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Abstract
We discuss the smoothness and strict convexity of the solution of the L p-Minkowski
problem when p < 1 and the given measure has a positive density function.
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1 Introduction

Given K in the class Kn
0 of compact convex sets in R

n that have non-empty interior
and contain the origin o, we write hK and SK to denote its support function and its
surface areameasure, respectively, and for p ∈ R, SK ,p to denote its L p-area measure,

where dSK ,p = h1−p
K dSK . The L p-area measure defined by Lutwak [35] is a central

notion in convexity, see say Barthe et al. [2], Böröczky et al. [5], Campi and Gronchi
[10], Chou [15], Cianchi et al. [17], Gage and Hamilton [19], Haberl and Parapatits
[23], Haberl and Schuster [24,25], Haberl et al. [26], He et al. [27], Henk and Linke
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Smoothness in the Lp Minkowski Problem 681

[28], Ludwig [34], Lutwak et al. [37,38], Naor [41], Naor and Romik [42], Paouris
[44], Paouris and Werner [45] and Stancu [50].

The L p Minkowski problem asks for the existence of a convex body K ∈ Kn
0

whose L p area measure is a given finite Borel measure ν on Sn−1. When p = 1,
this is the classical Minkowski problem solved by Minkowski [40] for polytopes, and
by Alexandrov [1] and Fenchel and Jessen [18] in general. The smoothness of the
solution was clarified in a series of papers by Nirenberg [43], Cheng and Yau [14],
Pogorelov [46] and Caffarelli [7,8]. For p > 1 and p �= n, the L p Minkowski problem
has a unique solution according to Chou and Wang [16], Guan and Lin [22] and Hug,
Lutwak, Yang and Zhang [30]. The smoothness of the solution is discussed in Chou
and Wang [16], Huang and Lu [29] and Lutwak and Oliker [36]. In addition, the case
p < 1 has been intensively investigated by Böröczky et al. [4], Böröczky and Trinh
[6], Chen [13], Chen et al. [11,12], Ivaki [31], Jiang [32], Lu and Wang [33], Lutwak
et al. [39], Stancu [48,49] and Zhu [52–55].

The solution of the L p-Minkowski problemmay not be unique for p < 1 according
to Chen et al. [12] if 0 < p < 1, according to Stancu [49] if p = 0, and according to
Chou and Wang [16] if p < 0 small.

In this paper we are interested in this problem when p < 1 and ν is a measure with
density with respect to the Hausdorff measure Hn−1 on Sn−1, i.e. in the problem

dSK ,p = f dHn−1 on Sn−1, (1.1)

where f is a non-negative Borel function in Sn−1.
According to Chou and Wang [16], if − n < p < 1 and the Borel function f is

bounded from above and below by positive constants, then (1.1) has a solution. More
general existence results are provided by the recent works Chen et al. [11] if p = 0,
Chen et al. [12] if 0 < p < 1, and Bianchi et al. [3] if − n < p < 0. In particular, it
is known that (1.1) has a solution if 0 ≤ p < 1 and f is any non-negative function
in L1(Sn−1) with

∫
Sn−1 f dHn−1 > 0, and if −n < p < 0 and f is any non-negative

function in L n
n+p

(Sn−1) with
∫
Sn−1 f dHn−1 > 0.

We observe that h is a non-negative positively 1-homogeneous convex function in
R
n which solves the Monge–Ampère equation

h1−p det(∇2h + hI ) = f on Sn−1 (1.2)

in the sense of measure if and only if h is the support function of a convex body
K ∈ Kn

0 which is the solution of (1.1) (see Sect. 2). Here h is the unknown non-
negative (support) function on Sn−1 to be found, ∇2h denotes the (covariant) Hessian
matrix of h with respect to an orthonormal frame on Sn−1, and I is the identity
matrix. The function h may vanish somewhere even in the case when f is positive and
continuous, and when this happens and p < 1 the Eq. (1.2) is singular at the zero set
of h. Naturally, if h is C2, then (1.2) is a proper Monge–Ampère equation.

In this paper we study the smoothness and strict convexity of a solution K ∈ Kn
0

of (1.1) assuming τ2 > f > τ1 for some constants τ2 > τ1 > 0. Concerning these
aspects for p < 1, we summarise the known results in Theorem 1.1, and the new
results in Theorem 1.2.
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682 G. Bianchi et al.

We say that x ∈ ∂K is a C1-smooth point if there is a unique tangent hyperplane
to K at x , and observe that ∂K is C1 if and only if each x ∈ ∂K is C1-smooth (see
Sect. 2 for all definitions). In addition, we note that hK is C1 on Sn−1 if and only if K
is strictly convex, and hK is strictly convex on any hyperplane avoiding the origin if
and only if ∂K isC1. For z ∈ ∂K , the exterior normal cone at z is denoted by N (K , z),
and for z ∈ int K , we set N (K , z) = {o}. Theorem 1.1(i) and (ii) are essentially due
to Caffarelli [7] (see Theorem 3.6), and Theorem 1.1(iii) is due to Chou and Wang
[16]. If the function f in (1.1) is Cα for α > 0, then Caffarelli [8] proves (iv).

Theorem 1.1 (Caffarelli, Chou, Wang) If K ∈ Kn
0 is a solution of (1.1) for n ≥ 2

and p < 1, and f is bounded from above and below by positive constants, then the
following assertions hold:

(i) The set X0 of the points x ∈ ∂K with N (K , x) ⊂ N (K , o) is closed, each point
of X = ∂K\X0 is C1-smooth and X contains no segment.

(ii) If o ∈ ∂K is a C1-smooth point, then ∂K is C1.
(iii) If p ≤ 2 − n, then o ∈ int K, and hence K is strictly convex and ∂K is C1.
(iv) If o ∈ int K and the function f in (1.1) is positive and Cα , for some α > 0, then

∂K is C2,α .

Concerning strict convexity, assertion (iii) here is optimal because Example 4.2
shows that if 2−n < p < 1, then it is possible that o belongs to the relative interior of
an (n − 1)-dimensional face of a solution K of (1.1) where f is a positive continuous
function. Therefore, the only question left open is the C1 smoothness of the boundary
of the solution if 2 − n < p < 1.

We note that if p < 1 and K is a solution of (1.2) with f positive and o ∈ ∂K , then

dim N (K , o) ≤ n − 1. (1.3)

Therefore, Theorem 1.1(ii) yields that ∂K isC1 for the solution K if n = 2. In general,
we have the following partial results.

Theorem 1.2 If K ∈ Kn
0 is a solution of (1.1) for n ≥ 2 and p < 1, and f is bounded

from above and below by positive constants, then the following assertions hold:

(i) If n = 2, n = 3 or n > 3 and p < 4 − n, then ∂K is C1.
(ii) IfHn−1(X0) = 0 for the X0 in Theorem 1.1(i), then ∂K is C1.

Our results differ in some cases from the ones in Chou and Wang [16], possibly
because [16] considers the equation

det(∇2h + hI ) = f h p−1 on Sn−1 (1.4)

instead of (1.2). In the context of non-negative convex functions, being a solution
of this last equation is a priori more restrictive than being a solution of (1.2), even
if obviously the two notions coincide when h is positive (see Sect. 2 for more on
this point). Chou and Wang [16] proves, under our same assumptions on f , the strict
convexity of the solution h of (1.4) on hyperplanes avoiding the origin, and uses this
to prove that ∂K is C1 for the convex body K . We note that if K ∈ Kn

0 is a solution of
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Smoothness in the Lp Minkowski Problem 683

(1.4) for p < 1 and f is bounded from below and above by positive constants, then
combining Theorem 1.2(ii) with the simple observation (2.11) in Sect. 2 shows that
∂K is C1, as it was verified by Chou and Wang [16]. In our opinion (1.2) is the right
equation to consider and using it we obtain weaker results.

To give an example of how the two equations differ, the support function h of
the body K in Example 4.2 (where o belongs to the relative interior of an (n − 1)-
dimensional face) is a solution of (1.2) but not a solution of (1.4).

According to Chou andWang [16] (see also Lemma 3.1 below), theMonge-Ampère
equation (1.2) can be transferred to a Monge-Ampère equation

v1−p det(D2v) = g (1.5)

for a convex function v on R
n−1 where g is a given non-negative function and D2

stands for the Hessian in R
n−1.

The proofs of Claims (i) and (ii) in Theorem 1.1 use as an essential tool a result
proved by Caffarelli in [7] regarding smoothness and strict convexity of convex solu-
tions of certain Monge–Ampère equation of type (1.5) (see Theorem 3.6). Proving
that ∂K is C1 is equivalent to prove that hK is strictly convex, and [7] is the key to
prove this property in {y ∈ Sn−1 : hK (y) > 0}.

The proof of Claim (i) in Theorem 1.2 is based on the following result for the
singular inequality v1−p det D2v ≥ g.

Proposition 1.3 Let� ⊂ R
n be an open convex set, and let v be a non-negative convex

function in � with S = {x ∈ � : v(x) = 0}. If for p < 1 and τ > 0, v is the solution
of

v1−p det D2v ≥ τ in � \ S (1.6)

in the sense of measure, and S is r-dimensional, for r ≥ 1, then p ≥ −n + 1 + 2r .

We mention that in Caffarelli [9] a corresponding result for p = 1 is established.
The underlying idea behind the proof of this result is the following: On the one

hand, the graph of v near S is close to being ruled. Hence, the total variation of the
derivative is “small”. On the other hand, the total variation of the derivative is “large”
because of the Monge-Ampère inequality (1.6).

The inequality p ≥ −n + 1 + 2r in this result is close to being optimal, at least
when r = 1. Indeed, Example 3.2 shows that, for any p > −n+ 3, there exists a non-
negative convex solution of (1.6) in � which vanishes on the intersection of � with a
line. For the version p = 1 of Proposition 1.3, Caffarelli [9] proves that dim S < n/2
and that this inequality is optimal.

Proposition 1.3 yields actually somewhat more than Claim (i) in Theorem 1.2;
namely, if r ≥ 2 is an integer, p < min{1, 2r − n} and K ∈ Kn

0 is a solution of
(1.1) with o ∈ ∂K , then dim N (K , o) < r . As a consequence, we have the following
technical statements about K , where we also use Theorem 1.2 (ii) for Claim (ii).

Corollary 1.4 If p < 1 and K ∈ Kn
0 , n ≥ 4, is a solution of (1.1) with o ∈ ∂K, then

(i) dim N (K , o) < n+1
2 ;
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684 G. Bianchi et al.

(ii) if in addition n = 4, 5 and ∂K is not C1, then dim N (K , o) = 2 and
dim F(K , u) = n − 1 for some u ∈ N (K , o).

In Section 2 we review the notation used in this paper. Section 3 contains results
and examples regarding Monge-Ampère equations in R

n , namely Proposition 1.3,
Example 3.2 and Proposition 3.4. This last result is the key to prove Theorem 1.2 (ii).
In Section 4 we show, for the sake of completeness, how to prove Theorem 1.1 using
ideas due to Caffarelli [7,8] and Chou and Wang [16]. Theorem 1.2 and Corollary 1.4
are proved in Section 5.

2 Notation and Preliminaries

As usual, Sn−1 denotes the unit sphere and o the origin in the Euclidean n-space Rn .
The symbol Bn denotes the unit ball in R

n centred at o and ωn denotes its volume.
If x, y ∈ R

n , then 〈x, y〉 is the scalar product of x and y, while ‖x‖ is the euclidean
norm of x . By [x, y] we denote the segment with endpoint x and y.

We write Hk for k-dimensional Hausdorff measure in Rn .
We denote by ∂E , intE , clE , and 1E the boundary, interior, closure, and charac-

teristic function of a set E in R
n , respectively. The symbols affE and linE denote,

respectively, the affine hull and the linear hull of E . The dimension dim E is the
dimension of affE . With the symbol E | L we denote the orthogonal projection of E
on the linear space L .

Given a function v defined on a subset of Rn , Dv and D2v denote its gradient and
its Hessian, respectively.

Our next goal is to recall a standard notionof generalised solutionofMonge-Ampère
equations, usually referred to as solution in the sense ofmeasure. Our general reference
for notions and facts about Monge-Ampère equations is the survey by Trudinger and
Wang [51]. Let v be a convex function defined in an open convex set�; the subgradient
∂v(x) of v at x ∈ � is defined as

∂v(x) = {z ∈ R
n : v(y) ≥ v(x) + 〈z, y − x〉 for each y ∈ �},

which is a non-empty compact convex set. Note that v is differentiable at x ∈ � if and
only if ∂v(x) consists of exactly one vector, which is the gradient of v at x . If ω ⊂ �

is a Borel set, then we denote by Nv(ω) the image of ω through the gradient map of
v, i.e.

Nv(ω) =
⋃

x∈ω

∂v(x).

Note that as ω is a Borel set, then Nv(ω) is measurable. Hence, we may define the
Monge–Ampère measure associated to v as follows

μv(ω) = Hn
(
Nv

(
ω

))
. (2.1)
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Smoothness in the Lp Minkowski Problem 685

For p < 1 and non-negative g on Rn , we say that the non-negative convex function v

satisfies the Monge-Ampère equation

v1−p det(D2v) = g

in the sense of measure (or in the Alexandrov sense) if

v1−p dμv = g dHn .

Equivalently

∫

ω

v1−p(x)dμv(x) =
∫

ω

g(x)dx

for every Borel subset ω of �.
A convex body inRn is a compact convex set with non-empty interior. The treatises

Gardner [20], Gruber [21] and Schneider [47] are excellent general references for
convex geometry. The function

hK (u) = max{〈u, y〉 : y ∈ K },

for u ∈ R
n , is the support function of K . When it is clear the convex body to which

we refer we will drop the subscript K from hK and write simply h. Any convex body
K is uniquely determined by its support function. A set C ⊂ R

n is a convex cone if
α1u1 + α2u2 ∈ C for any u1, u2 ∈ C and α1, α2 ≥ 0.

If S is a convex set in R
n , then z ∈ S is an extremal point if z = αx1 + (1 − α)x2

for x1, x2 ∈ S and α ∈ (0, 1) imply x1 = x2 = z. We note that if S is compact and
convex, then S is the convex hull of its extremal points. If C is a convex cone and
u ∈ C\{o}, we say that σ = {λu : λ ≥ 0} is an extremal ray if α1x1 + α2x2 ∈ σ for
x1, x2 ∈ C and α1, α2 > 0 imply x1, x2 ∈ σ . Now if C �= {o} is a closed convex cone
such that the origin is an extremal point of C , then C is the convex hull of its extremal
rays.

The normal cone of a convex body K at z ∈ K is defined as

N (K , z) = {u ∈ R
n : 〈u, y〉 ≤ 〈u, z〉 for all y ∈ K },

where N (K , z) = {o} if z ∈ intK and dim N (K , z) ≥ 1 if z ∈ ∂K . This definition
can be written also as

N (K , z) = {u ∈ R
n : hK (u) = 〈z, u〉}. (2.2)

In particular, N (K , z) is a closed convex cone such that the origin is an extremal point,
and

hK (α1u1 + α2u2) = α1hK (u1) + α2hK (u2) for u1, u2 ∈ N (K , z) and α1, α2 > 0.
(2.3)
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686 G. Bianchi et al.

A convex body K is C1-smooth at p ∈ ∂K if N (K , p) is a ray, and ∂K is C1 if each
p ∈ ∂K is a C1-smooth point. Therefore, ∂K is C1 if and only if the restriction of hK
to any hyperplane not containing o is strictly convex, by (2.3).

We say that a convex body K is strictly convex if ∂K contains no segment. The
face of K with outer normal u ∈ R

n is defined as

F(K , u) = {z ∈ K : hK (u) = 〈z, u〉},

which lies in ∂K if u �= o. Schneider [47, Theorem 1.7.4] proves that

∂hK (u) = F(K , u). (2.4)

Therefore, K is strictly convex if and only if hK is C1 on R
n\{o}.

A crucial notion for this paper is the one of surface area measure SK of a convex
body K , which is a Borel measure on Sn−1, defined as follows. For any Borel set
ω ⊂ Sn−1:

SK (ω) = Hn−1( ∪u∈ω F(K , u)
) = Hn−1( ∪u∈ω ∂hK (u)

)
.

Hence, SK is the analogue of the Monge–Ampère measure for the restriction of hK to
Sn−1.

Given a convex body K containing o and p < 1, let SK ,p denote the L p area
measure of K ; namely,

dSK ,p = h1−p
K dSK . (2.5)

Let f be a positive and measurable function on Sn−1; we say that hK is a solution
of (1.2) in the sense of measure if

∫

ω

hK (y)1−pdSK (y) =
∫

ω

f (y)dHn−1(y) (2.6)

for every Borel subset ω of Sn−1.
In what follows we will always assume that f is bounded between two positive

constants. Our first remark is that the previous definition is equivalent to the following
conditions (a) and (b):

(a) dim N (K , o) < n; or equivalently,

Hn−1({y ∈ Sn−1 : hK (y) = 0}) = Hn−1(N (K , o) ∩ Sn−1) = 0, (2.7)

(b) for each Borel set ω ⊂ {y ∈ Sn−1 : hK (y) > 0}, we have
∫

ω

h1−p
K (y) dSK (y) =

∫

ω

f (y) dHn−1(y). (2.8)

Moreover, condition (b) is in turn equivalent to

123



Smoothness in the Lp Minkowski Problem 687

(b’) for each Borel set ω ⊂ {y ∈ Sn−1 : hK (y) > 0}, we have

SK (ω) =
∫

ω

f (y)hK (y)p−1 dHn−1(y). (2.9)

To prove that (b) and (b’) are equivalent is a simple exercise (in which one has to take
into account the fact that hK is continuous). Indeed, both claims are in turn equivalent
to the following fact: the measure SK is absolutely continuous with respect to Hn−1

on Sn−1 \ {y ∈ Sn−1 : hK (y) = 0}, and the Radon–Nikodym derivative of SK with
respect toHn−1 is f h p−1

K .
Let us prove the equivalence between (2.6) and (a)–(b). To this end, it will be useful

the following observation: the set

{x ∈ R
n : hK (x) = 0}

is a closed convex cone. Indeed, it is the set where the non-negative, convex and 1-
homogeneous function hk attains its minimum. For convenience, we set ω0 = {y ∈
Sn−1 : hK (y) = 0}. Assume that (2.6) holds; then (b) follows immediately. If, by
contradiction, (a) is false, then ω0 has non-empty interior so that

0 =
∫

ω0

hK (y)1−p dSK (y) =
∫

ω0

f (y) dHn−1(y) > 0,

i.e. a contradiction (in the last inequality we have used the fact that f is bounded from
below by a positive constant). Vice versa, assume that (a) and (b) hold. Given a Borel
subsetω of Sn−1 wemay write it as the disjoint union ofω′ = ω∩ω0 andω′′ = ω\ω′.
By (a), Hn−1(ω′) = 0, moreover hK = 0 on ω′; hence,

∫

ω

hK (y)1−p dSK (y) =
∫

ω′′
hK (y)1−p dSK (y)

=
∫

ω′′
f (y) dHn−1(y)

=
∫

ω

f (y) dHn−1(y),

i.e. (2.6).
Our next step is to compare the solutions considered by Chou and Wang [16] with

the ones introduced here. In particular, we will show that if hK is a solution of (1.4),
then it verifies conditions (a) and (b) as well [and consequently (2.6)]. Note that being
a solution of (1.4) in the sense of measures means that

SK (ω) =
∫

ω

f (y)hK (y)p−1 dHn−1(y). (2.10)
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688 G. Bianchi et al.

has to hold for every Borel subset of Sn−1. In particular (2.9) follows (and then (b)).
Moreover, as SK is finite, hK ≥ 0 and f is bounded between two positive constants,
the previous relation implies that

∫

Sn−1
hK (y)p−1 dHn−1(y) < +∞.

As p− 1 < 0, this yields that the set ω0 where hK vanishes on Sn−1 has zero (n− 1)-
dimensional measure. On the other hand this is the intersection of Sn−1 with a convex
cone. Hence we get condition (a).

In addition, if we now apply (2.10) to ω0, we get that when hK is a solution of (1.4)
then

SK
(
N (K , o) ∩ Sn−1) = 0. (2.11)

Note that (2.11) implies that Hn−1(X0) = 0, in the notation of Theorem 1.2,
because X0 ⊂ ∪{F(K , u) : u ∈ N (K , o) ∩ Sn−1} and (2.11) means, by definition,

Hn−1( ∪u∈N (K ,o)∩Sn−1 F(K , u)
) = 0.

Hence, applying Theorem 1.2(ii) we deduce that if K ∈ Kn
0 is a solution of (1.4) for

p < 1 and f is bounded from below and above by positive constants, then ∂K is C1,
as it was verified by Chou and Wang [16].

3 Some Results onMonge–Ampère Equations in Euclidean Space

Lemma 3.1 is the tool to transfer the Monge–Ampère equation (1.2) on Sn−1 to a
Euclidean Monge–Ampère equation on R

n−1. For e ∈ Sn−1, we consider the restric-
tion of a solution h of (1.2) to the hyperplane tangent to Sn−1 at e.

Lemma 3.1 If e ∈ Sn−1, h is a convex positively 1-homogeneous non-negative function
on Rn that is a solution of (1.2) for p < 1 and positive f , and v(y) = h(y + e) holds
for v : e⊥ → R, then v satisfies

v1−p det(D2v) = g on e⊥, (3.1)

where, for y ∈ e⊥, we have

g(y) =
(
1 + ‖y‖2

)− n+p
2

f

(
e + y

√
1 + ‖y‖2

)

.

Proof Let h = hK for K ∈ Kn
0 , and let

S̃ = {u ∈ Sn−1 : hK (u) = 0},
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Smoothness in the Lp Minkowski Problem 689

which is a possibly empty spherically convex compact set whose spherical dimension
is at most n − 2, by (2.7). According to (2.9), the Monge–Ampère equation for hK
can be written in the form

dSK = h p−1
K f dHn−1 on Sn−1\S̃. (3.2)

We consider π : e⊥ → Sn−1 defined by

π(x) = (1 + ‖x‖2)−1
2 (x + e),

which is induced by the radial projection from the tangent hyperplane e+ e⊥ to Sn−1.

Since 〈π(x), e〉 = (1 + ‖x‖2)−1
2 , the Jacobian of π is

det Dπ(x) = (1 + ‖x‖2)−n
2 . (3.3)

For x ∈ e⊥, (2.4) and writing hK in terms of an orthonormal basis ofRn containing
e yield that v satisfies

∂v(x) = ∂hK (x + e)|e⊥ = F(K , x + e)|e⊥ = F(K , π(x))|e⊥.

Let S = π−1(S̃). For a Borel set ω ⊂ e⊥\S, we have

Hn−1(Nv(ω)) = Hn−1 (∪x∈ω∂v(x))

= Hn−1
(
∪u∈π(ω)

(
F(K , u)|e⊥))

=
∫

π(ω)

〈u, e〉 dSK (u)

=
∫

π(ω)

〈u, e〉h p−1
K (u) f (u) dHn−1(u)

=
∫

ω

(1 + ‖x‖2)−n−p
2 f (π(x))v(x)p−1 dHn−1(x),

where we used at the last step that

v(x) = hK (x + e) = (1 + ‖x‖2) 1
2 hK (π(x)).

In particular, v satisfies the Monge–Ampère type differential equation

det D2v(x) = (1 + ‖x‖2)−n−p
2 f (π(x))v(x)p−1 on e⊥\S.

Since dim S ≤ n − 2 by (1.3), v satisfies (3.1) on e⊥. ��
Having Lemma 3.1 at hand showing the need to understand relatedMonge-Ampère

equations in Euclidean spaces, we prove Propositions 1.3 and 3.4, and quote Caf-
farelli’s Theorem 3.6.
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Proof of Proposition 1.3 Up to changing coordinate system, we may assume, without
loss of generality, that S ⊂ {(x1, x2) ∈ R

r×R
n−r : x2 = 0} and the origin is contained

in the relative interior of S. Therefore, up to restricting �, we may also assume that v
is continuous on cl�, that � = {(x1, x2) ∈ R

r × R
n−r : ‖x1‖ < s1, ‖x2‖ < s2} for

some constants s1, s2 > 0 and that S = {(x1, x2) ∈ � : x2 = 0}.
Let α = maxcl� v and let us consider the convex body

M = {(x1, x2, y) ∈ R
r × R

n−r × R : ‖x1‖ ≤ s1, ‖x2‖ ≤ s2, v(x1, x2) ≤ y ≤ α}.

For t ∈ (0, s2/2], let

�t = {(x1, x2) ∈ R
r × R

n−r : ‖x1‖ ≤ s1/2, ‖x2‖ ≤ t}.

We estimateHn
(
Nv(�t \ S)

)
. Let (x1, x2) ∈ �t \ S and let (z1, z2) ∈ R

r × R
n−r

belong to ∂v(x1, x2). We prove that

‖z2‖ ≤ 2α

s2
and ‖z1‖ ≤ 4α

s1s2
t . (3.4)

If z2 = 0 the first inequality in (3.4) holds true.Assume z2 �= 0. The vector (z1, z2,−1)
is an exterior normal to M at p = (x1, x2, v(x1, x2)). Since

q1 =
(

x1, x2 + s2z2
2‖z2‖ , α

)

∈ M

(because
∥
∥x2 + s2z2/(2‖z2‖)

∥
∥ ≤ ‖x2‖ + s2/2 ≤ s2) then 〈q1 − p, (z1, z2,−1)〉 ≤ 0.

This implies

‖z2‖ ≤ 2

s2
(α − v(x1, x2))

and the first inequality in (3.4). Again, if z1 = 0, then the second inequality (3.4)
holds true. Assume z1 �= 0. We have

q2 =
(

x1 + s1z1
2‖z1‖ , 0, v(x1, x2)

)

∈ M,

because
∥
∥x1 + s1z1/(2‖z1‖)

∥
∥ ≤ s1, (x1 + s1z1/(2‖z1‖), 0) ∈ S and therefore

v(x1, x2) ≥ 0 = v(x1 + s1z1/(2‖z1‖), 0). The inequality 〈q2 − p, (z1, z2,−1)〉 ≤ 0
implies the second inequality (3.4).

The inequalities in (3.4) imply

Hn(Nv(�t \ S)
) ≤ c tr , (3.5)

for a suitable constant c independent of t .
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Now we estimate
∫
�t\S v(x)p−1 dx . The inclusion of the convex hull of S × {0}

and {‖x1‖ ≤ s1, ‖x2‖ ≤ s2, y = α} in M implies that v(x1, x2) ≤ α
s2

‖x2‖ for each
(x1, x2) ∈ �t by the convexity of v. Using this estimate it is straightforward to compute
that ∫

�t\S
v(x)p−1 dx ≥ d tn+p−r−1, (3.6)

for a suitable constant d independent on t . The inequalities (3.5) and (3.6) and the
differential inequality satisfied by v imply, as t → 0+,

ctr ≥ Hn(Nv(�t \ S)
) ≥

∫

�t\S
τv(x)p−1 dx ≥ τd tn+p−r−1.

This inequality implies p ≥ − n + 1 + 2r . ��
Example 3.2 Let us show that for any p > −n + 3 there exists a non-negative convex
solution of (1.6) in � = {(x1, x2) ∈ R × R

n−1 : x1 ∈ [−1, 1], ‖x2‖ ≤ 1} which
vanishes on the 1-dimensional space S = {(x1, x2) ∈ R × R

n−1 : x2 = 0}.
To prove this let

v(x1, x2) = ‖x2‖ + f (‖x2‖)g(x1),

where f (r) = rα , with α = (p + n − 1)/2, and g(x1) = (1 + βx21 ), with β > 0
sufficiently small. Note that α > 1 exactly when p > −n + 3.

The function v is invariant with respect to rotations around the line containing S.
To compute det D2v at an arbitrary point, it suffices to compute it at (x1, 0, . . . , 0, r),
r ≥ 0. We get

vx1x1 = f (r)g′′(x1),
vx1xi = 0 when 1 < i < n,

vx1xn = f ′(r)g′(x1),

vxi xi = 1

r
+ f ′(r)

r
g(x1) when 1 < i < n,

vxi x j = 0 when i �= j, (i, j) �= (1, n), (i, j) �= (n, 1),

vxnxn = f ′′(r)g(x1).

The function v is convex if β is sufficiently small. Indeed, the eigenvalues of D2v are
1
r + f ′(r)

r g(x1), with multiplicity n − 2, and those of the matrix

(
f g′′ f ′g′
f ′g′ f ′′g

)

.

The determinant of the latter matrix is

2αβr2(α−1)
(
α − 1 − (1 + α)βx21

)
,
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which is positive if β > 0 is sufficiently small. Thus, all eigenvalues of D2v are
positive.

We get

det D2v =
(
f ′′g f g′′ − ( f ′g′)2

)(1

r
+ f ′

r
g
)n−2

which has the same order as r2α−n as r → 0+. Clearly v has order r , and v1−p det D2v

has order r2α−n+1−p, which is uniformly bounded fromabove andbelow for our choice
of α.

The next statement is a slight modification of Lemmas 3.2 and 3.3 from Trudinger
andWang [51]. Its proof closely follows that in [51] and is given here for completeness.

Lemma 3.3 Let v be a convex function defined on the closure of an open bounded
convex set � ⊂ R

n satisfying the Monge-Ampère equation

det D2v = ν

for a finite non-negative measure ν on �, let v ≡ 0 on ∂� and let t E ⊂ � ⊂ E for
t > 0 and an origin centred ellipsoid E.

(i) If z ∈ � satisfies (z + s E) ∩ ∂� �= ∅ for s > 0, then

|v(z)| ≤ s1/nc0Hn(�)1/nν(�)1/n

for some c0 > 0 depending on n and t.
(ii) If ν(t�) ≥ b ν(�) for b > 0, then

|v(0)| ≥ c1Hn(�)1/nν(�)1/n (3.7)

for some c1 > 0 depending on n, t and b.
(iii) If (z + s E) ∩ ∂� �= ∅ and ν(t�) ≥ b ν(�), then

|v(z)|
|v(o)| ≤ c1

c0
s1/n . (3.8)

When E = Bn , the number s can be chosen as the distance of z from ∂�. In the
general case s has the same meaning in the metric induced by the norm whose unitary
ball is E .

Proof Let A be a linear transformation such that Bn = A−1E , let ṽ(x) =
v(Ax)| det A|−2/n , �̃ = A−1� and let ν̃ be the measure defined for each Borel set
ω ⊂ �̃ as ν̃(ω) = ν(Aω)/| det A|. It is known that ṽ solves

det D2ṽ = ν̃ in �̃. (3.9)
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Moreover, t Bn ⊂ �̃ ⊂ Bn . Since Hn(�) = | det A|Hn(�̃), we have

Hn(�)

ωn
≤ | det A| ≤ Hn(�)

ωntn
. (3.10)

Let us prove Claim (i). Let z̃ = A−1z. Then (z̃ + sBn) ∩ ∂�̃ �= ∅ and if d denotes
the distance of z̃ from ∂�̃ we have d ≤ s. By choosing proper coordinates we may
assume that z̃ = (0, . . . , 0, d), and that �̃ ⊂ {(x1, . . . , xn) ∈ R

n : xn > 0}. Then

�̃ ⊂ �̂ = {(x1, . . . , xn) ∈ R
n : ‖(x1, . . . , xn−1)‖ < 2, 0 < xn < 4}.

Let u and w be convex functions such that their graphs are convex cones with vertex
at (z̃, ṽ(z̃)) and bases ∂�̃ and ∂�̂, respectively. Then

Nṽ(�̃) ⊃ Nu(�̃) = ∂u(z̃) ⊃ ∂w(z̃). (3.11)

Since w is a convex cone over the cylinder �̂, one can easily compute that
Hn(∂w(z̃)) ≥ c2|ṽ(z̃)|n/d, for a suitable constant c2 > 0. This inequality, (3.9)
and (3.11) imply

|ṽ(z̃)| ≤
(
d

c2

)1/n

Hn(Nṽ(�̃))1/n =
(
d

c2

)1/n

ν̃(�̃)1/n .

Expressing this inequality in terms of v,� and ν and using d ≤ s and (3.10) concludes
the proof of Claim (i).

Let us prove Claim (ii). There exists an unique solution w of det D2w = ν̂ in �̃,
w = 0 in ∂�̃, where ν̂ = ν̃ in t�̃ and ν̂ = 0 elsewhere (see Theorem 2.1 in [51]). The
comparison principle for Monge–Ampère equations (see Lemma 2.4 in [51]) implies
w ≥ ṽ in �̃.

Let z ∈ t�̃. The distance d of z from ∂�̃ is larger than or equal to (1 − t)t (here
we have used the inclusion t Bn ⊂ �̃). If y ∈ ∂w(z) and l(x) = 〈x, y〉 + w(z), then
l(x) ≤ w(x) for each x ∈ �̃, by definition of subgradient. In particular, we have
l(x) ≤ 0 for each x ∈ ∂�̃. This implies

|y| ≤ |w(z)|
d

≤ sup�̃ |ṽ|
t(1 − t)

.

Therefore,

Hn(Nw(t�̃)) ≤ ωn

(
sup�̃ |ṽ|
t(1 − t)

)n

.
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This inequality, the equation satisfied by w and the condition ν(t�) ≥ b ν(�) imply

sup
�̃

|ṽ| ≥ t(1 − t)

ω
1/n
n

Hn(Nw(t�̃))1/n = t(1 − t)

ω
1/n
n

ν̃(t�̃)1/n

≥bt(1 − t)

ω
1/n
n

ν̃(�̃)1/n .

(3.12)

We claim that
|ṽ(o)| ≥ t

1 + t
sup
�̃

|ṽ|. (3.13)

Indeed, let z ∈ �̃ be such that ṽ(z) = inf�̃ ṽ. We may clearly assume z �= 0, since
otherwise there is nothing to prove. By choosing proper coordinates we may assume
z = (z1, 0, . . . , 0) for some z1 > 0. Let l be the linear function defined on the line
through o and z and such that l(o) = ṽ(o) and l(z) = ṽ(z). It is l(s, 0, . . . 0) =
ṽ(o) + s(inf�̃ ṽ − ṽ(o))/z1. Since ṽ is convex,

l(s, 0, . . . 0) ≤ ṽ(s, 0, . . . 0)

for each s /∈ [0, z1] such that (s, 0, . . . , 0) ∈ �̃ . When s = −t we obtain
l(−t, 0, . . . , 0) ≤ ṽ(−t, 0, . . . , 0) ≤ 0. The inequality l(−t, 0, . . . , 0) ≤ 0 and the
inclusion �̃ ⊂ Bn imply (3.13).

The proof of Claim (ii) is concluded by combining (3.12) and (3.13) and expressing
the obtained inequality in terms of v, � and ν.

Claim (iii) is a consequence of the first two claims. ��
The proof of Claim (ii) in Theorem 1.2 is based on the following proposition,

which is related to a step in the proof of Theorem E (a) in [16]; however, our proof is
substantially different from that in [16].

Proposition 3.4 Let v be a non-negative convex function defined on the closure of an
open convex set � ⊂ R

n, n ≥ 2, such that S = {x ∈ � : v(x) = 0} is non-empty
and compact, and v is locally strictly convex on �\S. Let ψ : (0,∞) → [0,∞) be
monotone decreasing and not identically zero; assume that τ2 > τ1 > 0 and v satisfy

τ1ψ(v) ≤ det D2v ≤ τ2ψ(v) (3.14)

in the sense of measure on �\S. If dim S ≤ n − 1 and μv(S) = 0 for the associated
Monge-Ampère measure μv , then S is a point.

Note that (3.14) means that for each Borel set ω ⊂ � \ S we have

τ1

∫

ω

ψ(v(x)) dx ≤ μv(ω) ≤ τ2

∫

ω

ψ(v(x)) dx,

where μv has been defined in (2.1).
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Proof We assume, arguing by contradiction, that S is not a point. Choose coordinates
so that o is the centre of mass of S. Let L = lin S. By assumption

1 ≤ dim L ≤ n − 1. (3.15)

Let e = (o, 1) ∈ R
n×R.Wemay assume that� is bounded, after possibly substituting

it with a bounded open neighbourhood of S. We start by illustrating the idea of the
proof.

Sketch of the proof For any small ε > 0, we construct an affine function lε such
that lε(x) = ε for x ∈ L , and the convex set �ε = {v < lε} is well balanced; namely,
there exists an ellipsoid Eε centred at the origin such that (1/(8n3))Eε ⊂ �ε ⊂ Eε

[see (3.19)]. This is the longest part of the argument, and the main idea to construct lε
is that the graph of lε cuts off the smallest volume cap from the graph of v among the
hyperplanes in R

n+1 containing L + εe. Subsequently, we apply Lemma 3.3 to �ε

and to the function v − lε in the standard way to reach a contradiction. We show that
one can choose z ∈ S so that the corresponding parameter s, as defined in Lemma 3.3,
tends to 0 as ε tends to 0. (Equivalently, S contains points whose distance from ∂�ε,
the one induced by the norm whose unit ball is Eε, tends to 0 as ε tends to 0.) This
contradicts (3.8), since |v(z) − lε(z)|/|v(o) − lε(o)| = ε/ε = 1.

We divide the proof into four steps.
Step 1. Definition of lε and of �ε.
Let ε0 = min∂� v > 0 and let us consider the (n + 1)-dimensional convex body

M = {(x, y) ∈ R
n × R : v(x) ≤ y ≤ ε0}.

For ε ∈ (0, ε0) define Hε to be a hyperplane in Rn+1

(i) containing L + εe = {(x, εe) ∈ R
n × R : x ∈ L} and

(ii) cutting off the minimal volume from M (on the side containing the origin) under
condition (i).

Let r > 0. We claim that there exists ε1 = ε1(r) so that Hε is the graph of an affine
function lε for each ε ∈ (0, ε1), and, setting

�ε = {x ∈ R
n : v(x) < lε(x)},

we have
cl�ε ⊂ �, S ⊂ �ε and �ε ∩ L ⊂ (1 + r)S. (3.16)

Let F = {(x, y) ∈ M : y = ε0} be the upper face of M and let H be the collection
of hyperplanes in R

n+1 which intersect both F and {(x, y) ∈ M : y ≤ ε0/2}. Since
� is bounded and v is locally strictly convex on � \ S, every hyperplane in H is
not a supporting hyperplane to M . Therefore, by compactness, there exists a constant
�0 > 0 such that for every H ∈ H both components of M\H are of volume at least
�0. We choose ε1 ∈ (0, ε0/2) such that the volume of the cap {(x, y) ∈ M : y ≤ ε1}
is less than �0. This choice implies that the minimum value of the problem which
defines Hε is less than �0. Therefore, a minimiser Hε does not belong to H. Since
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Hε ∩ {(x, y) ∈ M : y ≤ ε0/2} �= 0, we have Hε ∩ F = ∅. In particular, Hε is the
graph of a affine function defined on R

n and cl�ε ⊂ �.
The inclusion S ⊂ �ε holds because v(x) = 0 and lε(x) = ε for any x ∈ S.
The origin o, being the centre of mass of S, belongs to the relative interior of S.

Since dim S > 0, the relative boundary of (1+ r)S does not intersect S. This implies
infrelbd(1+r)S v > 0. Thus, if ε1 satisfies

ε1 < inf
relbd(1+r)S

v

in addition to the inequalities specified above, then v(x) > ε and lε(x) = ε for any
x ∈ relbd(1 + r)S (lε(x) = ε is a consequence of (1 + r)S ⊂ L). This implies
�ε ∩ L ⊂ (1 + r)S.

In the rest of the proof we may assume ε1 < ε1(1) so that

�ε ∩ L ⊂ 2S. (3.17)

Step 2. The centre of mass of �ε is contained in L .
To prove this claim we have to prove that for each w ∈ L⊥ ∩ R

n we have

∫

�ε

〈x, w〉 dx = 0. (3.18)

Indeed, for t ∈ R with |t | small, let

F(t) =
∫

{x∈�:lε(x)+t〈x,w〉−v(x)>0}
(lε(x) + t〈x, w〉 − v(x)) dx

be the volume cut off by the hyperplane inRn+1 that is the graph of x �→ lε(x)+t〈x, w〉
from M . By definition of Hε and lε, F has a local minimum at t = 0. We have

F(t) − F(0)

t
=

∫

{x∈�:lε(x)−v(x)>0}
〈x, w〉 dx

+
∫

�

( lε(x) − v(x)

t
+ 〈x, w〉

)

×
(
1{x :lε(x)+t〈x,w〉−v(x)>0} − 1{x :lε(x)−v(x)>0}

)
dx .

The set where 1{x :lε(x)+t〈x,w〉−v(x)>0} −1{x :lε(x)−v(x)>0} differs from 0 is contained in

At = {x ∈ � : |lε(x) − v(x)| < |t〈x, w〉|}

and there exists c independent on t such thatHn(At ) < ct and supAt
|lε(x)− v(x)| <

ct . As F has a local minimum at t = 0, we have

0 = dF

dt
(0) =

∫

�ε

〈x, w〉 dx,
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which proves (3.18).
Step 3. For any ε ∈ (0, ε1) there exists an ellipsoid Eε centred at the origin such

that
1

8n3
Eε ⊂ �ε ⊂ Eε. (3.19)

Lemma 2.3.3 in [47] proves that any k-dimensional convex body contains its reflec-
tion, with respect to its centre of mass, scaled, with respect to the same centre of mass,
by 1/k. From the fact that the centre of mass of �ε belongs to L , we deduce that

− (�ε|L⊥) ⊂ n(�ε|L⊥). (3.20)

According to Loewner’s or John’s theorems, there exists an ellipsoid Ẽ centred at
the origin and z1 ∈ �ε such that

z1 + 1

n
Ẽ ⊂ �ε ⊂ z1 + Ẽ .

It follows from (3.20) that there exists z2 ∈ �ε such that z2|L⊥ = −1
n z1|L⊥. In

particular, y1 = 1
n+1 z1 + n

n+1 z2 ∈ �ε verifies y1|L⊥ = o, or in other words, y1 ∈
L ∩ �ε. In addition,

y1 + 1

2n2
Ẽ ⊂ 1

n + 1

(

z1 + 1

n
Ẽ

)

+ n

n + 1
z2 ⊂ �ε.

Let m = dim L ≤ n − 1. Since y1 ∈ L ∩ �ε and (3.17) imply 1
2 y1 ∈ S, and since

the origin is the centroid of S, we deduce that y2 = −1
2m y1 ∈ S. As 2m + 1 < 2n, we

have

1

4n3
Ẽ ⊂ 1

2m + 1

(

y1 + 1

2n2
Ẽ

)

+ 2m

2m + 1
y2 ⊂ �ε.

As �ε ⊂ 2Ẽ follows from o ∈ z1 + Ẽ , we may choose Eε = 2Ẽ , proving (3.19).
Step 4. Application of Lemma 3.3 to v − lε and �ε and contradiction.
We observe that

v(x) − lε(x) =
{

0 if x ∈ ∂�ε

−ε if x ∈ S.
(3.21)

Let ν denote the Monge–Ampère measureμ(v−lε) restricted to�ε. If�0 is an open
set such that �ε ⊂ �0 ⊂ cl�0 ⊂ �, then the set Nv(�0) is bounded and this implies

ν(�ε) = Hn(N(v−lε)(�ε)) ≤ Hn(Nv(�0)) < ∞.

Let t = 1/(8n3). Formula (3.19) yields t Eε ⊂ �ε ⊂ Eε. Let us prove that

ν(t�ε) ≥ bν(�ε) for b = τ1tn/τ2. (3.22)
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The function v is convex and attains its minimum at o; thus v(x) ≥ v(t x) for any
x ∈ �ε. By this fact, the monotonicity of ψ , (3.14) and the assumptions on S, we
deduce that

ν(t�ε) = ν(t(�ε \ S)) ≥ τ1

∫

t(�ε\S)

ψ(v(x)) dx

= τ1t
n
∫

�ε\S
ψ(v(t z)) dz

≥ τ1t
n
∫

�ε\S
ψ(v(z)) dz

≥ τ1tn

τ2
ν(�ε \ S) = τ1tn

τ2
ν(�ε)

proving (3.22).
Let z ∈ relbdS. We claim that when ε ∈ (0, ε1(r)) then (z+ r Eε)∩ ∂�ε �= ∅. This

is a consequence of the second and third inclusion in (3.16). Indeed, since o ∈ S ⊂
�ε ⊂ Eε, there exists qε > 0 such that (1 + qε)z ∈ ∂Eε. The set z + r Eε contains
the segment [z, z + r(1 + qε)z]. Since qε > 0, that segment contains the segment
[z, (1+ r)z]. The second and third inclusion in (3.16) imply [z, (1+ r)z] ∩ ∂�ε �= ∅.
This proves the claim.

Lemma 3.3 applies to this situation with s = r . Since v(z)−lε(z) = v(o)−lε(o) =
−ε [see (3.21)], (3.8) yields

1 = |v(z) − lε(z)|
|v(o) − lε(o)| ≤ c1

c0
r1/n .

Since r can be any positive number, we have reached a contradiction. ��
We will actually use the following consequence of Proposition 3.4.

Corollary 3.5 Let τ2 > τ1 > 0, and let g be a function defined on an open convex
set � ⊂ R

n, n ≥ 2, such that τ2 > g(x) > τ1 for x ∈ �. For p < 1, let v be a
non-negative convex solution of

v1−p det D2v = g in �.

If S = {x ∈ � : v(x) = 0} is non-empty, compact and μv(S) = 0, and v is locally
strictly convex on �\S, then S is a point.

Proof All we have to check is that dim S ≤ n − 1. It follows from the fact that the
left-hand side of the differential equation is zero on S, while the right-hand side is
positive. ��

The following result by L. Caffarelli (see Theorem 1 and Corollary 1 in [7]) is the
key in handling the regularity and strict convexity of the part of the boundary of a
convex body K where the support function at some normal vector is positive.
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Theorem 3.6 (Caffarelli) Let λ2 > λ1 > 0, and let v be a convex function on an open
convex set � ⊂ R

n such that
λ1 ≤ det D2v ≤ λ2 (3.23)

in the sense of measure.

(i) If v is non-negative and S = {x ∈ � : v(x) = 0} is not a point, then S has no
extremal point in �.

(ii) If v is strictly convex, then v is C1.

We recall that (3.23) is equivalent to saying that for each Borel set ω ⊂ � we have

λ1Hn(ω) ≤ μv(ω) ≤ λ2Hn(ω),

where μv has been defined in (2.1).

4 Proof of Theorem 1.1

The next lemma provides a tool for the proof of Theorem 1.1(iii). The same result
is also proved in Chou and Wang [16]; we present a short argument for the sake of
completeness.

Lemma 4.1 For n ≥ 2 and p ≤ 2 − n, if K ∈ Kn
0 and there exists c > 0 such that

SK ,p(ω) ≥ cHn−1(ω) for any Borel set ω ⊂ Sn−1, then o ∈ int K.

Proof We suppose that o ∈ ∂K and seek a contradiction. We choose e ∈ N (K , o) ∩
Sn−1 such that {λe : λ ≥ 0} is an extremal ray of N (K , o). Let H+ be a closed half
space containing Re on the boundary such that N (K , o) ∩ intH+ = ∅. Let

V0 = Sn−1 ∩ (e + Bn) ∩ intH+.

It follows by the condition on SK ,p that

c
∫

V0
hK (u)p−1 dHn−1 ≤

∫

V0
hK (u)p−1 dSK ,p = SK (V0) < ∞. (4.1)

However, since hK is convex and hK (e) = 0, there exists c0 > 0 such that

hK (x) ≤ c0‖x − e‖ for x ∈ e + Bn .

We observe that the radial projection of V0 onto the tangent hyperplane e+e⊥ to Sn−1

at e is e + V ′
0 for

V ′
0 = e⊥ ∩ (

√
3 Bn) ∩ intH+.
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If y ∈ V ′
0, then u = (e + y)/‖e + y‖ verifies ‖u − e‖ ≥ ‖y‖/2. It follows that

∫

V0
hK (u)p−1 dHn−1 ≥ cp−1

0

∫

V0
‖u − e‖p−1 dHn−1(u)

≥ cp−1
0

2

∫

V ′
0

‖y‖p−1

(1 + ‖y‖2)n/2 dHn−1(y)

≥ cp−1
0

2n+1

∫

V ′
0

‖y‖p−1 dHn−1(y) = ∞

as p ≤ 2 − n. This contradicts (4.1), and hence verifies the lemma. ��
Proof of Theorem 1.1 Claim (i). For u0 ∈ Sn−1\N (K , o), we choose a spherically
convex open neighbourhood �0 of u0 on Sn−1 such that for any u ∈ cl�0, we have
〈u, u0〉 > 0 and u /∈ N (K , o). Let � ⊂ u⊥

0 be defined in a way such that u0 + �

is the radial image of �0 into u0 + u⊥
0 , and let v be the function on � defined as in

Lemma 3.1 with h = hK . Since hK is positive and continuous on cl�, we deduce
from Lemma 3.1 that there exist λ2 > λ1 > 0 depending on K , u0 and �0 such that

λ1 ≤ det D2v ≤ λ2 (4.2)

on �.
First we claim that

if z ∈ ∂K and N (K , z) �⊂ N (K , o), then z is a C1-smooth point. (4.3)

We suppose that dim N (K , z) ≥ 2, and seek a contradiction. Since N (K , z) is a
closed convex cone such that o is an extremal point, the property N (K , z) �⊂ N (K , o)
yields an e ∈ (N (K , z) ∩ Sn−1)\N (K , 0) generating an extremal ray of N (K , z).
We apply the construction above for u0 = e. The convexity of hK and (2.2) imply
hK (x) ≥ 〈z, x〉 for x ∈ R

n , with equality if and only if x ∈ N (K , z). We define
S ⊂ � by S+e = N (K , z)∩ (�+e) and hence o is an extremal point of S. It follows
that the function ṽ defined by ṽ(y) = v(y)−〈z, y + e〉 is non-negative on �, satisfies
(4.2), and

S = {y ∈ � : ṽ(y) = 0}.

These properties contradict Caffarelli’s Theorem 3.6(i) as o is an extremal point of S,
and in turn we conclude (4.3).

Next we show that

hK is differentiable at any u0 ∈ Sn−1\N (K , o). (4.4)

We apply again the construction above for u0. If u ∈ �0 and z ∈ F(K , u), clearly
K is C1-smooth at z (i.e. N (K , z) is a ray) by (4.3). Therefore, by (2.3), v is strictly
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convex on � and Caffarelli’s Theorem 3.6(ii) yields that v is C1 on �. In turn, we
conclude (4.4).

In addition, F(K , u) is a unique C1-smooth point for u ∈ �0 [see (2.4)], yielding
that �∗ = ∪{F(K , u) : u ∈ �0} is an open subset of ∂K . Therefore �∗ ⊂ X , any
point of�∗ isC1-smooth [by (2.3)] and�∗ contains no segment [by (2.4)], completing
the proof of Claim (i).

Claim (ii).We suppose that o ∈ ∂K isC1-smooth, and there exists z ∈ ∂K such that
K is notC1-smooth at z. Claim (i) yields that z ∈ X0, and hence N (K , z) ⊂ N (K , o),
which is a contradiction, verifying Claim (ii).

Claim (iii). This is a consequence of Lemma 4.1 and Claim (i).
Claim (iv). This is a consequence of Lemma 3.1, Claim (i) and Caffarelli [8].

��

Example 4.2 If n ≥ 2 and p ∈ (− n+2, 1), then there exists K ∈ Kn
0 withC

1 boundary
such that o lies in the relative interior of a facet of ∂K and dSK ,p = f dHn−1 for a
strictly positive continuous f : Sn−1 → R.

Let q = (p + n − 1)/(p + n − 2). We have q > 1. Let

g(r) =
{

(r − 1)q when r ≥ 1;
0 when r ∈ [0, 1);

and ḡ(x1, . . . , xn−1) = g(‖(x1, . . . , xn−1)‖). Let K ∈ Kn
0 be such that K ∩ {x :

xn ≤ 1} = {x : 1 ≥ xn ≥ ḡ(x1, . . . , xn−1)} and ∂K ∩ {x : xn > 0} is a C2

surface with Gauss curvature positive at every point. Clearly K ∩ {x : xn = 0} is a
(n − 1)-dimensional face of K which contains o in its relative interior and has unit
outer normal (0, . . . , 0,− 1).

To prove that dSK ,p = f dHn−1 for a positive continuous f : Sn−1 → R, it
suffices to prove that there is a neighbourhood of the South pole where dSK ,p/dHn−1

is continuous and bounded from above and below by positive constants. Let h be the
support function of K and, for y ∈ R

n−1, let v(y) = h(y,−1) be the restriction of
h to the hyperplane tangent to Sn−1 at the South pole. It suffices to prove that in a
neighbourhood U of o, v satisfies the equation v1−p det D2v = G with a function G
which is bounded from above and below by positive constants.

If y ∈ U \ {o} we have

v(y) = h(y,−1) = 〈(x ′, ḡ(x ′)), (y,−1)〉 where Dḡ(x ′) = y. (4.5)

If U is sufficiently small, then v(y) depends only on ‖y‖. Let y = (z, 0, . . . , 0), with
z > 0 small and let r = 1 + (z/q)1/(q−1). We have

Dḡ(r , 0, . . . , 0)) = (z, 0, . . . , 0)
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and (4.5) gives

v(z, 0, . . . , 0) = rq(r − 1)q−1 − (r − 1)q

= z + q − 1

qn−1+p
zn−1+p.

(Note that n − 1+ p > 1.) Clearly v(0, . . . , 0) = h(0, . . . , 0,−1) = 0. When z > 0,
we have

vy1y1 = q − 1

qn−1+p
(n − 1 − p)(n − 2 − p)zn−3+p

vyi yi = 1

z
+ q − 1

qn−1+p
(n − 1 − p)zn−3+p when i �= 1

vyi y j = 0 when i �= j,

and, as z → 0+

v(z, 0, . . . , 0)1−p det D2v(z, 0, . . . , 0) = c + o(1),

for a suitable constant c > 0. This implies the existence of a function G positive and
continuous on U such that

Hn−1(Nv(ω ∩ {v > 0})) =
∫

ω∩{v>0}
nG(y)v(y)p−1 dy

for any Borel set ω ⊂ U . To conclude the proof that v is a solution in the sense
of Alexandrov of v1−p det D2v = G in U it remains to prove that Hn−1

({y ∈ U :
v(y) = 0}) = 0, but this is obvious since {y ∈ U : v(y) = 0} = {o}.

We remark that h is not a solution of (1.4) because (2.11) fails.

5 Proofs of Theorem 1.2 and Corollary 1.4

Proof of Theorem 1.2 We may assume that o ∈ ∂K since otherwise ∂K is C1 by
Theorem 1.1. Let e ∈ N (K , o) ∩ Sn−1 be such that 〈u, e〉 > 0 for any u ∈ N (K , o) ∩
Sn−1. Let v be defined on � = e⊥ as in Lemma 3.1 with h = hK and let S = {x ∈
e⊥ : v(x) = 0}. We have

S + e = N (K , o) ∩ (e⊥ + e), (5.1)

by (2.2). If K is notC1-smooth at o, then dim S ≥ 1 and, by Proposition 1.3, p ≥ n−4
(note that here the dimension of the ambient space is n−1). This provesTheorem1.2(i).

To prove Theorem 1.2(ii) we observe that

NhK (e + S) =
⋃

u∈N (K ,o)

F(K , u) = X0,
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where X0 is defined as in Theorem 1.1(i). The equality on the left in this formula
follows by (2.4) and the equality on the right follows by Theorem 1.1(i). Thus,

Nv(S) = X0|e⊥,

and ifHn−1(X0) = 0, then μv(S) = 0. We observe that S is compact, by (5.1), that v
is locally strictly convex, by Theorem 1.1(i), and that dim S ≤ n− 2, by (1.3). Hence,
Theorem 1.2(ii) follows by Corollary 3.5 and (5.1). ��
Proof of Corollary 1.4 Claim (i) is an immediate consequence of (2.2), Proposition 1.3
and Lemma 3.1. This claim implies that when n = 4 or n = 5 and ∂K is not C1 then
dim N (K , o) = 2. In this case N (K , o) ∩ Sn−1 is a closed arc: let e1 and e2 be its
endpoints. If u ∈ N (K , o) ∩ Sn−1, u �= e1, u �= e2, then F(K , u) is contained in the
intersection of the two supporting hyperplanes {x ∈ R

n : 〈x, ei 〉 = hK (ei )}, i = 1, 2.
Thus,

Hn−1
( ⋃

{F(K , u) : u ∈ N (K , o) ∩ Sn−1, u �= e1, u �= e2}
)

= 0.

Therefore dim F(K , e1) = n − 1 or dim F(K , e2) = n − 1, because otherwise

⋃
{F(K , u) : u ∈ N (K , o) ∩ Sn−1},

which coincides with X0 by Theorem 1.1 (i), has (n − 1)-dimensional Hausdorff
measure equal to zero and ∂K is C1 by Theorem 1.2 (ii). ��
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