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Abstract. In this brief note we discuss local Hölder continuity for solutions

to anisotropic elliptic equations of the type

s∑
i=1

∂iiu+
N∑

i=s+1

∂i

(
Ai(x, u,∇u)

)
= 0, x ∈ Ω ⊂⊂ RN for 1 ≤ s ≤ N−1,

where each operator Ai behaves directionally as the singular p-Laplacian, 1 <

p < 2 and the supercritical condition p+(N−s)(p−2) > 0 holds true. We show
that the Harnack inequality can be proved without the continuity of solutions

and that in turn this implies Hölder continuity of solutions.

1. Introduction. Along the following work we show that it is possible to provide
an Harnack inequality independently of the continuity of solutions, for bounded
weak solutions to some operators whose prototype

s∑
i=1

∂iiu+

N∑
i=s+1

∂i

(
|∂iu|p−2∂iu

)
= 0, weakly in Ω ⊂⊂ RN , 1 < p < 2, (1)

has a non-degenerate behavior along the first s-variables, and a singular behavior
on the last ones, with s ∈ N, 1 ≤ s ≤ N − 1. Moreover we show that Hölder
continuity of solutions is a consequence of the sole Harnack inequality, following the
heritage of Moser’s approach ([45], [46]). The terms degenerate and singular are
classic in evolutionary partial differential equations, for which we refer for instance
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to the texts [12], [52] and the references therein. The type of operators in (1) is
widely studied to describe the steady states of non-Newtonian fluid with different
directional diffusions, see for instance [2], [37]. On the other hand these adjectives
are somehow of a minor use in the context of elliptic equations (see [13] for instance).
In what follows we adopt this terminology, because it embodies our point of view on
the study of regularity for these equations: we regard them as if they were parabolic,
being the driving term the nondegenerate one.

Before entering the details of the equation under study, we believe it is worth
of interest to present the general problem, which represents an open mathematical
challenge still after half a century.

Indeed, the anisotropic elliptic partial differential equation (1) is a particular case
of a more general kind of operators

−
N∑
i=1

∂iAi(x, u,∇u) = B(x, u,∇u), weakly in Ω ⊂⊂ RN , (2)

where the maps Ai, B : Ω×R×RN → R are Caratheodory functions ([25], Definition
4.3) satisfying an anisotropic growth condition as

∑N
i=1Ai(x, s, ξ) · ξi ≥ C1

∑N
i=1 |ξi|pi − C, for ξ ∈ RN ,

|Ai(x, s, ξ)| ≤ C2

∑N
i=1 |ξi|pi−1 + C, for i ∈ {s+ 1, .., N},

|B(x, s, ξ)| ≤ C
∑N

i=1 |ξi|pi−1 + C

(3)

where C1, C2 > 0, C ≥ 0 are given constants that we will always refer to as the data.
The equation is called homogeneous when C = 0. When 1 < pi ≡ p < ∞ for all
i = 1, . . . N , the equation (2) reduces to an equation of p-growth, whose theory of
regularity is reasonably complete (see for instance [13] Chap. X, [25], [34], [37], [45],
[50]). It does not coincide with the usual p-Laplacian, but with a similar equation
called pseudo-p-Laplacian: the theory of 0th-order regulairty (as Hölder continuity
and expansion of positivity) is similar to the p-Laplacian, but Lipschitz estimates
become more difficult because the set of degeneration of derivatives is unboundend.
When pi’s are different, the study of regularity was first studied in [51], [40], [41],
[42]. See the recent surveys [43]-[44] for a more exhaustive list of references. A first
condition to start a study of local regularity of solution is boundedness. It has been
shown in [23], [29], [30], that local boundedness is inherent in the notion of local weak
solution, provided the following restriction of pi’s, which is pi < Np̄/(N − p̄) =: p̄∗

for all i = 1, . . . , N , being p̄ = (
∑N

i=1 1/pi)
−1 the harmonic mean (see the subsection

1). When this condition is violated, one can construct unbounded solutions, as local
minimizers of energy integrals whose Euler-Lagrange equation fits into (2)-(3), as

F(u; Ω) =

N∑
i=1

1

pi

∫
Ω

|∂iu|pi dx, Ω ⊂⊂ RN ,

with pi ≡ 2 for i = 1, . . . , N − 1 and pN big enough to violate the above condition
pN < p̄∗. This is the content of [24] and [39]. See also [10] for a discussion under
limit growth conditions. Lipschitz continuity has been proved by a double-iterative
argument and some very particular choices of test functions in [3]. The bibliography
is far from being complete.
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Regarding the Hölder continuity of solutions, the most general result insofar is a
result of stability [16] (see also [18], [19], [21], [28] for some interesting discussions
around the subject). A Harnack inequality (and therefore, as we will show later,
local continuity itself) is provided to the prototype elliptic equation in [8], but only
for a range of exponents that is parabolic. See also the interesting work [22] in the
case of fast diffusion. The case of an equation similar to (1) has been studied in
[38], for the degenerate case (i.e. p > 2) and in [36] for a similar structure than
ours, but with the restriction s = 1. We refer to [9] for a discussion on the subject.
In these two works the authors study the local properties of weak solutions to (1)
from a parabolic point of view. The main difference relies on the technique: while
in the former the authors use a transformation which is strongly linked to condition
s = 1, in the latter the authors use the special structure of the equation, mainly
that pi = 2 for i = 1, . . . , s, with a particular choice of test functions that allows
to write the nondegenerate part of the energy in a boundary-term. This boundary
term is finally used to derive specific logarithmic estimates, as in [5], [15]. Both
techniques spread new light on the interpretation of elliptic anisotropic operators,
and as such can be seen as a starting point for a whole new theory. In this paper
we mainly prove Harnack inequality, whose statement is given in Section 2, without
assuming the property of continuity of solutions. Then, we get Hölder continuity in
Section 6 by using the Harnack estimate, following the idea first developed by Moser
in [46] and then by DiBenedetto et al. in [14] for degenerate parabolic equations
with rough coefficients.

The paper is structured as follows. In Section 2 we introduce the functional
setting, the definition of variational local weak solutions to equation (4) and we state
our main results. The description of the main analytic devices that are used along
our work, included the consistency of the definition of solution with truncations are
contained in Section 3. Section 4 contains the point-wise behaviour of local weak
solutions, while in Section 5 we prove the Harnack inequality and finally in Section
6 we develop the Hölder continuity.

Notations.

- If Ω is a measurable subset of RN , we denote by |Ω| its Lebesgue measure. We will
write Ω ⊂⊂ RN when Ω is an open bounded set.

- For r > 0 and x̄ = (x̄′, x̄′′) ∈ Rs × RN−s, we denote by Br(x̄) the ball of radius r
and center x̄; the standard polydisc is denoted by Qθ,ρ = Bθ(x̄

′) × Bρ(x̄
′′) ⊂ RN .

Furthermore, by ws = |B1(0
′)| and wN−s = |B1(0

′′)| we denote the measures of the
respective unit balls.

- The symbol ∀ae stands for -for almost every- .
- For a measurable function u : Ω → R, by inf u and supu we understand the essential
infimum and supremum, respectively. When a ∈ R, we omit the domain when
considering sub/super level sets, i.e.

[
u ⋛ a

]
=

{
x ∈ Ω : u(x) ⋛ a

}
. We let ∂iu

denote the partial weak derivatives.
- We make the usual convention that a constant γ > 0 depending only on the data,
i.e. γ = γ(N, 2, p, C1, C2, C), may vary from line to line along calculations.

- We consider positive numbers (p1, p2, . . . , pN ) ordered increasingly and we call p̄ =

(
∑N

i=1 1/pi)
−1 and p̄∗ = Np̄/(N − p̄), respectively the harmonic mean of pi’s and

its Sobolev’s exponent. Finally, we set

λl := N(p̄− 2) + lp̄, and χ = λ1 = p+ (N − s)(p− 2).

2. Definitions and main results. Let Ω ⊂⊂ RN be an open bounded set with
N ≥ 2, and for 1 < p < 2 and 1 ≤ s ≤ N − 1 let us consider the elliptic partial
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differential equation

s∑
i=1

∂iiu+

N∑
i=s+1

∂iAi(x, u,∇u) = 0, weakly in Ω, (4)

where the Caratheodory1 functions Ai : Ω × R × RN → R satisfy the following
structure conditions for almost every x ∈ Ω,

∑N
i=s+1Ai(x, u, ξ) · ξi ≥ C1

∑N
i=s+1 |ξi|p − C, for ξ ∈ RN , u ∈ R, x ∈ Ω

|Ai(x, u, ξ)| ≤ C2|ξi|p−1 + C, for i ∈ {s+ 1, .., N},
(5)

where C1, C2 > 0, C ≥ 0 are given constants that we will always refer to as the

data. A function u ∈ L∞
loc(Ω) ∩W

1,[2,p]
loc (Ω), where we define

W
1,[2,p]
loc (Ω) :=

{
u ∈ L1

loc(Ω) | ∂iu ∈ L2
loc(Ω) ∀i = 1, .., s,

∂iu ∈ Lp
loc(Ω) ∀i = s+ 1, .., N

}
,

W 1,[2,p]
o (Ω) :=W 1,1

o (Ω) ∩W 1,[2,p]
loc (Ω),

is called a local weak solution to (4)-(5) if for each compact set K ⊂⊂ Ω it holds
the following integral estimate∫ ∫

K

s∑
i=1

∂iu ∂iφdx+

∫ ∫
K

N∑
s+1

Ai(x, u,∇u) ∂iφdx = 0, ∀φ ∈W 1,[2,p]
o (K). (6)

All along the present work we will suppose that truncations of local weak solutions
u to (4)-(5), defined by

±(u− k)± = ±max{±(u− k), 0}, for k ∈ R,

preserve the property of being sub(super)-solutions. That is, for any k ∈ R, every
compact subset K ⊂⊂ Ω, and ψ ∈W

1,[2,p]
o (K) we have∫ ∫

K

{ s∑
i=1

∂i(u− k)±∂iψ

+

N∑
i=s+1

Ai(x, k ± (u− k)±, ∂i(u− k)±)∂iψ

}
dx ≤ (≥)0.

(7)

Assumption (7) above is quite natural, see for instance Section 3.
Let us fix some geometrical notations and convention. For a point xo ∈ Ω, let

us denote it by xo = (x′o, x
′′
o) where x′o ∈ Rs and x′′o ∈ RN−s. Let θ, ρ > 0 be two

parameters, and define the polydisc

Qθ,ρ(xo) := Bθ(x
′
o)×Bρ(x

′′
o).

We will say Qθ,ρ is an intrinsic polydisc when θ depends on the solution u itself.
We will call first s variables the nondegenerate variables and last (N − s) ones

1Measurable in (u, ξ) for all x ∈ Ω and continuous in x for a.e. (u, ξ) ∈ R× RN .
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singular variables. Using this geometry we state our main result, an intrinsic form
of Harnack’s inequality. Let p̄ be the harmonic mean of pis, i.e.

1

p̄
=

1

N

N∑
i=1

1

pi
=

1

N

(
s

2
+
N − s

p

)
, ⇒ p̄ =

2Np

2(N − s) + ps
.

The central point of the present work is that the following theorem can be obtained
without the continuity of solutions.

Theorem 2.1 (Harnack estimate). Let u be a bounded, nonnegative, local weak
solution to (4)-(5)-(7). Let xo ∈ Ω be a point such that u(xo) > 0 and ρ > 0 small
enough to allow the inclusion

QM,ρ(xo) ⊆ Ω, being M = ||u||(2−p)/2
L∞(Ω) ρ

p
2 . (8)

Assume also that
χ := p+ (N − s)(p− 2) > 0. (9)

Then there exist constants K > 1, δ̄o ∈ (0, 1) depending only on the data such that
either

u(xo) ≤ Kρ,

or
u(xo) ≤ K inf

Qθ,ρ(xo)
u , with θ = δ̄ou(xo)

2−p
2 ρ

p
2 . (10)

The condition (8) is part of the hypothesis and it ensures that polydisc Qθ,ρ is
contained in the set of definition of the equation Ω. Estimate (10) is valid for every
ρ > 0 small enough for the infimum to be taken in a defined set, and it is purely
elliptic, i.e. it does not require a waiting “time”. The intrinsic Harnack estimate
(10) above can be used, following an approach pioneered by J. Moser in [46] and
developed by many others (see for instance [17]), to prove that local weak solutions
are locally Hölder continuous, with an estimate as the one below.

Theorem 2.2 (Hölder Continuity). Let u be a bounded local weak solution to (4)
with structure conditions (5)-(7). Moreover, let p, s satisfy (9). Then u is locally
Hölder continuous. More precisely, there exist constants γ > 1, α ∈ (0, 1) depending
only on the data {N, p, s, Ci, i = 0, 1, 2} such that for any compact set K ⊂⊂ Ω we
have

|u(x)− u(y)| ≤ γ∥u∥∞,Ω

( |x′ − y′|
2
p ∥u∥

p−2
p

∞,Ω + |x′′ − y′′|
(2, p)− dist(K, ∂Ω)

)α

, (11)

for x, y ∈ K and being

(2, p)− dist(K, ∂Ω) = inf

{
|x′ − y′|

2
p ∥u∥

p−2
p

∞,Ω + |x′′ − y′′|, x ∈ K, y ∈ ∂Ω

}
. (12)

3. Preliminaries and tools of the trade. The Banach spaces of functions

W
1,[2,p]
loc (Ω),W

1,[2,p]
o (Ω) enjoy various properties of embedding and approximation

by smooth functions, when their topology is induced by the norms

||u||
W

1,[2,p]
loc (Ω)

= ||u||L1(Ω) +

s∑
i=1

||∂iu||L2(Ω) +

N∑
i=s+1

||∂iu||Lp(Ω),

and

||u||
W

1,[2,p]
o (Ω)

=

s∑
i=1

||∂iu||L2(Ω) +

N∑
i=s+1

||∂iu||Lp(Ω).
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For some references in this direction, we mention the following partial list [6, 31,
26, 48, 49]. Notice the interesting approach of interpolation of [1] to the anisotropic
case.

Anisotropic spaces W
1,[2,p]
loc (Ω) are the spontaneous sets where to define varia-

tional solutions, even if the potential and viscosity approaches would not require a
priori this integrability, at the price of a suitabe comparison principle. This is why
our assumption (7) that truncations are subsolutions themselves is very natural.
Let us consider for instance the monotone case, i.e. we assume that the following
monotonicity property holds

N∑
i=s+1

⟨Ai(x, s, η)−Ai(x, s, ζ), (ηi − ζi)⟩ > 0, (13)

for η, ζ ∈ RN−s with ηi ̸= ζi for all i = s + 1, .., N and (x, s) ∈ Ω × R. The
assumption (13) is natural when considering theory of existence and uniqueness of
solutions to (1) (see for instance [37], [47]), and eventually leads to the assumption
(7).

Proposition 1. Let u be a local weak solution to (4) with structure conditions (5).
If monotonicity assumption (13) holds with

∂iAi(x, u, 0) ∈ L1
loc(Ω) for each i ∈ {s+ 1, . . . , N}, (14)

then property (7) holds.

Proof. Let ε > 0 and test the equation (6) with the test function φ = ±(u−k)±
±(u−k)±+εψ,

being 0 ≤ φ,ψ ∈ W
1,[2,p]
o (Ω) admissible, with φ ≤ ψ almost everywhere in Ω. We

prove the assertion for truncations from below (u−k)+, the other case being similar.
We observe that almost everywhere on the set [u > k] we have

Ai(x, u,∇u) = Ai(x, k + (u− k)+,∇(u− k)+).

Applying the dominated convergence theorem we obtain

s∑
i=1

∫ ∫
K

∂i(u− k)+ ∂iψ dx

+

N∑
i=s+1

∫ ∫
K

Ai(x, k + (u− k)+,∇(u− k)+) ∂iψdx

≤ −
N∑

i=s+1

lim inf
ε↓0

ε

∫ ∫
K

Ai(x, k + (u− k)+,∇(u− k)+) ∂i(u− k)+
[(u− k)+ + ε]2

ψ dx

(15)

Now for each i ∈ {s+ 1, . . . , N} we split the last term on the right of (15) into the
following decomposition:

ε

∫ ∫
K

Ai(x, k + (u− k)+,∇(u− k)+) ∂i(u− k)+
[(u− k)+ + ε]2

ψ dx

=ε

∫ ∫
K

⟨Ai(x, k + (u− k)+,∇(u− k)+)−Ai(x, k + (u− k)+, 0), ∂i(u− k)+⟩
[(u− k)+ + ε]2

ψ dx
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−
∫ ∫

K

{
∂iAi(x, k + (u− k)+, 0)ψ +Ai(x, k + (u− k)+, 0)∂iψ

}
(u− k)+

(u− k)+ + ε
dx,

and last term on the right is zero on the limit ε ↓ 0, thanks to property (14),
divergence theorem and ψ = 0 on ∂K. This means by monotonicity that the last
term on the right of (15) is negative and can be discarded, obtaining that (u−k)+ is a
sub-solution to an equation similar to (4). Being the structure conditions dependent
mainly on the derivatives |∂iu|χ[u>k] = |∂i(u− k)+|, they remain unvaried.

Here below we introduce some particular tools of the trade, which are properties
of solutions to (7)- (5) that permitted in [9] the achievement of Theorem 2.1. The
first result is about local boundedness of solutions, and its particular use should
be deeply analyzed, as its condition on the exponent is the origin of the parabolic
range (9). Observe that θ, ρ > 0 are parameters that can be chosen freely.

Lemma 3.1. Le u be a locally bounded local weak solution to (4)-(5). Let 1 ≤ l ≤ 2
and

λl := N(p̄− 2) + lp̄ > 0,

Then there exist constants γ,C > 0 depending only on the data, such that for all
polydiscs Q2θ,2ρ ⊂ Ω we have either(

θ2

ρp

) 1
2−p

≤ Cρ, or

sup
Qθ/2,ρ/2

u ≤ γ

(
ρp

θ2

)(N−s
p )( p̄

λl
)(

−
∫

−
∫
Qθ,ρ

ul+ dx

) p̄
λl

+ γ

(
θ2

ρp

) 1
2−p

.

Another fundamental tool for our analysis of local regularity is the following
integral estimate, which can be seen as an Harnack estimate within the L1 − L∞

topology, and is typical of singular parabolic equations (see for instance [12], Prop.
4.1 Chap VII).

Theorem 3.2. Let u be a nonnegative, bounded, local weak solution to (4)-(5). Fix
a point x̄ ∈ Ω and numbers θ, ρ > 0 such that Q8θ,8ρ(x̄) ⊂ Ω. Then there exists a
positive constant γ depending only on the data such that either(

θ2

ρp

) 1
2−p

≤ ρ, (16)

or

θ−sρs−N

∫ ∫
Qθ,ρ(x̄)

u dx ≤ γ

{
inf

B θ
2
(x̄′)

ρs−N

(∫
B2ρ(x̄′′)

u(·, x′′) dx′′
) p

χ

+

(
θ2

ρp

) 1
2−p

}
.

In this case, the exponent of the first integral on the right can be negative. If
additionally property (9) holds, then either we have (16) or

sup
Q θ

2
,
ρ
2
(x̄)

u ≤ γ

{(
ρp

θ2

)N−s
χ

inf
B θ

2
(x̄′)

ρs−N

(∫
B2ρ(x̄′′)

u(·, x′′)dx′′
) p

χ

+

(
θ2

ρp

) 1
2−p

}
. (17)

The main tool to achieve both Harnack inequality and Hölder continuity in [9] is
a particular expansion of positivity, along the singular variables and valid for each
relative measure of positivity.
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Theorem 3.3. Let x̄ ∈ Ω and let u ≥ 0 be a bounded, local weak solution to (4)-
(5), satisfying (7). Suppose that for a point x̄ ∈ Ω and numbers M,ρ > 0 and
ν ∈ (0, 1) it holds

|[u ≤M ] ∩Qθ,ρ(x̄)| ≤ (1− ν)|Qθ,ρ(x̄)|, for θ = ρ
p
2 (δM)

2−p
2 ,

and Q2θ,2ρ(x̄) ⊂ Ω, for a number δ = δ(ν) ∈ (0, 1). Then there exist constants
K > 1 and δo ∈ (0, 1) depending only on the data and ν such that either

M ≤ Kρ,

or

u(x) ≥ δoM/2, ∀ae x ∈ Qη,2ρ(x̄), where η = (2ρ)
p
2 (δoM)

2−p
2 .

Finally, we will use in a crucial way the following Lemma, proven in [8], following
an approach that generalises a first idea on viscosity solutions ([4]). We believe
that the viscosity solution approach would contribute significantly to the theory
of anisotropic equations, because already the main problem of degeneracy on an
infinite set can be seen in a method involving higher derivatives; see for instance
[11] for the case pi ≡ p of the pseudo p-Laplace operator.

Lemma 3.4 (Lemma 4.1 [8]). Let (X,d) be a quasi-metric space with quasi-metric
constant γ and x0 ∈ X. Let Bρ(z) be the ball in (X, d) of radius ρ > 0 and center
z ∈ X. Then for any β > 0 there exists a constant ω = ω(γ, β) > 1 such that for
any bounded function u : B1(x0) → R with u(x0) ≥ 1 there exist x ∈ B1(x0) and
r > 0 such that

Br(x) ⊆ B1(x0), rβ sup
Br(x)

u ≤ ω, rβu(x) ≥ 1/ω.

4. Pointwise behaviour. Lower semicontinuty of solutions to (4)-(5) can be
proven as a consequence of L∞ estimates (see for instance [20], [33]) or more gen-
erally as a consequence of a theoretical maximum principle called De Giorgi-type
Lemma (Lemma 2.4 in [9]), in this respect we refer to [7, 35]. Here we show an
approach which is similar to [20], but it uses a different L∞ estimate, being p < 2.

Proposition 2. Any bounded local weak solution u of (4) with (5) and p̄ >
2N/(N + 1) in the supercritical range, has a lower semicontinuous representative.

Proof. We first consider (RN ,L , dM ), where L is the Lebesgue’s measure and dM
is the distance defined as follows for any 0 < M ∈ Q, x, y ∈ RN ,

dM (x, y) = max{|x′ − y′|2/pM−2/p, |x′′ − y′′|}.

Thus, notice that Qρp/2M,ρ(x0) = Dρ(x0), where Dρ(x0) is the ball in (RN ,L , dM )

of center x0 ∈ RN and radius ρ > 0. We observe that (RN ,L , dM ), where L is the
standard Lebesgue measure, is a doubling metric measure space since

L (D2ρ(x0)) = |Q(2ρ)p/2M,2ρ(x0)| ≤ C|Qρp/2M,ρ(x0)| = L (Dρ(x0)),

for an universal constant C > 0.
Now let VM (Ω) the set of L1(Ω)-Lebesgue points for u in (Ω,L , dM ), i.e.

VM (Ω) =

{
x ∈ Ω : −

∫
−
∫
Dρ(x)

|u(y)− u(x)| dy → 0, as ρ→ 0

}
,
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as (Theorem [27], Theorem 1.8]) guarantees |VM (Ω)| = |Ω| for each positiveM ∈ Q.
Finally, we consider the full-measure set

V̄ (Ω) =
⋂

M∈Q
VM (Ω), |V̄M (Ω)| = |Ω|.

Let us consider therefore a point x̄ ∈ V̄ (Ω), and let us modify u ∈W
1,[2,p]
loc (Ω) to be

the representative in such a class. We need to divide the proof into two cases, due
to non-homogeneity of the equation, by using Lemma 3.1.

If (θ2/ρp)1/(2−p) ≤ Cρ, then by choosing θ = 2∥u∥∞,Ω we obtain the condition

2∥u∥∞,Ω ≤ Cρ, ⇒ osc
Qθ,ρ(x̄)

u ≤ Cρ,

and this reduction of oscillation implies Lipschitz continuity (cf Section 6).
If on the other hand (θ2/ρp)1/(2−p) > Cρ, then the following estimate is valid by

choosing l = 1 and θ = ρp/2M , where M > 0 to be chosen, so that we get

sup
Qθ/2,ρ/2(x̄)

u ≤ γM−2(N−s)p̄/pλ1

(
−
∫

−
∫
Qθ,ρ(x̄)

u(x)+dx

)p̄/λ1

+ γM2/(2−p), (18)

where λ1 > 0 since p̄ > 2N/(N + 1) is in force.
Now, being x̄ ∈ V̄ (Ω), for any ε1 > 0, there exists ρ = ρ(ε1) > 0 such that

−
∫

−
∫
Qθ,ρ(x̄)

|u(x)− u(x̄)|dx < ε1. (19)

Since u− u(x̄) is a solution of an equation of the type of (4), then for every ε > 0,
by using (19) in (18), we have

sup
Qθ/2,ρ/2(x̄)

(u(x̄)− u)+ ≤ γ

(
M−2(N−s)p̄/pλ1ε

p̄/λ1

1 +M2/(2−p)

)
≤ ε

4
, (20)

by choosing appropriately

ε1 =

(
εM2(N−s)p̄/pλ1

2γ

)λ1/p̄

, M = (ε/2γ)(2−p)/2. (21)

Now we claim the lower semicontinuity, that is the following

u(x̄) ≤ ess lim inf
x→x̄

u(x) = ess lim
ρ→0

inf
Qθ,ρ(x̄)

u(x).

We proceed by contradiction, supposing that there exists ε̄ > 0 and R0 > 0 such
that for all 0 < ρ < R0, we have

u(x̄)− lim
ρ→0

inf
Qθ/2,ρ/2(x̄)

u(x) = ε̄ > 0.

Then, choosing again θ = ρp/2M andM as in (21)2, so that, if ε = ε̄ defined before,
we reach the required contradiction since, by (20)

ε̄ = sup
Q θ

2
,
ρ
2
(x̄)

(u(x̄)− u)+ ≤ ε̄

4
.

The proof is so concluded.
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5. Proof of Harnack inequality 10 without continuity. Consider a bounded
local weak solution u to (4) in Ω, let xo ∈ Ω be a point where2 u(xo) > 0, and for
any ρ ≥ 0 appropriate to satisfy (8), construct the cylinder Qθ,ρ(xo) such that

Qθ,ρ(xo) = Bθ(x
′
o)×Bρ(x

′′
o) ⊂⊂ QM,ρ(xo) ⊆ Ω, with θ = u(xo)

2−p
2 ρ

p
2 ,

with M defined in (8). Now we proceed to normalize the solution u : Qθ,ρ(xo) → R
with the transformation

v(x′, x′′) =
1

u(xo)
u

(
x′ − x′o
θ

,
x′′ − x′′o

ρ

)
, (22)

that is a bounded local weak solution to an equation similar to (4) in Q1,1, i.e.
solves

s∑
i=1

∂iiv(x) +

N∑
i=s+1

∂iÃi(x, v,∇v) = 0, weakly in Q1,1 = B1(0
′)×B1(0

′′), (23)

with structure conditions
∑N

i=s+1 Ãi(x, s, ξ)ξi ≥ C̃1

∑N
i=s+1 |ξi|p − C̃p,

|Ãi(x, s, ξ)| ≤ C̃2

∑N
i=s+1 |∂iv|p−1 + C̃p−1,

being C̃ = (Cρ)/u(xo). (24)

For parameters λ ∈ (0, 1) and β > 1 to be chosen later, we consider the equation

sup
x′′∈Bλ0

u(0′, x′′) =
(1− λ0)

−β

2
=:M/2. (25)

Then, by continuity, the proof in [9] exhibited a maximal root λ0 of the equation
(25) together with a point x̄′′ ∈ Bλ0

(0′′) such that, by defining suitable r = r(λ0),
the authors, exploiting a popular argument of Krylov and Safonov (see [32]), obtain
the estimate

M

2
≤ v(0′, x̄′′) ≤ sup

Br(x̄′′)

v(0′, ·) ≤ γM. (26)

From this estimate on, the proof in [9] follows the lines of [15] and uses twice (17)
to arrive at a measure estimate of the kind

|[v(x′, ·) ≤ εM ]∩Br/2(x̄
′′)| ≤ (1−α)|Br/2|, for ε > 0 and α ∈ (0, 1), (27)

and finally use the expansion of positivity along the singular variables, i.e. Theorem
3.3, to obtain a lower bound

v > M̃, in Qη̃,1 , being η̃ = δo(M̃)rp/2,

for some constants M̃, δo(M̃) ∈ (0, 1) depending only on β and the data. At this
point the proof is concluded by transforming back the function v into u, and con-
sequently the estimate above transforms into the final claim:

u(xo) ≤ M̃−1u(x), x ∈ Qη,ρ(xo), with η = δou(xo)
2−p
2 ρ

p
2 .

Now, the argument that follows shows that we can as well obtain estimate above
(26) without using the continuity of u. We use indeed Lemma 3.4 for the bounded
function v(0′, ·) : B1(0

′′) → R of the sole x′′-variable, in the euclidean metric space

2Notice that this point-wise value can be identified thanks to Proposition 2.
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(B1(0
′′), de), where de(x

′′, y′′) =
√∑N

i=s+1(x
′′
i − y′′i )

2. Therefore for each β > 0 we

find x̄′′ ∈ B1(0
′′) and γ, r > 0 such that by setting M = r−β we obtain

M

γ
≤ v(0′, x̄′′) ≤ sup

Br(x̄′′)

v(0′, ·) ≤ γM.

But this is precisely (26) by redefining the constant M , and the proof can now
carried on the same way.

6. Hölder continuity. Let K be a compact subset of Ω, consider (2, p)− dist(K,
∂Ω) as in (12). For any point yo ∈ K we construct the polydisc Qθo,R(yo) with

R = [(2, p)− dist(K, ∂Ω)]/2, θo = Rp/2ω
2−p
2

o , ωo = 2∥u∥∞,Ω. (28)

We claim that Qθo,R(yo) ⊂ Ω by the choice of R and θo above. Indeed, for z ∈
Qθo,R(yo), it holds

|z′ − y′o| ≤ θo = Rp/2ω
2−p
2

o ≤ inf{|x′ − y′|, x ∈ K, y ∈ ∂Ω},

and

|z′′ − y′′o | ≤ R ≤ inf{|x′′ − y′′|, x ∈ K, y ∈ ∂Ω}/2.
Thus, by (12), we get Qθo,R(yo) ⊂ Ω.

Next, we consider a generic point xo ∈ K, and we show that we can reduce the
proof of Hölder Continuity to the assumption

xo ∈ Qθo,R(yo). (29)

Indeed, if this is not the case, namely xo /∈ Qθo,R(yo), we obtain Lipschitz continuity.
In particular, assume either

|x′o − y′o| > θo = Rp/2ω
2−p
2

o , or |x′′o − y′′o | > R,

then, by computing straightforward, we obtain the Lipschitz condition

|u(xo)− u(yo)| ≤ 2ωo ≤ 4ωo

(
|x′o − y′o|

2
pω

p−2
p

o + |x′′o − y′′o |
R

)
,

where we used the definition of ωo, R. So we proceed by assuming (29) and, before
proving the Hölder Continuity, we show that there exists a sequence of intrinsic
polydiscs Qθn,ρn with center in yo where the oscillation of u can be controlled
uniformly.

Proposition 3 (Oscillation Decay). Let u be a bounded local weak solution to (4)
with structure conditions (5)-(7). Assume also yo ∈ K and define ωo and R as in
(28). There exist a constant δ ∈ (0, 1) such that if we defineρn = δnR,

ωn = δnωo,


δ = 4K/(4K + 1) ∈ (0, 1),

θn = δ̄oρ
p/2
n ω

2−p
2

n = 2
p−2
2 δ̄oδ

nRp/2ω
2−p
2

o ,

where K > 1 defined in Theorem 2.1, then

Qn+1 ⊂ Qn, for Qn = yo +Qθn,ρn
, Q0 = yo +Qθo,R,

and

osc
Qn

u ≤ δnωo. (30)
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Proof. We proceed by induction observing first that the first step is achieved from
the definition of ωo so that we have oscQ0 u ≤ ωo. Moreover, we observe that the
polydiscs Qn for n ∈ N are monotonic. Indeed, since ω1 ≤ ω0 and θ1 ≤ θo then
Q1 ⊂ Q0 and this is sufficient to establish Qn+1 ⊂ Qn for all n ∈ N. So we assume
that (30) is valid until step n and we prove it for the n+ 1-th. We also assume, by
contradiction, that oscQn+1

u > ωn+1. Now we define

Mn = sup
Qn

u, mn = inf
Qn

u,

and we suppose that one of the two following estimates holds

Mn − u(yo) > ωn+1/4, or u(yo)−mn > ωn+1/4. (31)

This can be assumed because otherwise we have

osc
Qn+1

u ≤ osc
Qn

u ≤ ωn+1,

leading to an absurd. Let us suppose that (31)2 is valid, the other case is similar.
Let (8) and (9) be valid, then we apply Theorem 2.1, so that (10) is valid for the
non-negative function u−mn, which is still a solution of a similar equation to (4)
with (5). So we obtain

(4K)−1ωn+1 < K−1(u(yo)−mn) ≤ inf
Qθ,R(yo)

(u−mn) ≤ inf
Qn+1

(u−mn) = 0, (32)

provided that Qn+1 ⊂ Qθ,R(yo), i.e.

δ̄oρ
p/2
n+1ω

2−p
2

n+1 ≤ δ̄o(u(yo)−mn)
2−p
2 Rp/2, and δn+1R ≤ R.

The first inequality is satisfied exactly thanks to our assumption ωn+1 < 2(u(yo)−
mn). Finally, since Qn+1 ⊂ Qn, by (32), the inductive hypothesis and definition of
δ and ωn, the absurd inequality is reached

osc
Qn+1

u < Mn −mn − (4K)−1ωn+1 ≤ ωn − (4K)−1ωn+1 = ωn+1

(
1

δ
− 1

4K

)
= ωn+1.

Now we are ready to prove the Hölder Continuity, namely Theorem 2.2, whose
statement is given in Section 2.

Conclusion of the Proof of Theorem 2.2. For xo ∈ Qθo,R(yo) let n ∈ N be the last
number such that xo ∈ Qn but xo ̸∈ Qn+1. The latter implies that either

|x′o − y′o| > θn+1 = γoδ
nRp/2ω

2−p
2

o , that is δn2/p < γ
|x′o − y′o|2/pω

p−2
p

o

R
or

|x′′o − y′′o | > ρn+1 = δnR, that is δn <
|x′′o − y′′o |

R
for a constant γo = γo(δo) > 0 depending only on the data. Being p < 2 and
estimating quantities that are smaller than 1, we have

δ2n/p ≤ γ

(
|x′′o − y′′o |

R
+

|x′o − y′o|2/pω
p−2
p

o

R

)
,

⇒ δn ≤ γ

(
|x′′o − y′′o |+ |x′o − y′o|2/pω

p−2
p

o

R

)p/2

.
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This, together with condition xo ∈ Qn and Proposition 3 gives

|u(xo)− u(yo)| ≤ δnωo ≤ γωo

(
|x′′o − y′′o |+ |x′o − y′o|2/pω

p−2
p

o

R

) p
2

,

the proof is concluded.
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