχ,G

w f − f)1R\X

)
< ε/2. (3.2)

Since X is such that μR(X) < +∞ and ρR is convex and strongly finite (so it
is finite), hence one has that 1X ∈ LρR

(R) and so:

lim
λ→0

ρR(λ1X) = 0.

Then in correspondence to ε/2, there exists a sufficiently small λε > 0 such
that

ρR(λε1X) < ε/2. (3.3)
Moreover since f ∈ Cc(R) and Theorem 2.6 holds, we have:

lim
w→+∞ ‖Kχ,G

w f − f‖∞ = 0

and so in correspondence to λε/α, there exists w > 0 such that for every w ≥ w
one has:

‖Kχ,G
w f − f‖∞ ≤ λε/α,

and since α > 0, we can conclude:

α‖Kχ,G
w f − f‖∞ ≤ λε, (3.4)
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for sufficiently large w > 0.
Now let 0 < λ ≤ α/2 be fixed. We can write what follows:

λ
∣∣∣(Kχ,G

w f
)
(x) − f(x)

∣∣∣ ≤ α

2

∣∣∣(Kχ,G
w f

)
(x) − f(x)

∣∣∣

=
1
2
α
∣∣∣(Kχ,G

w f
)
(x) − f(x)

∣∣∣1R\X(x)

+
1
2
α
∣∣∣(Kχ,G

w f
)
(x) − f(x)

∣∣∣1X(x), x ∈ R.

By using the monotonicity of ρR, property (ρ3) and the conditions (3.2), (3.4),
(3.3), we obtain:

ρR

(
λ
∣∣Kχ,G

w f − f
∣∣) ≤ ρR

(
1
2

α
∣∣Kχ,G

w f − f
∣∣1R\X +

1
2

α
∣∣Kχ,G

w f − f
∣∣1X

)

≤ ρR

(
α
∣∣Kχ,G

w f − f
∣∣1R\X

)
+ ρR

(
α
∣∣Kχ,G

w f − f
∣∣1X

)

≤ ε

2
+ ρR

(
α‖Kχ,G

w f − f‖∞1X

)

≤ ε

2
+ ρR(λε1X) ≤ ε

2
+

ε

2
= ε,

for w > 0 sufficiently large and so the proof follows. �

Now we can prove a convergence result with respect to the Luxemburg
norm for kernels χ with compact support.

Theorem 3.2. Let ρR be a convex, monotone, strongly finite and absolutely
continuous modular on X(R) and χ be a kernel with compact support. Then
for any f ∈ Cc(R) and for every λ > 0, there holds:

lim
w→+∞ ρR

(
λ(Kχ,G

w f − f)
)

= 0.

Proof. As in Theorem 3.1, we can write:

(
Kχ,G

w f
)
(x) =

∑
k∈[−νw,+νw]

χ(wx − k)

∫ (k+1)/w

k/w

gk,w(u)f(u) du

∫ (k+1)/w

k/w

gk,w(u) du

, x ∈ R.

Now, since χ has compact support, suppχ ⊂ [−M,M ], M > 0 and from
Remark 2.2, we obtain:

χ(wx − k) = 0, for every x /∈ [−ν − M,ν + M ], k ∈ [−νw,+νw], w ≥ 1,

so suppKχ,G
w f ⊂ [−ν − M,ν + M ], for every w ≥ 1. Now by observing that

supp f ⊂ [−ν̄,+ν̄] ⊂ [−ν − M,ν + M ], we denote by M := [−ν − M,ν + M ]
and we have for every λ > 0:

λ
∣∣∣
(
Kχ,G

w f
)
(x) − f(x)

∣∣∣ = λ
∣∣∣
(
Kχ,G

w f
)
(x) − f(x)

∣∣∣1M(x)
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≤ λ

⎡
⎣‖f‖∞

∑
k∈[−νw,νw]

|χ(wx − k)| + |f(x)|
⎤
⎦ 1M(x)

≤ λ
[
‖f‖∞m0(χ) + ‖f‖∞

]
1M(x)

≤ λ
[(

1 + m0(χ)
)
‖f‖∞

]
1M(x) := g(x), (3.5)

for every x ∈ R and w > 0 sufficiently large. In order to apply Theorem 2.3
to λ(Kχ,G

w f − f), we recall that ρR is convex, monotone, strongly finite and
absolutely continuous. Moreover by denoting with fw = λ(Kχ,G

w f − f), we
know that fw ⊂ X(R) and from Theorem 2.6 we deduce that:

∣∣∣
(
Kχ,G

w f
)
(x) − f(x)

∣∣∣ → 0, x ∈ R, as w → ∞
and so also fw(x) → 0, x ∈ R, as w → ∞. Further since 1M ∈ EρR

(R) ⊂
LρR

(R), we have:
ρR(μg) → 0, as μ → 0,

i.e., g ∈ LρR
(R) and also ρR(3g) < +∞. Finally by using also (3.5), we can

apply Theorem 2.3 to conclude that:

ρR(fw) = ρR
(
λ(Kχ,G

w f − f)
) → 0, as w → +∞, for every λ > 0.

�

Now, in order to establish a useful inequality for the operators Kχ,G
w , we

firstly introduce the following subset of X(R).
Given the constants E,K > 0 and the modulars ρR, ρZ on X(R) and

on X(Z) respectively, we define the subset LE,K(R) of X(R) whose f are
such that gk,wf are locally absolutely integrable and satisfying the following
inequality:

lim sup
w→+∞

1
w

ρZ(λHw) ≤ EρR(λKf),

for every λ > 0, where Hw = (hk,w)k∈Z ∈ X(Z), w > 0 with

hk,w :=

∫ (k+1)/w

k/w

gk,w(u)|f(u)| du

∫ (k+1)/w

k/w

gk,w(u) du

. (3.6)

By using the above condition, we can prove the following theorem.

Theorem 3.3. Let ρR be a monotone modular on X(R), ρZ be a modular on
X(Z) and χ be a kernel which is compatible with ρR and ρZ. Then, for any
function f ∈ LE,K(R) for some E, K > 0, there holds:

lim sup
w→+∞

ρR(c Kχ,G
w f) ≤ ED1ρR(cD2Kf),
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for every c > 0, where D1 and D2 are the constants of the compatibility
condition among χ, ρR and ρZ. Moreover if f ∈ LρR

(R), it turns out that
Kχ,G

w f ∈ LρR
(R), for sufficiently large w > 0.

Proof. For every c > 0, by using the monotonicity of ρR and the compatibility
condition (2.2) we can write:

ρR(c Kχ,G
w f) ≤ ρR

⎛
⎜⎜⎜⎝c

∑
k∈Z

|χ(w · −k)|

∫ (k+1)/w

k/w

gk,w(u)|f(u)| du

∫ (k+1)/w

k/w

gk,w(u) du

⎞
⎟⎟⎟⎠

≤ 1
w

D1ρZ(D2cHw) + bw,

for w > 0 sufficiently large, with D1, D2 > 0 and Hw defined as in (3.6).
Now recalling that the net (bw)w>0 is such that bw → 0, as w → +∞ and the
definition of the subset LE,K(R), by passing to the upper limit we obtain:

lim sup
w→+∞

ρR(c Kχ,G
w f) ≤ lim sup

w→+∞

[ 1
w

D1ρZ(D2cHw) + bw

]

≤ ED1ρR(D2cKf).

For the second part of the theorem, arguing as before, from f ∈ LρR
(R) we have

that ρR(D2λKf) → 0, as λ → 0 and then we conclude that ρR(λ Kχ,G
w f) → 0,

as λ → 0, for w > 0 sufficiently large, i.e., Kχ,G
w f ∈ LρR

(R). �

The following thorem represents the main result of this section.

Theorem 3.4. Let ρR be a convex, monotone, strongly finite, absolutely finite
and absolutely continuous modular on X(R), ρZ be a modular on X(Z) and χ
be a kernel compatible with ρR and ρZ which satisfies condition (2.3) together
with ρR. Then for every f ∈ LρR

(R) such that f − Cc(R) ⊂ LE,K(R) for some
E, K > 0, there is a constant c > 0:

lim
w→+∞ ρR

(
c(Kχ,G

w f − f)
)

= 0.

Proof. Let f ∈ LρR
(R) be such that f −Cc(R) ⊂ LE,K(R), for some E, K > 0.

From Theorem 2.4, there exists λ > 0 such that for every ε > 0 there exists
g ∈ Cc(R) with

ρR(λ(f − g)) < ε. (3.7)

Since g ∈ Cc(R), by Theorem 3.1, for every λ̃ > 0, with λ̃ ≤ α/2, where α is
the parameter of the absolute continuity of the modular ρR, it turns out:

lim
w→+∞ ρR

(
λ̃(Kχ,G

w g − g)
)

= 0. (3.8)
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Now we choose a positive constant c such that c ≤ min{ λ
3D2K , α

6 , λ
3 }, where

D2 is the constant of the compatibility condition among χ, ρR and ρZ and we
can write what follows using (ρ3) of the modulars:

ρR

(
c(Kχ,G

w f − f)
) ≤ ρR

(
1

3
3c (Kχ,G

w f − Kχ,G
w g) +

1

3
3c (Kχ,G

w g − g) +
1

3
3c(g − f)

)

≤ ρR

(
3c (Kχ,G

w f − Kχ,G
w g)

)
+ ρR

(
3c (Kχ,G

w g − g)
)
+ ρR

(
3c (g − f)

)

=: J1 + J2 + J3, for w > 0.

We analyze Ji, i = 1, 2, 3 separately, where we will use the monotonicity of ρR
and the constant c as above.

Regarding J1, we recall that the operator Kχ,G
w is linear and that f − g ∈

LE,K(R), so we can apply Theorem 3.3 to obtain that there exist E,K > 0
such that

lim sup
w→+∞

ρR
(
3c Kχ,G

w (f − g)
) ≤ ED1ρR

(
3c D2K(f − g)

) ≤ ED1ρR
(
λ(f − g)

)
.

(3.9)
For what concerns J2, by the choice of c and by (3.8) we have:

ρR

(
3c(Kχ,G

w g − g)
) ≤ ρR

(α

2
(Kχ,G

w g − g
))

< ε, (3.10)

for w > 0 sufficiently large. For J3, by property (ρ2) of modulars and by (3.7),
we obtain:

ρR
(
3c(g − f)

)
= ρR

(
3c(f − g)

) ≤ ρR
(
λ(f − g)

)
< ε. (3.11)

Now from (3.9), (3.10) and (3.11), we conclude that:

ρR
(
c(Kχ,G

w f − f)
) ≤ ED1ρR

(
λ(f − g)

)
+ ε + ρR

(
λ(f − g)

) ≤ (2 + ED1)ε,

for w > 0 sufficiently large and this completes the proof. �

4. Applications to Special Cases

Below, we will discuss in detail some remarkable examples of modular spaces.

4.1. Musielak–Orlicz Spaces

In order to recall the definition of Musielak–Orlicz spaces, we need the follow-
ing:

Definition 4.1. A function ϕ : R × R
+
0 → R

+
0 is is said to be a τ -bounded

ϕ-function if the following conditions hold:
(ϕ1) ϕ(·, u) is measurable and locally integrable on R, for every u ∈ R

+
0 ;

(ϕ2) for every s ∈ R, ϕ(s, ·) is convex on R
+
0 with ϕ(s, 0) = 0 and ϕ(s, u) > 0,

for u > 0;
(ϕ3) ϕ is τ -bounded, i.e., there exist a constant C ≥ 1 and a measurable

function F : R × R → R
+
0 such that for every t, s ∈ R and u ≥ 0 there

holds:
ϕ(s − t, u) ≤ ϕ(s, Cu) + F (s, t).



Convergence of Perturbed Sampling Page 13 of 23   239 

We can observe that assumption (ϕ2) implies that the function ϕ is con-
tinuous and non decreasing with respect to the second variable u ∈ R

+
0 .

For a sake of semplicity, from now on, we will consider τ -bounded ϕ-
functions which satisfy condition (ϕ3) with F ≡ 0 and we note that examples
of τ -bounded ϕ-functions ϕ with F �= 0 can be constructed as in [4].

Firstly, we consider the non-negative functionals below defined:

ρR(f) :=
∫

R

ϕ
(
t, |f(t)|) dt, ρZ(h) :=

∑
k∈Z

ϕ
(
k, |hk|),

where f ∈ X(R) and h = (hk)k∈Z ∈ X(Z), respectively.
We can easily note that ρR and ρZ are modulars on X(R) and on X(Z)

respectively and they satisfy properties (a)–(e) of Sect. 2 (see, e.g., [3]).
The modular spaces generated by ρR and ρZ are respectively,

Lϕ(R) := LρR
(R) =

{
f ∈ X(R) : lim

λ→0
ρR(λf) = 0

}

and

Lϕ(Z) := LρZ
(Z) =

{
f ∈ X(Z) : lim

λ→0
ρZ(λf) = 0

}

and they are called Musielak–Orlicz spaces.
In order to apply Theorem 3.3 in these particular spaces, we want to

prove that condition (2.2) is satisfied. Hence, we want to find two positive
constants D1,D2 and a net (bw)w>0 ⊂ R

+
0 , with bw → 0 as w → +∞, such

that ∫

R

ϕ

(
t,

∣∣∣∣
∑
k∈Z

hk χ(wt − k)
∣∣∣∣
)

dt ≤ 1
w

D1

∑
k∈Z

ϕ
(
k,D2|hk|

)
+ bw.

Since Jensen inequality and Fubini-Tonelli theorem hold and by using the
property of the τ -boundedness of the function ϕ (with C = 1) and the change
of variables y = wt − k, we obtain:∫

R

ϕ

(
t,

∣∣∣∣
∑
k∈Z

hk χ(wt − k)

∣∣∣∣
)

dt ≤
∫

R

ϕ

(
t,
∑
k∈Z

|hk||χ(wt − k)|
)

dt

=

∫

R

ϕ

(
t,
∑
k∈Z

|hk| 1

m0(χ)
m0(χ)|χ(wt − k)|

)
dt

≤ 1

m0(χ)

∫

R

[∑
k∈Z

ϕ
(
t, m0(χ)|hk|

)
|χ(wt − k)|

]
dt

≤ 1

m0(χ)

∫

R

[∑
k∈Z

ϕ
(
k, m0(χ)|hk|

)
|χ(wt − k)|

]
dt

=
1

m0(χ)

∑
k∈Z

ϕ
(
k, m0(χ)|hk|

) 1

w

∫

R

|χ(y)| dy

=
1

w

1

m0(χ)
‖χ‖1

∑
k∈Z

ϕ
(
k, m0(χ)|hk|

)
,
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i.e., condition (2.2) is true with D1 = ‖χ‖1/m0(χ),D2 = m0(χ) and bw = 0.
The following lemmas represent sufficient conditions for the validity of

(2.3) of Sect. 2 and they will be useful later.
Lemma 4.2 [20]. Let χ be a kernel belonging to L1(R) and ϕ be a fixed τ -
bounded ϕ-function which satisfies the following additional assumption:
(ϕ4) for sufficiently large M > 0, there holds:

sup
|s|>M

ϕ(s, u) := Lu < +∞, for every u ∈ R
+
0 .

Then condition (2.3) results to be satisfied.
Proof. For the proof see Lemma 4.1 of [20] with tk = k. �
Lemma 4.3 [20]. Let χ be a kernel belonging to L1(R) and ϕ be a fixed τ -
bounded ϕ-function which satisfies the following additional assumption:
(ϕ5) ϕ(·, u) ∈ L1(R), for every u ∈ R

+
0 .

Then condition (2.3) results to be satisfied.
Proof. For the proof see Lemma 4.2 of [20] with tk = k. �

In order to have a result for the approximation problem we deal with, we
can prove the below result concerning the space LE,K(R).
Lemma 4.4. Let f ∈ X(R) be such that gk,wf are locally absolutely integrable
functions and suppose that there exist two positive numbers δ, σ such that 0 <
δ ≤ gk,w(u) ≤ σ, for every u ∈ R, k ∈ Z, w > 0.

Then f ∈ LE,K(R) with E := σ/δ and K := C, where C is the constant
of the τ -boundedness of ϕ.

Moreover if f ∈ Lϕ(R), it turns out that Kχ,G
w f ∈ Lϕ(R), for sufficiently

large w > 0.
Proof. We want to prove that for every λ > 0 this inequality holds:

lim sup
w→+∞

1
w

ρZ(λHw) ≤ EρR(λKf), (4.1)

with Hw = (hk,w)k∈Z, w > 0 and hk,w =

∫ (k+1)/w

k/w

gk,w(u)|f(u)| du

∫ (k+1)/w

k/w

gk,w(u) du

,

and for some constants E, K > 0.
By assumption (ϕ2) we have that for every s ∈ R, ϕ(s, ·) is non decreasing

on R
+
0 , so by using Jensen inequality, the condition 0 < δ ≤ gk,w(u) ≤ σ, for

every u ∈ R, k ∈ Z, w > 0 and the τ -boundedness of ϕ we get:

1
w

ρZ(λHw) =
1
w

∑
k∈Z

ϕ

⎛
⎜⎜⎜⎝k,

∣∣∣∣λ

∫ (k+1)/w

k/w

gk,w(u)f(u) du

∫ (k+1)/w

k/w

gk,w(u) du

∣∣∣∣

⎞
⎟⎟⎟⎠
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≤ 1
w

∑
k∈Z

ϕ

⎛
⎜⎜⎜⎝k, λ

∫ (k+1)/w

k/w

gk,w(u)|f(u)| du

∫ (k+1)/w

k/w

gk,w(u) du

⎞
⎟⎟⎟⎠

≤ 1
w

∑
k∈Z

∫ (k+1)/w

k/w

gk,w(u)ϕ(k, λ|f(u)|) du

∫ (k+1)/w

k/w

gk,w(u) du

≤ σ

δ

∑
k∈Z

∫ (k+1)/w

k/w

ϕ(k, λ|f(u)|) du

≤ σ

δ

∑
k∈Z

∫ (k+1)/w

k/w

ϕ(u, λC|f(u)|) du

=
σ

δ

∫

R

ϕ(u, λC|f(u)|) du =
σ

δ
ρR(λCf), ∀ w > 0, (4.2)

i.e., (4.1) is satisfied with E = σ/δ and K = C.
Now by passing to the lim sup as w → +∞ we obtain that f belongs to

LE,K(R).
Concerning the second part of the lemma, if f ∈ Lϕ(R) it turns out

that gk,wf are locally absolutely integrable and hence, for the first part of this
lemma, f ∈ LE,K(R). Then, the proof immediately follows by Theorem 3.3.

�

Now we are able to prove the following results.

Theorem 4.5. Let χ be a kernel belonging to L1(R) and ϕ be a τ -bounded ϕ-
function which satisfies at least one between conditions (ϕ4) and (ϕ5). Further
suppose that there exist two positive numbers δ, σ such that 0 < δ ≤ gk,w(u) ≤
σ, for every u ∈ R, k ∈ Z, w > 0. Hence the following statements hold:
(1) for f ∈ Cc(R):

lim
w→+∞ ρR

(
λ(Kχ,G

w f − f)
)

= 0,

for every 0 < λ ≤ α/2, where α is the parameter of the absolute continuity
of the modular ρR.

Moreover if χ has compact support the convergence above holds for
every λ > 0;

(2) for any function f ∈ X(R) there holds:

lim sup
w→+∞

ρR(c Kχ,G
w f) ≤ ‖χ‖1

m0(χ)
σ

δ
ρR(c m0(χ) C2f),

for every c > 0, where C is the constant of the τ -boundedness of ϕ.
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Moreover if f ∈ Lϕ(R), then it turns out that Kχ,G
w f ∈ Lϕ(R), for

every w > 0;
(3) for any function f ∈ Lϕ(R), there is a constant c > 0 such that

lim
w→+∞ ρR

(
c(Kχ,G

w f − f)
)

= 0.

Proof. (1) As we said above ρR is a modular with properties (a)-(e) of Sect. 2
and from Lemmas 4.2 and 4.3, ϕ is a ϕ-function which satisfies condition
(2.3). So we can apply Theorem 3.1 to conclude that for every λ, with
0 < λ ≤ α/2,

lim
w→+∞ ρR

(
λ(Kχ,G

w f − f)
)

= 0.

If χ is a compact kernel we can use Theorem 3.2 to get the convergence
above for every λ > 0.

(2) This part is given by Lemma 4.4. However, in order to make explicit the
constants in the right term of the thesis, we can proceed as follows.

Since (ϕ2) and (ϕ3) are satisfied, Jensen inequality and Fubini-
Tonelli theorem hold and the change of variables wt − k = v is made, we
can write:

ρR(c Kχ,G
w f) =

∫

R

ϕ

⎛
⎜⎜⎜⎝t, c

∣∣∣∣
∑
k∈Z

χ(wt − k)

∫ (k+1)/w

k/w

gk,w(u)f(u) du

∫ (k+1)/w

k/w

gk,w(u) du

∣∣∣∣

⎞
⎟⎟⎟⎠ dt

≤ 1

m0(χ)

∫

R

∑
k∈Z

⎡
⎢⎢⎢⎣|χ(wt − k)|ϕ

⎛
⎜⎜⎜⎝t, c m0(χ)

∣∣∣∣

∫ (k+1)/w

k/w

gk,w(u)f(u) du

∫ (k+1)/w

k/w

gk,w(u) du

∣∣∣∣

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦ dt

≤ 1

m0(χ)

∫

R

∑
k∈Z

⎡
⎢⎢⎢⎣|χ(wt − k)|ϕ

⎛
⎜⎜⎜⎝k, c m0(χ)C

∣∣∣∣

∫ (k+1)/w

k/w

gk,w(u)f(u) du

∫ (k+1)/w

k/w

gk,w(u) du

∣∣∣∣

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦ dt

=
1

m0(χ)

1

w

∑
k∈Z

ϕ

⎛
⎜⎜⎜⎝k, c m0(χ)C

∣∣∣∣

∫ (k+1)/w

k/w

gk,w(u)f(u) du

∫ (k+1)/w

k/w

gk,w(u) du

∣∣∣∣

⎞
⎟⎟⎟⎠
∫

R

|χ(v)| dv

=
‖χ‖1

m0(χ)

1

w
ρZ(c m0(χ)CHw),

for every w > 0, and by applying (4.2) of the proof of Lemma 4.4, we get:

ρR(c Kχ,G
w f) ≤ ‖χ‖1

m0(χ)
σ

δ
ρR(c m0(χ)C2f),

for every w > 0.
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(3) From Theorem 3.4 we have that for every f ∈ Lϕ(R) such that
f − Cc(R) ⊂ LE,K(R) for some E,K > 0, there exists a constant

c > 0 such that

lim
w→+∞ ρR

(
c(Kχ,G

w f − f)
)

= 0. (4.3)

But since f ∈ Lϕ(R), we know that f ∈ X(R), hence also f − h ∈ X(R),
for h ∈ Cc(R) and gk,w(f − h) are absolutely locally integrable (with
h ∈ Cc(R)). So from Lemma 4.4, we deduce that f −h ∈ LE,K(R), where
h ∈ Cc(R) and we conclude that for every f ∈ Lϕ(R), (4.3) holds.

�

Now we can discuss the case of ϕ-functions of the form ϕ(s, u) = ϕ(u),
s ∈ R, u ∈ R

+
0 . So the modulars on X(R) and on X(Z) reduce respectively to:

ρR(f) :=
∫

R

ϕ
(|f(t)|) dt, ρZ :=

∑
k∈Z

ϕ
(|(hk|)

and the corresponding modular spaces Lϕ(R) and Lϕ(Z) are the so-called
Orlicz spaces (see, e.g., [29,31]).

We note that condition (ϕ3) is trivially satisfied with F ≡ 0 and C ≡ 1,
together with assumption (ϕ4) and so we can get the following theorem:

Theorem 4.6. Let χ be a kernel belonging to L1(R) and ϕ be a fixed ϕ-function
of the form ϕ(s, u) = ϕ(u), s ∈ R, u ∈ R

+
0 . Further suppose that there exist

two positive numbers δ, σ such that 0 < δ ≤ gk,w(u) ≤ σ, for every u ∈ R, k ∈
Z, w > 0. Hence the following statements hold:
(1) for f ∈ Cc(R):

lim
w→+∞ ρR

(
λ(Kχ,G

w f − f)
)

= 0,

for every 0 < λ ≤ α/2, where α is the parameter of the absolute continuity
of the modular ρR.

Moreover if χ has compact support the convergence above holds for
every λ > 0;

(2) for any function f ∈ X(R) there holds:

lim sup
w→+∞

ρR(c Kχ,G
w f) ≤ ‖χ‖1

m0(χ)
σ

δ
ρR(c m0(χ)f),

for every c > 0.
Moreover if f ∈ Lϕ(R), then it turns out that Kχ,G

w f ∈ Lϕ(R), for
every w > 0;

(3) for every function f ∈ Lϕ(R), there is a constant c > 0 such that

lim
w→+∞ ρR

(
c(Kχ,G

w f − f)
)

= 0.

Proof. This theorem follows as a consequence of Theorem 4.5. �
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Now we consider ϕ-functions (with respect to the second variable) of the
product-type in the form:

ϕ(s, u) := ξ(s)ϕ(u), s ∈ R, u ∈ R
+
0 ,

which satisfy the following conditions:

(F1) ξ ∈ X(R) and there exist M ≥ m > 0 such that m ≤ ξ(s) ≤ M , for every
s ∈ R;

(F2) ϕ : R+
0 → R

+
0 is a convex function such that ϕ(0) = 0 and ϕ(u) > 0, for

u > 0;
(F3) for every λ1 > 0 there exists λ2 ≥ 1 such that

λ1ϕ(u) ≤ ϕ(λ2u), u ∈ R
+
0 .

These properties allow us to say that assumptions (ϕ1), (ϕ2) and (ϕ4) are
trivially satisfied. Moreover from (F3) with λ1 = M/m we can write

ϕ(s − t, u) = ξ(s − t)ϕ(u) ≤ M

m
ξ(s)ϕ(u) ≤ ξ(s)ϕ(λ2u) = ϕ(s, λ2u),

for every u ≥ 0, where λ2 ≥ 1 is the parameter associated to λ1 fixed. The
inequality above shows that this type of ϕ-functions satisfy also condition (ϕ3)
with F ≡ 0 and C = λ2. These ϕ-functions generate the so-called weighted
Orlicz spaces. Therefore we can easily deduce the same result of Theorem 4.5
in this instance.

Now in order to show the validity of the previous results also for modular
functionals which are not of integral type, we consider for instance the following
modulars (see [3], p.7):

ρΦ
R
(f) := sup

l∈W

∫ b

a

al(x)

[∫

R

Φ
(
x, |f(t)|) dt

]
dm(x)

and

ρΦ
Z
(h) := sup

l∈W

∫ b

a

al(x)

[∑
k∈Z

Φ
(
x, |hk|)

]
dm(x),

with f ∈ X(R), h = (hk)k∈Z ∈ X(Z) and where m is a measure on an interval
[a, b[⊂ R (b can be also equal to +∞) defined on the σ-algebra of all Lebesgue
measurable subsets of [a, b[,W is a non-empty set of indices, al : [a, b[→ R

+
0

are measurable functions for every l ∈ W and Φ : [a, b[×R
+
0 → R

+
0 . If the

function Φ is convex with respect to the second variable and it satisfies other
suitable conditions (see [3]: 1-4 p.7, (b) of p.19 and (b) of p.23), it turns out
that ρΦ

R
is a convex, monotone, strongly finite, absolutely finite and absolutely

continuous modular on X(R) and ρΦ
Z

is a modular on X(Z).
Now we prove the compatibility condition (2.2), i.e., if there exist two

positive constants D1,D2 and a net (bw)w>0 ⊂ R
+
0 , with bw → 0 as w → +∞
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such that

sup
l∈W

∫ b

a

al(x)

[∫

R

Φ
(

x,
∑
k∈Z

|hk||χ(wt − k)|
)

dt

]
dm(x)

≤ 1
w

D1 sup
l∈W

∫ b

a

al(x)

[∑
k∈Z

Φ
(
x,D2|hk|

)]
dm(x) + bw.

By using Jensen inequality, Fubini-Tonelli theorem and the change of variables
y = wt − k, we get:
∫

R

Φ

(
x,
∑
k∈Z

|hk||χ(wt − k)|
)

dt =

∫

R

Φ

(
x,
∑
k∈Z

|hk| 1

m0(χ)
m0(χ)|χ(wt − k)|

)
dt

≤ 1

m0(χ)

∫

R

[∑
k∈Z

Φ
(
x, m0(χ)|hk|

)
|χ(wt − k)|

]
dt

=
1

m0(χ)

∑
k∈Z

Φ
(
x, m0(χ)|hk|

) 1

w

∫

R

|χ(y)| dy

=
1

w

1

m0(χ)
‖χ‖1

∑
k∈Z

Φ
(
x, m0(χ)|hk|

)
.

Recalling that al(x) ≥ 0 and passing to the supremum we obtain:

sup
l∈W

∫ b

a

al(x)

[∫

R

Φ
(

x,
∑
k∈Z

|hk||χ(wt − k)|
)

dt

]
dm(x)

≤ 1
w

‖χ‖1

m0(χ)
sup
l∈W

∫ b

a

al(x)

[∑
k∈Z

Φ
(
x,m0(χ)|hk|

)]
dm(x),

so we have proved condition (2.2) with D1 = ‖χ‖1/m0(χ), D2 = m0(χ) and
bw = 0.

Further, if we choose for instance a kernel χ with compact support, from
Remark 2.2 we also have that (2.3) is fullfilled. So all the necessary assumptions
are satisfied and we may easily obtain the previous results also in this setting.

As concerns kernels satisfying the assumptions mentioned before, one
can easily verify that Fejér, de la Vallée Poussin, Jackson and B-splines (of
order n ∈ N

+) kernels are good examples. Moreover also radial kernels can be
furnished as, e.g., the Bochner-Riesz kernel. For these and for other examples,
the reader can see, e.g., [20].

Acknowledgements

The authors are members of the Gruppo Nazionale per l’Analisi Matematica,
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