
26 December 2024

Multi-Time-Scale Markov Decision Process for Joint Service Placement, Network Selection, and
Computation Offloading in Aerial IoV Scenarios / Shinde, Swapnil Sadashiv; Tarchi, Daniele. - In: IEEE
TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING. - ISSN 2327-4697. - ELETTRONICO. -
11:(2024), pp. 5364-5379. [10.1109/tnse.2024.3445890]

Original Citation:

Multi-Time-Scale Markov Decision Process for Joint Service
Placement, Network Selection, and Computation Offloading in Aerial

Conformità alle politiche dell'editore / Compliance to publisher's policies

Published version:
10.1109/tnse.2024.3445890

Terms of use:

Publisher copyright claim:

Questa versione della pubblicazione è conforme a quanto richiesto dalle politiche dell'editore in materia di
copyright.
This version of the publication conforms to the publisher's copyright policies.

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/1381010 since: 2024-11-22T08:41:46Z

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:

1

Multi-Time-Scale Markov Decision Process for
Joint Service Placement, Network Selection, and
Computation Offloading in Aerial IoV Scenarios

Swapnil Sadashiv Shinde, Student Member, IEEE , and Daniele Tarchi, Senior Member, IEEE

Abstract—Vehicular Edge Computing (VEC) is considered a major enabler for multi-service vehicular 6G scenarios. However, limited
computation, communication, and storage resources of terrestrial edge servers are becoming a bottleneck and hindering the
performance of VEC-enabled Vehicular Networks (VNs). Aerial platforms are considered a viable solution allowing for extended
coverage and expanding available resources. However, in such a dynamic scenario, it is important to perform a proper service
placement based on the users’ demands. Furthermore, with limited computing and communication resources, proper user-server
assignments and offloading strategies need to be adopted. Considering their different time scales, a multi-time-scale optimization
process is proposed here to address the joint service placement, network selection, and computation offloading problem effectively.
With this scope in mind, we propose a multi-time-scale Markov Decision Process (MDP) based Reinforcement Learning (RL) to solve
this problem and improve the latency and energy performance of VEC-enabled VNs. Given the complex nature of the joint optimization
process, an advanced deep Q-learning method is considered. Comparison with various benchmark methods shows an overall
improvement in latency and energy performance in different VN scenarios.

Index Terms—Vehicular Edge Computing, Aerial Networks, Service Placement, Network Selection, Computation Offloading, Markov
Decision Processes, Multi-time Scale Optimization

✦

1 INTRODUCTION

W ITH the evolution of technologies such as the Inter-
net of Things (IoT), Multi-access Edge Computing

(MEC), Network Softwarization, and different communica-
tion modes, modern Vehicular Networks (VNs) are turning
towards a smarter, highly reliable, and secure networking
system enabled through software programmability, provid-
ing advanced intelligent services and applications to end
users. These advanced services and applications often bring
a tremendous amount of data to be processed and strict
latency and reliability constraints [1]. With limited process-
ing capabilities, Vehicular Terminals (VTs) are unable to
process the tasks in a limited time, and often utilize Edge
Computing (EC) services enabled through the nearby access
points. Despite the presence of Road Side Units (RSUs),
equipped with EC facilities, their limited coverage ranges,
computation, communication, and storage resources require
the introduction of advanced solutions. On one side the
vehicular scenario is inherently dynamic, hence, dynamic
service placement over the Edge Nodes (ENs) depending
upon the user requests is needed. Furthermore, the limi-
tations of computation and communication resources put

• Swapnil Sadashiv Shinde was with the Department of Electrical,
Electronic and Information Engineering “Guglielmo Marconi”, Uni-
versity of Bologna, 40136 Bologna, Italy. He is now with CNIT—
University of Bologna Research Unit, 40136 Bologna, Italy (email: swap-
nil.shinde@cnit.it)

• Daniele Tarchi is with the Department of Electrical, Electronic and
Information Engineering “Guglielmo Marconi”, University of Bologna,
40136 Bologna, Italy, (email: daniele.tarchi@unibo.it)

• This work was partially supported by the European Union under the
Italian National Recovery and Resilience Plan (NRRP) of NextGenera-
tionEU, partnership on “Telecommunications of the Future” (PE00000001
- program “RESTART”).

restrictions on the number of VTs that each EN will serve.
Therefore, proper edge-based service placement solutions
along with the optimal EN selection for offloading the
computational load of VTs are needed to have the benefits
of Vehicular Edge Computing (VEC) systems.

Recently, various new aerial networking platforms, such
as Unmanned Aerial Vehicles (UAVs), air taxis, balloons,
have populated the sky. Compared to different satellite
constellations, these platforms are located at reduced dis-
tances from ground users and can be further exploited for
latency-critical scenarios such as VNs. With their onboard
computation, communication, and storage resources, these
platforms can be extremely useful to increase the capacity of
traditional VEC systems that involve only terrestrial nodes.
Recently, such multi-layered Edge Computing (EC) enabled
distributed networking scenarios have shown promising re-
sults, especially in the case of latency-critical VNs [2], [3], [4].
However, similar to terrestrial VEC nodes, aerial platforms,
with their size limitations, can hold limited resources, and
proper service placement, network selection, and offloading
operations are needed to boost overall performance.

In joint Terrestrial and Non-terrestrial (T/NT) VEC net-
works, composed of multiple layers, each VT has the option
to select EC nodes from various layers. Additionally, each
node on these platforms, with its storage resources, can
hold a set of services. With this in mind, in such multi-
user vehicular scenarios, with multiple T/NT layers, service
placement, network selection, and computation offloading
problems can become highly complex. Traditional opti-
mization techniques along with heuristic and meta-heuristic
approaches can only have a limited impact and may not be
useful. Recently, various machine learning (ML) approaches,

2

especially Reinforcement Learning (RL), have found ways to
solve such complex networking problems [1], [5].

It is interesting to note that the service placement, net-
work selection and offloading decisions can be performed
on different time scales, based on specific demands, network
topologies, and user requirements. For example, the service
placement operation requires a longer time interval and can
only be performed/updated at longer time scales, mainly
due to centralized controller operations and longer service
activation time [6]. On the other hand, network selection
operation, based on the dynamicity of the VTs and nearby
environments, may require a moderate amount of time to
establish a proper connection between VTs and nearby reli-
able edge servers [7]. Finally, task offloading operations will
be based on VTs task requirements, and can be performed at
shorter time scales, especially in the case of latency-critical
applications [8]. With these issues in mind, in the past,
researchers have mainly focused on either of these three
problems and proposed solutions by making some assump-
tions about the other two [9]. On the other hand, in some
cases, joint optimization of either of these problems has
been considered, while assuming the same time scales [1].
However, such solutions cannot be considered optimal since
this process may require decisions made at different time
scales, impacting each other’s performance.

With these issues in mind, in this work, we aim to
solve the joint service placement, network selection, and
offloading problem over the VN environment aimed at
minimizing the latency and energy costs by considering
proper time scales. For this, we first model the latency and
energy elements involved in this process and map them on
a constrained optimization problem over a dynamic VN.
Next, we exploit an RL approach to solve the problem, in
particular by modeling it as a Markov Decision Process
(MDP). With the involvement of multiple time scales, we
consider a multi-time-scale MDP approach by modeling
three different MDPs impacting each other’s decisions for
the considered problem. This allows us to solve the problem
at different time-scales effectively.

1.1 Related Work

The EC-enabled VN, or VEC, has been extensively stud-
ied in the literature to provide latency-critical and data-
intensive services to end users [1]. From a network point
of view, the joint T/NT networks have gained great popu-
larity in serving VTs with increased capacity, coverage and
sustainability [2], [4]. In addition, the use of ML to solve
complex vehicular problems has gained notable popularity
in recent years [10]. Among others, RL-based studies are
widely performed to solve complex VN problems such as
resource allocation, network selection, and service place-
ment [1], [5]. Most VEC studies can be classified according
to the problems under consideration. In particular, service
placement/caching, network selection, and computation of-
floading are the main fields of VEC research. In some cases,
these problems are considered jointly. From an optimization
point of view, studies are performed to optimize latency,
energy, reliability, or in some cases joint costs. In the fol-
lowing, we discuss some of the important studies related
to these three problems and some joint optimization-related

solutions from the recent past. Furthermore, we examine
multi-time-scale optimization by specifically focusing on the
most influential papers that address this aspect.

a) Service Placement Problem: In [11], authors have
studied a distributed service placement problem in a mov-
ing vehicle cluster using the knowledge of vehicle mobility
patterns. A flexible and distributed service model with data-
dependent tasks is considered for dynamic vehicular envi-
ronments. In [12], the IoV-based dynamic service placement
problem is considered with the aim of maximizing the
utilization of edge resources and reducing the service delay.
Deep reinforcement learning-based solutions are proposed
considering dynamicity, increasing service demands, and
varying request types. In [13], the authors have considered
a UAV-based EC facility for vehicular service placement
problem formed as a multi-objective optimization problem.
In [14] the authors investigate the dynamic resource alloca-
tion problem for the placement of virtual network function
(VNF) in satellite edge clouds. The aim is to jointly minimize
the cost of network bandwidth and the end-to-end delay of
the service. Additionally, in this case, the focus is limited
to service placement. In [15] a potential game approach is
proposed for the placement of VNFs in satellite edge com-
puting, where a satellite network should provide computing
services for as many user requests as possible. The VNF
placement problem aims to maximize the overall network
payoff, and a decentralized resource allocation algorithm
based on a potential game (PGRA) is proposed to tackle
the VNF placement problem by finding a Nash equilibrium.
However, in these studies, the authors have focused mainly
on the dynamic service placement problem without taking
into account the network selection and offloading process
optimizations. These service placement approaches without
taking into account user demands and offloading decisions
cannot guarantee optimal behavior.

b) Network Selection Problem: In [8], the authors have
proposed an on-line and off-policy learning algorithm based
on multi-armed bandit theory for addressing the network
selection problem in VEC environments. Also in [16], the
authors have proposed a multi-hop mobility-aware task
offloading mechanism with optimal EN selection for au-
tonomous driving scenarios in VEC. In [17], authors have
proposed a multi-agent RL-based computation offloading
strategy for vehicular scenarios. The latency performance
of the offloading process is optimized with the binary
computation offloading strategy. In [18], the authors focus
on optimizing network selection in Satellite Aerial Ground
Integrated Networks and formulate a corresponding evo-
lutionary game. A network selection algorithm based on
evolutionary games is proposed to study the autonomous
decision-making process of network selection as a supple-
ment. A network selection algorithm based on the deep
deterministic policy gradient is proposed to handle continu-
ous high-dimensional action spaces. Such network selection
optimization studies and offloading process decisions are
limited to node selection only, without considering the
optimization of partial offloading amounts. In addition,
the service placement problem is also neglected by static
deployments. Offloading an imperfect amount of data to
the optimal selected EN can still have limited impacts.

3

c) Computation Offloading Problem: In [19], the authors
have proposed a federated learning-based framework for
optimizing the offloading parameter values by assuming
the nearest node selection strategy. In [20], the authors
have studied the partial offloading problem in EC environ-
ments assisted by parked vehicles. In addition, in [21], the
authors have proposed deep learning-based solutions for
the Vehicle-to-Vehicle assisted partial offloading problem in
vehicular fog computing environments. In [22], the authors
propose a hierarchical aerial computing framework con-
sisting of High-Altitude Platforms (HAPs) and UAVs. The
framework is designed to offer MEC services for various
IoT applications. The objective is to maximize the amount
of IoT data processed by aerial MEC platforms, while taking
into account the delay requirements of the IoT devices
and the resource constraints of the UAVs and HAPs. Since
an exhaustive search would be computationally expensive,
the problem is addressed using a matching game theory-
based algorithm to determine the offloading decisions of
IoT devices to UAVs and a heuristic algorithm to determine
the offloading decisions between UAVs and HAPs. How-
ever, such studies, where service placement and network
selection decisions are based on a static/heuristic approach,
cannot guarantee optimal performance.

d) Joint Solutions: In [1], the authors have proposed
collaborative RL-based strategies to solve the problem of
joint network selection and computation offloading in a
multi-service VEC environment. However, the service place-
ment is considered static. In [23], the authors have con-
sidered a dependency-aware task offloading and service-
caching problem in a vehicular environment without taking
into account the different time scales in a decision-making
process. In [7], the authors have proposed a joint strategy
for network selection and offloading in VEC environments
with a single service. These joint studies are often limited to
the single-time scale approach and often neglect the impact
of service placement on the offloading process.

e) Multi-time scale optimization: Multi-time scale op-
timization has a long-standing interest, however, due to
the inheritance complexity of its analysis has often been
neglected or simplified to single time scale approaches. Re-
cently, the analysis and further optimization of multi-time-
scale systems have been increasingly considered. Among
others, in [24], the authors explore the concept of dynamic
multi-time scale user admission and resource allocation in
MEC systems with a focus on semantic extraction. Since
semantic extraction tasks exhibit a stochastic nature, the
researchers formulate a stochastic optimization problem by
representing the tasks as dynamically arriving in the tem-
poral domain. In [25], the authors focus on the problem of
event-based security control in a specific type of cyber phys-
ical systems called multi-time-scale cyber physical systems,
which are vulnerable to DoS attacks. To address the chal-
lenges posed by DoS attacks and the multi-time-scale nature
of these systems, a security control framework is proposed.
This framework aims to design the switched controller
and the event-triggered mechanism simultaneously. In [26],
the authors propose a deep reinforcement learning (DRL)
approach that operates on multiple time scales to optimize
the use of radio resources in Non-Terrestrial Networks. The
approach involves collaborative decision-making between a

Low Earth Orbit (LEO) satellite and user equipment (UE),
each with their own control cycles. The UE updates its
policy to enhance the value functions of both the satellite
and itself, whereas the LEO satellite makes decisions based
on a finite-step rollout using the reference decision trajectory
provided by the UE. To the best of our knowledge, no
paper has considered up to now the joint service placement,
network selection and computation offloading problem in a
multi-time scale fashion.

1.2 Motivations and Contributions

Based on the previously commented studies, it can be seen
that the authors have mainly considered solving one of the
three problems discussed before, neglecting their impacts
on each other. However, in some cases, joint optimization is
performed without taking into account multiple time scales
and their impacts. This can lead to suboptimal solutions and
further analysis is required to increase the performance of
VNs. Therefore, this motivates us to carry out this activity
in which we aim to solve the problem of service placement,
network selection, and offloading simultaneously, consid-
ering their impacts on each other. As mentioned earlier,
when addressing the challenge of simultaneously perform-
ing service placement, network selection, and computation
offloading, it is necessary to consider operations that occur
at different time scales. This makes it impractical to use tra-
ditional solving methods that focus on a specific moment, as
each subproblem requires a distinct optimization approach.
This complexity is further amplified by the inclusion of
terrestrial and aerial platforms, which not only enhance
resilience and coverage but also introduce an additional
dimension. Consequently, this paper suggests a multilayer
multi-time scale approach to optimize the three operations
together, using an MDP model.

The main contributions of this work can be summarized
in the following points:
• Multi-time Scale Approach: A system model is defined

with a multi-time scale approach for the service place-
ment, network selection, and computation offloading
process with dynamic VTs. Furthermore, a constrained
optimization problem is formed to minimize a proper
cost function, including also latency and energy terms,
by performing a dynamic service placement, network
selection, and offloading process.

• MDP Solutions: There is a lack of extensive research
on multi-time scale optimization. Because these prob-
lems are highly complex, a suitable optimization ap-
proach has been devised using the MDPs. The ser-
vice placement, network selection, and offloading prob-
lems are modeled as a sequential decision-making pro-
cess through proper multidimensional MDP models. A
multi-time scale MDP process is adapted for enabling
decision making at different time scales, and optimal
policy is determined through the deep Q-learning ap-
proach.

• Performance Evaluation: The simulation results of the
proposed methods are compared with a set of bench-
mark methods and their effectiveness is evaluated. Fi-
nally, proper conclusions are drawn on the basis of the
findings.

4

The structure of the paper is as follows. In Section 2,
we present the system model, specifically focusing on the
multilevel scenario and defining the problem as a multi-
time-scale approach. In Section 3, we propose a multi-
time-scale optimization method, which involves consider-
ing three MDPs, while in Section 4 the Deep Q-Learning
solution for joint Service Placement, Network Selection, and
Computation Offloading is described. Section 5 presents the
Numerical Results, which consider various scenarios where
the problem can be applied. Lastly, in Section 6, we provide
the conclusions drawn from the study.

2 SYSTEM MODEL AND PROBLEM FORMULATION

We focus on an IoV scenario with multiple EC layers and
randomly distributed VTs in the road scenario. We consider
a multi-layer (𝑙 = 0, . . . , 𝐿 with 𝐿 = 3) joint air-ground
network, composed of HAPs (𝑙 = 3), UAVs (i.e., LAP
nodes) (𝑙 = 2), RSUs (𝑙 = 1), deployed along the road
paths, and randomly distributed VTs (𝑙 = 0) traveling on
a road in either direction, where V = {𝑣1, . . . , 𝑣𝑚, . . . , 𝑣𝑀 },
R = {𝑟1, . . . , 𝑟𝑛, . . . , 𝑟𝑁 }, U = {𝑢1, . . . , 𝑢𝑝 , . . . , 𝑢𝑃}, corre-
spond to the sets denoting 𝑀 VTs, 𝑁 RSUs, and 𝑃 UAVs,
respectively. Additionally, one HAP node is denoted as 𝐻ℎ.
In the vehicular scenario considered, VTs can request ser-
vices characterized by different requirements. By assuming
that S = {𝑆1, . . . , 𝑆𝑠 , . . . , 𝑆�̄�} is the set of all possible services
that can be provided, due to the limited available resources,
the generic 𝑗th EN from 𝑙th layer can provide only a subset
of services equal to Ŝ𝑙

𝑗
⊂ S. In Tab. 1, the main symbols

used throughout the paper are list for better comprehension
of the text.

The system is modeled in a discrete time manner and the
network parameters are supposed to be constant throughout
each time interval 𝜏, where 𝜏𝑖 identifies the 𝑖th time interval,
i.e., 𝜏𝑖 = {∀𝑡 |𝑡 ∈ [𝑖𝜏, (𝑖 + 1) 𝜏]}. The generic 𝑚th VT is charac-
terized by a processing capacity equal to 𝑐𝑣,𝑚 Floating Point
Operations per Second (FLOPS) per CPU cycle, while its
CPU frequency is 𝑓𝑣,𝑚. Each VT is supposed to be able to
communicate on a bandwidth 𝐵rsu

𝑣,𝑚 (𝜏𝑖) with each RSU, with
a bandwidth 𝐵LAP

𝑣,𝑚 (𝜏𝑖) with each UAV and with a bandwidth
𝐵HAP
𝑣,𝑚 (𝜏𝑖) with the HAP. Each 𝑣𝑚 ∈ V is supposed to be ac-

tive in each time interval with a probability 𝑝𝑎 within which
it generates a computation task request 𝜌𝑚 (𝜏𝑖) identified
through the tuple

〈
𝐷𝜌𝑚 , 𝐷

𝑟
𝜌𝑚
,Ω𝜌𝑚 , 𝑇𝜌𝑚 , 𝑆𝜌𝑚

〉
corresponding

to a task of size 𝐷𝜌𝑚 Byte, expected to give in output a
result with size 𝐷𝑟𝜌𝑚 Byte, requesting Ω𝜌𝑚 CPU execution
cycles and maximum execution latency 𝑇𝜌𝑚 . Here, 𝑆𝜌𝑚 ∈ S
corresponds to a specific service requested by VT 𝑣𝑚 that
belongs to a set of services S provided by the network
service provider. In addition, the average request rate for
the 𝑠th service is modeled through the Zipf distribution
function given by 𝜆𝑠 (𝜏𝑖) = 1/𝜅𝑠𝛽 where 𝜅 =

∑
𝑠 1/𝑠𝛽 with

𝛽 ∈ [0, 1] being the popularity skew index [27].
The 𝑛th RSU, supposed to be in a fixed position with

a coverage radius 𝑅𝑟 ,𝑛, is characterized by a processing
capacity equal to 𝑐𝑟 ,𝑛 FLOPS per CPU cycle, with CPU
frequency 𝑓𝑟 ,𝑛, CPU cores L𝑟 ,𝑛, and communication ca-
pabilities, which is supposed to be identified through a
communication technology able to cover the VTs on ground
with an overall bandwidth 𝐵𝑟 ,𝑛. Each RSU can provide EC

TABLE 1
List of symbols used in the paper.

Symbol Description

V, R, U, S Sets of VTs, RSUs, UAVs, and services
Ŝ𝑙

𝑗
The set of services provided by the 𝑗th EN
on the 𝑙th layer

𝜏𝑖 The 𝑖th time interval
𝑐𝑣,𝑚 𝑚th VT processing capacity in FLOPS per

CPU cycle
𝑓𝑣,𝑚 𝑚th VT CPU frequency

𝐵rsu
𝑣,𝑚 (𝜏𝑖) 𝑚th VT to RSU communication bandwidth
𝐵LAP
𝑣,𝑚 (𝜏𝑖) 𝑚th VT to UAV communication bandwidth

𝐵HAP
𝑣,𝑚 (𝜏𝑖) 𝑚th VT to HAP communication bandwidth
𝜌𝑚 (𝜏𝑖) 𝑚th VT computational request at 𝜏𝑖

𝐷𝜌𝑚
, 𝐷𝑟

𝜌𝑚
Input and Output Task size for the request
𝜌𝑚

Ω𝜌𝑚
Requested CPU execution cycles for the re-
quest 𝜌𝑚

𝑇𝜌𝑚
Target maximum execution latency for the
request 𝜌𝑚

𝑆𝜌𝑚
The service requested by 𝑚th VT

𝑅𝑟,𝑛, 𝐵𝑟,𝑛 Coverage radius and communication band-
width for the 𝑛th RSU

𝑐𝑟,𝑛, 𝑓𝑟,𝑛, L𝑟,𝑛 𝑛th RSU processing capacity, CPU fre-
quency, and number of CPU cores

ℎ̄𝑢,𝑝 , 𝑅𝑢,𝑝 , 𝐵𝑢,𝑝 Altitude, coverage radius, and bandwidth
of 𝑝th UAV

𝑐𝑢,𝑝 , 𝑓𝑢,𝑝 , L𝑢,𝑝 𝑝th UAV processing capacity, CPU fre-
quency, and number of CPU cores

ℎ̄ℎ , 𝑅ℎ , 𝐵ℎ HAP node altitude, coverage radius, and
bandwidth

𝑐ℎ , 𝑓ℎ , Lℎ HAP processing capacity, CPU frequency,
and number of CPU cores
Overall communication bandwidth given
by the HAP

®𝑣𝑚 (𝜏𝑖) 𝑚th VT speed at 𝜏𝑖
®𝑣min, ®𝑣max Minimum and maximum VT speed
𝐷𝑣𝑚 , 𝑗 (𝜏𝑖) Remaining path length within which 𝑚th

VT remains under the coverage of the 𝑗th
node at 𝜏𝑖

𝑇
soj
𝑣𝑚 , 𝑗
(𝜏𝑖) Remaining sojourn time for the 𝑚th VT un-

der the coverage of the 𝑗th node at 𝜏𝑖
Δns, Δsp, Δoff Network Selection, Service Placement, and

Offloading interval
Ssp, Sns, Soff States for Network Selection, Service Place-

ment, and Offloading
Asp, Ans, Aoff Action Space for Network Selection, Service

Placement, and Offloading
𝑏 (𝑆𝑠 , 𝑗 , 𝑙, 𝜏

sp
𝑖
) Binary service placement parameter

A(𝑀, 𝐽 (𝑙) , 𝑙, 𝜏ns
𝑖
) decision matrix for network selection

𝐾max
𝑗,𝑙

, 𝐾 𝑗,𝑙 (𝜏ns
𝑖
) Maximum and actual number of VTs re-

questing services
𝑇
𝜌𝑚

𝑐, 𝑗
, 𝐸𝜌𝑚

𝑐, 𝑗
Time and energy spent at the 𝑗th node for
the computation of the 𝜌𝑚th task

𝑇
𝜌 𝑗

𝑡𝑥, 𝑗𝑘
(𝜏𝑖) , 𝑇

𝜌 𝑗

𝑟𝑥,𝑘 𝑗
(𝜏𝑖) Transmission and reception time for the

𝜌𝑚th task between nodes 𝑗 and 𝑘
𝐸

𝜌 𝑗

𝑡𝑥, 𝑗𝑘
(𝜏𝑖) , 𝐸

𝜌 𝑗

𝑟𝑥,𝑘 𝑗
(𝜏𝑖) Transmission and reception energy for the

𝜌𝑚th task between nodes 𝑗 and 𝑘
𝑇off
𝑣𝑚 , 𝑗
(𝛼𝜌𝑚

(𝜏off
𝑖
)) Time spent for task offloading

𝐸off
𝑣𝑚 , 𝑗
(𝛼𝜌𝑚

(𝜏off
𝑖
)) Energy spent for task offloading

𝑇 loc
𝑣𝑚
(𝛼𝜌𝑚

(𝜏off
𝑖
)) Time spent for local computation

𝐸 loc
𝑣𝑚
(𝛼𝜌𝑚

(𝜏off
𝑖
)) Energy spent for local computation

𝑇
𝜌𝑚

𝑣𝑚 , 𝑗
(𝛼𝜌𝑚

(𝜏off
𝑖
)) Time spent for whole task computation

𝐸
𝜌𝑚

𝑣𝑚 , 𝑗
(𝛼𝜌𝑚

(𝜏off
𝑖
)) Energy spent for whole task computation

services to VTs in its coverage space. As mentioned before,
with its limited resources, 𝑟𝑛 can store only a subset of
services Ŝ1

𝑟𝑛
⊂ S. Furthermore, it is expected that the area is

covered by multiple UAVs with the 𝑝th at altitude ℎ̄𝑢,𝑝 and
coverage radius 𝑅𝑢,𝑝 . The 𝑝th UAV is supposed to move at a

5

Fig. 1. The T/NT Integrated Scenario.

relatively slow speed compared to VTs and is characterized
by a processing capability equal to 𝑐𝑢,𝑝 FLOPS per CPU
cycle, with CPU frequency 𝑓𝑢,𝑝 and L𝑢,𝑝 CPU cores. In
addition, its communication capabilities are supposed to
be identified through a communication technology able to
work on a bandwidth 𝐵𝑢,𝑝 . Each UAV can serve a set of VTs
and RSUs in its coverage space. Here, the 𝑝th UAV, with its
limited resources, can provide up to Ŝ2

𝑢𝑝
⊂ S services to the

VTs. Being a centralized node with powerful computing and
communication resources, we assume that the HAP node
can provide the entire set of services S to the VTs in its
coverage range of 𝑅ℎ meters, with a computation capacity
equal to 𝑐ℎ FLOPS per CPU cycle, with CPU frequency 𝑓ℎ
and Lℎ CPU cores and having bandwidth 𝐵ℎ. Also, the HAP
node is located at altitude ℎ̄ℎ. The basic components of the
system and the different communication links between them
are illustrated in Figure 1.

2.1 VT Mobility Model

Compared with highly dynamic VTs, aerial network plat-
forms move more slowly and often have negligible impacts
on overall mobility parameters of VTs, i.e., relative dis-
tance, speed, location, etc. Also, these platforms can follow
predefined mobility patterns based on operators’ settings.
Therefore, in this work, we consider that air networking
nodes (i.e., UAVs and HAP) are located in a fixed position in
a given interval of time, while VTs move with variable speed
®𝑣𝑚 (𝜏𝑖). We suppose that the speed of the VTs is bounded
within ®𝑣min and ®𝑣max while the instantaneous speed of the
𝑚th VT is modeled through a truncated normal distribution
density function [3]:

𝑓 (®𝑣𝑚 (𝜏𝑖)) =

2𝑒

− (®𝑣𝑚 (𝜏𝑖)−𝜇)2
2𝜎2

𝜎
√

2𝜋
(
erf

(
®𝑣max−𝜇
𝜎
√

2

)
− erf

(
®𝑣min−𝜇
𝜎
√

2

)) ,
®𝑣min ≤ ®𝑣𝑚 (𝜏𝑖) ≤ ®𝑣max

0, else

(1)

where 𝜇 and 𝜎 are the mean and standard deviation of the
vehicles speed, and erf(𝑥) is the Gauss error function over 𝑥.
The path length, within which the 𝑚th VT remains under
the coverage of the 𝑗th node (i.e., RSU, UAV or HAP), is

given by 𝐷𝑣𝑚 , 𝑗 (𝜏𝑖) =

√︃
𝑅2
𝑗
−

(
𝑦 𝑗 − 𝑦𝑣𝑚 (𝜏𝑖)

)2 ±
(
𝑥 𝑗 − 𝑥𝑣𝑚 (𝜏𝑖)

)
where,

(
𝑥𝑣𝑚 (𝜏𝑖), 𝑦𝑣𝑚 (𝜏𝑖)

)
is the location of the 𝑚th VT at 𝜏𝑖

and
(
𝑥 𝑗 , 𝑦 𝑗

)
is the projection over the ground of a generic

𝑗th node, which can be RSU, UAV or HAP. The available
sojourn time for the 𝑚th VT with respect to a generic 𝑗th
node is 𝑇 soj

𝑣𝑚 , 𝑗
(𝜏𝑖) =

𝐷𝑣𝑚, 𝑗 (𝜏𝑖)
| ®𝑣𝑚 (𝜏𝑖) | .

2.2 Multi-time Scale Approach

The service placement operations often require larger time
intervals for updating over different EN mainly due to the
virtual service activation latency, longer backhaul delays,
etc. [28]. Here, service placement operations are performed
at discrete time intervals lasting Δsp, where 𝜏

sp
𝑖

identifies
the 𝑖th time interval, i.e., 𝜏sp

𝑖
= {∀𝑡 |𝑡 ∈ [𝑖Δsp, (𝑖 + 1) Δsp]}.

Network selection decisions can be made on a moderate
time scale compared with the service placement problem.
The time scale is modeled in a time-discrete manner, with
a time interval Δns, where 𝜏ns

𝑖
identifies the 𝑖th time inter-

val, i.e., 𝜏ns
𝑖

= {∀𝑡 |𝑡 ∈ [𝑖Δns, (𝑖 + 1) Δns, 0 < (𝑖 + 1) Δns ≤ Δsp]}.
Note that the maximum number of time steps is a func-
tion of Δsp, corresponding to the time step of the service
placement problem. With high dynamicity and frequent
task requests, the computation offloading decisions should
be performed on a shorter time scale. The time scale for
the offloading process is discrete in time with a time in-
terval Δoff, where 𝜏off

𝑖
identifies the 𝑖th time interval, i.e.,

𝜏off
𝑖

=
{
∀𝑡 |𝑡 ∈

[
𝑖Δoff, (𝑖 + 1) Δoff, 0 < (𝑖 + 1) Δoff ≤ Δns

]}
. Note

that the maximum number of offloading time steps is based
on the Δns value, which corresponds to the time step of the
network selection problem.

Over time, vehicular service placement needs to be up-
dated to serve end-users according to their demands, as well
as to use appropriate resources at EC facilities. We define a
binary service placement parameter 𝑏(𝑆𝑠 , 𝑗 , 𝑙, 𝜏

sp
𝑖
) as,

𝑏(𝑆𝑠 , 𝑗 , 𝑙, 𝜏
sp
𝑖
) =

{
1 𝑆𝑠 ∈ Ŝ𝑙𝑗
0 else

with,
�̄�∑︁
𝑠=1

𝑏(𝑆𝑠 , 𝑗 , 𝑙, 𝜏
sp
𝑖
) ≤ |Ŝ𝑙𝑗 |, ∀ 𝑗 (2)

where 𝑏(𝑆𝑠 , 𝑗 , 𝑙, 𝜏𝑖) = 1 models the network operators deci-
sion of placing the service 𝑆𝑠 on the 𝑗th node at 𝜏sp

𝑖
. Notice

that the service placement remains the same throughout the
Δsp time interval, in which multiple network selection and
offloading steps are performed.

On the basis of their limited coverage ranges, each VT
can be covered by several RSUs, UAVs, and one HAP
node. Here, we define a decision matrix A(𝑀, 𝐽 (𝑙), 𝑙, 𝜏ns

𝑖
) ={

𝑎 (𝑣𝑚 , 𝑗 ,𝑙) (𝜏ns
𝑖
) ∈ {0, 1}

}
with dimension 𝑀 × 𝐽 (𝑙), where 𝐽 (𝑙)

is the amount of ENs in the 𝑙th layer. Here, 𝑎 (𝑣𝑚 , 𝑗 ,𝑙) is equal
to 1 if the 𝑚th VT selects the 𝑗th EN from the layer 𝑙 to
offload its task, otherwise it takes the value 0. VTs can select
RSU (𝑙 = 1), UAV (𝑙 = 2), or HAP (𝑙 = 3) to offload their
data. Also, to avoid additional complexity, we consider that
each VT can be assigned to only one EN which can be RSU,
UAV, or HAP during the offloading process, thus,

𝐿∑︁
𝑙=1

𝐽 (𝑙)∑︁
𝑗=1

𝑎 (𝑣𝑚 , 𝑗 ,𝑙) (𝜏ns
𝑖) = 1. (3)

6

The number of VTs requesting services from the 𝑗th EN is
given by 𝐾 𝑗 ,𝑙 (𝜏ns

𝑖
) = ∑𝑀

𝑚=1 𝑎 (𝑣𝑚 , 𝑗 ,𝑙) (𝜏ns
𝑖
). With their limited

resources, ENs can provide services to the VTs before task
communication and computation costs become unbearable.
We consider that 𝐾max

𝑗 ,𝑙
is the maximum number of VTs that

can access the services of the 𝑗th node.
We assume that the system performs partial offloading,

where tasks can be split and processed remotely while
the remaining portion is processed locally [9]; the portion
offloaded by the 𝑚th VT at 𝜏off

𝑖
is identified as 𝛼𝜌𝑚 (𝜏off

𝑖
) ∈

[0, 1]. With multiple VTs requesting services, during the
offloading process, the following constraints need to be
taken into account:

𝐾 𝑗 ,𝑙 (𝜏ns
𝑖) ≤ 𝐾max

𝑗 ,𝑙 (4a)
𝐾 𝑗,𝑙 (𝜏ns

𝑖
)∑︁

𝑚=1

𝑐
𝜌𝑚
𝑗 ,𝑙
(𝜏ns
𝑖) · 𝑓

𝜌𝑚
𝑗 ,𝑙
(𝜏ns
𝑖) ≤ (L 𝑗 ,𝑙 · 𝑐 𝑗 ,𝑙 · 𝑓 𝑗 ,𝑙) (4b)

𝐾 𝑗,𝑙 (𝜏ns
𝑖
)∑︁

𝑚=1

𝑏
𝜌𝑚
𝑗 ,𝑙
(𝜏ns
𝑖) ≤ 𝐵 𝑗 ,𝑙 (4c)

∀𝑖; 𝑗 = 1, . . . , 𝐽 (𝑙); 𝑙 = 1, . . . , 𝐿

where 𝑐𝜌𝑚
𝑗 ,𝑙
(𝜏ns
𝑖
) · 𝑓 𝜌𝑚

𝑗 ,𝑙
(𝜏ns
𝑖
) is the processing capacity of the

𝑗th EN from layer 𝑙 assigned to the 𝑚th VTs task, 𝑏𝜌𝑚
𝑗 ,𝑙
(𝜏ns
𝑖
) is

the communication resource assigned to the VT for commu-
nicating with the 𝑗th EN. We consider that EN resources are
shared equally among the requesting VTs. Eq. (4) models an
upper bound on the number of users connected, processing
capacity and the communication resources of the ENs.

2.2.1 Task Computation Model
The generic expression for the time and energy spent for the
𝜌𝑚th task computation on a 𝑗th device is given by [1]:

𝑇
𝜌𝑚
𝑐, 𝑗

=
Ω𝜌𝑚

𝑐
𝜌𝑚
𝑗
𝑓
𝜌𝑚
𝑗

, 𝐸
𝜌𝑚
𝑐, 𝑗

= 𝑇
𝜌𝑚
𝑐, 𝑗
𝑃𝑐, 𝑗 (5)

where 𝑐𝜌𝑚
𝑗

, 𝑓 𝜌𝑚
𝑗

and 𝑃𝑐, 𝑗 are the number of FLOPS, CPU-
frequency per CPU-cycle assigned to the 𝑚th user, and
computation power, respectively, whether 𝑗 identifies a VT
(𝑣𝑚), a RSU (𝑟𝑛), UAV (𝑢𝑝) or a HAP (𝐻ℎ).

2.2.2 Task Communication Model
For the case of a partial computation offloading, the trans-
mission time and energy between a generic node 𝑗 and a
generic node 𝑘 for task 𝜌 𝑗 is given by1 𝑇

𝜌 𝑗

𝑡 𝑥, 𝑗𝑘
(𝜏𝑖) =

𝐷𝜌𝑗

𝑟 𝑗𝑘 (𝜏𝑖) and
𝐸
𝜌 𝑗

𝑡 𝑥, 𝑗𝑘
(𝜏𝑖) = 𝑇

𝜌 𝑗

𝑡 𝑥, 𝑗𝑘
(𝜏𝑖)𝑃𝑡 𝑗 , respectively, where 𝑟 𝑗𝑘 (𝜏𝑖) is data-

rate of the link between the two nodes, while 𝑃𝑡 𝑗 is the trans-
mission power of 𝑗th node. Similarly, the reception time and
energy at the 𝑗th node to receive the task of size 𝐷𝑟𝜌 𝑗

from

𝑘th EN are 𝑇𝜌 𝑗

𝑟 𝑥,𝑘 𝑗
(𝜏𝑖) =

𝐷𝑟
𝜌 𝑗

𝑟𝑘 𝑗 (𝜏𝑖) and 𝐸
𝜌 𝑗

𝑟 𝑥,𝑘 𝑗
(𝜏𝑖) = 𝑇

𝜌 𝑗

𝑟 𝑥,𝑘 𝑗
(𝜏𝑖)𝑃𝑟 𝑗 ,

respectively, where 𝑃𝑟 𝑗 is the power spent for receiving data.
A symmetric channel is considered between 𝑗 and 𝑘 .

In this work, for modeling the characteristics of a channel
between the 𝑗th and the 𝑘th node at 𝑖th interval [29], we
consider that the link gain can be modeled as ℎ 𝑗 ,𝑘 (𝜏𝑖) =

𝛽0 · 𝑑 𝜃
𝑘

𝑗 ,𝑘
(𝜏𝑖), where 𝑑 𝑗 ,𝑘 (𝜏𝑖) is the distance between node 𝑗

1. In the following we identify with 𝑗 and 𝑘 the indexes of any generic
node. Hence, 𝑗 and 𝑘 can have any index among 𝑣𝑚, 𝑟𝑛, 𝑢𝑝 and 𝐻ℎ .

and 𝑘 at 𝑖th interval, 𝛽0 is the channel power gain at 1 m
reference distance, while 𝜃𝑘 is the path loss coefficient for the
communication link between node 𝑗 and 𝑘 . The expression
for the channel transmission rate is based on the Shannon
capacity formula and can be written as:

𝑟 𝑗𝑘 (𝜏𝑖) = 𝑏
𝜌 𝑗

𝑙
(𝜏𝑖) log2

(
1 +

𝑃𝑡 𝑗 · ℎ 𝑗 ,𝑘 (𝜏𝑖)
𝑁0

)
∀ 𝑗 , 𝑘 (6)

where 𝑃𝑡 𝑗 is the transmission power of a node 𝑗 , 𝑏𝜌 𝑗

𝑘
(𝜏𝑖) is

the communication bandwidth, and 𝑁0 = 𝑁𝑇𝑏
𝜌 𝑗

𝑘
(𝜏𝑖) is the

thermal noise power with noise power spectral density 𝑁𝑇 .

2.2.3 Task Offloading Process

If 𝑚th VT is assigned to 𝑗th EN, then the time and energy
required to offload the portion of task with offloading pa-
rameter 𝛼𝜌𝑚 to the selected EN and to get back the result in
the 𝑖th interval is given by:

𝑇off
𝑣𝑚 , 𝑗
(𝛼𝜌𝑚 (𝜏off

𝑖)) =

𝛼𝜌𝑚 (𝜏off
𝑖)

(
𝑇
𝜌𝑚
𝑡 𝑥,𝑣𝑚 𝑗

(𝜏off
𝑖) + 𝑇

𝜌𝑚
𝑐, 𝑗
(𝜏off
𝑖) + 𝑇

𝜌𝑚
𝑟 𝑥, 𝑗𝑣𝑚

(𝜏off
𝑖)

)
(7a)

𝐸off
𝑣𝑚 , 𝑗
(𝛼𝜌𝑚 (𝜏off

𝑖)) =

𝛼𝜌𝑚 (𝜏off
𝑖)

(
𝐸
𝜌𝑚
𝑡 𝑥,𝑣𝑚 𝑗

(𝜏off
𝑖) + 𝐸

𝜌𝑚
𝑟 𝑥, 𝑗𝑣𝑚

(𝜏off
𝑖)

)
(7b)

where both equations correspond to the sum of the terms
related to the transmission, reception and, only for the time,
local computation, introduced in Subsections 2.2.1 and 2.2.2.
Similarly to other approaches, e.g., [4], [30], the analysis
has been simplified by limiting to the user-side energy
consumption; moreover, the energy consumption in idle
state at the VT side is neglected.

2.2.4 Local Computation

From (5), the amount of time and energy required for the lo-
cal computation of the remaining task in the 𝑖th interval can
be written as the time and energy non-offloaded portions of
task, i.e.,

𝑇 loc
𝑣𝑚
(𝛼𝜌𝑚 (𝜏off

𝑖)) =
(
1 − 𝛼𝜌𝑚 (𝜏off

𝑖)
)
𝑇
𝜌𝑚
𝑐,𝑣𝑚 (8a)

𝐸 loc
𝑣𝑚
(𝛼𝜌𝑚 (𝜏off

𝑖)) =
(
1 − 𝛼𝜌𝑚 (𝜏off

𝑖)
)
𝐸
𝜌𝑚
𝑐,𝑣𝑚 (8b)

2.2.5 Partial Computation Offloading

From (7) and (8), the delay and the energy consumed
during the task processing phases when partial offloading
is performed (in the 𝑖th offloading interval) can be written
as:

𝑇
𝜌𝑚
𝑣𝑚 , 𝑗
(𝛼𝜌𝑚 (𝜏off

𝑖)) = max
{
𝑇off
𝑣𝑚 , 𝑗
(𝛼𝜌𝑚 (𝜏off

𝑖)), 𝑇 loc
𝑣𝑚
(𝛼𝜌𝑚 (𝜏off

𝑖))
}

𝐸
𝜌𝑚
𝑣𝑚 , 𝑗
(𝛼𝜌𝑚 (𝜏off

𝑖)) = 𝐸off
𝑣𝑚 , 𝑗
(𝛼𝜌𝑚 (𝜏off

𝑖)) + 𝐸 loc
𝑣𝑚
(𝛼𝜌𝑚 (𝜏off

𝑖))

where the local and offloaded computing are supposed to be
performed in parallel. Each VT should finish the offloading
process and receive the results back within the sojourn time,
hence:

𝑇off
𝑣𝑚 , 𝑗
(𝛼𝜌𝑚 (𝜏off

𝑖)) ≤ 𝑇
soj
𝑣𝑚 , 𝑗
(𝜏off
𝑖) ∀𝑖 (9)

7

P1 : min
A,A,B

1

𝑇 · 𝑀

𝑇−1∑︁
𝜏

sp
𝑖
=0

𝜏
sp
𝑖
+Δsp−Δns∑︁
𝜏ns
𝑖
=𝜏

sp
𝑖

𝜏ns
𝑖
+Δns−Δoff∑︁
𝜏off
𝑖

=𝜏ns
𝑖

©«
𝐿∑︁
𝑙=1

𝐽 (𝑙)∑︁
𝑗=1

𝑀∑︁
𝑚=1

[
𝛾1𝑇

𝜌𝑚
𝑣𝑚 , 𝑗

(
𝛼𝜌𝑚 (𝜏off

𝑖)
)
+ 𝛾2𝐸

𝜌𝑚
𝑣𝑚 , 𝑗

(
𝛼𝜌𝑚 (𝜏off

𝑖)
)
+ 𝑐(𝜏off

𝑖)
]ª®¬

 (10)

2.2.6 Service Placement Penalty
In a multi-service VN, if the selected EN is unable to provide
the requested service, VTs are impacted by additional costs
due to, e.g., handover. There are several mechanisms that
can be used in these scenarios. For instance, the chosen
EN can transmit the VTs data to a neighboring EN that is
capable of providing the requested service. Alternatively,
the chosen EN can request a centralized orchestrator to
provide the requested service. These operations may result
in additional penalties in the overall offloading process.
Hence, we propose the introduction of a generic service
placement penalty during the offloading process, which is
defined as:

𝑐(𝜏off
𝑖) =

{
𝜁 if 𝑏(𝑆𝜌𝑚 , 𝑗 , 𝑙, 𝜏

sp
𝑖
) ≠ 1 ∧ 𝑎 (𝑣𝑚 , 𝑗 ,𝑙) (𝜏ns

𝑖
) = 1

0 otherwise

where 𝜁 is the constant penalty when selected EN is not able
to provide a requested service.

2.3 Problem Formulation

The main objective of this work is to optimize the network-
wide performance of EC-enabled multiservice VN. We aim
to optimize performance in terms of overall latency, energy,
and service placement during the offloading process. Our
main objective is to optimize the overall network cost by
properly selecting ENs for service placement and compu-
tation offloading operations simultaneously. Additionally,
offloading the optimal amount of data towards them fur-
ther reduces overall latency and energy cost. For this, we
formulate the joint latency, energy, and service placement
cost minimization problem as in (10), subject to:

C1 : Eq. (2) (11)
C2 : Eq. (3) (12)
C3 : Eqs. (4a), (4b) and (4c) (13)
C4 : Eq. (9) (14)

C5 : 𝑇𝜌𝑚
𝑣𝑚 , 𝑗

(
𝛼𝜌𝑚 (𝜏off

𝑖)
)
≤ 𝑇𝜌𝑚 ∀V,∀𝑖, 𝑗 (15)

C6 : 𝐸off
𝑣𝑚 , 𝑗
(𝛼𝜌𝑚 (𝜏off

𝑖)) < 𝐸 loc
𝑣𝑚
(𝛼𝜌𝑚) (16)

C7 : 0 ≤ 𝛾1, 𝛾2 ≤ 1; 𝛾1 + 𝛾2 = 1 (17)

where A = {𝛼𝜌𝑚 (𝜏off
𝑖
)}𝑀 is the computation offloading ma-

trix, A = {A(𝑀, 𝐽 (𝑙), 𝑙, (𝜏ns
𝑖
))} is the set of VT-EN assignment

matrix, B = {𝑏(𝑆𝑠 , 𝑗 , (𝜏
sp
𝑖
))} is the service placement matrix,

𝛾1 and 𝛾2 are weight coefficients for balancing latency
and energy consumption, and 𝑇 is the whole time interval
considered. C1 puts a limit on the maximum number of
services placed in each EN 𝑗 . C2 stands that each VT can
select at most one EN for the computation offloading. C3
provides the limits over the number of user requests, pro-
cessing capacity and bandwidth resource blocks requested
by VTs towards ENs. According to C4, to avoid handover
phenomena and related latency, each VT should complete

the offloading process before it passes through the selected
EN coverage. C5 puts a limit on the maximum processing
time as one of the task requirements. In order to have a valid
offloading process, according to C6, the weighted energy
consumed on VT for processing a complete task should be
lower than the total weighted energy required to compute
a complete task locally. C7 stands that the two weighting
coefficients (𝛾1, 𝛾2) should be between 0 and 1 with a sum
equal to 1.

3 MULTI-TIME SCALE OPTIMIZATION

In the scenario considered, the service placement decisions
taken by the centralized operator can impact the users’
network selection possibilities and the corresponding out-
comes in terms of accessing services at reduced costs. On
the other hand, the network selection decisions made by VTs
can further impact the offloading decision and, thus, corre-
sponding task processing costs. Therefore, these processes
and the decisions associated with them can create a hier-
archical structure of decisions that influence each other’s
performances. In addition to this, these decisions should be
made at different time scales (i.e., Δsp,Δns,Δoff). This leads to
a multi-time scale optimization process involving multiple
layers of decisions impacting each other. Multi-time-scale
optimization has been a well-established area of research,
focusing on modeling various realistic situations where
multiple processes exhibit different time-scale behaviors.
These situations can be effectively addressed as multi-time-
scale problems. Traditionally, heuristic approaches have
been employed to find solutions to such problems, but these
approaches are only consistent in specific scenarios. The
use of MDPs provides a suitable framework for modeling
the evolving states over time. In this study, we propose an
extension to the traditional MDP approach by introducing a
hierarchical MDP model, where each level of the hierarchy
can effectively capture a specific timing aspect. The consid-
ered multi-time-scale optimization problem can be solved
effectively through sequential decision-making processes,
e.g., MDP, where a multi-time scale MDP model [31] can be
considered to solve the problem of joint service placements,
network selection, and computation offloading effectively.
In the following, we define a Multi-Time scale MDP (MDP-
MT) as represented in Fig. 2 through several basic elements
discussed in the following.

3.1 Service Placement MDP

The service placement MDP is a model that addresses the
network service placement problem in resource-constrained
EN to meet the demands of vehicular users. Decisions about
service placement can be made over a longer time period,
denoted as Δsp.

The discrete state space for the service placement MDP
is defined as Ssp = {𝑠sp

1 , · · · , 𝑠
sp
𝑢 , · · · , 𝑠

sp
𝑈
} with maximum

8

Fig. 2. Multi-scale MDP Model for the Service Placement, Network
Selection, and Offloading Problem.

𝑈 states. Ssp is modeled as a function of the number of
EN available and the service placement updates over time.
Thus,

𝑠
sp
𝑢 (𝜏

sp
𝑖
)={𝑁 (𝜏sp

𝑖
), 𝑃(Δsp

𝑖
), 𝐻 (𝜏sp

𝑖
), �̂�𝑅 (𝜏

sp
𝑖
), 𝑃𝑈 (𝜏

sp
𝑖
), �̂�𝐻 (𝜏

sp
𝑖
)}

where �̂�𝑅 (𝜏
sp
𝑖
)𝑁 (𝜏sp

𝑖
)×𝑆 , �̂�𝑈 (𝜏

sp
𝑖
)𝑃 (𝜏sp

𝑖
)×𝑆 , and �̂�𝐻 (𝜏

sp
𝑖
)𝐻 (𝜏sp

𝑖
)×𝑆

are the binary matrices modeling the change in the service
placement over different edge layers at 𝜏sp

𝑖
. For example, if

the selected action places the 𝑠th service on the 𝑛th RSU then
�̂�𝑅 (𝜏

sp
𝑖
) (𝑖, 𝑗) = 1, else it takes value zero.

A discrete set of actions is defined through Asp =

{𝑎sp
1 , · · · , 𝑎

sp
�̄� , · · · , 𝑠

sp
�̄�
} with maximum �̄� actions. Asp in-

cludes all the feasible service placement options that an
orchestrator can use. For limiting the complexity of the MDP
we have assumed that all the ENs from the same edge layer
have the same subset of services placed on them.

The performance of service placement MDP is measured
through the feedback signal generated as a sum of the
total reward received during the offloading and network
selection process as shown in Fig. 3, i.e., the hierarchical
feedback process.

3.2 Network Selection MDP

The MDP model for network selection addresses the prob-
lem of selecting a network in a scenario where decisions are
made on a moderate time scale Δns, which is different from
the time scale of the service placement problem. The goal
of the network selection problem is to find an appropriate
EN that can provide the desired service. If the selected
EN does not have the requested service available, there
may be additional costs in terms of service handovers.
Therefore, the decisions made by the network selection
MDP are influenced by the current state-action pairs of the
service placement MDP model. Furthermore, various local
environment parameters, such as competing VTs, available
ENs and their states, and the type of requested service, can
also impact the network selection decision. It is challenging

to provide a single model that can handle all dynamic sit-
uations, as it may result in reduced overall performance. In
light of this, we incorporate local environment parameters
obtained through V2X technology into the MDP process
by representing it through various scenarios. In particular,
vehicular scenarios set Ω = {𝑘1, · · · , 𝑘𝑔, · · · , 𝑘𝐺} based upon
local vehicular density D, the number of RSUs 𝑅𝑚, UAVs
𝑈𝑚 and HAP nodes 𝐻ℎ covering the VT and the requested
service type. Here 𝐺 is the maximum number of considered
scenarios. Thus the generic 𝑔th scenario, 𝑘𝑔, is defined as a
tuple 𝑘𝑔 = ⟨D, 𝑅𝑚,𝑈𝑚, 𝑅𝑚, 𝑆𝜌𝑚⟩ with,

D =

0 if 1 ≤ 𝑀 < 𝑀1

1 if 𝑀1 ≤ 𝑀 < 𝑀2

2 if 𝑀2 ≤ 𝑀

where 𝑀1 and 𝑀2 are parameters introduced to classify VT
traffic scenarios into low, medium, and high density.

Next, we define the state-space for the network selection
MDP as Sns = {𝑠ns

𝑚 (𝜏ns
𝑖
)} with 𝑠ns

𝑚 (𝜏ns
𝑖
) ∈ {(𝑠ns

𝑣𝑚
, 𝑠ns
𝑒)}. The

individual state 𝑠ns
𝑚 (𝜏ns

𝑖
) is based on the VT side state (𝑠ns

𝑣𝑚
),

and the selected ENs state 𝑠ns
𝑒 where 𝑒 can be an RSU, UAV

or HAP node. The VTs state 𝑠ns
𝑚 (𝜏ns

𝑖
) is modeled by the

requested service 𝑆𝜌𝑚 , 𝑑𝑚,𝑒, the distance between VT and
the EN, and 𝐷𝑣𝑚 ,𝑒, the distance before VT passes through
the coverage area of 𝑒.

The action space for VTs in scenario 𝑔 is defined asAsp
𝜅𝑔 =

{𝑎ns
�̄�, 𝑗
(𝜏ns
𝑖
)} for the network selection MDP corresponds to all

possible sets of actions with individual actions, 𝑎ns
�̄�,𝑔 (𝜏ns

𝑖
) =

[{0, 1}1×𝑅𝑚
, {0, 1}1×𝑈𝑚

, {0, 1}1×𝐻𝑚
],with

∑
𝑎ns
�̄�,𝑔 (𝜏ns

𝑖
) = 1

The performance of network selection MDP is measured
through the feedback signal generated as a sum of the
rewards received during the offloading process, as shown
in Fig. 3.

3.3 Computation Offloading MDP

The computation offloading problem involves determining
the appropriate amount of data to be offloaded to a selected
EN. Given the high level of dynamism and frequent task
requests, these decisions must be made quickly, within a
time scale denoted Δoff. The computation offloading process
should be completed before the VT passes through the cov-
erage range of the selected EN. Additionally, the entire task
processing operation must be performed within a specified
task latency requirement, and an optimal amount of data
should be offloaded to minimize the energy costs associated
with VTs’ local data computation and data transmission
operations. Decisions made during network selection and
service placement MDPs can impact the performance of the
offloading MDP. If an incorrect EN is selected during the
network selection process or if services are not properly
aligned between different ENs, performance during the
offloading phases may be limited.

By taking into account the various performance require-
ments of MDP, here we introduce a discrete state space for
the offloading MDP problem that is based upon following
three binary functions that model the behavior of offloading
MDP over time. If the 𝑚th VT is assigned to the 𝑛th EN and
performs offloading operation with offloading parameter

9

𝛼𝜌𝑚 , the environment can be modeled through three proper
binary functions, as:

𝐹1
𝜌𝑚 ,𝑛
(𝜏off
𝑖) =

{
0 𝑇off

𝑚,𝑛 (𝛼𝜌𝑚 (𝜏off
𝑖
)) ≤ 𝑇 soj

𝑚,𝑛 (𝜏off
𝑖
)

1 else

𝐹2
𝜌𝑚 ,𝑛
(𝜏off
𝑖) =

{
0 𝑇

𝜌𝑚
𝑚,𝑛

(
𝛼𝜌𝑚 (𝜏off

𝑖
)
)
≤ 𝑇𝜌𝑚

1 else

𝐹3
𝜌𝑚 ,𝑛
(𝜏off
𝑖) =

{
0 𝐸off

𝑚,𝑛 (𝛼𝜌𝑚 (𝜏off
𝑖)) < 𝑤1𝐸

𝜌𝑚
𝑐,𝑚

1 else

where 𝐹1
𝜌𝑚 ,𝑛
(𝜏off
𝑖
), 𝐹2

𝜌𝑚 ,𝑛
(𝜏off
𝑖
) and 𝐹3

𝜌𝑚 ,𝑛
(𝜏off
𝑖
) are the binary

functions depending upon the sojourn time constraint (9),
application latency requirement (15) and the energy con-
straint (16), respectively.

The discrete state space for the computation offload-
ing MDP is defined as Soff =

{
𝑠off

1 , · · · , 𝑠off
𝑙
, · · · , 𝑠off

𝐿

}
with

maximum 𝐿 states with the individual state defined as
𝑠off
𝑙
(𝜏off
𝑖
) =

{
𝐹1
𝜌𝑚 ,𝑛
(𝜏off
𝑖
), 𝐹2

𝜌𝑚 ,𝑛
(𝜏off
𝑖
), 𝐹3

𝜌𝑚 ,𝑛
(𝜏off
𝑖
)
}
. The action

space Aoff = {𝑎off
𝑙
} for the computation offloading MDP

is defined as Aoff = [0,Λ, 2Λ, · · · , 1], where Λ is the step
change in the value of offloading parameter 𝛼𝜌𝑚 .

3.4 Reward Function
The performance of the MDP can be described through a
joint reward function defined as,

𝑟off (𝑠off
𝑙) = 𝛾1𝑇

𝜌𝑚
𝑣𝑚 , 𝑗

(
𝛼𝜌𝑚 (𝜏off

𝑖)
)
+ 𝛾2𝐸

𝜌𝑚
𝑣𝑚 , 𝑗
(𝛼𝜌𝑚 (𝜏off

𝑖))

+ 𝑐(𝜏off
𝑖) + 𝐹1

𝜌𝑚 ,𝑛
(𝜏off
𝑖) + 𝐹2

𝜌𝑚 ,𝑛
(𝜏off
𝑖) + 𝐹3

𝜌𝑚 ,𝑛
(𝜏off
𝑖) (18)

The total reward received is the sum of latency, energy
costs, service placement, and additional constraint failure
penalties.

4 DEEP Q-LEARNING FOR SERVICE PLACEMENT,
NETWORK SELECTION, AND COMPUTATION OF-
FLOADING

The previous section introduced the various components of
the MDP models. By solving these models, VTs can discover
an appropriate service placement, node selection, and of-
floading amount that can effectively reduce total latency,
energy consumption, and service placement costs.

For any instant in time 𝜏𝑖 , the state space ST is equal to
{𝑠(𝜏𝑖)}, where 𝑠(𝜏𝑖) = (𝑠off

𝑙
, 𝑠ns
𝑚 , 𝑠

sp
𝑢) is the instantaneous state

of a multi-time-scale MDP, i.e., a combination of the three
MDPs states. For the large time interval Δsp, 𝑠sp

𝑢 remains
unchanged while multiple transactions can occur for 𝑠off

𝑙
and

𝑠ns
𝑚 . The solutions can be defined as a policy function 𝜋 ∈ Π:

𝜋 =

{
𝜋off (𝑠off

𝑙 (𝜏𝑖 + 𝛿)), 𝜋
ns (𝑠ns

𝑚 (𝜏𝑖 + 𝛿)), 𝜋sp (𝑠sp
𝑢 (𝜏𝑖 + 𝛿))

}
that maps every state 𝑠 ∈ ST to action 𝑎 = {(𝑎off

𝑙
, 𝑎ns
�̄� , 𝑎

sp
�̄�)} ∈

AS. Given the offloading policy 𝜋off, network selection
policy 𝜋ns, and the lower level reward 𝑅off, over a large time
scale Δsp, we define a Δsp/Δoff-horizon total expected reward
as (19), where

𝜎1 (𝑛Δsp/Δns + 𝑟) = 𝑟, ∀𝑛 > 0, 𝑟 = 0, · · · ,Δsp/Δns,

𝜎2 (𝑛Δns/Δoff + 𝑟) = 𝑟, ∀𝑛 > 0, 𝑟 = 0, · · · ,Δns/Δoff,

0 < 𝛼1, 𝛼2 ≤ 1,

and 𝑠ns
0 and 𝑠off

0 are the initial state values for Δ
sp
𝑘

and Δns
𝑖

,
respectively. Here, the total expected reward achieved by
the offloading and network selection level MDPs will act as
a single-step reward for a service placement MDP.

Selecting different actions can result in different policy
functions, where the aim is to find an optimal policy that
corresponds to the minimum delay and energy cost dur-
ing vehicular task processing. For every policy 𝜋, a value
function 𝑉𝜋 (𝑠(𝜏𝑖)), corresponding to a state 𝑠(𝜏𝑖) can be
defined for analyzing its performance. In general, 𝑉𝜋 (𝑠(𝜏𝑖))
corresponds to an expected value of a discounted sum of
total reward received by following the policy 𝜋 from state
𝑠(𝜏𝑖), and can be defined as (19). The optimal policy 𝜋∗

corresponding to the value function 𝑉 is defined using
the Bellman equation as in (20). Here, 𝑃off

(𝑠off
𝑙
,𝑠off

𝑙
)
(𝜋off
𝑙
(𝑠off
𝑙
)),

𝑃ns
(𝑠ns

𝑚 ,𝑠
ns
�̂�
) (𝜋

ns
𝑚 (𝑠ns

𝑚)), and 𝑃sp
(𝑠sp

𝑢 ,𝑠
sp
�̂�
)
(𝑎sp
𝑢) model the environment

dynamics based upon the state transition probabilities. In
addition, 𝑅off is the mean value of the immediate reward
𝑟off defined in (18).

Due to the intricate and ever-changing nature of the
vehicular scenario under consideration, it is challenging to
accurately determine the environmental dynamics. In light
of this, we employ a model-free RL approach to solve the
multi-time-scale MDP model and identify the optimal poli-
cies. Q-learning, among various other model-free strategies,
has been extensively investigated for its ability to determine
the optimal 𝜋∗ in unfamiliar environments. The Q-learning
strategy is based on a state-action function, i.e., the Q-
function, defined as,

𝑄 𝜋 (𝑠′, 𝑎′) = 𝑅(𝑠′, 𝑎′) + 𝛾
∑̂︁
𝑠∈𝑆

𝑃𝑠′𝑠 (𝑎′)𝑉 𝜋 (𝑠)

representing a discounted cumulative reward from state 𝑠′

when action 𝑎′ is taken before following the policy 𝜋. The
optimal Q value can be represented as

𝑄 𝜋
∗ (𝑠′, 𝑎′) = 𝑅(𝑠′, 𝑎′) + 𝛾

∑̂︁
𝑠∈𝑆

𝑃𝑠′𝑠 (𝑎′)𝑉 𝜋
∗ (𝑠)

where 𝑉 𝜋
∗ (𝑠) = min�̂�∈𝐴𝑄 𝜋

∗ (𝑠′, �̂�). The Q values can be
estimated through a recursive approach, where

𝑄𝑡+1 (𝑠′, 𝑎′) = 𝑄𝑡 (𝑠′, 𝑎′) + 𝜖 ·
(
𝑟 + 𝛾max

�̂�
𝑄𝑡 (𝑠′, �̂�) −𝑄𝑡 (𝑠′, 𝑎′)

)
and 𝜖 is a learning rate. The Q function can be estimated
using a neural network-based function approximation tech-
nique with 𝑄(𝑠′, 𝑎′; 𝜃) ≈ 𝑄(𝑠′, 𝑎′), where 𝜃 represents the
weights of the neural network. Through the training pro-
cess, the values of 𝜃 can be adjusted to reduce the mean
square error values.

In the Deep Q Network (DQN) based approach, two net-
works (i.e., primary and target Q networks) are considered
for a reliable estimation of Q functions over different time
scales. The primary network estimates the real/primary Q-
value while the target Q-values are estimated through the
target network. The RL agent uses the backpropagation
and gradient descent processes with mean square error
(MSE)-based loss function for reducing the gap between the

10

𝑅sp (𝑠sp
𝑢 (Δ

sp
𝑘
), 𝑎sp

�̄� (Δ
sp
𝑘
), 𝑠ns

𝑚 , 𝜋
ns
𝑚 , 𝑠

off
𝑙 , 𝜋

off
𝑙) =

E
𝑠ns

0 ,𝑠
off
0

𝑠
sp
𝑢 ,𝑎

sp
�̄�

{ (𝜏sp
𝑘
+Δsp−Δns)∑︁
𝜏ns
𝑖
=𝜏

sp
𝑘

𝛼
𝜎1 (𝜏ns

𝑖
)

1

(𝜏ns
𝑖
+Δns−Δoff)∑︁
𝜏off
𝑗
=𝜏ns

𝑖

𝛼
𝜎2 (𝜏off

𝑗
)

2 𝑅off

(
𝑠ns
𝑚

(
𝜏ns
𝑖

)
, 𝜋ns

(
𝑠ns
𝑚 (𝜏ns

𝑖), 𝑠
sp
𝑢 (𝜏

sp
𝑘
), 𝑎sp

�̄� (𝜏
sp
𝑘
)
)
, 𝑠off
𝑙 (𝜏

off
𝑗),

𝜋off
(
𝑠off
𝑙 (𝜏

off
𝑗), 𝑠ns

𝑚

(
𝜏ns
𝑖

)
, 𝜋ns

(
𝑠ns
𝑚

(
𝜏ns
𝑖

)
, 𝑠

sp
𝑢 (𝜏

sp
𝑘
), 𝑎sp

�̄� (𝜏
sp
𝑘
)
)
, 𝑠

sp
𝑢 (𝜏

sp
𝑘
), 𝑎sp

�̄� (𝜏
sp
𝑘
)
))}

(19)

𝑉 (𝑠off
𝑙 , 𝑠

ns
𝑚 , 𝑠

sp
𝑢) 𝜋

∗
= min
𝑎

sp
𝑢 ∈Asp

{
min
𝜋ns
𝑚 ∈Πns

{
min
𝜋off
𝑙
∈Πoff

{
𝑅sp

(
𝑠

sp
𝑢 , 𝑎

sp
𝑢 , 𝑠

ns
𝑚 , 𝜋

ns
𝑚 , 𝑠

off
𝑙 , 𝜋

off
𝑙

)
+ 𝛾

∑︁
∀𝑠off

𝑙

∑︁
∀𝑠ns

�̂�

∑︁
∀𝑠sp

�̂�

𝑃off
(𝑠off

𝑙
,𝑠off

𝑙
) (𝜋

off
𝑙 (𝑠

off
𝑙))𝑃

ns
(𝑠ns

𝑚 ,𝑠
ns
�̂�
) (𝜋

ns
𝑚)𝑃

sp
(𝑠sp

𝑢 ,𝑠
sp
�̂�
)
(𝑎sp
𝑢)𝑉∗ (𝑠off

𝑙
, 𝑠ns
�̂�
, 𝑠

sp
�̂�
)
}}}

(20)

Fig. 3. Proposed Deep Q-Learning Solution

primary and the target Q-values where the loss function is
defined as:

𝐿 (𝜃) = E

[(
𝑟 + 𝛾max

�̂�
𝑄𝑡 (𝑠′, �̂�, 𝜃

′) −𝑄(𝑥, 𝑎, 𝜃)
)2

]
(21)

where the primary values 𝑄(𝑥, 𝑎, 𝜃) are based on primary
network parameters 𝜃, and 𝑟+𝛾max�̂� 𝑄𝑡 (𝑠′, �̂�, 𝜃

′) is the target
Q value based upon the target network parameters 𝜃

′
.

The Deep Q-learning method for solving the multi-
time-scale MDP model to determine the optimal service
placements, network selection, and offloading policies is
illustrated in Fig. 3. The problem is tackled using three
different DQN architectures, each designed for a specific
time scale. In the case of service placement, the DQN archi-
tectures consist of a primary network and a target network,
each having �̄�sp layers with �̄�

sp
�̄�

neurons. Here, �̄� ranges
from 1 to �̄�sp. Similarly, for each scenario 𝑘𝑔, we consider
network selection and computation offloading DQN with
�̄�ns
𝑔 and �̄�off

𝑔 layers, and neurons �̄�ns
𝑔,�̄�

and �̄�off
𝑔,�̄�

. Here, �̄�
ranges from 1 to �̄�ns

𝑔 for network selection and from 1 to
�̄�off
𝑔 for computation offloading. Additionally, we consider

replay memories with sizes Dsp, Dns
𝑔 , and Doff

𝑔 to store the
agents’ past experiences.

At first, the primary network associated with the ser-
vice placement problem detects the current state of the

vehicular environment. Decisions about service placement
are updated periodically, with a time scale denoted 𝜏

sp
𝑖

.
These updates are based on a proper action determined by
the Epsilon Greedy Policy (EGP), which is controlled by
the parameter 𝑒sp. The state-action pair (𝑠sp

𝑢 (𝜏
sp
𝑖
), 𝑎sp

�̄� (𝜏
sp
𝑖
))

is then transmitted to the other two DQNs. The primary
network of a second DQN detects the current state of the
environment and uses EGP with parameter 𝑒ns

𝑔 on each Δns

interval to update the network selection decisions. The state-
action pairs (𝑠ns

𝑢 (𝜏ns
𝑖
), 𝑎ns

�̄� (𝜏ns
𝑖
)) are then sent to the offload-

ing DQN for further processing. The decisions regarding
offloading are determined by the current dynamics of the
environment, which are influenced by 𝑎sp

�̄� (𝜏
sp
𝑖
), 𝑎ns

�̄� (𝜏ns
𝑖
), and

the EGP strategies with parameter 𝑒off,𝑔 over Δoff intervals.
Additionally, the system receives an instantaneous reward,
which, along with other entities such as the current state,
action, and next state, is stored in the replay buffer. The
cumulative reward of the offloading process is then back-
propagated to the network selection and service placement
DQNs, considering multiple offloading decisions.

Algorithm 1 details the DQN process for the multi-time-
scale service placement, network selection, and computation
offloading problem. The process begins with the definition
and initialization of primary and target networks for the
tasks under consideration (Line 1-2). After that, the training
process iterates over �̄� training iterations, where in each
iteration DQN models are updated (Line 3-33). In each
training iteration, an initially random set of states is selected
(Line 5). Next, throughout several epochs, denoted as 𝐼𝑆𝑃 ,
the model undergoes training using a gradient descent
method. This involves adjusting the weight values to mini-
mize the loss function, which is dependent on the target and
primary Q values. During each training epoch, the action
𝑎ns is chosen using the EGP method with a probability of 𝑒.
This action is then applied to the service placement network
to generate the next state (Line 13-14). Since the reward is
dependent on the performance of moderate and small time
scale MDPs, the MDP models for network selection and
offloading processes corresponding to different scenarios
are trained in a similar manner over the 𝐼ns and 𝐼off epochs,
respectively.

11

Algorithm 1 Multi-time Scale Deep Q-Learning
Input: Δsp, Δns, Δoff, Ssp, Sns, Soff, Asp, Ans, Aoff, S,V , R,U, ℎ, �̄� ,

Isp, Ins, Ioff, 𝑖, 𝐺, 𝑒
sp, 𝑒ns

𝑔 , 𝑒
off
𝑔 , Dsp, Dns

𝑔 , Doff
𝑔 ,

𝜖 sp, 𝜖 ns
𝑔 , 𝜖

off
𝑔 , 𝜖 sp, 𝛾ns

𝑔 , 𝜖
off
𝑔

Output: 𝑤𝑝,sp, {𝑤𝑝,ns
𝑔 , 𝑤

𝑝,off
𝑔 , ∀𝑔 ∈ 𝐾 }

1: Initialize 𝑤𝑝,sp, {𝑤𝑝,ns
𝑔 , ∀𝑔 ∈ 𝐾 }, {𝑤𝑝,off

𝑔 , ∀𝑔 ∈ 𝐾 }
2: Duplicate policy networks to Target Networks,

i.e., 𝑤𝑇,sp = 𝑤𝑝,sp, {𝑤𝑇,ns
𝑔 = 𝑤𝑝,ns}, {𝑤𝑇,off

𝑔 = 𝑤𝑝,off}
3: for all 𝑒𝑝 = 1, . . . , �̄� do
4: Select Random 𝑠

sp
0 , {𝑠ns

0,𝑔 }, {𝑠
off
0,𝑔 }

5: 𝑠sp ← 𝑠
sp
0 , {𝑠

ns
𝑔 ← 𝑠ns

0,𝑔 , 𝑠off
𝑔 ← 𝑠off

0,𝑔 , ∀𝑔}, 𝑖𝑡 = 0
6: while 𝑖sp ≠ Isp do
7: 𝑖sp = 𝑖sp + 1
8: Select action 𝑎sp ∈ Asp with probability 𝑒sp

9: Determine next state (𝑠sp
new)

10: for all 𝑔 = 1, . . . , 𝐺 do
11: while 𝑖ns ≠ 𝐼ns do
12: 𝑖ns = 𝑖ns + 1
13: Select action 𝑎ns ∈ Ans with probability 𝑒ns

𝑔

14: Determine next state (𝑠ns
new)

15: while 𝑖off ≠ 𝐼off do
16: Select 𝑎off ∈ Aoff with probability 𝑒off

𝑔

17: Find next state 𝑠off
new and reward 𝑅off

18: Store Doff
𝑔 ← (𝑠off, 𝑎off, 𝑅off, 𝑠off

new)
19: 𝑤

𝑝,off
𝑔 , 𝑤

𝑇,off
𝑔 =

DQN(Doff
𝑔 , 𝑘, 𝑤

𝑝,off
𝑔 , 𝑤

𝑇,off
𝑔 , 𝑖off, 𝑖, 𝜖

off
𝑔 , 𝛾off

𝑔)
20: 𝑠off ← 𝑠off,new

21: end while
22: Use 𝑤𝑝,off

𝑔 to generate feedback,

i.e, Reward Signal 𝑅ns =
∑𝜏ns

𝑖
+Δns−Δoff

𝜏off
𝑗
=𝜏ns

𝑖

𝑅off (𝜏off
𝑗
)

23: Store Dns
𝑔 ← (𝑠ns, 𝑎ns, 𝑅ns, 𝑠ns

new)
24: 𝑤

𝑝,ns
𝑔 , 𝑤

𝑇,ns
𝑔 =

DQN(Dns
𝑔 , 𝑘, 𝑤

𝑝,ns
𝑔 , 𝑤

𝑇,ns
𝑔 , 𝑖ns, 𝑖, 𝜖

ns
𝑔 , 𝛾

ns
𝑔)

25: 𝑠ns ← 𝑠ns,new

26: end while
27: end for
28: Use 𝑤𝑝,ns

𝑔 to generate feedback,

i.e, Reward Signal 𝑅sp = 1
𝐺

∑𝐺
𝑔=1

∑𝜏
sp
𝑖
+Δsp−Δns

𝜏ns
𝑗
=𝜏

sp
𝑖

𝑅ns (𝜏ns
𝑗
)

29: Store Dsp ← (𝑠sp, 𝑎sp, 𝑅sp, 𝑠
sp
new)

30: 𝑤𝑝,sp, 𝑤𝑇,sp =

DQN(Dsp, 𝑘, 𝑤𝑝,sp, 𝑤𝑇,sp, 𝑖sp, 𝑖, 𝜖
sp, 𝛾sp)

31: 𝑠sp ← 𝑠sp,new

32: end while
33: end for
34: return 𝑤𝑝,sp, {𝑤𝑝,ns

𝑔 , 𝑤
𝑝,off
𝑔 , ∀𝑔 ∈ 𝐾 }

The DQN Function, as described in Algorithm 2, rep-
resents the core training process utilized by the DQN net-
works. This process entails randomly selecting a batch of
𝑘 samples from the memory buffer D (Line 2), determin-
ing the value of the loss function based on the network’s
performance (Line 3-4) using discount factors (𝛾sp, 𝛾ns

𝑔 , 𝛾
off
𝑔),

learning rates (𝜖sp, 𝜖ns
𝑔 , 𝜖

off
𝑔), and gradient descent updates

(Line 5), and updating the target network state after a certain
number of epochs, denoted as 𝑖.

Algorithm 2 DQN Function
Input: D, 𝑘, 𝑤𝑝 , 𝑤𝑇 , 𝑖, 𝑖, 𝜖 , 𝛾

Output: {𝑤𝑝 , 𝑤𝑇 }

1: function DQN(D, 𝑘, 𝑤𝑝 , 𝑤𝑇 , 𝑖, 𝑖, 𝜖 , 𝛾)
2: Select Random batch of of 𝑘 samples from D
3: Preprocess and pass the batch to 𝑤𝑝

4: Find Loss between primary and Target Q values using (21)
5: With gradient descent step update 𝑤𝑝

6: Update 𝑤𝑇 if 𝑟𝑒𝑚(𝑖, 𝑖) = 0
7: end function
8: return {𝑤𝑝 , 𝑤𝑇 }

The computation complexity for the basic DQN archi-
tecture can be defined as O(S · A · I) with S, A, being
dimensions of state and action spaces and I being training
epoch performed per iteration [1]. Therefore, for a consid-
ered multi-time scale approach, the computation complexity
is given by O(S𝑔 · A𝑔 · I𝑔) with S𝑔 = Ssp ⋃Sns

𝑔

⋃Soff
𝑔

as a union of state spaces for the particular 𝑔th scenario.
Similarly, A𝑔 = Asp ⋃Ans

𝑔

⋃Aoff
𝑔 is the dimension of action

space and I𝑔 = 𝐼sp + 𝐼ns + 𝐼off. It should be noted that with the
definition of multiple vehicular scenarios, the overall state
space for the network selection and offloading processes
can be reduced significantly, and with that, through the
paralization approach the complexity can be limited.

5 NUMERICAL RESULTS

The proposed DQN-based multi-time scale MDP methods
are simulated over a Python-based simulator for analyzing
the performance. In order to have a proper assessment of
the performance of the proposed solution, we resorted to the
definition of some benchmarks. Given the unique nature of
the scenario being discussed, to the best of our understand-
ing, there is no existing algorithm from the literature that
can be deemed suitable for this situation. For this reason, we
consider one static approach and three partial approaches,
where, in turn, one of the three parameters to be optimized
is randomly chosen. To this aim, the following benchmark
solutions are considered for comparison purposes:

a) Static Approach (SA): In this case, the services are
randomly placed and their placement is fixed over time.
The network selection operation is based on a minimum
distance approach, where VTs select the nearest EN to
offload their complete task.

b) MDP (Network Selection and Offloading) with Static
Service Placements (MDP-SSP): In this approach, the
service placement is performed randomly and is fixed
over time. On the other hand, the network selection and
offloading decisions are made through MDP with dif-
ferent time scales. This approach allows us to measure
the impact of dynamic service placements over time.

c) MDP (Service Placement and Offloading) with Ran-
dom Network Selection (MDP-RS): In this approach,
each VT randomly selects the ENs while service place-
ment and offloading decisions are made using the MDP
approach with multiple time scales. This allows us to
evaluate the performance of network selection opera-
tions performed by VTs over time.

d) MDP (Service Placement and Network Selection)
with Full Offloading (MDP-FO): In this approach,
service placement and network selection operations are
performed through the MDP model with different time
scales. Each VT performs the full offloading towards
the selected EN.

Simulation is performed considering an IoV scenario
with varying numbers of VTs between 200 and 2000 and
three edge layers (i.e., RSUs, UAVs, and HAP) are consid-
ered. We have considered 𝑁 = 50 RSUs, 𝑃 = 30 UAVs, and
one HAP node to serve VTs with 𝑆 = 5 different services.
Furthermore, Ŝ1

𝑛 = 3,∀𝑛, Ŝ2
𝑝 = 2,∀𝑝, and Ŝ3

ℎ
= 5 represent the

limit on the number of services provided by different edge
facilities. The generic 𝑚th VT generates a task request 𝜌𝑚

12

TABLE 2
Simulation parameters

HAP Coverage (𝑅ℎ) 2 km
UAV Coverage (𝑅𝑢,𝑝) 100 m

RSU Coverage ((𝑅𝑟,𝑛)) 50 m
VT Computation Cap. (𝑐𝑣,𝑚 · 𝑓𝑣,𝑚) 2 GFLOPS

RSU Computation Cap. (L𝑟,𝑛 · 𝑐𝑟,𝑛 · 𝑓𝑟,𝑛) 10 GFLOPS
UAV Computation Cap. (L𝑢,𝑝 · 𝑐𝑢,𝑝 · 𝑓𝑢,𝑝) 10 GFLOPS

HAP Computation Cap. (Lℎ · 𝑐ℎ · 𝑓ℎ) 30 GFLOPS
HAP Altitude (ℎ̄ℎ) 10 km

UAV Altitude (ℎ̄𝑢,𝑝) 1 km
HAP Bandwidth (𝐵ℎ) 250 MHz

UAV Bandwidth (𝐵𝑢,𝑝) 75 MHz
RSU Bandwidth (𝐵𝑟,𝑛) 25 MHz

VT Speed Range (®𝑣min, ®𝑣max) . (8 m/s, 14 m/s)
VT Power (𝑃𝑐,𝑣𝑚 , 𝑃𝑡𝑣𝑚 , 𝑃𝑟𝑣𝑚) (1.1, 1.5, 1.3) W

with probability 𝑝𝑎 = 0.1, having parameters 𝐷𝜌𝑚 = 5 MB,
𝐷𝑟𝜌𝑚 = 1 MB, Ω𝜌𝑚 = 103 · 𝐷𝜌𝑚 , and 𝑇𝜌𝑚 = 2 s. The service
demand is based on the Zipf distribution with parameter
𝛽 = 0.8. Also, the VT speed is defined as in (1), where
𝜇 = 10 and 𝜎 = 3. Also, 𝜁 = 0.1, 𝛾1 = 0.5, and 𝛾2 = 0.5 are
considered during the problem formulation. The vehicular
density parameters, 𝑀1 = 500 and 𝑀2 = 1200, are considered
in the scenario definition. For DQN simulation, primary and
target networks with layers �̄�sp = 5, �̄�ns

𝑔 = �̄�off
𝑔 = 3, are con-

sidered with learning parameters 𝑒sp = 0.7, 𝑒ns
𝑔 = 𝑒off

𝑔 = 0.65,
Dsp = 4000, Dns

𝑔 = Doff
𝑔 = 2000, 𝜖sp = 𝜖ns

𝑔 = 𝜖off
𝑔 = 0.05,

𝛾sp = 𝛾ns
𝑔 = 𝜖off

𝑔 = 0.98. In addition, the learning process
includes �̄� = 50 with 𝐼sp = 𝐼ns = 𝐼off = 103 and 𝑖 = 50. The
other important system model parameters are provided in
Table 2.

1) Joint Cost Analysis with Varying Vehicular Density:
In this work, our aim is to minimize the joint cost function
of latency, energy and additional penalty values for service
placement. In Fig. 4, we present the average cost values
for different approaches with varying numbers of VTs. The
overall cost required for the SA approach is significantly
higher compared to the other approaches, since all three
decisions are made using a heuristic approach. On the other
hand, the other three MDP approaches (MDP-FO/RS/SSP)
optimize the decisions for two MDPs while using the static
approach for the remaining one. However, such methods
can reduce the overall cost requirements, resulting in subop-
timal solutions. This highlights the importance of perform-
ing multi-time-scale optimization for service placement, net-
work selection, and offloading processes together. Indeed,
the cost required for the proposed MDP-MT approach im-
proves overall performance.

2) Number of Handover Required: In addition to the
general reduction of costs, the reliability of the solutions
may be an important criterion to analyze the performance.
With this, in Fig. 5, we present the overall handover require-
ments in terms of sojourn time constraint failure during
the offloading process. The SA approach with static service
placement, minimum distance-based network selection, and
complete offloading requires a large number of handovers.
Although the MDP-FO approach performs the dynamic
service placement and network selection operations, with
full offloading, it suffers with higher number of failures.
Similarly, the MDP-RS approach suffers due to imperfect

Fig. 4. Performance results in terms of overall cost function with variable
number of active vehicles.

Fig. 5. Percentage of VUs with Handover Requirements.

node selection through random allocations. The MDP-SSP
approach can reduce the number of failures with proper net-
work selection and offloading; however, due to static service
placement, the process still suffers with handover demands.
The proposed MDP-MT approach can have the potential
to provide a reliable solution with joint optimization and
can be a useful solution for vehicular scenarios with higher
reliability requirements.

3) Number of Failures in terms of Service Latency:
Another way to measure the reliability of the proposed
solutions is by assessing the demand for service latency. In
Fig. 6, we present the amount of service latency constraint
failures for different solutions. Similarly to the previous
solutions, the SA approach with static decisions suffers from
several failures. On the other hand, the proposed MDP-
MT solutions can reduce service latency failures through
dynamic service placements, proper network selections, and
offloading decisions. The other MDP solutions can reduce
the overall number of failures compared to the SA method;
however, their performance is suboptimal. With reduced
flexibility in the offloading process (i.e., full offloading in
MDP-FO or random network selection in MDP-RA) both of
these methods suffer with more failures compared to the
MDP-MT solutions. Additionally, the MDP-SSP approach
with static service placements has a higher number of
failures. This highlights the importance of dynamic service

13

Fig. 6. Percentage of VUs with service time constraint violation.

Fig. 7. Performance results in terms of overall cost function with variable
task size.

placement in dynamic vehicular scenarios.
4) Joint Cost Analysis with Varying Task Size: In a dy-

namic vehicular environment, different parameters can vary
over time, inducing additional complexities. VTs demand a
proper solution with reliable performance under different
vehicular conditions. In Figure 7, we have analyzed the com-
bined cost values for various approaches with varying task
sizes. The findings indicate that as the task size increases, the
SA incurs significantly higher costs due to suboptimal ser-
vice placements, network choices, and offloading strategies.
In contrast, the three MDP solutions (MDP-FO/RS/SSP)
demonstrate enhanced performance across a range of task
sizes compared to SA. However, the performance is still
limited, mainly due to the static policies adopted for one
MDP solution. On the other hand, the proposed MDP-MT
solution can have better performance compared to other
solutions. Furthermore, the performance gap between other
solutions and the MDP-MT approach improves with time,
highlighting the reliability of proposed solutions over in-
creasing values of computation tasks.

In the considered multi-time-scale approach it is impor-
tant to analyze the performance of the proposed solutions
for the decisions made on different time scales. In the
following, we analyze the performance of the computation
offloading, network selection, and service placement deci-

TABLE 3
Average Percentage of Data Offloading.

VNs 200 400 600 800 1000 1200 1400 1600 1800 2000

MDP-MT .76 .74 .73 .68 .66 .63 .59 .55 .48 .47
MDP-SSP .78 .79 .78 .73 .72 .67 .65 .62 .58 .56
MDP-RS .65 .59 .62 .56 .51 .44 .39 .35 .32 .35
MDP-FO 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

sions made by MDP solutions on different time scales.
5a) Performance in terms of Offloading Percentage: The

computation offloading decision where the amount of data
to be offloaded towards a selected EN is determined is based
on the state action data received from the MDPs of the
upper layers and the parameters of the local environment.
Additionally, these decisions are implemented on a faster
time scale compared to the other two decisions. It can be
challenging to select the appropriate amount of data to be
offloaded to EN, especially in dynamic vehicular environ-
ments. On the other hand, improper offloading policies can
induce higher latency and energy costs.

Table 3 presents the average percentage amount of data
offloaded by VTs towards the EC facilities. Different MDPs
can have different performance based on their decision-
making strategies. MDP-FO adapts the full offloading strat-
egy resulting in 100% offloading with reduced flexibility,
while MDP-RS uses the random node selection strategy,
resulting in suboptimal offloading decisions. Indeed, the
overall percentage of offloading is significantly reduced for
the MDP-RS process, adding an additional burden on lo-
cal computing resources. Similarly, the MDP-SSP approach
characterized by static service placement can suffer from
suboptimal offloading decisions with reduced flexibility in
terms of node selection and offloading. The proposed MDP-
MT, with a hierarchical decision-making process, can adapt
to changing vehicular densities through dynamic service
placement, appropriate node, and adequate offloading pa-
rameter selections.

5b) Performance in terms of EN Selection: Given the ex-
istence of several EC layers comprising diverse nodes and a
tailored multi-time-scale strategy, it is crucial to evaluate the
efficiency concerning the utilization of edge resources across
various vehicular densities. For this, in Fig. 8, we present
the simulation results in terms of percentage number of
VTs selecting different edge layers with varying numbers
of VTs. At first, with a lower number of VTs on the road,
VTs exploit RSUs and UAV resources to perform their tasks.
With increasing vehicular density, the overall percentage
of VTs selecting RSUs decreases, while the number of VTs
exploiting HAP resources increases. It should be noted that
these results can be strongly influenced by the underneath
system elements. For example, since we have considered a
single HAP node the overall percentage of VTs exploiting
the HAP resources is always low, while RSUs with dense
deployments can serve a large portion of VTs. Such trends
can be explained further with other deployment options.

5c) Performance in terms of Service Placements: In Fig.
9, the performance of the service placement strategies under
different levels of vehicular densities is illustrated. Perfor-
mance is evaluated based on the average occurrence of
service failures, which signifies situations where VTs are

14

Fig. 8. Avg. No. of EN Selected for Offloading.

Fig. 9. Avg. No. of Service Failures.

unable to access the necessary service from a chosen EN. The
decisions related to service placement and network selection
underneath can influence the average number of service
failures observed. As illustrated in Figure 9, the MDP-MT
solutions suggested, along with appropriate service place-
ment and network selection strategies, can result in reduced
failures. In contrast, the use of static policies, such as SA
solutions, may lead to significantly increased failures. More-
over, MDP solutions with inadequate decision-making may
experience more service failures in comparison to MDP-MT.
It is worth mentioning that the MDP-FO solution, when
combined with appropriate network selection and service
placement in a static offloading policy, may result in more
failures compared to MDP-MT. This is primarily because
the upper-level MDPs receive suboptimal feedback from
lower-level offloading agents following a static policy. This
underscores the significance of collectively optimizing all
three decision-making processes across various time scales
to enhance performance.

6) Training Performance over Learning Episodes: In Fig-
ure 10, the RL approach training process is depicted in
various training episodes. Specifically, training is evaluated
based on the average cost resulting from service place-
ments, network selection, and offloading choices. In ad-
dition, performance is compared with the SA solution to
assess the convergence of the RL methods. Over time, i.e.,

Fig. 10. Avg. Cost Vs Training Episodes.

learning episodes, the effectiveness of MDP solutions tends
to improve, potentially resulting in lower costs. Specifically,
MDP-MT solutions, when coupled with appropriate feed-
back from MDP agents, can effectively decrease cost values.
In contrast, the three MDP solutions (MDP-FO/RS/SSP)
with suboptimal feedback can gradually improve perfor-
mance in comparison to the SA solutions. Nevertheless,
they result in increased expenses in contrast to the MDP-
MT alternatives primarily because of the fixed selection
made by one of the MDP agents. It is important to note
that the training procedure can also be influenced by the
specific hardware utilized during the training phase. The
suggested approaches rely on a standard computer system
that features the Intel Core i5 processor. The efficacy can
be further evaluated on powerful processing units, such as
Tensor Processing Units, which is not within the scope of
this study.

6 CONCLUSION

In this work, we have proposed a multi-time-scale MDP ap-
proach to solve the problem of joint service placement, net-
work selection, and computation offloading over dynamic
vehicular scenarios enabled by multiple EC platforms. The
proposed approach can model the decision-making pro-
cess on different time scales based on the network and
user requirements. The optimization problem is formed
to jointly minimize latency, energy and service placement
costs in different vehicular scenarios. Advanced DQN-based
solutions are considered to solve complex MDP in finding
optimal policies that reduce overall cost with improved
reliability. The numerical results acquired through a Python-
based simulator show several advantages over traditional
benchmark solutions. With the complex nature of a consid-
ered joint optimization process and the proposed multi-time
scale MDP, to avoid excessive discussions, in this work,
we have resorted to the basic DQN approach. In recent
years, several new advanced forms of DRL algorithms have
been proposed with additional benefits. In the future, our
aim is to extend the proposed framework to accommodate
such advanced DRL solutions with improved efficiency and
reduced training costs.

15

REFERENCES

[1] S. S. Shinde and D. Tarchi, “Collaborative reinforcement learning
for multi-service Internet of Vehicles,” IEEE Internet Things J.,
vol. 10, no. 3, pp. 2589–2602, Feb. 2023.

[2] D. Han, Q. Ye, H. Peng, W. Wu, H. Wu, W. Liao, and X. Shen,
“Two-timescale learning-based task offloading for remote IoT in
integrated satellite-terrestrial networks,” IEEE Internet Things J.,
vol. 10, no. 12, pp. 10 131–10 145, Jun. 2023.

[3] S. S. Shinde and D. Tarchi, “Joint air-ground distributed federated
learning for intelligent transportation systems,” IEEE Trans. Intell.
Transp. Syst., 2023, early access, doi:10.1109/TITS.2023.3265416.

[4] ——, “Network selection and computation offloading in non-
terrestrial network edge computing environments for vehicular
applications,” in 2022 11th Advanced Satellite Multimedia Systems
Conference and the 17th Signal Processing for Space Communications
Workshop (ASMS/SPSC), Graz, Austria, Sep. 2022, pp. 1–8.

[5] Y. He, Y. Wang, Q. Lin, and J. Li, “Meta-hierarchical reinforcement
learning (MHRL)-based dynamic resource allocation for dynamic
vehicular networks,” IEEE Trans. Veh. Technol., vol. 71, no. 4, pp.
3495–3506, Apr. 2022.

[6] A. Bozorgchenani, D. Tarchi, and W. Cerroni, “On-demand ser-
vice deployment strategies for Fog-as-a-Service scenarios,” IEEE
Commun. Lett., vol. 25, no. 5, pp. 1500–1504, May 2021.

[7] S. S. Shinde and D. Tarchi, “A markov decision process solution for
energy-saving network selection and computation offloading in
vehicular networks,” IEEE Trans. Veh. Technol., 2023, early access,
doi:10.1109/TVT.2023.3264504.

[8] A. Bozorgchenani, S. Maghsudi, D. Tarchi, and E. Hossain, “Com-
putation offloading in heterogeneous vehicular edge networks:
On-line and off-policy bandit solutions,” IEEE Trans. Mobile Com-
put., vol. 21, no. 12, pp. 4233–4248, Dec. 2022.

[9] A. Bozorgchenani, D. Tarchi, and G. E. Corazza, “Mobile edge
computing partial offloading techniques for mobile urban scenar-
ios,” in 2018 IEEE Global Communications Conference (GLOBECOM),
Abu Dhabi, United Arab Emirates, Dec. 2018.

[10] F. Tang, B. Mao, N. Kato, and G. Gui, “Comprehensive survey on
machine learning in vehicular network: Technology, applications
and challenges,” IEEE Commun. Surveys Tuts., vol. 23, no. 3, pp.
2027–2057, Third Quarter 2021.

[11] K. Sharma, B. Butler, and B. Jennings, “Scaling and placing dis-
tributed services on vehicle clusters in urban environments,” IEEE
Trans. Serv. Comput., vol. 16, no. 2, pp. 1402–1416, Mar.-Apr. 2023.

[12] A. Talpur and M. Gurusamy, “DRLD-SP: A deep-reinforcement-
learning-based dynamic service placement in edge-enabled Inter-
net of Vehicles,” IEEE Internet Things J., vol. 9, no. 8, pp. 6239–6251,
Apr. 2022.

[13] H. Sami, R. Saado, A. E. Saoudi, A. Mourad, H. Otrok, and J. Ben-
tahar, “Opportunistic UAV deployment for intelligent on-demand
IoV service management,” IEEE Trans. Netw. Service Manag., 2023,
early access, doi:10.1109/TNSM.2023.3242205.

[14] X. Gao, R. Liu, A. Kaushik, and H. Zhang, “Dynamic resource
allocation for virtual network function placement in satellite edge
clouds,” IEEE Trans. Netw. Sci. Eng., vol. 9, no. 4, pp. 2252–2265,
2022.

[15] X. Gao, R. Liu, and A. Kaushik, “Virtual network function place-
ment in satellite edge computing with a potential game approach,”
IEEE Trans. Netw. Service Manag., vol. 19, no. 2, pp. 1243–1259, 2022.

[16] L. Liu, M. Zhao, M. Yu, M. A. Jan, D. Lan, and A. Taherkordi,
“Mobility-aware multi-hop task offloading for autonomous driv-
ing in vehicular edge computing and networks,” IEEE Trans. Intell.
Transp. Syst., vol. 24, no. 2, pp. 2169–2182, Feb. 2023.

[17] X. Zhu, Y. Luo, A. Liu, M. Z. A. Bhuiyan, and S. Zhang, “Mul-
tiagent deep reinforcement learning for vehicular computation
offloading in IoT,” IEEE Internet Things J., vol. 8, no. 12, pp. 9763–
9773, Jun. 2021.

[18] K. Fan, B. Feng, X. Zhang, and Q. Zhang, “Network selection
based on evolutionary game and deep reinforcement learning in
space-air-ground integrated network,” IEEE Trans. Netw. Sci. Eng.,
vol. 9, no. 3, pp. 1802–1812, 2022.

[19] S. S. Shinde, A. Bozorgchenani, D. Tarchi, and Q. Ni, “On the
design of federated learning in latency and energy constrained
computation offloading operations in vehicular edge computing
systems,” IEEE Trans. Veh. Technol., vol. 71, no. 2, pp. 2041–2057,
Feb. 2022.

[20] X.-Q. Pham, T. Huynh-The, E.-N. Huh, and D.-S. Kim, “Partial
computation offloading in parked vehicle-assisted multi-access

edge computing: A game-theoretic approach,” IEEE Trans. Veh.
Technol., vol. 71, no. 9, pp. 10 220–10 225, Sep. 2022.

[21] J. Shi, J. Du, J. Wang, and J. Yuan, “Deep reinforcement learning-
based V2V partial computation offloading in vehicular fog com-
puting,” in 2021 IEEE Wireless Communications and Networking
Conference (WCNC), Nanjing, China, Mar.-Apr. 2021.

[22] Z. Jia, Q. Wu, C. Dong, C. Yuen, and Z. Han, “Hierarchical aerial
computing for internet of things via cooperation of HAPs and
UAVs,” IEEE Internet Things J., vol. 10, no. 7, pp. 5676–5688, 2023.

[23] Q. Shen, B.-J. Hu, and E. Xia, “Dependency-aware task offloading
and service caching in vehicular edge computing,” IEEE Trans.
Veh. Technol., vol. 71, no. 12, pp. 13 182–13 197, Dec. 2022.

[24] Y. Zheng, T. Zhang, and J. Loo, “Dynamic multi-time scale user
admission and resource allocation for semantic extraction in MEC
systems,” IEEE Trans. Veh. Technol., vol. 72, no. 12, pp. 16 441–
16 453, 2023.

[25] L. Ma, H. Liu, L. Zhou, C. Yang, W. Dai, and G. Wang, “Security
control for multi-time-scale CPSs under DoS attacks: An improved
dynamic event-triggered mechanism,” IEEE Trans. Netw. Sci. Eng.,
vol. 9, no. 3, pp. 1813–1826, 2022.

[26] Y. Cao, S.-Y. Lien, Y.-C. Liang, D. Niyato, and X. Shen, “Col-
laborative computing in non-terrestrial networks: A multi-time-
scale deep reinforcement learning approach,” IEEE Trans. Wireless
Commun., 2023, early Access. DOI:10.1109/TWC.2023.3323554.

[27] L. T. Tan and R. Q. Hu, “Mobility-aware edge caching and com-
puting in vehicle networks: A deep reinforcement learning,” IEEE
Trans. Veh. Technol., vol. 67, no. 11, pp. 10 190–10 203, Nov. 2018.

[28] T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge:
Mobility-aware dynamic service placement for mobile edge com-
puting,” IEEE J. Sel. Areas Commun., vol. 36, no. 10, pp. 2333–2345,
Oct. 2018.

[29] X. Gu and G. Zhang, “Energy-efficient computation offloading for
vehicular edge computing networks,” Computer Communications,
vol. 166, pp. 244–253, Jan. 2021.

[30] S. Mao, S. He, and J. Wu, “Joint UAV position optimization and
resource scheduling in space-air-ground integrated networks with
mixed cloud-edge computing,” IEEE Syst. J., vol. 15, no. 3, pp.
3992–4002, Sep. 2021.

[31] H. S. Chang, P. Fard, S. Marcus, and M. Shayman, “Multitime scale
markov decision processes,” IEEE Trans. Autom. Control, vol. 48,
no. 6, pp. 976–987, Jun. 2003.

Swapnil Sadashiv Shinde (Student Member,
IEEE) received the Ph.D. degree in Automotive
Engineering for Intelligent Mobility at the Uni-
versity of Bologna, Italy, in 2024, working on
connected vehicles for beyond 5G scenarios.

From 2015 to 2017, he worked as a Project
Engineer at the Indian Institute of Technology,
Kanpur, India. Since November 2023, he is a Re-
searcher with the Consorzio Nazionale Interuni-
versitario delle Telecomunicazioni (CNIT), Italy.
His research interests include edge computing,

reinforcement learning, distributed machine learning, and non-terrestrial
networks.

Daniele Tarchi (Senior Member, IEEE) received
the Ph.D. degree in Informatics and Telecom-
munications Engineering from the University of
Florence, Florence, Italy, in 2004.

Since 2019 he is an Associate Professor at the
University of Bologna, Italy. He is the author of
more than 160 published articles in international
journals and conference proceedings. His re-
search interests are mainly on Wireless Commu-
nications and Networks, Edge Computing, Dis-
tributed Learning, and Optimization Techniques.

Prof. Tarchi has been an IEEE Senior Member since 2012. He is an
Editorial Board member for IEEE Transactions on Vehicular Technology,
IEEE Open Journal of the Communication Society and IET Communi-
cations.

