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Topological features have a ubiquitous influence
on the behaviour of condensed matter, from the
qualitative analysis of fluids flows to the classification
of defects in simple and complex solids. We review
results concerning the incidence of topological
features on foundational aspects of the mechanics of
simple and complex bodies, with particular emphasis
on the mechanics of defects. Pertinent to this last
issue, unusual concepts such as the relative power
or the structure invariance of the Clausius–Duhem
inequality under diffeomorphism-based observer
changes are discussed.

1. Introduction

Nondum matura est.
Phaedrus (4, 3, 4) from Aesop (15 ab
Hausrath)

In the standard format of continuum mechanics, the
morphology of a body is described only by a fit region
B of the Euclidean space. No geometric information
is given about the low-spatial-scale material morphol-
ogy. The description of defects is only limited to the
geometry of B. When microstructural events influ-
ence the gross behaviour, the description of the body
morphology needs to be enriched: we introduce phase
fields that (generically) take values on a differentiable
manifold, say M. The topological properties of M
furnish further information on the defect structures. But
there is something more of fundamental character about
the paradigm: such fields are considered to be observa-
ble so that true interactions are associated with them.
Thus, the classical notion of observer has to be refined.
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Another question deals with the balance equations, above all those of microstructural
interactions associated with the ‘mechanisms’ described by the phase fields, and those that
involve actions driving the evolution of defects at macroscopic scale: are these balances first
principles? We may postulate them in analogy with those of macroscopic momentum and
moment of momentum. However, analogy is only a hope, to be perhaps adopted only as a
starting point that requires subsequent proofs and justifications. Thus, a question remains: can
we derive such a balances from a more primitive source? Answering this opens the way to
reliable generalizations. My answer to this last question is in the affirmative.

In discussing reasons for the answer, we find it natural to consider how topological features
influence the scenario. They are often primarily referred to the analysis of fluid flows since
Arnold’s 1966 pioneering work on the hydrodynamics of perfect fluids in the light of infinite-
dimensional Lie groups [1]. Not restricted to fluid flows, topological features have, however,
ubiquitous incidence on the mechanical behaviour of condensed matter.

We refer those interested in the topology of fluid flows to the elegant and comprehensive
treatise [2]. Here, instead, we look at results concerning general foundational issues and the
mechanics of defects in simple and complex bodies. The adjective complex as referred to bodies
is used to recall in short that they are made of condensed matter in which microstructural
events at low spatial scale(s) influence the gross behaviour in a way hardly representable in the
traditional format of continuum mechanics.

The classical paradigm was clarified and set up during the second half of twentieth century
[3–6]. Its well-known structure is as follows:

— A body is considered to be a set of so-called material elements, each intended as a cluster
of atoms not otherwise specified. The body morphology is represented by a fit region in
the Euclidean space. So, material elements are considered as indistinct pieces of matter
identified by points.

— To be defined, a deformation requires the choice of a reference configuration, selected
in a space that is a copy of the physical space for reasons that will be clear later. Every
deformation is assumed to avoid self-penetration of matter, to be differentiable, one-to-
one and such that it preserves the space orientation.

— Every part (itself a fit region) of a body interacts with adjacent parts and the rest of the
universe. Interactions are linear functionals over an algebra of bodies, and are subdivided
into bulk and surface families that are balanced.

— Balance equations of standard forces and couples refer to those bodies whose morphol-
ogy is represented as above.

— The type of material is specified by state functions—constitutive structures—that are
restricted by the Clausius–Duhem inequality, a version of the second law of thermody-
namics. The role assigned to the second law is to be a source of admissibility conditions
for constitutive structures, stability and propagation of discontinuities as shock waves.

Considering material complexity induced a shift in such a paradigm. The main features of the
associated general model-building framework are as follows:

— Every material element is considered as a system with own structure. The body morphol-
ogy is represented not only by a fit region in space but also by additional descriptors of the
microstructural morphology (phase fields). Generically, we take such fields as valued on a
finite-dimensional manifold, say M, considered not embedded into a linear space. Special
choices of M depend on specific physical circumstances.

— These additional descriptors are considered as observable entities. This requires an
extension of the classical notion of observer.

— Interactions are associated with every kinematic mechanism foreseen by the geometric
representation of the body morphology. Thus, microstructural interactions emerge.

— The pertinent balance laws can be derived from invariance principles, together with the
standard balances of forces and couples. So, they do not need to be postulated.
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— The Clausius–Duhem inequality can play a classical role, and even a new one that we also
discuss here.

Appropriate references are introduced later. Here, we only summarize the structure of this
paper.

In §2, we begin by recalling for future use the classical Cauchy stress theorem, written with
reference to a generic balance law (not necessarily the classical integral balance of forces). With
respect to traditional treatments introduced even at undergraduate level, the version recalled
here points out that weaker regularity than the one in standard textbooks is sufficient for the
result. This opens the problem of how ‘wild’ from a topological viewpoint the geometrical
representation of macroscopic configurations can be, and how contact interactions depend on
a non-smooth choice of a body part (another topological feature). Some answers are provided
in §3, where (say) edge interactions are considered. Accounting for them, at least to some
extent, requires variations in the algebra of bodies as introduced by Noll [3,7,8] to define
interactions. Further changes are necessary when we consider microstructural events with
the actions driving and connecting them with the macroscopic behaviour. To define such
actions it seems useful to extend a different approach to interactions still proposed by Noll
[8,9], who did not account for microstructures. Before going into details, however, we need
to discuss how accounting for material complexity starts from a refined representation of
the body morphology. This is done in §4 to §6. Topological methods allow a classification
of defects at various scales, and with reference to different material structures. An extension
of the notion of observer is also implied, as discussed in §7. Then, in §8, we define micro-
structural actions in terms of the external power that they perform and explain also the
notion of relative power, which is also relevant in the presence of growing defects. In particu-
lar, we show how a requirement of objectivity for the relative power implies the deduction
of standard, microstructural and configurational actions. Inertial effects are discussed in §9.
Thermodynamic aspects are summarized in §10. A requirement of structure invariance for the
Clausius–Duhem inequality under diffeomorphism-based observer changes becomes a source
of all basic ingredients of a continuum model. Section 11 collects miscellaneous material and
indicates perspectives.

Editorial restrictions in length do not allow us to render self-contained the paper. Readers
are presumed to be literate in some aspects of topology, differential geometry, mathematical
analysis and to be familiar with continuum mechanics. In any case, indications of pertinent
treatises are provided to allow appropriate further readings. This paper discusses primarily
ideas that are often unusual; they have a foundational character.

2. General fluxes
Let B be an open connected set with Lipschitz boundary in ℝk. A proper domain (or part) b of
B is any open bounded subset with non-zero volume and Lipschitz boundary. Consider a (say)
scalar extensive entity on any proper domain b of B. It is characterized by a production R(b)
and a flux Q(∂b) across the boundary ∂b. Commonly, a balance law is a prescription that the
production equals the pertinent flux, namely

(2.1)Q(∂b) = R(b) .

Requiring that production and flux are extensive means that they are additive over disjoint
subsets. Specifically, R is naturally endowed with the structure of a measure, that is a set
function that vanishes on the empty set and is countably additive over disjoint subsets, those
constituting a σ-algebra in a given space. Specifically, we take for R a signed Radon measure, that
is a measure such that its value R(b) is the supremum over values computed on all compact sets
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K ⊂ b, and every point x ∈ b has a neighbourhood Ix with finite measure. Linear functionals
such as

ρ⟼ bρ dx ,

defined over locally compact topological spaces (as ℝn is) correspond to Radon measures. We
also choose Q to have density f∂ ∈ L1(∂b), with respect to the (k − 1)-dimensional Hausdorff
measure Hk − 1; for any domain ℭ of ∂b, the flux Q through ℭ is given by

Q(ℭ) := ∫ℭf∂(x) dHk − 1(x) .

Theorem 2.1. (Cauchy’s flux theorem) [10, p. 3]. With the above assumptions, let |fb(x)| ≤ K for some
constant K for any x ∈ ∂b and all proper domains b. With each n in the k − 1 sphere Sk − 1 is associated a
bounded measurable function an on B with the following property: given b, suppose that x is a point in
∂b such that the normal to b exists and is n. Assume also that x is a Lebesgue point for fb, with respect to
Hk − 1, and that the upper derivative of |R| at x, with respect to Lebesgue measure, is finite. Then,

f∂(x) = an(x) ,

meaning that fb depends on ∂b only through the normal n. Also, there exists a vector fielda ∈ L∞(B;M1 × k), with M1 × k the linear space of 1 × k matrices, such that, for any fixed n ∈ Sk − 1

an(x) = a(x) ⋅ n
almost everywhere in B. Finally, the vector function a satisfies the field equation

diva = R

in the sense of distributions on B.

Theorem 2.1 holds even when f∂ takes values in a more general linear space (say) X . So,
when balance (2.1) is the integral balance of forces, the linear operator a(x) coincides with the
standard stress.

Are there non-trivial physical motivations for looking at a generality such as the one in
Theorem 2.1, or does the smooth case suffice? Formulating an answer requires us to look at
least approximately to the way ideas about the representation of contact interactions evolved
historically.

3. Topology influences the representation of contact interactions: the classical
case

In his first derivation of the stress tensor, Cauchy considered smooth ideal cuts dividing a body
into disjoint parts. His smoothness assumption does not cover topological features such as
shocks, corners and edge contact of bodies. Something more is needed to account for these
aspects. Related questions are as follows: how can the (possibly variegate) nature of contact
interactions be effectively described with simple motivated hypotheses? What are a body and
an appropriate class of body parts? The first question pertains to properties of the mapping
describing interactions. The second question is related to the domain on which interactions are
defined.

Physics suggests that a contact interaction should be additive with respect to disjoint
components of ∂b. The complement of b in B should also be a body part. Consequently, the
set Bsub of parts b of B could be reasonably supposed to be closed under finite union, finite
intersection and the complement of its elements.
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Difficulties emerge. If b ∈ Bsub, itself b should contain its boundary; otherwise speaking
of a common boundary between two body parts in contact would lose meaning. However,
as complements of closed body parts we find open sets, so that making a representation of
interactions we have to decide whether open body parts can exert a contact interaction on
each other, and whether it might be the same as that for the corresponding closed body parts.
Implicit is the assumption that the role of body parts in contact is always interchangeable. Then,
the emerging structure for Bsub is the one of a Boolean algebra. Such a structure is at the roots
of Noll’s representation of interactions. They are subdivided—we know—into bulk and contact
families, both represented by vector-valued measures defined on Borel subsets of each body
part [7]. Specifically, global standard bulk and contact actions are assumed to be, respectively,
given by the integrals

bb‡ dμ(x) and
∂bt∂dHk − 1(x) ,

where b‡ is the sum of inertial (bin) and non-inertial (b) components, and the den-
sities b‡ and t∂ are bounded, that is, there are constants C1 and C2 such that|b‡(x) | < C1 < + ∞ and | t∂(x) | < C2 < + ∞. Continuity is presumed for t∂.

In 1968 Gurtin et al. [11] were able to prove Cauchy’s theorem by requiring only that t∂ is
integrable. More precisely, they looked at global fluxes, say Q, presuming their boundedness,
that is, |Q(S) | ≤ C area (S) and |Q(∂b) | ≤ C vol (b) for all oriented surfaces S  and all body parts b,
with C a constant.

Also, if we consider body parts as closures of open (compact) sets with piecewise smooth
boundary, such a family is not closed under intersection. So, Noll [8] discussed physically
acceptable requirements for a family of bodies or body parts of a given body, based on a set Ω,
called a material universe, endowed with a preorder relation ≺, read as being part of.

Write A, B, ℭ and D for elements of Ω. Given A,B ∈ Ω, there can be at most one ℭ ∈ Ω such
that ℭ ≺ A,B and ℭ′ ≺ A,B⟹ℭ′ ≺ ℭ. If such ℭ exists, it is what we call the greatest common
part of A and B; for it we write ℭ = A ∧ B. Given A,B ∈ Ω, there can be at most one D ∈ Ω such
that A,B ≺ D and A,B ≺ D′ implies D′ ≺ D. If such a D exists, we call it the least envelope ofA and B writing D = A ∨ B. These operations endow Ω with a lattice algebraic structure. It is
defined by a number of axioms [7,8]: (i) A = B if and only if A ≺ B and B ≺ A. (ii) A ≺ B andB ≺ ℭ⟹ A ≺ ℭ. (iii) There are two elements, namely ∅ and ∞ in Ω, called the material nothing
and the material all, such that ∅ ≺ A ≺ ∞ for all A ∈ Ω. (iv) For each A ∈ Ω, there is exactly oneAe ∈ Ω, called the exterior of A, such that A ∧ Ae = ∅ and A ∨ Ae = ∞. (v) If A ∧ Be = ∅, A ≺ B. (vi)
For all A,B ∈ Ω, A ∧ B exists.

Write (Ω × Ω)sep for the set (Ω × Ω)sep := (A,B) ∈ Ω × Ω | A ∧ B = ∅ . A mappingιn : (Ω × Ω)sep ⟶ V, where V is some vector space, is called an interaction if ιn( ⋅ ,Ae) : Ω ⟶ V
and ιn(A, ⋅ ) : Ω ⟶ V are additive for every A ∈ Ω. An interaction ιn satisfies the law of action and
reaction, namely ιn(A,B) = −ιn(B,A) for all A,B ∈ Ω, with A ∧ B = ∅, if and only if the mappingA ιn(A,Ae) is additive [12]. A question remains: what types of sets in the Euclidean space
can we put in one-to-one correspondence with the elements of Ω?

In 1976, Gurtin & Martins [13] noticed that polyhedra satisfy Noll’s axioms. Thus, they
considered fluxes as additive mappings over polyhedral surfaces. The question was: why only
polyhedra? Indeed, in 1969 Kirby & Sebermann [14] discovered manifolds without polyhedral
structure. And there is no a priori reason to avoid them if, according to Truesdell, we consider
bodies as manifolds. In fact, what we have to understand is how rich a system of body parts should
be.

Banfi & Fabrizio in 1979 [15] and Ziemer [16] in 1983 found that sets of finite perimeter
satisfy Noll’s axioms; they are endowed with a normal almost everywhere on their measure
theoretic boundary. They could be, however, too exotic with respect to physical acceptability
as sets that may represent tangible bodies. Thus, Gurtin et al. [17] reduced in 1986 the class
by choosing sets that coincide with their measure theoretic interior. Such a class, however,
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appeared too narrow. So, in 1988, Noll & Virga [18] proposed to adopt the so-called fit regions
(bounded regularly open sets with negligible boundary), which are somewhere in between the
previous classes. They exploited De Giorgi’s idea of sets with reduced boundary [19]. Once the
notion of a fit region was accepted, in question was the analysis of interactions on this type of
sets.

In 1991, M. Šilhavý [20] (see also [21]) extended Cauchy’s theorem to fluxes for which, with
Q an additive functional over oriented disjoint surfaces, Lp-functions f1 and f2 exist and are
such that, for p ≥ 1,

|Q(S) | ≤ Sf1 dHk − 1(x) |Q(∂b) | ≤ bf2 dμ(x) ,

for any oriented surface S  in a body. The last inequality mimics in a certain sense the balance
of standard forces. De Giovanni et al. [22] proposed in 1999 to replace the absolutely continuous
volume measure corresponding to f2 in Šilhavý’s work with an arbitrary Radon measure.
Consequently, in the representation of contact interactions they were naturally prompted to
consider tensor fields with divergence a measure. Chen & Frid [23], Chen & Torres [24] also
Šilhavý [25] refined the result.

In this setting, what about forces concentrated at a point? They are an idealization, indeed.
However, accounting for them, as in common undergraduate classroom exercises, requires a
careful refinement of the theory. The reasons are as follows.

Consider a rectangular slab subjected to an in-plane single force orthogonal to one side and
located at its middle point. To accord with Cauchy, imagine to cut ideally the slab along a
straight line coinciding with the force direction. We have no criterion to decide whether this
point belongs to the left- or right-hand cut piece. Should we consider it twice or imagine it
disappears? Both choices are inconsistent with the physical evidence of the additive character
of forces [26]. The associated stress field admits a measure as divergence with a concentration
at the force application point. We can compute the traction exerted in small cones with vertices
at that point. However, a Cauchy flux defined on surfaces seems incapable of describing such a
situation with in detail. A way to account for the situation was indicated in 2007 by Schuricht
[27], who weakened the assumption that two continuous interacting bodies should be inter-
changeable and assumed that, in general, ιn(A,B) ≠ ιn(B,A). He maintained the physics-based
assumption that ιn is additive over disjoint body parts b1 and b2, while requiring that countable
additivity can be employed only for ιn( ⋅ , b2). Schuricht assumed that the role of a body part b2

exerting an action over b1 differs from that of b1 resisting what b2 does. In other words, the actionιn( ⋅ , b2) of b2 has a different nature than the reaction ιn(b1, ⋅ ) of b1. With this proviso, Schuricht
selected the Borel σ-algebra or a suitable sub-algebra thereof, where unions, intersections and
complements are understood in the usual set-theoretic sense.

Furthermore, Noll’s principle of local action states that the stress at a point should depend only
on the response of material points within an arbitrarily small neighbourhood of it. Schuricht
used it to characterize contact interactions. He postulated that the action exerted on a body partb1 by another body part b2 merely depends on those parts of b2 outside b1 that lie within an
arbitrarily small neighbourhood of b1. Then, he required that the material corresponding to a set
of measure zero cannot exert a non-trivial action and at the same point a non-trivial interaction
can be detected by a reaction of the surrounding material even if we disregard the matter in a
set of zero volume. A consequence is that a single material point can resist but cannot exert a
non-trivial action.

For body parts b with piecewise smooth boundary, ιn(b1, b2) exerted on b1 by b2 can be
represented as

ιn(b1, b2) =
∂b1 ∩ ∂b2

PndHk − 1(x) ,
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where P is the first Piola–Kirchhoff stress and n the normal to ∂b1 ∩ ∂b2. This standard formula
can be extended to all closed subsets in the sense of (functional) normal traces. However, we can
define ιn(b1, b2) in less straightforward cases because, now, ιn is defined on all Borel sets so that
the necessary generalized counterpart of the previous formula is ιn(b1, b2) = (DivPb2)(b1), with

Pb2 :=
P on b2

0 otherwise .

DivPb2 has to be intended as a measure for all b1 ∈ Bsub1 and b2 ∈ Bsub2, where Bsub2 ⊂ Bsub1 is a
suitable sub-algebra. Neither surfaces nor normal vectors enter the representation of interac-
tions in this way, because fluxes are not exploited.

4. The manifold M of microstructural shapes
When we discuss observer changes, we often declare or find written in textbooks that different
observers perceive the same reference configuration B. However, an observer change involves
the whole ambient space. Thus, since B is not restricted to a point, its representation should
then change. To avoid the contradiction, we can select two isomorphic copies of the physical
space, namely ℝk and ℝ~ k, with the isomorphism ι : ℝk ⟶ℝ~ k chosen to be simply the identifica-
tion.

(a) A few notes on a standard matter
From now on, we set k = 3 for the sake of simplicity. Deformations are one-to-one, differentiable
and orientation preserving maps B ∋ x y := y~(x) ∈ ℝ~ 3. A metric g is (or can be) naturally
defined over B. It is what we call a reference metric. After we assign a basis eA , A = 1,2,3 in ℝ3,
with dual basis eA , we have g = gABeA⊗ eB, where ⊗ indicates the standard tensor product.
Every element of eA  is defined to be such that eA ⋅ eB = δBA, where δBA is the Kronecker symbol
and the interposed dot indicates standard duality pairing, that is, eA(eB) := eA ⋅ eB, because eA is
a linear form. Also, g may be connected with peculiar material features; for example, when we
look at periodic crystals, choices of a local basis may indicate peculiar features of the atomic
lattice [28]. Another metric, say g~, is assigned arbitrarily to the ambient physical space ℝ~ 3.
We have g~ = g~ije~i⊗ e~j, with e~i the generic i-th element of a dual basis in ℝ~ 3; g~ may or not
be coincident with g. When defects intervene at crystal scale or at molecular scale, depending
on the type of bodies, a way of representing their effects on the reference configuration is to
consider a time-varying metric [29]. However, such an approach refers essentially to defects
that alter the structure we have chosen to be associated with g; it does not cover the occurrence
of defects such as cracks. Thus, in general we need something different such as time-varying
(known also as parameterized or mutant) reference configurations (see, e.g. [30]).F is the derivative F := Dy~(x), so it is the linear operator expressing the tangent
map associated with the deformation. The gradient ∇y~(x, t) (a covariant derivative) is
also well-defined; its definition requires the existence of a reference frame in which∇y = ∇y~(x) = ( ∂yi∂x )Ae~i⊗ eA. In this frame of reference, ∇y and Dy are related by ( ∂yi∂x )AgAB = (Dy) Bi ;
so, they can be identified when gAB coincides with δAB, that is, the Kronecker’s symbol with
covariant components. For this reason, we continue to call F a deformation gradient; F maps
linearly the tangent space TxB to B at x on to the analogous space Ty~(x)Bc, and we write in shortF ∈ Hom(TxB,Ty~(x)Bc) ≃ Hom(ℝ3,ℝ~ 3). Two linear operators are associated with F: the formal
adjoint F∗ ∈ Hom(Ty~(x)

∗ Bc,Tx∗B) and the transpose FT ∈ Hom(Ty~(x)Bc,TxB). They coincide when
both g~ and g are the (fully covariant) identity tensors, and we compute FT = g−1F∗g~.

Such a classical picture does not capture shapes and related changes of several active
microstructures. Additional descriptors need to be accounted for.

7
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(b) Physically significant examples of microstructural morphology
Examples are in no significant order.

Planar spins: Each point of B ⊂ ℝ2 is endowed with a unit vector ν ∈ S1, so thatx ν := ν~(x) = ν1cos θ(x) + ν2sin θ(x), with θ an angle in the plane.
Ordinary spins: B is now in ℝ3 and ν ∈ S2.
These two schemes may represent materials undergoing polarization, such as ferroelectrics

and magnetoelastic ones, under conditions of saturation. Transient states require to substituteS1 and S2 with Bp1 and Bp2, balls in ℝ2 and ℝ3, respectively, with radii equal to the maximum
admissible polarization [31].

Superfluid helium-4: ν represents a wave function; it is the value at x of a complex scalar field
of fixed magnitude χ0 but arbitrary phase θ , namely ν := ν~(x) = χ0 exp(iθ (x)).

Liquid crystals: They are arrangements of stick molecules with end-to-tail symmetry; in other
words, each molecule can be described by a vector with no arrowhead, or one having identical
arrowheads at each end. They appear in different phases (see details in [32]):

(i) Isotropic phase—no local preferred direction in the molecular arrangement. Introducing ν is
not strictly necessary.

(ii) Nematic phase: we have local preferred alignments. The introduction of ν is necessary.
It can be selected as a direction in the projective plane ℙ2 [33–35], that is the unit sphere S2

constrained by the identification of diametrically opposite points, or a dyad ν := n⊗ n, withn ∈ S2, or its traceless version ν := n⊗ n − 1
3 tr(n⊗ n)I, with I the unit tensor, arranging ν to have

a pair of degenerate eigenvalues [32]. If we consider ν in the projective space ℙ2 and refer it at
every x to the ‘average’ of the orientation distribution of molecules in a small neighbourhood
of x, scalars may give indications at least on the first moment of the distribution. They are the
degree of orientation [36] and the degree of prolation [37].

(iii) Smectic phase: It is a layered phase in which layers are parallel and each of them shows
nematic order. In this case, we need to adopt the nematic-type description in each layer and also
a parameter indicating the layer thickness (see [38,39]).

(iv) Cholesteric phase: There are layers with no positional ordering, but a director axis varying
with layers in a way that tends to be periodic. The distance at which a 360° rotation is comple-
ted is known as the pitch. Eventually, we have a helical structure.

Biaxial nematics: The symmetry of molecules is that of a rectangular box. The natural
representation for them is to choose ν ∈ SU(2)/Q8, where SU(2) is the special unitary group,
while Q8 is the group of quaternions. It is how to use ν ∈ SO(3)/D2, with D2 the four element
group consisting of the identity and 180° rotations about three mutually perpendicular axes
[32].

Reduced-dimension-type schemes for structural elements: A three-dimensional beam can be
reduced to a one-dimensional body endowed with a field of directors, which describes the
behaviour of beam cross-sections, assumed to remain rigid [40,41]. The addition of a scalar field
allows one to consider cross-section warping. Other fields, defined on the beam axis can furnish
information on possible additional microstructure over each cross-section (a prominent case is
the one of birods [42], a beam-type scheme for DNA). Shells can be considered as surfaces with
directors (see, e.g. [40,41,43]), but also additional fields may describe through-the-thickness
microstructure [44].

Fluids with polymers in an emulsion: In this case, a natural choice is to consider ν as a second-
rank tensor describing the independent deformation of a molecule relatively to the ground fluid
motion [45].

Fluids with bubbles: ν is the volume fraction of bubbles [46].
There are even some more intricate (although natural) choices of ν.
Superfluid helium-3 in dipole locked A phase: We need a pair of distinguished orthonormal axes,

arbitrarily oriented, namely a1 and a2. They can be arranged into a complex vector ν = a1 + ia2
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constrained to satisfy the nilpotent conditions ν ⋅ ν‾ = 1 and ν ⋅ ν = 0, where ν‾ is the complex
conjugate of ν; another appropriate choice is ν ∈ SO(3) [47].

Superfluid helium-3 in dipole-free A phase: ν = n⊗ r‾ with n ∈ S2 and r‾ a nilpotent vector [47].
Phase-transitions: First- and second-order phase transitions require various possible expres-

sions for ν, depending on circumstances, according to Landau’s theory [48].
Cracks, microcracked bodies and more general damage: ν could be chosen as a vector or a second-

rank tensor, the second choice being appropriate for anisotropic damage, a scalar field working
for the isotropic case [49].

Once we choose ν, a spatial scale λ is associated with ν, although not always rendered
explicit: it is the scale at which we consider the microstructure described by ν.

(c) Defects at different spatial scales
When we limit a description of the body morphology to the sole choice of the fit region B, we
recognize point-like, surface-like and bulk-like defects. When we enrich the way we describe
the body morphology, we can consider defects associated with the material structure described
by ν.

For example, consider planar spins in two-dimensional space, described byx ν := ν~(x) ∈ S1, a map that is continuous and differentiable everywhere in the plane, except
at a point x. Presume also to know the explicit form of ν at all x farther from x than some
distance d. We can recognize the singularity at x avoiding information about the region belowd. Take any circle centred on x with radius larger than d, or more generally a simple closed
contour. We can measure the total angle with respect to some fixed direction through which the
unit vector ν turns as we proceed along the whole circular contour. Since ν~ is continuous and
known explicitly on the circle, we obtain an integer multiple of 2π, say ϵ2π. The factor ϵ is what
we call the winding number. It is constant when we vary the circle. Then, if ϵ is non-zero, ν turns
around x by following the circle, no matter how small the circle becomes; the derivative of ν
diverges at x. Different cases can be listed: (i) The spin field is uniform over a generic circular
contour in the plane. It is therefore mapped into a single point of S1 = M. (ii) The spin field
is non-uniform over a circular contour with zero winding number. The map on to S1 can be
shrunk to a point: it means that the singularity is removable. (iii) The spin is non-uniform with
winding number 2. The map over S1 wraps its contour twice.

In general, we can say that a zero winding number type singularity is said to be removable
or topologically unstable. Singularities with non-zero winding number are called topologically
stable. Those in the same class, each defined by a value of the winding number, are said to be
topologically equivalent.

Defects in the same topological class can be transformed into one another by local surgery.
Defects with different winding number cannot be transformed into one another by local
surgery, since such a transformation requires altering the discrete winding number arbitrarily
far from the singularity.

Boundary conditions may exclude smoothness of the field ν~. Consider, for example, a
nematic liquid crystal at rest (or in a laminar motion) in a two-dimensional channel. We can
prescribe boundary conditions by spreading surfactants on the channel walls. Assume to use on
a wall a percentage of surfactant determining a certain angle of anchoring for the molecules and
another percentage prescribing the mirror orientation on the other wall. Inevitably, a disconti-
nuity appears along the channel axis.

(d) A path towards unification
At this point, a key question is whether, owing to the plurality of possible significant examples,
we need to construct a plurality of specific models or we may imagine a model-building
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structure so flexible and concrete as to cover all, or almost all, the above listed cases. If so, it
would become a useful tool to go even beyond the above list, even tackling the description of
those materials that we design to exploit a behaviour not otherwise available in nature, those
that we call metamaterials.

To construct such a general model-building framework, we start by enriching the way
we represent the body morphology. We thus consider at every point of the fit region B the
variable ν as an element of a space M endowed with the structure of a differentiable manifold,
without adding any further specification on ν. In this picture, ν is thus a generic coarse-grained
descriptor of the material structure at a certain spatial scale λ. We write ν ∼ O(λ) meaning that ν
is of order λ. With f(ν,Dν) a differentiable function of its arguments, we have

(4.1)∂f
∂ν ⋅ ν ∼ O(λ2) , ∂f

∂Dν ⋅ Dν ∼ O(λ2) .

In particular, we select M to be finite-dimensional, Riemannian and geodesically complete,
although an infinite-dimensional manifold of measures could also be employed in specific
circumstances, even if we will not discuss this last case (for the infinite-dimensional case, see
[50]).

We briefly recall the definition of differentiable manifold. Connected properties are
discussed in deep, elegant and erudite treatises on differential geometry (examples are [51]
and [52]).

A Hausdorff topological space X  with topology τX is said to be locally Euclidean with
dimension m if every of its point admits a connected neighbourhood U ∈ τX and a homeomor-
phism φ : U ⟶ℝd. The pair (U,φ) is a chart. If x ∈ U is such that φ(x) = 0, we say that the chart
(U,φ) specifies a local coordinate system centred at x. A differentiable structure F  of class Ck, with
1 ≤ k ≤ +∞, over (X , τ) is a collection of coordinate systems (Uα,φα) | α ∈ ℑ , with ℑ an index
set, such that (i) ∪αUα = X  (in other words, the coordinate systems have supports constituting a
cover of X); (ii) φα ∘ φβ−1 is of class Ck for any α, β ∈ ℑ; (iii) if (U,φ) is a chart such that φ ∘ φα−1 andφα ∘ φ−1 are of class Ck for every α ∈ ℑ, the inclusion (U,φ) ∈ F  holds (in short, F  is maximal
with respect to item (ii)).

An m-dimensional manifold of class Ck is a pair M = ((X , τ),F ) consisting of a m-dimensional,
second countable, locally Euclidean space (X , τ) with a differentiable structure F  of class Ck.

When we will refer to a differentiable manifold M, without specifying the class, it will mean
that M is of class C∞; in this case, we speak of a smooth manifold.

There are circumstances in which two different descriptors of the microatructural morphol-
ogy must be considered. A paradigmatic case is the one of polarized polymer stars scattered
into a melt: a vector for the polarization and a second-rank tensor for the relative strain between
every polymer and the surrounding melt need to be considered. At times, even an additional
scalar field can be expedient to account for the ‘radius’ of the packet zone inside the star. To
describe this case, we consider M as the Cartesian product of two or more manifolds, each
containing a descriptor of a specific microstructural geometric feature.

Formally, let M1 and M2 be two differentiable manifolds with dimensions m1 and m2,
respectively; M1 ×M2 is a differentiable manifold of dimension m1 + m2, with a differentiable
structure given by the Cartesian product of charts, namely

{(Uα × Vβ,φα × φβ) | φα × φβ:Uα × Vβ ⟶ℝm1 × ℝm2 , (Uα,φα) ∈ FM1 , (Vβ,φβ) ∈ FM2} .
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5. Topology of M and λ-scale defects
(a) Line defects and the first fundamental group
Let γ : [0,1] ⟶M be a continuous map determining a loop at ν0 ∈M, namely γ(0) = γ(1) = ν0.
Its inverse γ−1 is defined to be γ−1 = γ(1 − s), s ∈ [0,1]. We say that ν0 is the base point of the loopγ. Two loops γ and γ  are homotopic if there is a continuous mapping G : [0,1] × [0,1] M such
that G(s, 0) = γ(s) and G(s, 1) = γ .

For any pair of homotopic loops γ and γ , we define the loop product γ ∗ γ  as the loopγ ∗ γ : [0,1] ⟶M given by

(γ ∗ γ‾)(s) =
γ(2s) 0 ≤ s ≤ 1

2γ(2s − 1) 1
2 ≤ s ≤ 1

.

The condition ‘being homotopic to’ is an equivalence relation. We indicate by [γ] the equivalence
class that is pertinent to γ. The set π1(M, ν0) of loop equivalence classes at ν0 complemented by
the operation of loop product is a group: the first fundamental group of M. It is said to be Abelian
when [γ ∗ γ] = [γ ∗ γ].

In general, π1(M, ν0) depends on the base point ν0. However, the manifold structure of
M assures that it is locally path-connected. This means that every ν ∈M is endowed with a
neighbourhood whose points can be connected with ν by arcs, since M is a Hausdorff space.
When M is globally arc-connected, up to isomorphism, π1(M, ν0) is independent of the base
point and we simply write π1(M) for it.

When π1(M) is Abelian, line defects are topologically equivalent if and only if they are
characterized by the same elements of π1(M). Consider two line defects associated, respectively,
with γ1 and γ2, two distinct elements of π1(M). If π1(M) is Abelian, the two defects can be
converted into one characterized by an element γ of π1(M) that is homotopic to the loop
product γ1 ∗ γ2. They cannot be converted into one that is not homotopic to the product without
having to alter the material at arbitrarily large distances.

If π1(M) is not Abelian, for the combination laws it is useful to refer to its Abelianiza-
tion, namely the first homology group. It is defined as follows: let C1(M) be the space of
all oriented cycles on M, parameterized by ℝ. Let also B1(M) ⊂ C1(M) be the subspace
consisting of the cycles on which the integral of closed 1-forms over such cycles vanishes
(1-forms are co-vectors ξ: elements of the cotangent space of M; they are said to be closed
when dξ = 0, with d the exterior differential); H1(M) is defined to be the quotient spaceH1(M) := H1(M,ℝ) = C1(M)/B1(M).

Biaxial nematic liquid crystals fall within the non-Abelian setting. This implies that line
defects in such a media can cross without a connecting line except when they are two 180°
disclinations of distinct type: they are, indeed, necessarily joined after crossing a 360° disclina-
tion. In turn, when π1(M) is Abelian, all line defects for the phase field can cross each another
[53,54].

(b) Point defects and the second fundamental group
Point defects for the phase field can be classified by considering freely homotopic maps
of spheres into the manifold M. Precisely, we can define a homotopy group at ν0 ∈M
by considering maps γ := [0,1] × [0,1] ⟶M such that γ(0, r) = γ(1, r) = γ(s, 0) = γ(s, 1) = ν0.
Analogous analyses to those made for defining π1(M) can be performed here: homotopic
classes of spheres γ  can be defined. Together with a product γ(s, 1) ∗ γ(s, 2), equivalence classes
[γ] constitute the second fundamental group π2(M, ν0) at ν0. When M is connected, we can show
that second fundamental groups at different points are isomorphic. However, the isomorphisms
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between second homotopy groups based at different points are not unique, at variance of
π1(M). Also, π2(M) is always Abelian [53,54].

6. Generalized motions
In the scheme that we adopt as a general model-building framework for the mechanics of
complex materials, motions are intended in generalized sense. They are time-parameterized
pairs of maps given by

(x, t) y := y~(x, t) ∈ ℝ~ 3 and (x, t) ν := ν~(x, t) ∈M ,

with x ∈ B and t ∈ (t0, t1) the time. They are assumed to be at least twice piecewise differentia-
ble with respect to t. We write ẏ for the Lagrangian velocity

ẏ(x, t) := dy~(x, t)
dt ∈ ℝ~ 3 ,

while v := v~(y, t) ∈ ℝ~ 3 is its Eulerian counterpart and we have ẏ = v. The identity does not hold
for the analogous representations of the phase field time rate. Its Lagrangian representation is

ν̇ := dν~(x, t)
dt ,

with ν̇ a tangent vector to the differentiable curve on M given by ν~(x, ⋅ ) : (t0, t1) ⟶M, while its
Eulerian expression, precisely the time derivative of ν~c := ν~ ∘ y~−1, is given by

ν̇c := dν~c(y~(x, t), t)
dt = ∂νc

∂t + (Dyνc)ẏ = ∂νc
∂t + (Dyνc)v .

At every ν ∈M, elements of the tangent space TνM can be defined in a coordinate-free way
because each of them can be seen as a derivation operator. To be more precise, consider
functions f and ℎ defined on an open neighbourhood of ν ∈M. We say that they have the
same germ at ν if they agree on some neighbourhood of ν ∈M. This introduces an equiva-
lence relation on C∞ functions defined on a neighbourhood of ν ∈M: two such functions are
equivalent if they have the same germ. Germs associated with f and ℎ, say f  and ℎ , are
equivalence classes, and we denote their set at ν by F~ ν.

A tangent vector ῡ at ν ∈M is a linear derivation on the algebra F~ ν. For all germs f ,ℎ ∈ F~ ν
and λ ∈ ℝ, we have ῡ(f + λℎ)(ν) = ῡ(f)(ν) + λῡ(ℎ)(ν) and ῡ(f ∘ ℎ)(ν) = f(ν)ῡ(ℎ)(ν) + ℎ(ν)ῡ(f)(ν).

The set of all tangent vectors to M at ν is the tangent space to M at ν, indicated by TνM; Tν∗M
is its dual, the cotangent space of M at ν, that is the space of linear forms over TνM. Both TνM
and Tν∗M are linear, while the disjoint unions TM := ⊔ν ∈M TνM and T∗M := ⊔ν ∈M Tν∗M are
not necessarily linear. They are, respectively, the tangent and cotangent bundles of M.

In what follows, we indicate by N the derivative N := Dν~(x, t).
7. Observers and their changes
The enriched representation of the body morphology imposes upon us the requirement to think
about the notion of observer, classically considered as a frame of reference in the physical space.
In the traditional setting that space is the only one we refer to when we describe the body
morphology. Here, instead, multiple spaces are involved.

Thus, an observer is here defined by a prescription of reference systems on all spaces adopted
to describe the morphology of a body and its changes.

In the present setting such spaces are (i) the reference one, ℝ3, (ii) the physical environment,ℝ~ 3, (iii) the time interval (t0, t1), (iv) the manifold M of microstructural shapes.
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Observer changes can be defined variously. Among them, first we consider a special class
of those based on isometries in the physical space. They are characterized by the following
properties: (i) they refer to the same timescale. (ii) They record the same reference space.
(iii) They differ by time-parameterized isometries. (iv) They admit a family of differentiable
homeomorphisms, namely F := ϕ : SO(3) ⟶ Diff(M,M) , where Diff(M,M) is the space of
diffeomorphisms from M on to itself.

The differentiable homeomorphisms ϕ allow one to represent over M how distinct observers
looking at the physical space may differently record the peculiar microstructural features
described by elements of M. The manifold M is, indeed, only a convenient ambient to describe
features of the microstructures that are in the body, that is in the physical space.

The choice of looking at a family F  of differentiable homeomorphisms allows us to include
the case in which F  is empty, a case in which ν can be considered as a non-observable entity.
In other words, when F = ∅ we may consider ν only as a non-observable internal variable for
which its evolution describes the detachment from thermodynamic equilibrium by means of
phenomenological laws that do not include interactions. Such laws are not balance equations.
They involve thermodynamic affinities that contribute only to the entropy production and do
not play role in determining ground states.

Here, we consider F  as a non-empty set. Thus, ν is always intended as an observable entity.
Formally, let O and O′ be two distinct observers related by isometries in the physical space.

Let y be the current placement of a material point as evaluated by O. The same point is for
O′ at a place y′ = w‾(t) + Q(y − y0), where y0 is a point selected at will in ℝ~ 3, w‾(t) the value of
a smooth map t w‾(t) ∈ ℝ~ 3, and Q the value of a smooth map t Q := Q~(t) ∈ SO(3). Ifẏ is the velocity measured by O, the other observer records a value ẏ′ = w‾̇ (t) + Q̇(y − y0) + Qẏ.
We pull-back ẏ′ in the frame defining O by using Q⊤ (a translation is not included because
we consider ẏ as a free vector in this process). So, we define ẏ⋄ := Q⊤ẏ′. Thus, by settingW := Q⊤Q̇ and c = c~(t) := Q⊤w‾̇ (t) ∈ ℝ~ 3, we have ẏ⋄ := c + W(y − y0) + ẏ. Since W is skew-symmetric,
by definition there exists a vector-valued smooth map t q := q~(t) ∈ ℝ3 such that

(7.1)ẏ⋄ := c + q × (y − y0) + ẏ .

The counterpart of ẏ⋄ over M, indicated by ν̇⋄ is given by

(7.2)ν̇⋄ = ν̇ +A ν q ,

where

(7.3)A ν =
dνϕ Q

dϕ
dϕ Q

dq q = 0 ,

with νϕ Q  the value of ν after the action of ϕ Q ∈ Diff(M,M). Notice that each choice of ϕ
defines an observer change. The previous formula takes into account that every element ofSO(3) can be expressed in the form Q = exp (q × ), with q ∈ ℝ3.

In rule (7.2) we do not have a translation-type effect because ν = ν~(x, t) describes the inner
structure of a material element. A rigid translation of a reference frame in the whole physical
space ℝ~ 3 does not alter the way an observer records a microstructure at y. The case of rotations
can be different, unless ν is a scalar or a pseudo-scalar, a circumstance that requires a special
treatment, as we will see in the sequel.

We can think of a second class of observer changes, one also affecting the reference space ℝ3.
Let w := w~(x) ∈ ℝ3 be the value of a vector field over B recorded by O and w′ the correspond-

ing value measured by another observer O′ differing by O in terms of a rigid-body motion. The
counterpart of ẏ⋄, indicated here by w⋄, is given by

(7.4)w⋄ = w + c‾ + q‾ × (x − x0) ,

where c‾ and q‾ are the values of smooth vector functions depending only on time.
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More general classes of observer changes can be defined by considering the action of generic
diffeomorphisms on both ℝ~ 3 and ℝ3. Their sets are indicated by Diff(ℝ~ 3,ℝ~ 3) and Diff(ℝ3,ℝ3),
respectively. The infinitesimal generator of their action are vector fields over ℝ~ 3 and ℝ3, with
values v ∈ ℝ~ 3 and w ∈ ℝ3. Under observer changes determined by elements of Diff(ℝ~ 3,ℝ~ 3), ẏ⋄
assumes a more general structure indicated by ẏ∘ and given by

(7.5)ẏ∘ = ẏ + v̄ .

Evidently, ẏ∘ = ẏ⋄ when v̄ = c + q × (y − y0). The family of differentiable homeomorphisms F
extends and becomes F~ := ϕ~ : Diff(ℝ~ 3,ℝ~ 3) ⟶ Diff(M,M) . We have F ⊂ F~ . Thus, ν̇⋄ changes
into ν̇∘ given by

(7.6)ν̇∘ = ν̇ + ῡ ,

where ῡ is the value of a tangent field to M. Precisely, with α ϕα ∈ F~  a differentiable curve
over F~ , we have ῡ :=

dϕαdα α = 0

. Moreover, w⋄ changes into w∘ and involves a generic vector field:

(7.7)w∘ = w + w̄ .

8. Power and invariance
Actions are defined by the power they perform in every conceptually independent mechanism
described by the time rate of entities representing the body morphology.

(a) External power
First, we refer to the external power, the one performed by agencies external to a generic body
part b ⊆ B. It is indicated by Pbext and defined by

(8.1)Pbext(ẏ, ν̇) := b (b‡ ⋅ ẏ + β‡ ⋅ ν̇) dx +
∂b(t∂ ⋅ ẏ + τ∂ ⋅ ν̇) dH2(x) .

In the previous formula, b‡ := b~‡
(x, t) and t∂ := t~∂(x, t) are body forces and traction already

described in §3; β‡ := β~†
(s, t) is the counterpart of b‡ and represents bulk actions directly

affecting the microstructure (for example an electromagnetic action on molecules undergoing
polarization). It is assumed to be the sum of inertial, βin, and non-inertial, β, contributions,
namely β‡ = βin + β; τ∂ := τ~∂(x, t) is a contact interaction between first-neighbour microstructures,
owing to relative rearrangement of one with respect to the other, it depends on space, time
and the boundary ∂b. In geometrical terms, b~‡

(x, t) and t~∂(x, t) belong to Tx∗B, while β~†
(s, t) andτ~∂(x, t) to Tν~(x, t)∗ M.

We define Pbext(ẏ, 0) as the external power of standard actions; Pbext(0, ν̇) is the external power
of microstructural actions. We require invariance of Pbext(ẏ, ν̇) under isometry-based observer
changes, namely we impose

(8.2)Pbext(ẏ, ν̇) = Pbext(ẏ⋄, ν̇⋄),
for any choice of b and the vectors c, q appearing in rules rules (7.1) and (7.2). In other words,
equation (8.2) is a requirement of objectivity for the external power. The arbitrariness of c
implies the integral balances of forces. The arbitrariness of q implies a non-standard balance of
couples (or moments), which includes the projection over ℝ~ 3 of the microstructural actions β‡

and τ∂ through A∗, the formal adjoint of A. Standard boundedness and regularity assumptions
on the integral balance of forces imply by Cauchy’s theorem 2.1 the representation of t∂ in
terms of first Piola–Kirchhoff’s stress; C1-regularity grants the local balance of forces. Analogous
assumptions imply from the non-standard integral balance of couples the representation of τ∂
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in terms of a stress tensor—called a microstress—and the existence of a self-action, indicated byz; both contribute to balance β‡ when C1-regularity occurs so that we have the local balance
of microstructural interactions. Also, microstress and self-action make non-symmetric Cauchy’s
stress with symmetry-breaking terms that are of order O(λ2)—recall that λ is the spatial scale ν
refers to. The whole procedure is a special case of what is described in the next section, so we
postpone details. Here, we only recall that, beyond the evolution of microstructures, the balance
of microstructural actions can describe even the evolution of defects in three different ways:

(1) ν can be chosen to represent directly defects at a spatial scale λ; for example, ν can
represent damage (be it isotropic or anisotropic), the dislocation density tensor in
crystalline structures, the plastic factor Fp in Kröner–Lee’s multiplicative decompositionF = FeFp, its curl that represents Burgers’ tensor, the slip time rate in a single crystal, etc.

(2) ν is not directly related to a description of a defect, meaning it describes another generic
microstructural feature as for example the local direction of molecular alignment in liquid
crystals, but its singularities accounts for nucleation and/or evolution of defects at scale λ.
In equilibrium conditions, the nucleation of such defects may emerge as a consequence of
topological obstructions to energy relaxation [55,56].

(3) ν can be chosen to be the indicator function of a macroscopic defect although the balance
equations can furnish solutions taking values in the interval [0,1] rather than in the set
0,1 ; what the equations foresee is thus a sort of mushy transition region [57]. This scalar

choice implies a problem that we discuss below.

There is also another problem: the requirement of invariance for the external power does not
cover nucleation and/or evolution of defects at a scale greater than λ in a body endowed per se
with (active) microstructure, the geometric features of which, not necessarily associated with
a defect, are described by ν. The basic reason is that the procedure adopted above assumes
that the reference configuration is fixed once and for all while, in the presence of evolving
macroscopic defects, it is appropriate to consider virtually varying (said also parameterized or
mutant, as already recalled) reference configurations.

A new concept is useful to analyse this situation on the basis of invariance requirements.
Such a concept is the one of the so-called relative power.

(b) Relative power
Consider an evolving macroscopic bulk defect in the current configuration Bc. It implies at least
a local loss of one-to-one correspondence between Bc and B assured by y~ in the absence of
defect evolution. When such an evolution occurs, at t, the current configuration Bc := y~(B, t) is
in one-to-one correspondence with a reference configuration that differs from B only by the
identification of a subset that is the immaterial image of the defect in Bc (roughly speaking a
‘shadow’). We may thus consider a family of infinitely many reference configurations that differ
from one another only by subsets that are virtual loci corresponding to which a defect is in Bc.
However, instead of considering the whole family of possible reference configurations, we may
refer to an infinitesimal generator of it, a differentiable vector field

(8.3)x w := w~(x) ∈ ℝ3 .

Thus, we have three kinematically independent mechanisms: those described by ẏ, ν̇ and w.
This idea is a version of the way Eshelby [58] and Gurtin [59] in independent works consid-
ered mutant (that is, virtually varying) reference configurations, strictly mimicking the idea of
(so-called) horizontal variations in calculus of variations (see, e.g. [56]).

To account for the additional mechanism represented by w, we need to write a power
that is relative to w and reduces to Pbext(ẏ, ν̇) when w = 0. We call it a relative power and
write for it Pbrel(ẏ, ν̇,w). Its definition takes into account that nucleation and growth of mac-
roscopic defects induce inhomogeneity in the energy distribution with production of fluxes,
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and rupture/reformation of material bonds with pertinent driving forces. We thus consider a
free energy density ψ, taken to be a differentiable function of space, time and a list ς of state
variables left unspecified at this stage. We also consider a driving force field with values f ∈ Tx∗B
at x and t, which is not related to a potential. It is a configurational action in the terminology
introduced by Nabarro [60]. Finally, we include a configurational couple with values μ‾ ∈ Tx∗B atx and t. For a generic body part b ⊆ B that is free of low-dimensional defects with own surface
or line energy, but possibly including a bulk defect, the relative power, introduced in [61], and
refined in [62,63], is defined by

(8.4)Pbrel(ẏ, ν̇,w) := Pbrel − a(ẏ, ν̇,w) + Pbdis(w) ,

with

(8.5)

Pbrel − a(ẏ, ν̇,w): = b (b‡ ⋅ (ẏ − Fw) + β‡ ⋅ (ν̇ − Nw)) dx
+

∂b(t∂ ⋅ (ẏ − Fw) + τ∂ ⋅ (ν̇ − Nw)) dH2(x)

the relative power of actions and

(8.6)Pbdis(w) :=
∂b(n ⋅ w)ψdH2(x) − b (∂xψ + f) ⋅ wdx + bμ‾ ⋅ curlwdx ,

a power of disarrangement. In the previous expression, ∂xψ is the explicit derivative of ψ with
respect to x, holding fixed the state variables in the list ς, that is ∂xψ := ∂ψ(x, t, ς)

∂x ς fixed.

We require objectivity for Pbrel. Thus, we impose

(8.7)Pbrel(ẏ, ν̇,w) = Pbrel(ẏ⋄, ν̇⋄,w⋄) ,

for any choice of c, q, c‾, q‾ appearing in rules (7.1), (7.2), (7.4) and b. The linearity of Pbrel implies

(8.8)Pbrel(c + q × (y − y0),A(ν)q, c‾ + q‾ × (x − x0)) = 0 .

The arbitrariness of c, q, c‾ and q‾ implies, respectively, the integral balance of standard forces,

(8.9)bb‡ dx +
∂bt∂dH2(x) = 0 ,

a non-standard integral balance of couples already mentioned in the previous section,

(8.10)b ((y − y0) × b‡ +A∗β‡) dx +
∂b((y − y0) × t∂ +A∗τ∂) dH2(x) = 0 ,

a balance of configurational actions,

(8.11)
∂b(ψIn − F∗t∂ − N∗τ∂) dH2(x) − b (F∗b‡ + N∗β‡) dx − b (∂xψ + f) dx = 0 ,

and an integral balance of configurational couples,

(8.12)

∂b(x − x0) × (ψIn − F∗t∂ − N∗τ∂) dH2(x) − b (x − x0) × (F∗b‡ + N∗β‡) dx
− b (x − x0) × (∂xψ + f) dx − b2e(μ̄ × ) dx = 0 .

When |b‡| is bounded over B and t∂ is continuous over B, Cauchy’s theorem 2.1 impliest∂ = t := t~(x, t,n) at all points of ∂b where the normal n is well defined, with t~(x, t,n) = − t~(x, t, −n),
and t := t~(x, t,n) = P(x, t)n, with P(x, t) ∈ Hom(Tx∗B,Ty~(x, t)∗ Bc) the first Piola–Kirchhoff stress
tensor already mentioned in §3. Thus, if for every t the map x P(x) is C1(B) ∩ C(B‾), with
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B‾  the closure of the reference configuration, and x b‡ is continuous, the arbitrariness of b
implies from equation (8.9) the standard pointwise balance

(8.13)b‡ + DivP = 0 .

Set r := (y − y0) × b‡ +A∗β‡ and s∂ := (y − y0) × t +A∗τ∂. The integral balance (equation (8.10)) reads

(8.14)brdx +
∂bs∂dH2(x) = 0 .

Since B is bounded, we can choose y0 in a way such that the boundedness of |b‡| implies the
one of |(y − y0) × b‡|. When, in addition, |A∗β‡| is also bounded over B and τ∂ is continuous
with respect to x, by Cauchy’s theorem we obtain s∂ = s~(x, t,n) = − s~(x, t, − n) at all points of
∂b where the normal n is well defined. Thus, since s~(x, t,n) = (y − y0) × t~(x, t,n) +A∗τ∂, we haveτ∂ = τ := τ~(x, t,n) and, since t~(x, t,n) = − t~(x, t, −n),

(8.15)A∗(τ~(x, t,n) + τ~(x, t, −n)) = 0 .

This means that only the projection on the physical space of τ satisfies the action–reaction
principle; the principle may be satisfied on M only when 0 belongs to the kernel of
A∗, the formal adjoint of A. In addition, s~(x, t,n) is linear with respect to n: there existℌ(x, t) ∈ Hom(Tx∗B,Ty~(x, t)∗ Bc) such that s~(x, t,n) = ℌ(x, t)n; thus

(8.16)ℌ(x, t)n = (y − y0) × P(x, t)n +A∗τ~(x, t,n) .

Consequently, there exists S(x, t) ∈ Hom(Tx∗B,Tν~(x, t)∗ M) such that

(8.17)τ~(x, t,n) = S(x, t)n .

In proving the existence of the microstress S we do not embed M into any linear space,
unlike what has been proposed in [64], where such an embedding is adopted. Since M is
finite-dimensional, by Whitney’s theorem an embedding of M into a linear space always exists;
it can be even isometric, owing to Nash’s theorems, but it is not unique and the dimension of
the target space depends on the regularity of the embedding. Avoiding it grants an intrinsic
character to the theory.

With these results, when in addition to P even the microstress S is C1(B) ∩ C(B‾), the integral
balance ( equation (8.10)) becomes

(8.18)b ((y − y0) × b‡ +A∗β‡) dx + b ((y − y0) × DivP − ePF∗ +A∗DivS + (DA∗)tS) dx = 0 ,

where e is Ricci’s alternating index and the superscript t means minor right transposition for
third-rank tensors. When bulk terms are continuous, the arbitrariness of b ⊆ B implies that,
pointwise in B,

(8.19)−ePF∗ +A∗(β‡ + DivS) + (DA∗)tS = 0 .

Since β‡ ∈ Tν∗M and also DivS ∈ Tν∗M, we can read equation (8.19) by saying that there existsz ∈ Tν∗M such that

(8.20)skwPF∗ = 1
2e(A∗z + (DA∗)tS) ,

and

(8.21)β‡ − z + DivS = 0 .

This last relation is the balance of microstructural actions. Equation (8.20) states that in this
setting the standard Cauchy stress σ = 1

det FPF∗ is generally non-symmetric. It is symmetric
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when e(A∗z + (DA∗)tS) = 0 when we neglect terms of the order λ2, with λ, we recall, the spatial
scale ν refers to (see proof in [65]).

With these results, equation (8.11) reads

(8.22)
∂b(ψI − F∗P − N∗S)ndH2(x) − b (F∗b‡ + N∗β‡) dx − b (∂xψ + f) dx = 0 .

Thus, by setting ℙ := ψI − F∗P − N∗S and considering the assumed continuity of the bulk terms,
the arbitrariness of b implies the local balance of configurational actions in B:

(8.23)Divℙ − F∗b‡ − N∗β‡ − ∂xψ = f .

Also, equation (8.10) becomes

(8.24)
∂b(x − x0) × ℙndH2(x) − b (x − x0) × (F∗b‡ + N∗β‡ − ∂xψ − f) dx − b2μ̄dx = 0 .

Consequently, under previous regularity conditions, and presuming that ∂xψ, f, and μ‾ are
continuous, use of Gauss’ theorem, validity of the local balance (equation (8.23)), and arbitrari-
ness of b imply

(8.25)skw(g−1ℙ) = −μ‾ × .

The second-rank tensor ℙ is the appropriate version in the present setting of the Hamilton–Eshel-
by’s stress, also called Eshelby’s stress.

Cauchy’s theorem 2.1 suggests also that the continuity assumptions concerning surface-
dependent densities of boundary integrals in the previous sections can be weakened. Continu-
ity has been adopted in this section only for the sake of simplicity.

The local balance equations above derived imply the identity

(8.26)Pbrel(ẏ, ν̇,w) = b (P ⋅ Ḟ + z ⋅ ν̇ + S ⋅ Ṅ + symℙ ⋅ symDw) dx .

When w = 0, Pbrel reduces to Pbext and we have

(8.27)Pbext(ẏ, ν̇) = b (P ⋅ Ḟ + z ⋅ ν̇ + S ⋅ Ṅ) dx =: Pbint(ẏ, ν̇) .

The last integral, namely Pbint(ẏ, ν̇), is what we call the internal power.

(c) Comparison with other approaches and limits of the invariance procedure
Balance of microstructural actions have been postulated in local (e.g. [36,40,47,66,67]), integral
(e.g. [40, pp. 317–318], [30,68,69]) or weak form (e.g. [70,71]), or derived from a variational
principle (e.g. [41,72]). The weak form is what we usually call a principle of virtual power; when
we assume it as a first principle, as in [70], we need to postulate the expressions of both
external and internal powers. The structure of the latter presumes existence of standard and
microstructural stresses, and the self-action z, without deriving them from more fundamental
structures.

Postulating integral balances allows one to get stresses as derived entities, rather than
assuming their existence. There are also conditions, determined by Antman & Osborn [73],
under which integral balances and the virtual power principle can be put into correspond-
ence without adopting the necessary regularity for pointwise balances. However, postulating
a general integral balance of microstructural actions can be questionable. Indeed, the maps
associating with every x ∈ B the microstructural actions β‡, z and Sn take values into T∗M,
which is a nonlinear space, unless M itself is a linear space, which is not the generic case. So,
integrals of microstructural actions are in general not defined. Also, as shown above, even when
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M is a linear space, postulating the integral balance of microstructural actions is superabundant
if not superfluous.

Adopting a variational principle in conservative setting or a d’Alembert-type one, when
certain dissipative effects occur, to derive balance equations implies putting on the same
conceptual ground the derivation of balance equations and the prescription of constitutive
structures, although they are at different conceptual levels [12]. In addition, a d’Alembert-type
principle implies postulating existence of the stress, independently of the energy, when a
dissipation pseudo-potential is not available.

Configurational balances have been also postulated [59] or derived from a variational
principle [58].

In the path followed in the previous section, we derive balance equations of standard,
microstructural and configurational actions from invariance of the relative power alone under
appropriate classes of observer changes [62,63,74]. The need of a self-action z appears as a
consequence of ν insensitivity to rigid translations of reference frames in the physical space. We
avoid postulating the inner power.

The invariance procedure discussed here, however, fails when ν is a scalar or a pseudo-scalar
because in these two cases A = 0. We thus need something more. We discuss this issue below,
after writing down an appropriate version of the Clausius–Duhem inequality.

9. Possible microstructural inertia
Microstructures might have at least in some cases relative inertia with respect to the overall
body. Two examples are (i) a solid body with scattered small cavities including gyroscopes, each
undergoing its own rotation, (ii) macro-molecules scattered in a ground fluids that may vibrate
relatively to the fluid.

A general suggestion [47,75,76] is to consider the kinetic energy kin(b; ẏ, ν̇) of a generic body
part b ⊆ B to be given by the sum

(9.1)kin(b; ẏ, ν̇) := b (1
2ρ | ẏ |2 + k(ν, ν̇)) dx ,

where k(ν, ν̇) is the microstructural kinetic energy, with k : T∗B⟶ℝ a map assumed to be such
that k(ν, 0) = 0 and ∂ν̇ν̇2 k ⋅ (ν̇⊗ ν̇) ≥ 0, where the last identity holds if and only if ν̇ = 0. We assume
that

(9.2)d
dtkin(b; ẏ, ν̇) = −

B
(bin ⋅ ẏ + βin ⋅ ν̇) dx

for any choice of the velocity fields. Arbitrariness of ẏ implies

(9.3)bin = − ρÿ♭ ,

where ÿ♭ is the covector naturally associated with the acceleration ÿ by a spatial metric. So, the
integral balance (equation (9.2)) reduces to

(9.4)d
dt B

k(ν, ν̇) dx = −
B
βin ⋅ ν̇rel) dx .

We thus consider [47,75] a function χ(ν, ν̇) such that

(9.5)k(ν, ν̇) = ∂χ(ν, ν̇)
∂ν̇ ⋅ ν̇ − χ(ν, ν̇) .

Consequently, the arbitrariness of ν̇ implies
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(9.6)βin = ∂χ∂ν − d
dt ∂χ∂ν̇ .

A problem, however, may occur. Consider k(ν, ν̇) to be such that

(9.7)k(ν, ν̇) = 1
2(Ξν̇) ⋅ ν̇ ,

with Ξ ∈ Hom(TνM,Tν∗M) a positive-definite second-rank tensor. Take a rigid motion with
macroscopic velocity ẏr(x, t) := c(t) + q(t) × (y − y0) and phase field time rate ν̇r(x, t) = A(ν)q (in
both expressions the subscript r means rigid-type). We compute

(9.8)kin(b; ẏ, ξ̇) := 1
2q ⋅ ℑ + b 1

2A
∗ΞAdx) q ,

where ℑ is the standard inertia tensor. So, accounting for the microstructure would increase
the inertial tensor ℑ, which seems to be doubtful because the microstructure is internal to
every material element. To avoid such a problem, we could consider k as a function of ν andν̇rel := ν̇ −Aq, namely k = k(ν, ν̇rel). We thus take a function χ = χ(ν, ν̇rel) such that

(9.9)k(ν, ν̇rel) = ∂χ(ν, ν̇rel)
∂ν̇rel ⋅ ν̇rel − χ(ν, ν̇rel) .

Then, with constant mass density ρ, we assume the inertial balance

(9.10)d
dt B

1
2ρ | ẏ |2 + k(ν, ν̇rel) dx +

B

∂χ(ν, ν̇rel)
∂ν ⋅Aq dx = −

B
(bin ⋅ ẏ + βin ⋅ ν̇rel) dx ,

and presume that it holds for any choice of the velocity fields. Arbitrariness of ẏ implies once
again bin = − ρÿ. The inertial balance (equation (9.10)) reduces to

(9.11)d
dt B

k(ν, ν̇rel♭ ) dy +
B

∂χ(ν, ν̇rel)
∂ν ⋅Aq dx = −

B
βin ⋅ ν̇rel) dx ,

so, the time derivative of k, equation (9.9), and the arbitrariness of ν̇rel imply

(9.12)βin = ∂χ∂ν − d
dt ∂χ∂ν̇rel .

The proposal of considering ν̇rel in the kinetic energy needs further analyses.

10. Thermodynamics
(a) First law
Internal energy is an extensive entity represented by a Radon measure with a density e with
respect to the volume measure. In particular, the internal energy density e is a differentiable
state function. Write r for a (scalar) heat source density, and a‾∂ for a (scalar) heat flux through the
boundary ∂b. For every body part b ⊆ B the first law of thermodynamics reads

(10.1)d
dt bedx − Pbext(ẏ, ν̇) − b rdx +

∂bā∂dHk − 1(x) = 0,

for any choice of b and the velocity fields involved.
Assume that Pbext(ẏ, ν̇) is bounded. In addition, presume also that ė and r are bounded, whilea‾∂ is continuous with respect to x. Cauchy’s theorem 2.1 implies that ā∂ depends on ∂b only

through the normal n to ∂b in all points where n is well-defined, namely a∂ = a‾(x, t,n), and

(10.2)a‾(x, t,n) = −a‾(x, t, −n);
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we find also existence of a vector field q~ depending only on x and t such that

(10.3)a‾(x, t,n) = q~(x, t) ⋅ n .

Then, thanks to the identity Pbext(ẏ, ν̇) = Pbint(ẏ, ν̇), equation (10.1) becomes

(10.4)d
dt bedx − Pbint(ẏ, ν̇) − brdx +

∂bq~(x, t) ⋅ ndHk − 1(x) = 0 .

When ė, r, and Pbint are continuous with respect to x, and q~( ⋅ , t) is C1 (B) ∩ C (B̄), the arbitrariness
of b implies the local energy balance

(10.5)ė − P ⋅ Ḟ − z ⋅ ν̇ − S ⋅ Ṅ − r + Divq~ = 0 .

(b) Second law
Entropy is also an extensive entity represented by a Radon measure. We write η for its density
with respect to the volume measure and state the second law as follows:

(10.6)d
dt bηdx ≥ b s‾ dx −

∂bℎ‾∂dHk − 1(x) .

We assume that it holds for any choice of b ⊆ B and the rate fields involved. In the previous
inequality, s‾ is the entropy source, and ℎ‾∂ a (scalar) flux depending on ∂b in addition to x and t.

If η̇ and s̄ are bounded, we can apply even in this case Cauchy’s theorem 2.1: the key
aspect in its proof is an estimate on the boundary integral; so we need only an inequality, not
necessarily a balance. Then, if ℎ‾∂ is continuous with respect to x, we find that it depends on ∂b
only through the normal n at all points where n is well-defined. Thus, we have

(10.7)ℎ‾∂(x, t) = ℎ~(x, t,n) = −ℎ~(x, t, −n) ,

and there is a vector field with values h‾, depending only on x and t, such that

(10.8)ℎ~(x, t,n) = h‾(x, t) ⋅ n .

If η̇ and s̄ are continuous with respect to x, while h̄ is C1 (B) ∩ C (B̄), the arbitrariness of b implies

(10.9)η̇ ≥ s̄ −Divh̄ .

(c) The Clausius–Duhem inequality
Defining temperature beyond thermodynamic equilibrium is a debated issue. A possible view
is to consider the absolute temperature as a label for states that links heat flux and source with
their counterparts in the second law (see [6,77]). In this way, the absolute temperature ϑ is
defined by the law its satisfies.

We thus consider the relations

(10.10)s̄ = rϑ , h̄ = q~ϑ + ϖ ,

where ϖ is a residual entropy flux owing to microstructural effects. Precisely, we presume that

(10.11)ϖ = ϖ~(ν, ν̇,Dν,ϑ,⋯ ) ,

where the dots indicate that the the functional dependence can include all derivatives of the
state variables considered, according to Truesdell’s principle of equipresence. Explicit expres-
sions for ϖ depend on specific cases considered. Equation (10.10) appeared first in [78] with no
explicit reference to microstructures.

Thus, with ψ the Helmoltz free energy density defined to be ψ := e − ϑη, we have
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(10.12)ψ̇ + ϑ̇η − P ⋅ Ḟ − z ⋅ ν̇ − S ⋅ Ṅ + 1ϑq~ ⋅ Dϑ − ϑDivϖ ≤ 0 .

It is a version of the Clausius–Duhem inequality, presumed to hold for any choice of the rate fields
involved. After Coleman’s & Noll’s 1959 work [79], we commonly consider the inequality as a
source of constitutive restrictions and admissibility criteria. However, this is not the sole role
that can be acquired by the second law. In any case, maintaining here the traditional viewpoint,
we presume that

(10.13){ψ, η, P, z,S}(F, ν,N ,ϑ; Ḟ, ν̇, Ṅ , ϑ̇) ,

meaning with the previous notation that all entities in the first parentheses depend on the state
variables listed on the right-hand side. In particular, ψ is assumed to be differentiable with
respect to its entries. We compute ψ̇ = ∂ψ

∂F ⋅ Ḟ + ∂ψ
∂ν ⋅ ν̇ + ∂ψ

∂N ⋅ Ṅ + ∂ψ
∂ϑ̇ ϑ̇ + ∂ψ

∂Ḟ ⋅ F̈ + ∂ψ
∂ν̇ ⋅ ν̈ + ∂ψ

∂Ṅ ⋅ N̈ + ∂ψ
∂ϑ̇ ϑ̈.

By inserting the result in relation (10.12), the arbitrariness of all rate fields involved implies
necessarily that ψ = ψ~(F, ν,N ,ϑ), so that the dissipation inequality reduces to

(10.14)
∂ψ
∂F ⋅ Ḟ + ∂ψ∂ν ⋅ ν̇ + ∂ψ∂N ⋅ Ṅ + ∂ψ

∂ϑ̇ ϑ̇ + ϑ̇η − P ⋅ Ḟ − z ⋅ ν̇ − S ⋅ Ṅ + 1ϑq~ ⋅ Dϑ − ϑDivϖ ≤ 0 .

We consider for P, z and S an additive decomposition into energetic (meaning determined by ψ)
and dissipative components, respectively indicated by the superscripts (e) and (d):

(10.15)P = P(e) + P(d) = P~(e)(F, ν,N ,ϑ) + P~(d)(F, ν,N ,ϑ; Ḟ, ν̇, Ṅ , ϑ̇) ,

(10.16)z = z(e) + z(d) = z~(e)(F, ν,N ,ϑ) + z~(d)(F, ν,N ,ϑ; Ḟ, ν̇, Ṅ , ϑ̇) ,

(10.17)S = S(e) + S(d) = S~ (e)(F, ν,N ,ϑ) + S~ (d)(F, ν,N ,ϑ; Ḟ, ν̇, Ṅ , ϑ̇) ,

while, for the entropy density, we have η = η~(F, ν,N ,ϑ), which means that we refer to equili-
brium entropy, the non-equilibrium production being assigned to the term ϑDivϖ. Thus, we
have

(10.18)

∂ψ
∂F − P(e) ⋅ Ḟ + ∂ψ

∂ν − z(e) ⋅ ν̇ + ∂ψ
∂N − S(e) ⋅ Ṅ + ∂ψ

∂ϑ̇ + η ϑ̇
− P(d) ⋅ Ḟ − z(d) ⋅ ν̇ − S(d) ⋅ Ṅ + 1ϑq~ ⋅ Dϑ − ϑDivϖ ≤ 0 .

The arbitrariness of time rates involved implies

(10.19)P(e) = ∂ψ∂F , z(e) = ∂ψ∂ν , S(e) = ∂ψ∂N ,

and the local dissipation inequality

(10.20)P(d) ⋅ Ḟ + z(d) ⋅ ν̇ + S(d) ⋅ Ṅ − 1ϑq~ ⋅ Dϑ + ϑDivϖ ≥ 0 .

Specific choices for P(d), z(d) and S(d) must be compatible with this last inequality.

(d) Equilibrium states in the elastic case
Consider the energy density e(x, F) of elastic simple bodies. The physical incompatibility
between the convexity of e with respect to F and its objectivity imposes that e be at least
polyconvex with respect to F, that is, a lower semicontinuous convex function of all minors ofF, that is of F itself, cofF and det F. Ball’s [80] existence theorem on minimizing deformation
in W1,p, p > 3, requires that e x, F ≥ c1( F 2 + cofF 2) + f det F , with f( ⋅ ) a function growing to
infinity when det F goes to zero. With respect to W1,p, a refinement by Müller et al. [81] includes
the case p = 3. Below such an exponent, deformations in W1,p may display discontinuities
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such as cavitation and fractures. Also, neo-Hookean materials, which do not satisfy the above
boundedness form below, may have dipole-like singularities [82]. To avoid such problems, we
need an additional condition that allows a selection in W1,p of a suitable subspace of maps that
can describe appropriately what we commonly intend as elastic behaviour of simple bodies. We
find naturally such a conditions when we look at deformations in terms of Cartesian currents,
so that we can select a subspace of W1,p, p > 1, of so-called weak diffeomorphism, as introduced in
[83] (see also [56]).

If we forget strain and consider only an elastic energy of the type e(x, ν,Dν), when ν is a
unit vector (so, M is the unit sphere S2), even in the simplest case in which e = 1

2 |Dν|2, miminiz-
ers may display the formation of topological defects (specifically point and line charges, and
dipoles; see [55,56,84]) under Dirichlet-type boundary conditions. The question is open when
the energy density e is non-convex with respect to Dν because lower semicontinuity results for
manifold-valued maps are not available when the manifold is not embedded into a linear space.

When we look at M maintaining it as generic as possible and look at complex bodies
with energy density e~(x, F, ν,Dν), existence theorems of energy minimizers are available under
different specific assumptions about M, the map x ν, and the structure of e [85–87].

There is, however, something more beyond the conservative setting.

(e) Covariance of the second law
As already mentioned, when ν is a scalar or a pseudo-scalar, the linear operator A(ν) appearing
in the equation (7.2) vanishes. Thus, the procedure based on a requirement of objectivity for the
external power or the relative one does not allow one to deduce a scalar balance of microsctruc-
tural interactions. Indeed, such a scalar balance has been postulated (e.g. in [30,69]). However,
even in this case something more fundamental can be done. We can require covariance of the
Clausius–Duhem inequality, written in an appropriate way. Covariance means here structure
invariance under diffeomorphism-based observer changes given by relations (7.5), (7.6) and
(7.7). This approach does not necessarily require that ν is a scalar or a pseudo-scalar. It holds
for ν in a generic M, including scalar and pseudo-scalar cases. Also, this approach includes as
spacial cases the requirements of objectivity for the external power and the relative one. It has
been formulated in a general way in [65] and anticipated to an extent in [88,89].

The following axiom is at its roots: if a phenomenon does not produce energy for a given observer,
any other observer differing from the first one by diffeomorphisms must record the same property.

In other words, the axiom states that the conservative or dissipative character of a phenom-
enon is intrinsic, meaning observer independent. For the sake of simplicity, we write down here
only an isothermal version of the Clausius–Duhem inequality for a generic body part that is
free of low-dimensional defects endowed with their own surface or line energies, but possibly
including a bulk defect. Thus, the inequality reads as

(10.21)b ψ̇ dx − Pbrel(ẏ, ν̇,w) ≤ 0 .

By imposing the covariance axiom to the inequality (10.21), we must prescribe rules of how the
time rate of the free energy ψ varies under diffeomorphism-based observer changes becauseψ is a density associated with the volume measure, and diffeomorphism generically alter the
volume unless they are chosen to be volume-preserving. A general rule proposed in [65] for the
time rate of the free energy reads as

(10.22)ψ̇⟼ ψ̇∘ = ψ̇ + φ(ς;∇v̄, ῡ,∇ῡ, w̄,∇w̄,⋯) ,

where the last addendum is an arbitrary smooth function depending on the state ς, which is left
unspecified, while the other terms are the infinitesimal generators of the actions of the diffeomor-
phism group on the physical space, the reference one and the manifold M, together with their
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derivatives. The function φ is assumed to be Galilean invariant in the physical space and to
vanish under isometry-based observer changes. Here just observable entities are accounted for.
The presence of non-observable entities, however, cannot be excluded, depending on specific
modelling choices. Consequences of the axiom are thus (i) the representation of contact actions
in terms of stresses, (ii) the action–reaction principle, (iii) the existence of a microstructural
self-action, (iv) the local balance of standard and microstructural actions, the latter ones even in
the case of scalar (or pseudo-scalar) phase fields, (v) the local balance of configurational actions,
(vi) constitutive restrictions, (vii) admissibility criteria (at times adding a maximum dissipation
principle). In this path, dissipation is obviously included. All above ‘entities’ emerge from the
role of observers, that is, from a requirement of structural invariance of the second law under
different observations. Extending the result to non-isothermal setting is rather straightforward.
Proofs are in [65]. The results give a new role to the second law, with respect to its standard use.
Put simply, every basic structure of a continuum model comes from the covariance requirement for the
second law of thermodynamics written as an appropriate form of the Clausius–Duhem inequality.

11. Special internal constraints on the phase field and further topics
(a) Strain gradient elasticity and Korteweg’s fluids
Consider an elastic complex body with energy e := e~(x, F, ν,N). Assume also that there is an
internal constraint

(11.1)ν = ν(F) ,

with ν  a differentiable M-valued function. An immediate consequence is thate~(x, F, ν,N) = f~(x, F,DF). The interaction measures admit an additive decomposition into active
and reactive components, indicated, respectively, by the superscripts a and r. So, we haveP = P(a) + P(r), z = z(a) + z(r), and S = S(a) + S(r). The reactive components are assumed to be
powerless. This means that they are such that

(11.2)P(r) ⋅ Ḟ + z(r) ⋅ ν̇ + S(r) ⋅ Ṅ = 0 .

Since ν̇ = ∂ν
∂F Ḟ∗, by substituting into condition (11.2), we find an expression of the stress P that is

free of the reactive components, and a third-rank hyperstress with components given by

(11.3)∂να
∂F i

A
SαB ,

where the Greek index indicates coordinates over M, lower case indices refer to the physical
space, while upper case ones indicate components in the reference space, and summation over
repeated indices is adopted. Strain-gradient elasticity thus emerges; the balance of microstruc-
tural interactions is embedded into the standard pointwise balance of forces: itself the micro-
structure becomes latent in the terminology introduced by Capriz [66]. Following this view, we
do not need to prove existence of the third-rank hyperstress per se, rather, the existence proof of
the microstress S is sufficient to get the resulting hyperstress with components (11.3).

When we reduce the internal constraint (11.1) to ν = det F and refer to balance equations in
Eulerian form, we recover Korteveg’s fluids [66].

(b) Influence of microstructural variations on temperature propagation
Neglect macroscopic strain, while allowing microstructure to vary in time. Can we say that
this behaviour is the one of a rigid body with microstructure? The answer depends on what we
consider to be a rigid body. An appropriate definition is that a body is rigid when it admits only
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isometries as possible deformations. So, we can speak of a rigid body with microstructure whenν does not affect the strain measures. Presume in addition that β‡ = 0, so that DivS = z. Thus,
under these restricted conditions P = 0 and z ⋅ ν̇ + S ⋅ Ṅ = Div(S∗ν̇). Write p for the covector S∗ν̇,
so that the local energy balance reduces to

(11.4)ė − r + Div(q~ − p) = 0 .

Assume that ν depends on temperature, that is

(11.5)ν = ν‾(ϑ) ,

with ν‾ a differentiable M-valued function (a physically significant case is the one of stron-
tium–titanate that undergoes temperature-dependent polarization; for such material ν is the
polarization vector). Under the internal constraint (11.5), the energy e = e~(ϑ, ν,N) becomese = e (ϑ,Dϑ) (notice that F is absent because we are in a condition under which at mostF = R ∈ SO(3)). Thus, by taking Fourier’s law q~ = −κDϑ and p = p(ϑ,Dϑ, ϑ̇), with p assumed to
be differentiable with respect to its entries, the reduced local energy balance (equation (11.4))
becomes

(11.6)
∂e
∂Dϑ − ∂p∂ϑ̇ ⋅ Dϑ̇ + ∂e∂ϑϑ̇ − κΔϑ − ∂p∂ϑ ⋅ Dϑ − ∂p

∂Dϑ ⋅ D2ϑ − r = 0

(see also [90]). Consider ∂p∂Dϑ  to be negligible and look at one-dimensional setting. In this case,
equation (11.6) reduces to

(11.7)ζϑ ∂2ϑ
∂t∂x + cv∂ϑ∂t − κ∂2ϑ

∂x2 + ξϑ∂ϑ∂x − r = 0 ,

where ζϑ := ∂e
∂Dϑ − ∂p∂ϑ̇ , cv := ∂e

∂ϑ  and ξϑ := − ∂p∂ϑ . Equation (11.7) is hyperbolic. It avoids the paradox
of infinite speed temperature propagation as determined by the balance of energy in rigid
conductors when p is absent. As a special case, assume that the coefficients in equation (11.7)
are constant. Travelling waves ϑ(x, t) = u(x − ct) are admissible with velocities c given by

(11.8)c = − κζ , c = ξcv , c = ξ − καζα + cv ,

where α is a constant that appears in an initial condition of the type ā1 exp(αx) + ā2x + ā3, wherea‾1, a‾2, a‾3 are constant, and α ≠ 0, α ≠ − cvζ  [91].

(c) Another possible view on non-parabolic heat propagation
Consider the case in which the dissipative components of standard stress and microstress,
namely P(d) and S(d), vanish in the inequality (10.20), and z(d) is intrinsically dissipative, meaning
that it satisfies the inequality z(d) ⋅ ν̇ ≥ 0 for any ν̇, the identity holding only when ν̇ = 0. The
remaining dissipation inequality − 1ϑq~ ⋅ Dϑ + ϑDivϖ ≥ 0 is compatible with q~ = −κDϑ + q, where q
is a non-Fourier component of the heat flux such that q ⋅ Dϑ = ϑ2Divϖ. Assume ν = q, meaning
that we consider the non-Fourier component as determined by the microstructure at a scaleλ. Under further special constitutive assumptions, to within λ2 terms, the balance of microstruc-
tural interactions in Eulerian form reduces to Guyer–Krumhansl’s equation, while the local
energy balance to Payne–Song’s equation (the proof is in [63]). These two equations are essential
to evaluate stability of non-isothermal flows (see analyses in [92,93]), and can be used to
describe fluids with pollutants [94].
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(d) Further topics
There are several other topics connected with what is presented here. They would deserve to
be reported and discussed widely but this would extend this article beyond the limits imposed.
One of these topics is the evolution of structured interfaces in complex media; they are
characterized by a possibly non-constant surface energy. Beyond Cauchy’s or Piola–Kirchhoff’s
type surface stress, largely analysed in the common setting of continuum mechanics, in the
case of complex media we have occurrence of a surface microstress and a surface microstruc-
tural self-actions. Besides significant special cases (e.g. nematic–isotropic interfaces in liquid
crystals [95], solidification of two-phase fluids [96]), a general theory of surface microstruc-
tural interactions is available [97] and suggests further analyses in the general model-building
setting.

Another topic is the analysis of microstructural influence on crack propagation. Indeed, ν
can be chosen as the indicator function of a crack path (phase-field modelling of fracture, see,
e.g. [57]). However, we can refer to cases of a fracture in an already complex material descri-
bed in the multi-field setting sketched above. There are non-trivial effects of microstructural
influences on cracks in special cases (see, e.g. [44,98–100]); general views are also available
[101,102], and open the way to further analyses.
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