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ABSTRACT Since the beginning of 2020, the outbreak of a new strain of Coronavirus has caused hundreds
of thousands of deaths and put under heavy pressure the world’s most advanced healthcare systems.
In order to slow down the spread of the disease, known as COVID-19, and reduce the stress on healthcare
structures and intensive care units, many governments have taken drastic and unprecedented measures,
such as closure of schools, shops and entire industries, and enforced drastic social distancing regulations,
including local and national lockdowns. To effectively address such pandemics in a systematic and informed
manner in the future, it is of fundamental importance to develop mathematical models and algorithms to
predict the evolution of the spread of the disease to support policy and decision making at the governmental
level. There is a strong literature describing the application of Bayesian sequential and adaptive dynamic
estimation to surveillance (tracking and prediction) of objects such as missiles and ships; and in this article,
we transfer some of its key lessons to epidemiology. We show that we can reliably estimate and forecast the
evolution of the infections from daily — and possibly uncertain — publicly available information provided
by authorities, e.g., daily numbers of infected and recovered individuals. The proposed method is able to
estimate infection and recovery parameters, and to track and predict the epidemiological curve with good
accuracy when applied to real data from Lombardia region in Italy, and from the USA. In these scenarios,
the mean absolute percentage error computed after the lockdown is on average below 5% when the forecast
is at 7 days, and below 10% when the forecast horizon is 14 days.

INDEX TERMS SARS-CoV-2, Bayesian sequential estimation, ensemble forecasting, compartmental
model, pandemic tracking, pandemic prediction.

I. INTRODUCTION
A. MOTIVATION AND BACKGROUND
Beginning in early December 2019, Chinese health authori-
ties have been detecting andmonitoring an increasing number
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of pneumonia cases in the city of Wuhan, a province of
Hubei. The pneumonia, later named COVID-19, is caused
by a new strain of Coronavirus, and is technically referred
to as the severe acute respiratory syndrome Coronavirus 2
(SARS-CoV-2) [1]. As of August 23, 2020, more than
23 million people worldwide have been infected, and over
800 thousand have died. In March 2020, a series of events
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have pushed many governments to take extraordinary social
measures. These events include the lack of effective cures
and vaccines, the exponentially increasing number of indi-
viduals requiring recovery in intensive care units, and the
announcement by the World Health Organization (WHO) of
a Coronavirus pandemic on March 11, 2020 [2]. The adopted
measures included closure of schools, universities, shops,
industries, public and cultural places, the prohibition of mass
gatherings, travel bans, and extreme social distancing, includ-
ing local and national lockdowns. The main aim of these
measures is to slow down the infection rate and alleviate the
pressure on healthcare systems, in order to ensure care to all
individuals stricken by the virus. Indeed, after the adoption
of these measures, most countries have seen a decrease in
the daily numbers of infected individuals. In order to pre-
vent another exponential rise in infections as the restrictive
measures are progressively relaxed, it is of crucial importance
to develop mathematical models and algorithms to track and
forecast the evolution of the infection with acceptable accu-
racy, which can help authorities to make informed and timely
decisions. Improving our ability to model and forecast is also
of paramount importance to better address future pandemic
outbreaks [3].

The algorithm proposed in this article builds on the concept
of compartmental epidemiological models, which assume
that a given population is divided into a fixed number of
compartments. Each compartment represents an epidemic
state that an individual can occupy. The flow dynamics from
one compartment to another are modeled as a set of stochas-
tic differential equations that we discretize according to the
discrete nature of the available data, i.e., daily update on the
number of infected, recovered, dead, etc. In the standard SIR
model, proposed in the pioneering study on mathematical
theory of epidemics by Kermack and McKendrick [4], it is
assumed that the entire population, e.g., of a city, a region,
or a nation, is constant and divided into three compartments
(population subgroups), namely, susceptible (S), infected (I),
and recovered (R) individuals. Moreover, it is assumed that
an infected individual infects a susceptible one at a given
rate β [5]. Once infected, the individual is removed from the
compartment of susceptibles and enters the infected compart-
ment. Each infected person runs through the course of the
disease, and eventually is removed from the number of those
who are still infected either by recovery or death, thus exiting
the system at ‘‘recovery’’ rate γ ; the recovered people are
considered permanently immune.1 The ratio β/γ is called the
contact ratio, and represents the mean number of people the
infected individual comes in contact with.

The SIR model is simple, yet very successful and useful
in practice. Over the years, several more sophisticated exten-
sions have been proposed to account for more compartments
and other salient aspects of the epidemics. For example,

1At the time of writing, permanent immunity of recovered COVID-19
patients is uncertain. However, it is a bedrock feature of the SIR epidemi-
ological model.

a person who comes in contact with an infected individual
and contracts the infection might not develop the symptoms
immediately but only with a certain delay, called incuba-
tion period; in the case of COVID-19, this delay is around
3-15 days with a median of 5.2 days [6]. The SEIR model
accounts for this circumstance by adding a further compart-
ment that represents exposed — but not yet contagious —
people [7], [8]. That is, susceptible individuals who contract
the virus, pass to the exposed compartment (E) before evident
symptoms appear and the person is confirmed as infected.
The SEIRQ model is a further extension that also accounts
for quarantined people [9]. Restriction measures are directly
taken into account in the recently proposed SIR-Xmodel [10]
that, introducing an additional mechanism, removes sus-
ceptibles from the transmission process when the measures
become effective.

A critical epidemiological characteristic for the pandemic
potential of an emergent respiratory virus is represented by
the undocumented, but infectious, cases. In contrast with
the documented infectious cases, they often experience mild,
limited, or no symptoms at all, and therefore, since they
are generally not tested, remain undetected. These are the
so-called asymptomatic cases in the context of COVID-19
pandemic. Based on their contagiousness and numbers, they
can expose a far greater portion of the population to the
virus than would otherwise occur. Li et al. [11] present a
model-inference framework to estimate the contagiousness
and proportion of undocumented infections in China before
and after the lockdown in Wuhan.

Most of the compartmental models described so far con-
sider the disease spread inside a unique and single pop-
ulation: a city, a region, a nation. In contrast, metapop-
ulation models add a further spatial dimension, by inter-
preting the population as a network of multiple spatially
separated subpopulations (nodes), e.g., multiple cities in
the same region; the connections from one subpopulation
to another are represented by movements (‘‘diffusion’’) of
persons. Such interconnections represent contacts such as
commuting to work, second homes, or national and interna-
tional travels. In such a scenario, the diffusion of the infec-
tion is not only caused by the contacts among susceptibles
and infectious people within each subpopulation, but also
by the spatial interactions among the different subpopula-
tions [12]–[15]. Li et al. [11] utilize a stochastic metapop-
ulation model to simulate the spatiotemporal dynamics
among 375 Chinese cities. The spatial spread of COVID-19
across cities is captured by the daily number of travelers from
a city to another during the Spring Festival before the lock-
down. Chinazzi et al. [16] model both the domestic (within
Wuhan) and the international spread of the Coronavirus epi-
demic. The effects of the travel bans imposed in the city of
Wuhan and the international travel ban adopted by several
countries in early February 2020 are estimated. To model the
international spread of the COVID-19 outbreak, the authors
employ the stochastic global epidemic and mobility model.
This metapopulation model is integrated with real-world data
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and relies on a network wherein each node represents a
subpopulation located near major transportation hubs, e.g.,
airports; there are more than 3200 subpopulations, in roughly
200 different countries and territories. The degree of connec-
tion among subpopulations is represented by the number of
people traveling daily among them. Within each subpopu-
lation, there exist four states of the compartmental model,
i.e., susceptible, latent (similar to exposed), infectious, and
removed. The model generates an ensemble of possible epi-
demic scenarios described by the number of newly generated
infections, time of disease onset in each subpopulation, and
the number of traveling infection carriers.

B. CONTRIBUTIONS AND PAPER ORGANIZATION
Most of the aforementioned epidemic models assume that
relevant model parameters, e.g., the infection rate β and the
recovery rate γ , are time-invariant, and several approaches
have been proposed in the literature for tuning or estimating
them [17]–[19]. However, the sudden imposition of restric-
tion measures — and their subsequent relaxations — means
that a static stochastic model is inappropriate. Moreover,
even in the absence of dramatic restriction measures, there
is no doubt that a time-varying model for the key epidemic
parameters would better reflect the ground-truth.2

The main contribution of this article is to propose a
Bayesian sequential learning and forecasting framework of
the epidemic curve based on the data that authorities provide
on a daily basis, e.g., number infected and number recovered.
We leverage our recent research on unknown covariance
matrix estimation [20] and self-tuning multisensor multitar-
get tracking [21]. Indeed, similarly to the target tracking
problem, where the objective is to automatically detect the
time instants when a target sharply maneuvers in order to
improve the overall tracking performance, here we aim to
closely track the epidemic curve and the model parameters
in order to provide reliable and accurate forecast of the
contagion. Adapting ideas and tools from those works, our
approach to Bayesian sequential learning and forecasting of
epidemic evolution is as follows. First, the model parameters
are assumed to take on values from rich but prespecified
finite sets; their time-evolution is modeled byMarkov chains.
Second, in order to capture the effects of mitigation strategies
(e.g., mobility restriction, lockdown, wearing masks, and
social distancing), the marginal posterior distributions of both
the variable states (number of infected and recovered people)
and model parameters (infection rate β and recovery rate γ ),
are calculated at each time by means of recursive predic-
tion and update formulae. Finally, we develop an efficient
implementation of the proposed method based on mixture
models and provide a concrete example of application using
the stochastic SIR model. The proposed method is vali-
dated on real datasets acquired during the recent COVID-19
outbreak in the Lombardia region, Italy, and in the USA.

2This applies, e.g., to the influenza virus, as its infection rate periodically
increases and decreases depending on the season.

As we shall see, even adopting the simple stochastic
SIR model, we obtain superior forecast accuracy when
compared to prediction algorithms that use time-invariant
parameter models. The approach developed in this article is
general enough to be applied to more-sophisticated stochastic
epidemiological models [8]–[10], including more-complex
metapopulation models [11], [16]; these extensions are left
for future investigations.

The remainder of the paper is organized as follows.
In Section II, we describe a general Bayesian adaptive
framework that can be tailored to any discrete-time epi-
demiological model, and in Section III we propose an
implementation thereof based on the use of mixture
models. In Section IV, we develop the mixture-based
Bayesian sequential approach in the context of the stochastic
SIR model. Section V presents results using synthetic as
well as real data. Finally, in Section VI we provide some
conclusions and possible directions for future investigations.

C. NOTATION
Vectors are denoted by boldface lower-case letters (e.g., a),
matrices by boldface upper-case letters (e.g., A), and sets
by calligraphic letters (e.g., A). The transpose is written
as (·)T. We write diag(a1, . . . , aN ) for an N × N diagonal
matrix with diagonal entries a1, . . . , aN , IN for the N × N
identity matrix, 1N for the N -dimensional vector of all ones,
and 0 for the zero vector. E[·] denotes statistical expectation,
and P(·) refers to both the probability density function (pdf)
of a continuous random variable or vector and the probability
mass function (pmf) of a discrete random variable or vector;
the difference will be clear from the context. N (µ,C) indi-
cates a Gaussian distributed vector with mean µ and covari-
ance matrixC, and U(a, b) represents a uniformly distributed
variable between a and b. Finally, N (x;µ,C) refers to a
multivariate Gaussian pdf of random vector x with mean µ
and covariance matrix C.

II. PROPOSED ALGORITHM
We present a sequential Bayesian framework that, at each
time interval, jointly computes the posterior distribution
of S unknown time-varying states and of M unknown
time-varying parameters. These unknown quantities are
inferred at times tk , with k ∈{1, 2, . . .}, using noisy observa-
tions (e.g., information on the number of infected, discharged
COVID-19 patients from the hospitals, dead).We assume that
the time interval 1t , tk − tk−1 between consecutive obser-
vations is one day, unless otherwise stated. We denote xk ,
[x1,k , . . . , xS,k ]T∈X ⊆ RS as the state vector comprising the
S epidemic states xs,k at time tk (e.g., numbers of infected
and recovered individuals), and θk , [θ1,k , . . . , θM ,k ]T ∈
Q ⊆ RM as the parameter vector comprising the M model
parameters θm,k at time tk (e.g., infection and recovery rates).

The objective of the proposed algorithm is twofold: to
estimate, at each time k , the epidemic state vector xk and the
model parameter vector θk ; and, at a fixed time k , to forecast
the epidemic evolution up to time k + K with associated
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uncertainty in the form of prediction variance. Both tasks
are based on the past and present observations. Hereafter,
Section II-A describes the dynamic and observation mod-
els, and Section II-B and Section II-C present the proposed
Bayesian sequential estimation and forecasting tasks, respec-
tively. The reader who is already familiar with dynamic esti-
mation of a hybrid state, that is, comprising the state of the
dynamic model and nuisance parameters [20]–[22], might
skip ahead to Section II-C.

A. DYNAMIC AND OBSERVATION MODELS
The dynamic model that describes the evolution of the epi-
demic is formally expressed as

xk = f(θk , θk−1, xk−1;uk ), (1)

where uk is a random vector — whose dimension depends
on S, M , and f(·) — with known distribution modeling
the stochastic variation of the epidemic state in the time
interval 1t . Note that function f(·) might embed additional
known (either time-varying or time-invariant) parameters.
We assume that, conditioned on θk , θk−1, and xk−1, the state
vector xk is independent of the previous states and parame-
ters, that is,

P(xk |θk , θk−1, xk−1, θk−2, xk−2, . . . , θ1, x1)

= P(xk |θk , θk−1, xk−1) . (2)

Given appropriate initial conditions, the pdf in (2) is fully
determined by the dynamic model in (1) and the statistics
of uk . Moreover, we assume that the parameter vector evolves
according to a first-order Markov model fully described by
the transition pdf P(θk |θk−1), assumed known. From these
assumptions, it follows that the adopted Bayesian framework
is a hierarchical Markov model (an event-driven dynamic
process): firstly, the parameter vector evolves according to
the Markov model described by P(θk |θk−1); then the state
vector evolves, given the current parameter vector as well as
the previous state and parameter vectors, according to (1).
Furthermore, it is easy to verify that

P(xk , θk |xk−1, θk−1, xk−2, θk−2, . . . , x1, θ1)

= P(xk , θk |xk−1, θk−1),

that is, the joint evolution of xk and θk follows a first-order
Markov model.
The observation vector at time k is denoted by zk ∈RB, and

consists of up-to-date information on the state of the epidemic
at time k . To take into account the randomness unavoidably
present in real-word measurements, it is assumed that this
information is uncertain, i.e., affected by noise (e.g., due to
data collection errors, biases, holidays), and is modeled as

zk = h(xk , θk ; vk ), (3)

where vk is a random vector with known distribution
and whose dimension depends on S, M , B, and h(·).
The model in (3) and the statistics of vk determine the
likelihood P(zk |xk , θk ). For convenience, we define the vec-
tor z1:k , [zT1 , . . . , z

T
k ] containing all the observations up to

time k , that is, past and present observations.

B. BAYESIAN SEQUENTIAL ESTIMATION
The basic principles of Bayesian sequential estimation are
now recalled. The reader is referred to [23] for further details.
In the Bayesian setting, the estimation of state and param-
eters amounts to calculating the posterior pdf P(xk |z1:k ) of
the state vector xk , and the posterior pdf P(θk |z1:k ) of the
parameter vector θk , respectively. Theminimummean square
estimators (MMSEs) of xk and θk are given by [23, Ch. 4]

x̂Ek ,
∫

xkP(xk |z1:k )dxk , (4)

and

θ̂
E
k ,

∫
θkP(θk |z1:k )dθk , (5)

respectively.3 We further note that, using the law of total
probability, the pdf P(xk |z1:k ) can be expressed as

P(xk |z1:k ) =
∫

P(xk , θk |z1:k )dθk

=

∫
P(xk |θk , z1:k )P(θk |z1:k )dθk . (6)

Thus, the estimation problem boils down to calculation of the
posterior pdfsP(xk |θk , z1:k ) andP(θk |z1:k ). In the following,
we show how they can be obtained sequentially through
the implementation of recursive update and prediction
steps.

1) UPDATE STEP
Let us assume that we know the pdf of the parameter vec-
tor at time k given the observations up to time k − 1,
i.e., P(θk |z1:k−1), and the pdf of the state vector at time k
given the parameter vector at time k and the observations
up to time k − 1, i.e., P(xk |θk , z1:k−1). Then, when a new
observation zk becomes available, the parameter vector pdf
and the state vector pdf are updated through Bayes’ rule as

P(θk |z1:k ) =
P(zk , θk |z1:k−1)∫
P(zk , θ ′k |z1:k−1)dθ

′
k

=
P(zk |θk , z1:k−1)P(θk |z1:k−1)∫
P(zk |θ ′k , z1:k−1)P(θ ′k |z1:k−1)dθ

′
k

, (7)

and

P(xk |θk , z1:k ) =
P(zk , xk |θk , z1:k−1)
P(zk |θk , z1:k−1)

=
P(zk |xk , θk , z1:k−1)P(xk |θk , z1:k−1)

P(zk |θk , z1:k−1)

=
P(zk |xk , θk )P(xk |θk , z1:k−1)

P(zk |θk , z1:k−1)
, (8)

respectively, where the last equality of (8) exploits the
assumption that the observation at time k is conditionally
independent of all the previous observations, given the state

3 The superscript E stands for estimate, and is used to distinguish the
estimate from the forecast, later identified by the superscript F.
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and parameter vectors at time k , i.e., P(zk |xk , θk , z1:k−1) =
P(zk |xk , θk ). Using the same assumption and the law of
total probability, the pdf P(zk |θk , z1:k−1) appearing in (7) is
calculated as

P(zk |θk , z1:k−1)

=

∫
P(zk , xk |θk , z1:k−1)dxk

=

∫
P(zk |xk , θk , z1:k−1)P(xk |θk , z1:k−1)dxk

=

∫
P(zk |xk , θk )P(xk |θk , z1:k−1)dxk . (9)

2) PREDICTION STEP
In the prediction step, we assume that the posterior pdf
P(θk |z1:k ) in (7) and the posterior pdf P(xk |θk , z1:k )
in (8) are known, and derive the pdfs P(θk+1|z1:k ) and
P(xk+1|θk+1, z1:k ). The former, i.e., the pdf of the predicted
parameter vector at time k + 1, is obtained using the law of
total probability and the Markovian assumption as follows:

P(θk+1|z1:k ) =
∫

P(θk+1, θk |z1:k )dθk

=

∫
P(θk+1|θk )P(θk |z1:k )dθk . (10)

Analogously, using the law of total probability, the pdf of the
predicted state vector at time k + 1 is given by

P(xk+1|θk+1, z1:k )

=

∫
P(xk+1, θk |θk+1, z1:k )dθk

=

∫
P(xk+1|θk+1, θk , z1:k )P(θk |θk+1, z1:k )dθk . (11)

The first term within the integral (11), i.e., P(xk+1|θk+1, θk ,
z1:k ), is calculated using the law of total probability and
assuming that xk+1 is conditionally independent of z1:k
given θk+1, θk , and xk , i.e., P(xk+1|θk+1, θk , xk , z1:k ) =
P(xk+1|θk+1, θk , xk ). Thus,

P(xk+1|θk+1, θk , z1:k )

=

∫
P(xk+1, xk |θk+1, θk , z1:k )dxk

=

∫
P(xk+1|θk+1, θk , xk )P(xk |θk+1, θk , z1:k )dxk

=

∫
P(xk+1|θk+1, θk , xk )P(xk |θk , z1:k )dxk . (12)

The last step follows from the Markov property of the
parameter vector. Indeed, the pdf P(xk |θk+1, θk , z1:k ) can be
calculated as

P(xk |θk+1, θk , z1:k )

=
P(xk , θk+1, θk |z1:k )
P(θk+1, θk |z1:k )

=
P(θk+1|xk , θk , z1:k )P(xk , θk |z1:k )

P(θk+1|θk , z1:k )P(θk |z1:k )

=
P(θk+1|xk , θk , z1:k )P(xk |θk , z1:k )P(θk |z1:k )

P(θk+1|θk , z1:k )P(θk |z1:k )

=
P(θk+1|θk )P(xk |θk , z1:k )P(θk |z1:k )

P(θk+1|θk )P(θk |z1:k )

= P(xk |θk , z1:k ) .

The second termwithin the integral (11), i.e.,P(θk |θk+1, z1:k ),
is obtained using Bayes’ rule and exploiting again theMarkov
property of the parameter vector, that is,

P(θk |θk+1, z1:k ) =
P(θk+1, θk |z1:k )
P(θk+1|z1:k )

=
P(θk+1|θk , z1:k )P(θk |z1:k )

P(θk+1|z1:k )

=
P(θk+1|θk )P(θk |z1:k )

P(θk+1|z1:k )
, (13)

where P(θk+1|z1:k ) is given by (10).

C. FORECASTING
As the model we consider is nonlinear, the forecast of
the epidemic evolution is assessed numerically through a
methodology known as ensemble forecasting [24]–[28], that
consists of generating a collection of possible evolutions
of the epidemic — given the state and parameter vectors
estimated so far — and provide a single mean forecast with
associated uncertainty. Let us assume that the latest avail-
able observation is zk , and that the posterior pdfs P(θk |z1:k )
and P(xk |z1:k ) =

∫
P(xk |θk , z1:k )P(θk |z1:k )dθk (cf. (6)) are

known; the proposed ensemble forecasting approach is a
Monte-Carlo technique that samples the posterior distribution
of xk and θk , and evolves these sampled initial vectors up to
time k + K , where K is the forecast horizon. Specifically,
let x̃(j)k and θ̃

(j)
k be the jth state vector and parameter vector

samples extracted from P(xk |z1:k ) and P(θk |z1:k ), respec-
tively, where j ∈ J , {1, . . . , J} and J is the ensem-
ble size. The sampled state and parameter vectors are then
allowed to evolve4 according to the state vector forecast tran-
sition distribution PF

(
x̃(j)k ′ |θ̃

(j)
k ′ , θ̃

(j)
k ′−1, x̃

(j)
k ′−1

)
and the param-

eter vector forecast transition distribution PF

(
θ̃
(j)
k ′ |θ̃

(j)
k ′−1

)
,

respectively, for k ′ ∈ {k + 1, . . . , k + K }. We observe that
these transition distributions can be equal to the transition
distributions used within the Bayesian sequential estimation
procedure described in the previous section, that is, P(xk |
θk , θk−1, xk−1) and P(θk |θk−1), respectively, or can be suit-
ably devised to improve the forecast performance. Finally,
defining the ensemble state matrix as X̃k , [x̃(1)k , . . . , x̃

(J )
k ]∈

X 1×J
⊆ RS×J , and the ensemble parameter matrix as

2̃k , [θ̃
(1)
k , . . . , θ̃

(J )
k ] ∈ Q1×J

⊆ RM×J , the mean of the
epidemic state and model parameter at any time step k ′ ∈
{k + 1, . . . , k +K } can be calculated as sample means of X̃k ′

4By ‘‘evolving’’ is meant a simple procedure of recursively (in time) gen-
erating random variables according to a transition distribution; colloquially,
this is a process of ‘‘rolling the dice’’.
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and 2̃k ′ , respectively; that is [29],

x̂Fk ′ ,
1
J X̃k ′ · 1J , θ̂

F
k ′ ,

1
J 2̃k ′ · 1J . (14)

Higher order moments, such as sample covariance matrices,
can also be computed [29].

III. MIXTURE MODEL IMPLEMENTATION
This section describes a mixture model implementation —
similar to the approach proposed in [20] — of the Bayesian
sequential estimation procedure presented in Section II-B.
For computational efficiency, the first step is the discretiza-
tion of the parameter vector θk = [θ1,k , . . . , θM ,k ]T, such that
each element θm,k , m ∈ {1, . . . ,M}, takes on values from
a finite set Dm , {ϑ (m)

1 , . . . , ϑ
(m)
Dm }. It follows that θk ∈ D,

where D ,D1 × · · · × DM is the discretized finite set with
cardinality D,

∏M
m=1 Dm. We note that all the expressions in

Section II-B remain valid, provided that integrals
∫
dθ are

replaced with summations
∑
θ ; e.g., the MMSE estimator

of θk in (5) is rewritten as

θ̂
E
k ,

∑
θk∈D

θkP(θk |z1:k ) . (15)

The key aspect of the formulation is to model the pdf
P(xk |θk , z1:k−1) as a mixture of N components, that is,

P(xk |θk , z1:k−1) =
N∑
n=1

w(n,θk )
k|k−1P(xk |Nk=n, θk , z1:k−1),

(16)

where w(n,θk )
k|k−1,P(Nk = n|θk , z1:k−1) and P(xk |Nk = n, θk ,

z1:k−1) are weight and pdf of the nth component, respectively.
The auxiliary variable Nk ∈ {1, . . . ,N } models the switch
between the N mixture components; hereafter, for notational
convenience, we will simply use n to denote that Nk takes
on the value n, i.e., Nk = n. In the next two subsections,
exploiting the development presented in Section II-B1 and
Section II-B2, we provide the expressions for the sequential
update and prediction of the state and parameter vectors
according to the mixture model.

A. UPDATE STEP
The posterior pdf P(xk |θk , z1:k ) appearing in (8) can be writ-
ten through the law of total probability as

P(xk |θk , z1:k ) =
N∑
n=1

w(n,θk )
k|k P(xk |n, θk , z1:k ) . (17)

The updated weight w(n,θk )
k|k = P(n|θk , z1:k ) is calculated

through Bayes’s rule as

w(n,θk )
k|k =

α
(n,θk )
k|k−1w

(n,θk )
k|k−1

N∑
n′=1

α
(n′,θk )
k|k−1w

(n′,θk )
k|k−1

, (18)

where the update coefficient α(n,θk )k|k−1 , P(zk |n, θk , z1:k−1)
can be derived from (9) assuming the conditional inde-
pendence of the observation zk from the previous observa-
tions z1:k−1 and the specific mixand n, given xk and θk ,

i.e., P(zk |n, xk , θk , z1:k−1) = P(zk |xk , θk ). That is,

α
(n,θk )
k|k−1 = P(zk |n, θk , z1:k−1)

=

∫
P(zk |xk , θk )P(xk |n, θk , z1:k−1)dxk . (19)

Using the same assumption, the posterior pdf of the
nth mixture component is calculated from (8) as

P(xk |n, θk , z1:k ) =
P(zk |xk , θk )P(xk |n, θk , z1:k−1)

α
(n,θk )
k|k−1

. (20)

Then, using (7) with integrals replaced by summations,
the posterior pmf of the parameter vector is obtained as

P(θk |z1:k ) =
P(θk |z1:k−1)P(zk |θk , z1:k−1)∑

θ ′k∈D
P(θ ′k |z1:k−1)P(zk |θ ′k , z1:k−1)

, (21)

where, through the law of total probability, P(zk |θk , z1:k−1)
can be calculated as

P(zk |θk , z1:k−1)

=

N∑
n=1

P(zk , n|θk , z1:k−1)

=

N∑
n=1

P(zk |n, θk , z1:k−1)P(n|θk , z1:k−1) .

Here, we recognize the update coefficient α(n,θk )k|k−1 = P(zk |

n, θk , z1:k−1) and the weightw
(n,θk )
k|k−1=P(n|θk , z1:k−1). There-

fore, the posterior pmf in (21) can be finally recast as

P(θk |z1:k ) =

P(θk |z1:k−1)
N∑
n=1

α
(n,θk )
k|k−1w

(n,θk )
k|k−1

∑
θ ′k∈D

P(θ ′k |z1:k−1)
N∑

n′=1

α
(n′,θ ′k )
k|k−1w

(n′,θ ′k )
k|k−1

. (22)

B. PREDICTION STEP
The pmf of the predicted parameter vector at time k + 1,
i.e., P(θk+1|z1:k ), is simply obtained by inserting (22)
into (10), where the integral is replaced by summation.
To derive the pdf of the predicted state vector at time k + 1,
i.e.,P(xk+1|θk+1, z1:k ), instead, we consider the discrete ver-
sion of (11), that is,

P(xk+1|θk+1, z1:k )

=

∑
θk∈D

P(θk |θk+1, z1:k )P(xk+1|θk+1, θk , z1:k ),

and insert therein (12) and (13) to obtain

P(xk+1|θk+1, z1:k )

=

∑
θk∈D

P(θk+1|θk )P(θk |z1:k )
P(θk+1|z1:k )

×

∫
P(xk+1|θk+1, θk , xk )P(xk |θk , z1:k )dxk . (23)
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Finally, by using (17) into (23), the latter can be recast as

P(xk+1|θk+1, z1:k )

=

N∑
n=1

∑
θk∈D

w(n,θk+1,θk )
k+1|k P(xk+1|n, θk+1, θk , z1:k ),

where the pdf of the nth component, i.e., P(xk+1|n, θk+1, θk ,
z1:k ), is

P(xk+1|n, θk+1, θk , z1:k )

,
∫

P(xk+1|θk+1, θk , xk )P(xk |n, θk , z1:k )dxk , (24)

and the predicted weights are defined as

w(n,θk+1,θk )
k+1|k ,

P(θk+1|θk )P(θk |z1:k )
P(θk+1|z1:k )

w(n,θk )
k|k . (25)

We note that in the prediction step the number of mixture
components increases from N to N × D, thus a suitable
merging/pruning criterion is required to avoid the exponential
growth of the computational complexity [30], [31].
Remark: We aim to provide a general framework for

adaptive Bayesian estimation of epidemic evolution, here
implemented via an efficient mixture model. Nonetheless,
the same nonlinear problem could have been approached and
implemented differently, for example by using an extended
or unscented Kalman filter (EKF or UKF), or by means
of sequential Monte Carlo (SMC) methods, e.g., particle
filters [32]. These are not alternate to our approach, but
can be possibly combined, as noted later in Section IV-B.
However, we also observe that direct use of the aforemen-
tioned techniques — if not adequately tailored to the specific
problem — may lead to poor or unexpected results. For
example, the EKF approximation of the nonlinear behaviour
of the system through local linearization, might fail in the
presence of strong nonlinearities, leading to unreliable esti-
mates or even to divergence. TheUKF can potentially provide
higher-order estimation accuracy using the unscented trans-
form, but this usually has the effect of simply delaying the
unavoidable divergence that will still happen in the case of
severe process or measurement nonlinearities. On the other
hand, SMC methods generally provide reliable numerical
approximations to sequential nonlinear estimation problems.
However, in real-world applications, where the system also
depends on unknown time-varying parameters to be inferred
from uncertain data, conventional particle filters could fail to
detect and track the change in parameters, quickly leading
to implementation issues, such as sample impoverishment. In
addition, high performance of particle methods comes at the
expense of increased computational demands.

Another class of methods is based on system identification/
machine learning (ML) techniques. Canonical approaches
here include expectation-maximization, variational Bayes
methods, and the variety of nonlinear auto-regressive mod-
els with external inputs, recurrent neural networks, long
short-term memory networks [33]–[36]. The non-parametric
ML methods suffer from lack of explainability and causal
reasoning needed for policy decisions in pandemics.

IV. ESTIMATION AND FORECASTING WITH STOCHASTIC
SIR MODEL
A. DYNAMIC AND OBSERVATION MODEL
The SIR model [4], [5] subdivides the population of a com-
munity into three interacting groups: susceptible, infectious,
and recovered individuals. The interactions are governed by
the infection rate, usually denoted by β, that is the average
rate at which an infected individual can infect a susceptible
one, and by the recovery rate, generally called γ . Let P be the
total population size5; sk , ik , and rk be the normalized (to P)
number of susceptible, infectious, and recovered individuals
at time k , such that sk + ik + rk = 1; and βk and γk be
the infection and recovery rates at time k . The discrete-time
stochastic SIR system of equations is expressed as [17], [37]

sk = sk−1 − βk−1 sk−1 ik−11t + σ1,k−1u1,k ,

ik = ik−1 + βk−1 sk−1 ik−11t − γk−1 ik−11t

−σ1,k−1u1,k + σ2,k−1u2,k ,

rk = rk−1 + γk−1 ik−11t − σ2,k−1u2,k ,

where σ1,k ,
√
P−1βksk ik , σ2,k ,

√
P−1γk ik , and uk ,

[u1,k , u2,k ]T ∼ N (0, I21t ). Since sk and ik determine rk , we
define the state vector as xk , [sk , ik ]T, and the parameter
vector as θk, [βk , γk ]T; hence, we have S=2 andM=2. The
dynamic model of the epidemic is then expressed as (cf. (1))

xk = f1(xk−1, θk−1)+ f2(xk−1, θk−1)uk (26)

where

f1(xk , θk ) ,
[

(1− βk ik1t )sk
(1+ βksk1t − γk1t )ik

]
,

and

f2(xk , θk ) ,

[ √
P−1βksk ik 0

−

√
P−1βksk ik

√
P−1γk ik

]
.

From (26) it then follows that the state transition pdf
(cf. (2)) is independent of the current parameter vector θk ,
i.e., P(xk |θk , θk−1, xk−1) = P(xk |θk−1, xk−1), and is dis-
tributed according to

P(xk |θk−1, xk−1)

= N (xk ; f1(xk−1, θk−1),F(xk−1, θk−1)1t ), (27)

where

F(xk , θk ) =
[
σ 2
1,k −σ 2

1,k
−σ 2

1,k σ 2
1,k + σ

2
2,k

]
.

We observe the (uncertain) normalized number of infected
and of recovered individuals at each time k . Therefore, B=2,
and the observation model (cf. (3)) is

zk = h1(xk )+ vk ,

where vk ∼ N (0,R(xk )) models the observation uncertainty,
and

h1(xk ) , [0 1]T +Hxk , H ,

[
0 1
−1 −1

]
.

5Note that authors generally refer to the population size
as N [4], [5], [7]–[13].
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The covariance matrix R(xk ) depends on the state vector
at time k: since we assume that the observation ‘‘noise’’
accrues from the sum of uncertainties of each individual
epidemic state, the variances are linear in the number of
infected and recovered individuals, respectively. Hence, we
define

R(xk ) ,
[
P−1ik 0
0 P−1(1− ik − sk )

]
Rc , (28)

where Rc is a constant diagonal matrix. Thus, the likelihood
is independent of θk , i.e., P(zk |xk , θk ) = P(zk |xk ), and
distributed according to

P(zk |xk ) = N (zk ;h1(xk ),R(xk )) . (29)

B. GAUSSIAN MIXTURE FILTER
Given the Gaussian nature of the dynamic and observation
models, we adopt a Gaussian mixture implementation of the
Bayesian sequential estimation. That is, we assume that the
pdf of the nth mixture component in (16) is Gaussian with
mean x̂(n,θk )k|k−1 and covariance matrix Ĉ(n,θk )

k|k−1, i.e.,

P(xk |n, θk , z1:k−1) = N
(
xk ; x̂

(n,θk )
k|k−1, Ĉ

(n,θk )
k|k−1

)
. (30)

When the observation zk is available, mean, covariance
matrix, and weight are updated. Specifically, the weight of
the nth mixand is updated as in (18) through the coefficient
α
(n,θk )
k|k−1; this, in turn, is calculated recalling that the likelihood

in (29) is independent of θk , and inserting (29) and (30)
into (19), that is,

α
(n,θk )
k|k−1

=

∫
N
(
zk ;h1(xk ),R(xk )

)
N
(
xk ; x̂

(n,θk )
k|k−1, Ĉ

(n,θk )
k|k−1

)
dxk

≈ N
(
zk ;h1

(
x̂(n,θk )k|k−1

)
,R
(
x̂(n,θk )k|k−1

)
+HĈ(n,θk )

k|k−1H
T
)
, (31)

where we made the approximation R(xk ) ≈ R(x̂(n,θk )k|k−1). We
observe that the last step would be an equality — rather than
an approximation— if the observation covariance matrix was
independent of the state xk . Then, the updated pdf of the nth

Gaussian component is obtained by inserting (29), (30), and
(31) into (20), and is equal to [30]

P(xk |n, θk , z1:k ) = N
(
xk ; x̂

(n,θk )
k|k , Ĉ(n,θk )

k|k

)
, (32)

where

x̂(n,θk )k|k = x̂(n,θk )k|k−1 +K(n,θk )
k|k−1

[
zk − h1

(
x̂(n,θk )k|k−1

)]
,

Ĉ(n,θk )
k|k = Ĉ(n,θk )

k|k−1 −K(n,θk )
k|k−1HĈ(n,θk )

k|k−1 ,

and

K(n,θk )
k|k−1 = Ĉ(n,θk )

k|k−1H
T
[
HĈ(n,θk )

k|k−1H
T
+ R

(
x̂(n,θk )k|k−1

)]−1
.

This is similar to a standard Kalman update, per mixture
element, with essential difference that the measurement noise
covariance is state-dependent.

Let us now consider the evolution of the mixands
according to the dynamic model. The nth predicted weight
is computed using (25) where, assuming that infec-
tion rate βk and recovery rate γk evolve independently,
the parameter vector transition pmf can be written as
P(θk+1|θk ) = P(βk+1|βk )P(γk+1|γk ); the marginal transi-
tion pmfs P(βk+1|βk ) and P(γk+1|γk ) are specified later in
this section. The pdf of the nth predicted mixand is obtained
by recalling that the transition pdf in (27) is independent of
the current parameter vector θk , and inserting (27) and (32)
into (24). This yields

P(xk+1|n, θk+1, θk , z1:k )

=

∫
N (xk+1; f1(xk , θk ),F(xk , θk )1t )

×N
(
xk ; x̂

(n,θk )
k|k , Ĉ(n,θk )

k|k

)
dxk . (33)

Given the nonlinearity of the dynamic model (26), the inte-
gral (33) cannot be computed explicitly. A viable alterna-
tive is to approximate the pdf P(xk+1|n, θk+1, θk , z1:k ) =
P(xk+1|n, θk , z1:k ) as a Gaussian via moment matching, that
is,

P(xk+1|n, θk , z1:k ) = N
(
xk+1; x̂

(n,θk )
k+1|k , Ĉ

(n,θk )
k+1|k

)
. (34)

The computation of x̂(n,θk )k+1|k and of Ĉ
(n,θk )
k+1|k by moment match-

ing is detailed in Appendix A. An alternative method to solve
integral (33) is via the unscented transformation used within
the UKF.

As described in Section III, the parameter vector
θk = [βk , γk ]T is discretized for computational efficiency.
Specifically, βk ∈ D1 = {ϑ

(1)
1 , . . . , ϑ

(1)
D1
} and γk ∈ D2 =

{ϑ
(2)
1 , . . . , ϑ

(2)
D2
}. For concreteness, we assume that

Dm (m = 1 or 2) is an ordered set, i.e., such that for any
j, ` ∈ {1, . . . ,Dm} with j < `, we have ϑ (m)

j < ϑ
(m)
` ; and that

the elements ofDm are selected to be equally spaced between
ϑ
(m)
1 and ϑ (m)

Dm . The marginal transition pmfs P(βk |βk−1)
and P(γk |γk−1) are therefore fully described by the matrix
Pβ ∈ [0, 1]D1×D1 and matrix Pγ ∈ [0, 1]D2×D2 , respectively,
where

[Pβ ]j,` , P(βk = ϑ
(1)
j |βk−1 = ϑ

(1)
` ), (35)

and

[Pγ ]j,` , P(γk = ϑ
(2)
j |γk−1 = ϑ

(2)
` ) . (36)

We note that
∑D1

j=1[Pβ ]j,` = 1 and that
∑D2

j=1[Pγ ]j,` = 1.
Eventually, according to (4) and (6), and replacing the inte-
gral in (6) with the summation, the MMSE estimates of the
normalized numbers of susceptible and infectious are

ŝEk =
∑
βk∈D1

∑
γk∈D2

P(βk , γk |z1:k )

×

∫∫
skP(sk , ik |βk , γk , z1:k )dikdsk , (37)
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and

ı̂ Ek =
∑
βk∈D1

∑
γk∈D2

P(βk , γk |z1:k )

×

∫∫
ikP(sk , ik |βk , γk , z1:k )dskdik , (38)

respectively; and, according to (15), the MMSE estimates of
the infection and recovery rates are

β̂ E
k =

∑
βk∈D1

βk
∑
γk∈D2

P(βk , γk |z1:k ), (39)

and

γ̂ E
k =

∑
γk∈D2

γk
∑
βk∈D1

P(βk , γk |z1:k ), (40)

respectively. Note that the estimates for the parameters β̂ E
k

and γ̂ E
k are updated automatically based on the attractive-

ness (measured in terms of the relative likelihoods) of the
estimates that assume them. Finally, the prior pmfs of the
infection and recovery rates at time k=0 are set to P(β0) =
N (β0; β̄0, σ 2

β ) and P(γ0) = N (γ0; γ̄0, σ 2
γ ); the prior pdf of

the nth Gaussian component at time k = 0 is P(x0|n, θ0) =
P(x0|n) = N (x0; x̄

(n)
0 , C̄

(n)
0 ).

A detailed statement of the proposed Gaussian mixture
filter for the Bayesian estimation of the epidemic evolution
with the stochastic SIR model is provided in Algorithm 1.

C. FORECASTING
The forecasting is as described in Section II-C. Let us assume
that zk is the most recent available observation, and that the
posterior pdf P(xk |z1:k ) and pmf P(θk |z1:k ) are known.

The jth sample state vector extracted from the posterior pdf
P(xk |z1:k ) is x̃(j)k =[s̃

(j)
k , ı̃ (j)k ]T, j∈J , and evolves according

to the state vector forecast transition distribution PF

(
x̃(j)k |

θ̃
(j)
k , θ̃

(j)
k−1, x̃

(j)
k−1

)
; we assume that this forecast transition

distribution coincides with that used within the sequential
Bayesian estimation procedure (cf. (27)), i.e., we assume that
the sampled state vector x̃(j)k evolves according to the dynamic
model in (26).

Concerning the parameter vectors, in order to obtain sam-
ples θ̃

(j)
k = [β̃

(j)
k , γ̃

(j)
k ]T, j∈J , from the infinite setQ— rather

than the discrete finite set D —, the posterior pmf P(θk |z1:k )
is approximated with a suitable continuous distribution; here,
P(θk |z1:k ) is approximated with a bivariate Gaussian pdf and
samples θ̃

(j)
k are extracted from it. Then, these sampled param-

eter vectors are allowed to evolve according to the param-
eter vector forecast transition distribution PF

(
θ̃
(j)
k |θ̃

(j)
k−1

)
=

PF

(
β̃
(j)
k |β̃

(j)
k−1

)
PF

(
γ̃
(j)
k |γ̃

(j)
k−1

)
, where we assumed the infec-

tion and recovery rates to change independently. We recall
that the inverse of the recovery rate expresses the average time
that an individual takes to move from the group of infected
(I) to the group of recovered (R) people; in our model,
the latter includes both those discharged from hospitals, and

those for whom the infection was fatal. Even though it is
likely that the recovery rate will change during the forecast
period (due to, e.g., reporting delays or the application of
different criteria used to declare an individual recovered),
there are no prior information that would suggest when and
how this will happen; it is therefore reasonable to assume
the recovery rate to be constant and deterministic during the
forecast period. This equals to set the recovery rate forecast
transition distribution to

PF
(
γ̃
(j)
k |γ̃

(j)
k−1

)
= δ

(
γ̃
(j)
k − γ̃

(j)
k−1

)
,

where δ(·) is the Dirac delta. The infection rate, instead,
models the interaction between people, and it is therefore
affected by the restriction measures. Therefore, once its time
evolution is captured, it is reasonable to assume — in the
absence of further knowledge — that it keeps the same trend
linearly. That is, the infection rate samples β̃(j)k , j ∈ J , are
assumed to evolve according to

β̃
(j)
k ′ = β̃

(j)
k ′−1 + β̇k1t + dL,k ,

for k ′ ∈ {k + 1, . . . , k + K }, where β̇k is a constant slope,
and dL,k ∼ N (0, σ̇ 2

L,k ); hence, the infection rate forecast
transition distribution is

PF
(
β̃
(j)
k |β̃

(j)
k−1

)
= N

(
β̃
(j)
k ; β̃

(j)
k−1 + β̇k1t , σ̇

2
L,k
)
.

Appendix B provides details on the estimation of the slope β̇k
over the time interval [k − L, k], on the selection of L, with
Lmin 6 L 6 Lmax, and on the computation of σ̇ 2

L,k .
Eventually, defining the ensemble state and parameter

matrices as X̃k = [s̃k , ı̃k ] and 2̃k = [β̃k , γ̃ k ], respectively,
where s̃k , [s̃(1)k , . . . , s̃

(J )
k ]T, ı̃k , [ı̃ (1)k , . . . , ı̃ (J )k ]T, β̃k ,

[β̃(1)k , . . . , β̃
(J )
k ]T, and γ̃ k , [γ̃ (1)

k , . . . , γ̃
(J )
k ]T, the mean of

the epidemic states andmodel parameters at any time step k ′∈
{k+1, . . . , k+K } are calculated as (cf. (14)) ŝFk ′,J

−1s̃Tk ′ ·1J ,

ı̂ Fk ′,J
−1 ı̃Tk ′ · 1J , β̂

F
k ′,J

−1β̃
T
k ′ · 1J , and γ̂

F
k ′ ,J

−1γ̃ T
k ′ · 1J .

The steps of the proposed forecasting algorithm with
stochastic SIR model are detailed in Algorithm 2.

V. FORECAST PERFORMANCE ANALYSIS: SYNTHETIC
DATA AND REAL COVID-19 OUTBREAK DATA
We present numerical results obtained with the sequential
estimation and forecasting algorithm described in Section IV.
In Section V-A the algorithm is applied to synthetic data,
while real data from the recent COVID-19 outbreak are con-
sidered in Section V-B.

A. SYNTHETIC DATA EXPERIMENT
The effectiveness of the proposed algorithm is validated in
two simulated epidemic scenarios involving a community of
P = 106 individuals. The simulations span 80 days, during
which the infection rate changes as shown in Fig. 1. The vari-
ations of the infection rate model the effects of the restriction
measures established by the authorities: in the first scenario,
the epidemic outbreak is controlled by long-term soft restric-
tion measures that cause a slow, yet consistent, decrease in
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FIGURE 1. Evolution of the infection rate in the simulated scenarios.

the infection rate; in the second scenario, an initial strict
lockdown is then followed by a relaxation of the restriction
measures that leads to a slight increase in the infection rate.
The recovery rate is fixed and set to γ = 0.1. The initial
state of the epidemic is described by the normalized numbers
of susceptible, infected, and recovered individuals at time
k = 0, that are s0 = 1 − i0 − r0, i0 = 20/P, and r0 = 1/P.
The infection rate is discretized withD1 = 25 values between
ϑ
(1)
1 = 0 and ϑ (1)

D1
= 0.6; the recovery rate with D2 = 10

values between ϑ (2)
1 = 0 and ϑ (2)

D2
= 0.2. The prior pmf of

the infection rate has mean β̄0 = 0.4 in the first scenario, and
β̄0 = 0.3 in the second scenario; the standard deviation is
σβ = 0.1 for both the scenarios. Mean and standard deviation
of the prior pmf of the recovery rate are γ̄0 = 0.1 and
σγ = 0.04, respectively, for both the scenarios. The transition
matrix for the parameter βk defined in (35) is set to [Pβ ]`,` =
0.9 for ` ∈ {1, . . . ,D1}, [Pβ ]`−1,` = [Pβ ]`+1,` = 0.05 for
` ∈ {2, . . . ,D1 − 1}, and [Pβ ]2,1 = [Pβ ]D1−1,D1 = 0.1.
The transition matrix for the parameter γk defined in (36)
is analogously set to [Pγ ]`,` = 0.99 for ` ∈ {1, . . . ,D2},
[Pγ ]`−1,` = [Pγ ]`+1,` = 0.005 for ` ∈ {2, . . . ,D2 − 1},
and [Pγ ]2,1 = [Pγ ]D2−1,D2 = 0.01. The number of mixture
components is N = 5, and mean and covariance matrix of the
prior pdf of the nth component are

x̄(n)0 =

[
s0
i0

]
+

[
−1 −1

1 0

][
ε
(n)
1

ε
(n)
2

]

and C̄(n)
0 = C̄0 = I2i0, respectively, where ε

(n)
1 ∼

U(−i0/5, i0/5) and ε
(n)
2 ∼ U(−r0/5, r0/5). Finally, the

observation noise covariance matrix in (28) is Rc = 50 I2.
As for the forecasting, the ensemble size is J = 2 × 104,
and the minimum and maximum numbers of points used to
estimate the slope of the infection rate are Lmin = 5 and
Lmax = 14, respectively.

Fig. 2 shows the infection and recovery rates estimated
in the first scenario over the 80 days, along with their 90%
confidence intervals. Analogously, Fig. 3 shows the esti-
mated infection and recovery rates in the second scenario.
The results demonstrate the capability of proposed Bayesian
sequential estimation algorithm to closely follow the time
variation of the infection rates even in the presence of abrupt
fluctuations, as well as to accurately estimate the recovery
rate.

FIGURE 2. Estimated (top) infection rate and (bottom) recovery rate in
the first simulated scenario. The shaded areas represent the 90 %
confidence interval.

FIGURE 3. Estimated (top) infection rate and (bottom) recovery rate in
the second simulated scenario. The shaded areas represent the
90 % confidence interval.

In turn, the accuracy of the proposed algorithm allows one
to reliably forecast the epidemic evolution. Fig. 4 presents
the estimation and forecast on the infection rate and of the
number of infected in the first scenario; we assume that the
latest available observation is on day k = 44 — so that the
estimation stops on this day —, and the forecast is up to day
k = 80. The forecast of the number of infected individuals
well represents the evolution of the epidemic, suggesting a
peak between days 55 and 65. Furthermore, we observe how
both the true infection rate and the true number of infected is
always enveloped within the 90% confidence interval, show-
ing the high reliability of the proposed algorithm. Finally,
in Fig. 5, we show the forecast of the epidemic evolution
in the second scenario. Here, the estimation is performed up
to day k = 57; the capability of the proposed algorithm to
accurately estimate the large variation in the infection rate
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FIGURE 4. Estimation and forecasting, respectively in solid and dashed
lines, of (top) the infection rate and (bottom) the number of infected
individuals in the first scenario; the superscripts E and F stand for
estimate and forecast, respectively. The estimation is up to k = 44
(marked by a vertical dotted line), and the forecast is up to k = 80. The
shaded areas represent the 90 % confidence interval.

FIGURE 5. Estimation and forecasting, respectively in solid and dashed
lines, of (top) the infection rate and (bottom) the number of infected
individuals in the second scenario; the superscripts E and F stand for
estimate and forecast, respectively. The estimation is up to k = 57
(marked by a vertical dotted line), and the forecast is up to k = 80. The
shaded areas represent the 90 % confidence interval.

and forecast its future average value, allows one to forecast
the evolution of the number infected, even though a further
small variation of the infection rate will start at k = 60.

B. REAL DATA: COVID-19 OUTBREAK
This section presents the results obtained with the pro-
posed estimation and forecasting algorithm when applied
to real data obtained from the recent COVID-19 outbreak.
The focus is on two very different areas in terms of pop-
ulation and interactions: Lombardia region in Italy, and
the USA.

1) LOMBARDIA REGION, ITALY
Official data on the COVID-19 epidemic outbreak in Italy are
made available from Protezione Civile on a daily basis [38].
This includes many entries, both nationwide and per region,
as the total number of cases, total number of current positive
cases, new positive cases per day, number of hospitalised
patients, number of tests performed, number of discharged
COVID-19 patients from the hospitals, and number of deaths.
Here, we focus on the data from Lombardia region, the centre
of Italy’s COVID-19 outbreak, whose population is P ≈
107 people. We used the normalized (to P) total number
of current positive cases as number of infected ik , and the
normalized sum of number of discharged patients and number
of deaths as the number of recovered rk . These are reported
in Fig. 6 and refer to the period between February 24, 2020,
and June 30, 2020. The figure also shows the beginning
of the lockdown established by the Italian government on
March 8, 2020. Furthermore, we observe that, on May 6,
the number of infected and number of recovered individu-
als present large steps, which hardly reflect physical reality.
These steps are due to the fact that the numbers reported on
May 6 include not only data referring to that day, but also data
collected on previous days, and, erroneously, not reported in
the correct day [38].

FIGURE 6. Numbers of infected and recovered (i.e., hospital releases plus
deaths) individuals in Lombardia, Italy, from February 24, 2020, to June
30, 2020 (data from Protezione Civile [38]). The vertical dashed line
indicates March 8, 2020, the beginning of the lockdown. The large steps
on May 6 are due to an inaccurate reporting of the data, as explained in
Section V-B1.

The setting of the Bayesian sequential estimation and fore-
casting algorithm is as described in Section V-A, except that
the smallest and largest values used for the discretization of
the infection rate are ϑ (1)

1 = 0 and ϑ (1)
D1
= 0.4, respectively;

the smallest and largest values used for the discretization of
the recovery rate are ϑ (2)

1 = 0 and ϑ (2)
D2
= 0.1, respectively;

mean and standard deviation of their prior pmfs are β̄0 = 0.3
and σβ = 0.07, and γ̄0 = 0.06 and σγ = 0.02; and the obser-
vation noise covariance matrix is Rc = 100 I2. The initial
state of the epidemic is given by the normalized numbers of
susceptible, infected, and recovered on February 24, that are
s0 = 1− i0 − r0, i0 = 166/P, and r0 = 6/P.
The estimated infection and recovery rates are shown

in Fig. 7. The decrease in the infection rate, which represents
the slowdown of the epidemic, clearly reflects the restriction
measures established on March 8. The recovery rate, instead,
decreases up to May 6, when it then shows a slight increase.
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FIGURE 7. Estimated (top) infection rate and (bottom) recovery rate for
Lombardia. The vertical dashed line indicates March 8, 2020,
the beginning of the lockdown. The shaded areas represent the 90 %
confidence interval.

The reduction of the recovery rate balances the decrease in the
infection rate; indeed, up to May 6, the number of infected is
still growing, which suggests that the infection rate is greater
than the recovery rate, i.e., β > γ . After May 6, this trend
changes.

Fig. 8 reports the forecasts of the epidemic evolution
assessed every five days in the time period between April 13
and June 7, and Table 1 presents themean absolute percentage
errors (MAPEs) calculated for each forecast and for different
forecast horizons, that is, 3, 7, and 14 days. We note that the
forecasts made on April 13, 18, and 23, follow the future
observations well, with an average MAPE below 3% at a
forecast horizon of 7 days. On April 28 and May 3 the
forecasts are not reliable, since the future observations are not
contained within the 90% confidence interval. However, this
poor performance is related to the inaccurate data provided
later on May 6; indeed, the next forecasts made from May 8,
to June 7, present again low MAPEs, with an average of
3.49%, 4.24%, and 6.1%, at forecast horizons of 3, 7, and
14 days, respectively. Neglecting the forecasts whose horizon
includes May 6 (marked with an asterisk in Table 1), the
averageMAPE fromApril 13, to June 7, is 3.6% for forecasts
at 7 days, and below 6%when the forecast horizon is 14 days.

The proposed algorithm is compared with two alternative
curve-fitting approaches. The first one, hereafter named SIR-
fit, employs a nonlinear least squares fitting algorithm that,
using the number of infected and recovered individuals, com-
putes the best6 time-invariant infection and recovery rates
of the deterministic SIR model. These best rates are then
used to forecast the evolution of the epidemic. The sec-
ond curve-fitting approach follows the same methodology
applied on a more-sophisticated recently proposed general-
ized SEIR (GSEIR) model [39], for this reason hereafter

6Best is meant in the least-squares sense.

TABLE 1. Mean absolute percentage errors (MAPEs) of the forecasts of
the epidemic evolution in Lombardia, Italy, performed at different dates
and calculated for different forecast horizons, that is, 3, 7, and 14 days.
The asterisk means that the forecast performed at a given date and with a
given forecast horizon includes May 6, when inaccurate numbers of
infected and recovered individuals were reported. The average (last row)
does not take into account these cases.

called GSEIR-fit. The GSEIR model consists of seven com-
partments — three more compartments than those in the
standard SEIR model, i.e., insusceptible, quarantined, and
death — and six parameters. Table 2 compares the average
MAPEs obtained with the proposed algorithm, the SIR-fit,
and the GSEIR-fit. The comparison is made averaging the
MAPEs over two different time intervals. The first interval
is from March 4, i.e., the 10th day since the beginning of
the data collection, to June 16; the second interval is from
April 1, i.e., approximately three weeks after the lockdown,
to June 16. The proposed algorithm clearly outperforms the
SIR-fit for all the forecast horizons. The GSEIR-fit, instead,

TABLE 2. Average mean absolute percentage errors (MAPEs) of the
forecasts of the epidemic evolution in Lombardia, Italy, obtained with the
proposed algorithm, and with the SIR-fit and GSEIR-fit curve-fitting
approaches, for different forecast horizons, that is, 3, 7, and 14 days. The
uppermost table reports the average MAPEs computed over the interval
from March 4 to June 16; the lowermost table reports the average MAPEs
computed over the interval from April 1 to June 16.
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FIGURE 8. Estimation and forecasting, respectively in solid and dashed lines, of the number of infected individuals in Lombardia, Italy (legend is
reported in the bottom-right corner image; the superscript E stands for estimate, and the superscript F stands for forecast). The date corresponding
to the end of the estimation and the beginning of the forecast is marked by a vertical dotted line (the leftmost vertical dashed line marks March 8,
the beginning of the lockdown). In all the cases, the forecast horizon is June 30. The shaded area represents the 90 % confidence interval. The poor
forecasts made on April 28, and May 3, relate to the inaccurate data later provided on May 6, as explained in Section V-B1.

presents a single lower average MAPE over the interval from
March 4 to June 16when the forecast horizon is 14 days; how-
ever, when the interval from April 1 to June 16 is considered,
the proposed algorithm outperforms the GSEIR-fit in all the
cases. This confirms the benefit of sequentially estimating the
time-varying model parameters, in order to have reliable and
accurate forecasts.

2) UNITED STATES OF AMERICA
Since the beginning of the COVID-19 epidemic outbreak,
the Johns Hopkins University (JHU) has tracked the evo-
lution of the contagion and made the collected data pub-
licly available [40], [41]. The repository includes the total
number of cases, the number of deaths, and the number
of discharged COVID-19 patients from the hospitals from
the USA and other countries at different levels of details,
i.e., for the country as a whole and, when available, for single

states and regions. Here, we use the overall dataset from the
USA, whose population is P ≈ 329.8 · 106 people. As for
the experiment made on the dataset from Lombardia, the
normalized (to P) sum of number of discharged patients and
number of deaths is used as the number of recovered rk ;
the normalized number of infected ik is then given by the
normalized difference between the total number of cases and
the number of recovered. These are reported in Fig. 9 and
refer to the period betweenMarch 1, 2020, and July 31, 2020.

The setting of the Bayesian sequential estimation and fore-
casting algorithm is unchanged, except that for the discretiza-
tion and initialization of the parameters, and the initialization
of the epidemic state. Specifically, the smallest and largest
values used for the discretization of the infection rate are
ϑ
(1)
1 = 0 andϑ (1)

D1
= 0.5, respectively; the smallest and largest

values used for the discretization of the recovery rate are
ϑ
(2)
1 = 0 and ϑ (2)

D2
= 0.05, respectively; mean and standard
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FIGURE 9. Numbers of infected and recovered (i.e., hospital releases plus
deaths) individuals in the USA, from March 1, 2020, to July 31, 2020 (data
from JHU [41]).

deviation of their prior pmfs are β̄0 = 0.35 and σβ = 0.08,
and γ̄0 = 0.015 and σγ = 0.008; and the observation noise
covariance matrix is Rc = 2000 I2. The initial state of the
epidemic is given by the normalized numbers of susceptible,
infected, and recovered on March 1, that are s0 = 1− i0− r0,
i0 = 22/P, and r0 = 8/P.

Fig. 10 shows the estimated infection and recovery rates.
From the second half of March and through April the
infection rate decreases, presumably due to the restriction
measures established by each single State. Here, we can-
not mark a specific date as the beginning of the lockdown;
nevertheless, it is reasonable to assume that about three out
of four US citizens were under some form of lockdown by
early April [42]. Around April 30, the estimated recovery
rate shows a slight increase followed by an abrupt decrease.
On that day, 35 thousand new recovered (i.e., hospital releases
plus deaths) individuals were reported against a decrease of
infected individuals of only 6 thousand (cf. Fig. 9); this results
in a sudden increase of the recovery rate. Large numbers of
new recovered individuals are also reported on May 22 and
July 4, that are, 53 thousand and 104 thousand, respectively;
however, these are better balanced by the numbers of peo-
ple leaving the infected group, that are, 29 thousand and
58 thousand, respectively, thus not significantly affecting the
estimates of the infection and recovery rates.

FIGURE 10. Estimated (top) infection rate and (bottom) recovery rate for
the USA. The shaded areas represent the 90 % confidence interval.

Overall, the estimated recovery rate is roughly 0.01, which
translates into an average number of 100 days that an individ-
ual takes to move from the group of infected (I) to the group
of recovered (R). Although the recovery duration seems over-
estimated, it is worth highlighting that this is an aggregate
estimate of the recovery rate from multiple States, which
therefore suffers from multiple different reporting delays,
as well as from the different criteria used to declare an
individual as fully recovered. It underscores the need for the
USA to provide timely and consistent data, similar to that just
analysed in Lombardia, if public health policy is to be driven
by reliable estimation and prediction.

Forecasts of the epidemic evolution evaluated every five
days in the time period between May 6 and June 30 are
reported in Fig. 11. Table 3 presents the MAPEs calculated
for each forecast and for different forecast horizons, that
is, 3, 7, and 14 days.

TABLE 3. Mean absolute percentage errors (MAPEs) of the forecasts of
the epidemic evolution in the USA, performed at different dates and
calculated for different forecast horizons, that is, 3, 7, and 14 days.

We note that the forecasts made on May 6, 11, 16, and
21, present the highest MAPEs; these forecasts, however, are
negatively affected by the abrupt decrease of the recovery
rate that follows April 30, as described above. The forecasts
made from May 26, to June 30, instead, present MAPEs
that are always below 3% at forecast horizons of 3 and
7 days, and always below 4% when the forecast horizon is
14 days. Overall, the results in Table 3 confirm those obtained
with the data from Lombardia: the average MAPE for fore-
cast horizons of 3, 7, and 14 days, is, respectively, 2.35%,
3.03%, and 4.16%. Table 4 compares the average MAPEs
obtained with the proposed algorithm, with those obtained
with the SIR-fit and the GSEIR-fit curve-fitting approaches.
The proposed algorithm consistently outperforms both the
curve-fitting approaches, in both the considered time inter-
vals. Moreover, we observe a significant improvement of
the MAPE for the proposed algorithm when considering the
interval fromApril 1 to July 17, compared to the interval from
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FIGURE 11. Estimation and forecasting, respectively in solid and dashed lines, of the number of infected individuals in the USA (legend is reported
in the bottom-right corner image; the superscript E stands for estimate, and the superscript F stands for forecast). The date corresponding to the
end of the estimation and the beginning of the forecast is marked by a vertical dotted line. In all the cases, the forecast horizon is July 31. The
shaded area represents the 90 % confidence interval. The poor forecasts made on May 11 and 16, relate to the abrupt decrease of the estimated
recovery rate that follows April 30 (cf. Fig. 10, bottom image).

March 10 to July 17, which again confirms the benefit of
sequentially estimating the time-varying model parameters in
pursuance of reliable and accurate forecasts.

C. LIMITATIONS AND EXTENSIONS
The proposed analysis presents some limitations that may
lead to future extensions and these are worth exploring. First,
the considered stochastic SIR model may be broadened to
include the fraction of undocumented (or asymptomatic) and
quarantined infected individuals. Undocumented infections
usually include mild or asymptomatic cases that go unde-
tected and, hence, based on their proportion and contagious-
ness, can potentially increase the spread of the disease. The
portion of undocumented infectious cases is suspected to be
a critical epidemiological characteristic that is not easy to
quantify. Most of the available evidence on asymptomatic

SARS-CoV-2 infections, reviewed and summarised in [43]
for different circumscribed cohorts, suggests that this is a
significant factor in the fast progression of the COVID-19
pandemic. However, the difficulty in quantification of undoc-
umented cases is largely due to the imperfection of the
data available, which does not accurately reflect a large,
representative sample of the general population. Moreover,
in order to distinguish asymptomatic and presymptomatic
cases, longitudinal data — that is, repeated observations of
the individuals over time — should be available.

Another possible extension may be to separate people
who are confirmed infected and home-quarantined into a
dedicated epidemic compartment. In addition, the recovered
compartment typical of the SIR model may be separated into
two distinct recovery and death compartments in the detection
phase so that the available data on reported cases can be
taken into account separately. Furthermore, the considered
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TABLE 4. Average mean absolute percentage errors (MAPEs) of the
forecasts of the epidemic evolution in the USA, obtained with the
proposed algorithm, and with the SIR-fit and GSEIR-fit curve-fitting
approaches, for different forecast horizons, that is, 3, 7, and 14 days. The
uppermost table reports the average MAPEs computed over the interval
from March 10 to July 17; the lowermost table reports the average MAPEs
computed over the interval from April 1 to July 17.

stochastic SIR model describes the spread of the disease
inside a single and confined population, e.g., a city, a region
(Lombardia, Italy), a nation (USA). However, the approach
presented in this article could be extended to more com-
plicated metapopulation models, which introduce a fur-
ther spatial travel/diffusion dimension in the dynamic and
observation models. In particular, the population could be
represented as a network of multiple spatially separated sub-
populations nodes, such as multiple cities in the same region
or nation. The interconnections among different populations
represents the diffusion of people, thus contributing to the
disease spread among the different subpopulations. All these
limitations can be addressed in future studies because they
mainly affect data analysis, and do not restrict the application
and the effectiveness of the proposed approach to learning
and forecasting the evolution of the critical epidemiological
characteristics.

VI. CONCLUSIONS
The recent worldwide epidemic outbreak, due to a new strain
of Coronavirus, has intensified research into novel mathemat-
ical models and algorithms that are able to reliably estimate
and predict the epidemiological curve of the infection. In this
article, we proposed a Bayesian sequential estimation and
forecasting algorithm that, based on the information that
authorities provide on a daily basis, is able to estimate the
state of the epidemic and the parameters of the underlying
model, as well as to forecast the evolution of the epidemiolog-
ical curve. We developed an efficient implementation of the
above-mentioned Bayesian framework, specifically tailored
to the stochastic SIR model of pandemic evolution. The pro-
posed algorithm is validated using synthetic data simulating
two epidemic scenarios, and on real data acquired during
the recent COVID-19 outbreak in the Lombardia region,
Italy, and in the USA. Results show that the mean absolute

percentage error computed after the lockdown is on average
below 5% when the forecast is at 7 days, and below 10%
when the forecast horizon is 14 days. Moreover, the described
Bayesian framework outperforms curve-fitting approaches
that use deterministic epidemiological models (e.g., SIR and
GSEIR), particularly when a clear change of model param-
eters occur, e.g., a decrease of the infection rate following
the lockdown. Finally, accurate and timely data collection,
especially on recovered individuals, hospitalizations, inten-
sive care unit admissions, and intubations, is essential for
reliable model-based decisions.

There exists an enormous amount of very recent litera-
ture related to the forecast of COVID-19 pandemic evolu-
tion, part of which has been reviewed at the beginning of
this article. The analysis of this literature makes clear the
effectiveness of model-based approaches, over less struc-
tured data-centric methodologies. In this respect, one lesson
learned by the present study is that accurate epidemic model-
ing requires accurate estimation of time-varying parameters,
such as the infection rate β. This is obviously true in the pres-
ence of abrupt changes of the underlying physical situation
(e.g., adoption of drastic countermeasures) but, more inter-
estingly, it is by no means limited to these extreme situations.
One consequence is that, once the epidemic is under control,
small variations in the estimated β may be used as a sensi-
ble proxy for the incipient detection of possible pandemic
recrudescence.

APPENDIX A
MOMENT MATCHING
This section reports the expressions, derived by moment
matching, used to compute x̂(n,θk )k+1|k and Ĉ(n,θk )

k+1|k in (34). Let

x̂(n,θk )k|k , [ŝ(n,θk )k|k , ı̂ (n,θk )k|k ]T and
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be mean and covariance matrix of the nth posterior mixand
P(xk |n, θk , z1:k ). We aim to approximate the nth predicted
mixand P(xk+1|n, θk , z1:k ) to be Gaussian with mean
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[
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To simplify the notation, we hereafter omit the index n and
the dependence on the parameter vector θk . Following simple
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algebraic calculations, the components of the mean vector are
obtained as

ŝk+1|k =
(
1− βk ı̂k|k1t

)
ŝk|k − βk1tρk6s,k6i,k ,

and

ı̂k+1|k =
(
1+ βk ŝk|k1t − γk1t

)
ı̂k|k + βk1tρk6s,k6i,k .

We note that the products ı̂k|k ŝk|k induce nonlinearity in
their predicted values, and hence require extra calculation for
the associated uncertainties; indeed, the components of the
covariance matrix are
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2
k|k6

2
i,k + ı̂2k|k6

2
s,k

+
(
1+ 2ρ2k

)
62
s,k6

2
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+ 2ρk ŝk|k6s,k6i,k

]
+P−1βk1t

(
ŝk|k ı̂k|k + ρk6s,k6i,k

)
− ŝ2k+1|k ,

and

ρk+16s,k+16i,k+1

=
(
1− γk1t − P−1βk1t

)(
ŝk|k ı̂k|k + ρk,n6s,k6i,k

)
−
(
1− γk1t

)
βk1t

[
ŝk|k

(
ı̂2k|k +6

2
i,k
)

+2ρk ı̂k|k6s,k6i,k

]
+ βk1t

[
ı̂k|k
(
ŝ2k|k +6

2
s,k
)

+2ρk ŝk|k6s,k6i,k

]
− β2k1

2
t

[
ŝ2k|k ı̂2k|k + ŝ

2
k|k6

2
i,k

+ı̂2k|k6
2
s,k +

(
1+ 2ρ2k

)
62
s,k6

2
i,k

+4ρk ŝk|k ı̂k|k6s,k6i,k

]
− ŝk+1|k ı̂k+1|k .

APPENDIX B
ADAPTIVE ESTIMATION OF THE INFECTION RATE SLOPE
Let us assume that the infection rate in the time interval
[k − L, k] is linearly changing according to the following
model

βk−`+1 = βk−` + β̇k1t + ωk,` , (41)

for ` ∈ {1, . . . ,L}, where ωk,l ∼ N (0, σ 2
ω) and β̇k is a

constant slope. An estimate of the slope can be obtained
through the simple linear regression estimator [44] using the

Algorithm 1 Epidemic Estimation with Stochastic SIR Model

Input: k , z1:k = [zT1 , . . . , z
T
k ], N , D, β̄0, σ 2β , γ̄0, σ

2
γ ,
{
x̄(n)0 , C̄(n)

0
}N
n=1

Output:
{
P(xk ′ |θk ′ , z1:k ′ ),P(θk ′ |z1:k ′ ), ŝ

E
k ′ , ı̂ Ek ′ , β̂

E
k ′ , γ̂

E
k ′
}k
k ′=1

INITIALIZATION
1: k ′ ←− 1
2: for θk ′ = [βk ′ , γk ′ ]

T
∈D do

3: P(θk ′ |z1:k ′−1)←− N (βk ′ ; β̄0, σ
2
β )N (γk ′ ; γ̄0, σ

2
γ )

4: for n = 1 to N do
5: w

(n,θk′ )
k ′|k ′−1 ←− N−1

6: x̂
(n,θk′ )
k ′|k ′−1 ←− x̄(n)0

7: Ĉ
(n,θk′ )
k ′|k ′−1 ←− C̄(n)

0
8: end for
9: end for

10: for k ′ = 1 to k do

UPDATE

11: for θk ′ ∈D do
12: for n = 1 to N do
13: α

(n,θk′ )
k ′|k ′−1←−N

(
zk ′ ;h1

(
x̂
(n,θk′ )
k ′|k ′−1

)
,

R
(
x̂
(n,θk′ )
k ′|k ′−1

)
+HĈ

(n,θk′ )
k ′|k ′−1H

T
)

14: w
(n,θk′ )
k ′|k ′ ←−

α
(n,θk′ )
k ′|k ′−1w

(n,θk′ )
k ′|k ′−1∑N

n′=1 α
(n′,θk′ )
k ′|k ′−1w

(n′,θk′ )
k ′|k ′−1

15: x̂
(n,θk′ )
k ′|k ′ ←− x̂

(n,θk′ )
k ′|k ′−1 +K

(n,θk′ )
k ′|k ′−1

[
zk ′ − h1

(
x̂
(n,θk′ )
k ′|k ′−1

)]
16: Ĉ

(n,θk′ )
k ′|k ′ ←− Ĉ

(n,θk′ )
k ′|k ′−1 −K

(n,θk′ )
k ′|k ′−1H Ĉ

(n,θk′ )
k ′|k ′−1

17: end for
18: P(xk ′ |θk ′ , z1:k ′ )←−∑N

n=1 w
(n,θk′ )
k ′|k ′ N

(
xk ′ ; x̂

(n,θk′ )
k ′|k ′ , Ĉ

(n,θk′ )
k ′|k ′

)
19: P(θk ′ |z1:k ′ )←−

P(θk ′ |z1:k ′−1)
∑N

n=1 α
(n,θk′ )
k ′|k ′−1w

(n,θk′ )
k ′|k ′−1∑

θ ′
k′
∈D P(θ ′k ′ |z1:k ′−1)

∑N
n′=1 α

(n′,θ ′
k′
)

k ′|k ′−1w
(n′,θ ′

k′
)

k ′|k ′−1
20: end for
21: Compute ŝEk ′ , ı̂ Ek ′ , β̂

E
k ′ , and γ̂

E
k ′ according to (37)–(40)

PREDICTION
22: for θk ′+1∈D do
23: P(θk ′+1|z1:k ′ )←−

∑
θk′∈D P(θk ′+1|θk ′ )P(θk ′ |z1:k ′ )

24: n′ ←− 1
25: for θk ′ ∈D do
26: for n = 1 to N do
27: w

(n′,θk′+1)
k ′+1|k ′ = w

(n,θk′+1,θk′ )
k ′+1|k ′ ←−

P(θk ′+1|θk ′ )P(θk ′ |z1:k ′ )
P(θk ′+1|z1:k ′ )

w
(n,θk′ )
k ′|k ′

28: x̂
(n′,θk′+1)
k ′+1|k ′ ←− x̂

(n,θk′ )
k ′+1|k ′ (via moment matching)

29: Ĉ
(n′,θk′+1)
k ′+1|k ′ ←− Ĉ

(n,θk′ )
k ′+1|k ′ (via moment matching)

30: n′←−n′ + 1
31: end for
32: end for
33: end for

PRUNING
34: for θk ′+1∈D do
35: Sort in descending order theN×Dmixture components according

to the weights
{
w
(n,θk′+1)
k ′+1|k ′

}N×D
n=1 , and retain the first N elements

36: for n = 1 to N do

37: w
(n,θk′+1)
k ′+1|k ′ ←−

w
(n,θk′+1)
k ′+1|k ′∑N

n′=1 w
(n′,θk′+1)
k ′+1|k ′

38: end for
39: end for
40: end for
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L+ 1 most recent MMSE estimates of the infection rate, that
is,

ˆ̇βL,k =

L∑
`=0

(
`− L/2

)(
β̂ E
k−L+` − (L + 1)−1

L∑
`′=0

β̂ E
k−`′

)

1t

L∑
`=0

(
`− L/2

)2 .

The estimator ˆ̇βL,k is unbiased, and its variance is

σ̇ 2
L,k =

σ̂ 2
ω,L

12
t

L∑
`=0

(
`− L/2

)2 ,

where σ̂ 2
ω,L is an estimate of σ 2

ω, i.e., the variance of the noise
term ωk,`, given by

σ̂ 2
ω,L =

L∑
`=1

(
β̂ E
k−`+1 − β̂

E
k−` −1t

ˆ̇βL,k

)2
L − 1

.

In practice, the slope β̇k is piecewise constant, that is, constant
over subintervals of the entire interval [k − L, k]. Therefore,
we aim to find the value L?, Lmin 6 L? 6 Lmax, — hence,
the subinterval [k − L?, k] — such that the linear model
with constant slope in (41) is a valid assumption for the time
evolution of the infection rate. Let L̄ be the candidate value
for L?, and let us define the auxiliary variable yL̄,k as

yL̄,k ,

(
β̂ E
k − β̂

E
k−1 −

ˆ̇βL̄,k1t
)2

σ̂ 2
ω,L

. (42)

It is easy to verify that, if the linear model (41) is valid
and ˆ̇βL̄,k represents an accurate estimate of the constant
slope over the interval [k − L̄, k], then yL̄,k is a central
chi-square distributed variable with one degree of freedom,
i.e., yL̄,k ∼ χ2

1 (0); otherwise, yL̄,k is a non-central chi-
square distributed variable with one degree of freedom and
non-centrality parameter ν > 0, i.e., yL̄,k ∼ χ2

1 (ν). The
problem of finding L? can therefore be recast as a hypothesis
test: the null hypothesis (H0) states that the linear assumption
is valid and ˆ̇βL̄,k is a good estimate of the constant slope; the
alternate hypothesis (H1) states that the linear hypothesis with
constant slope is invalid. The hypothesis test can be formally
written as {

H0 : yL̄,k ∼ χ
2
1 (0),

H1 : yL̄,k ∼ χ
2
1 (ν),

and the decision rule is

yL̄,k
H0
≶
H1

TH .

The threshold TH is obtained as

TH = F−1
χ2
1 (0)

(1− Pfa),

where Pfa is the probability to reject hypothesis H0 when it is
true and F−1

χ2
1 (0)

(·) is the inverse cumulative density function of
a central chi-square variable with one degree of freedom. In
order to select L?, we employ the following iterative proce-
dure: if with L̄ hypothesis H0 is accepted, and with L̄ − 1
hypothesis H0 is rejected, then L? = L̄; otherwise, L̄ is
decreased and the test is repeated. This iterative procedure
starts with L̄ = Lmax. Note that, alternatively, the threshold
could be obtained by fixing the probability to accept hypoth-
esis H0 when it is false; in such a case, the non-centrality
parameter ν is approximated with the numerator of (42).

Algorithm 2 Epidemic Forecasting with Stochastic SIR Model

Input: k , P(xk |z1:k ), P(θk |z1:k ), J , L, K , P,
{
β̂ E
k ′
}k
k ′=k−L

Output:
{
ŝFk ′ , ı̂ Fk ′ , β̂

F
k ′ , γ̂

F
k ′
}k+K
k ′=k+1

INITIALIZATION
1: Draw J samples x̃(j)k = [s̃

(j)
k , ı̃ (j)k ]T from P(xk |z1:k )

2: Draw J samples θ̃
(j)
k = [β̃

(j)
k , γ̃

(j)
k ]T from P(θk |z1:k )

3: ˆ̇βL,k ←−

∑L
`=0

(
`− L/2

)(
β̂ E
k−L+` − (L + 1)−1

∑L
`′=0 β̂

E
k−`′

)
1t
∑L
`=0

(
`− L/2

)2
4: σ̂ 2ω,L ←−

∑L
`=1

(
β̂ E
k−`+1 − β̂

E
k−` −1t

ˆ̇βL,k

)2
L − 1

5: σ̇ 2L,k ←−
σ̂ 2ω,L

12
t
∑L
`=0

(
`− L/2

)2
FORECASTING

6: for j = 1 to J do
7: for k ′ = k + 1 to k + K do

STATE EVOLUTION

8: Draw λ = [λ1, λ2]T ∼ N (0, I21t )
9: σ

(j)
1,k ′−1 ←−

√
P−1β̃(j)k ′−1 s̃

(j)
k ′−1 ı̃ (j)k ′−1

10: σ
(j)
2,k ′−1 ←−

√
P−1γ̃ (j)k ′−1 ı̃ (j)k ′−1

11: s̃(j)k ′ ←− s̃(j)k ′−1 − β̃
(j)
k ′−1 s̃

(j)
k ′−1 ı̃ (j)k ′−11t + σ

(j)
1,k ′−1 λ1

12: ı̃ (j)k ′ ←− ı̃ (j)k ′−1 + β̃
(j)
k ′−1 s̃

(j)
k ′−1 ı̃ (j)k ′−11t

−γ̃
(j)
k ′−1 ı̃ (j)k ′−11t − σ

(j)
1,k ′−1 λ1 + σ

(j)
2,k ′−1 λ2

PARAMETERS EVOLUTION

13: Draw η ∼ N (0, σ̇ 2L,k )

14: β̃
(j)
k ′ ←− β̃

(j)
k ′−1 +

ˆ̇βL,k1t + η

15: γ̃
(j)
k ′ ←− γ̃

(j)
k ′−1

ENSEMBLE MEAN

16: ŝFk ′ ←− J−1
∑J

j=1 s̃
(j)
k ′

17: ı̂ Fk ′ ←− J−1
∑J

j=1 ı̃ (j)k ′
18: β̂ F

k ′ ←− J−1
∑J

j=1 β̃
(j)
k ′

19: γ̂ F
k ′ ←− J−1

∑J
j=1 γ̃

(j)
k ′

20: end for
21: end for
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