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Fluid dynamics of heavy ion collisions with mode expansion
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The fluid dynamics of a relativistic fireball with longitudinal and transverse expansion is described using a
background-fluctuation splitting. Symmetry representations of azimuthal rotations and longitudinal boosts are
used for a classification of initial state configurations and their fluid dynamic propagation in terms of a mode
expansion. We develop an accurate and efficient numerical scheme based on the pseudospectral method to solve
the resulting hyperbolic partial differential equations. Comparison to the analytically known Gubser solution
underlines the high accuracy of this technique. We also present first applications of fluid dynamics with mode
expansion (Fluidum) to central heavy ion collisions at the LHC energies featuring a realistic thermodynamic
equations of state as well as shear and bulk viscous dissipation.
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I. INTRODUCTION

High energy nuclear collisions at the LHC, at RHIC, and
elsewhere provide an interesting opportunity to study a funda-
mental quantum field theory—namely QCD—in an evolving
state out-of-equilibrium. It has been learned in recent years
that much of the bulk dynamics of a heavy ion collision can
be described in terms of relativistic fluid dynamics [1–5]. This
should be understood as a low-energy effective description of
QCD dynamics in a situation of high energy density and for
nonequilibrium dynamics; see [6–15] for recent reviews.

It is highly interesting to study the detailed relation be-
tween a microscopic realization as a relativistic quantum field
theory and the macroscopic description as a relativistic quan-
tum fluid. This includes theoretical as well as experimental
investigations. In practice, this enterprise is not always easy
for various reasons. Experimentally, one can only access the
final state after complicated dynamics involving the collision
itself, different stages of nonequilibrium evolution, hadroniza-
tion, kinetic freeze-out, and finally hadron resonance decays,
before long-lived hadrons can be observed in particle detec-
tors. Thus, the final observable in the detector provides only
integrated information of all these stages.

Theoretically, complications arise mainly due to the non-
perturbative character of QCD and because of the nonequi-
librium character of the evolving state. Oftentimes, quite in-
volved and computationally expensive numerical codes need
to be used [16–22]. This makes advancements of understand-
ings difficult. For example, for state-of-the art comparisons
between experimental data and theoretical models based on
Bayesian analysis [23–25], the numerical evolution is a severe
limiting factor.
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In the present work we aim at improving the situation
by developing a theoretical approach and accurate numerical
techniques based on two statistical symmetries. Azimuthal
rotation symmetry and Bjorken boost symmetry are arguably
available in realistic experiments. Both symmetries are not
exact for a single event, but they can be used advantageously
to classify the initial state configurations at the point where
a fluid dynamics description becomes valid and they can be
used to reduce the numerical effort of the fluid dynamical
simulation, as we will explain. In addition, the formulation
allows us to gain valuable analytic insight into the dynamics
of heavy ion collisions.

The basic underlying idea of a mode expansion approach to
the fluid dynamics of heavy ion collisions has been formulated
in Ref. [26]. Initial states have been classified in Refs. [27,28]
and the kinetic freeze-out in this formalism has been discussed
in Ref. [29]. Statistical properties of initial state models in this
framework have been analyzed in Ref. [30]. One can in fact
formulate a systematic perturbative expansion for deviations
from a symmetric situation, with favorable convergence prop-
erties [31,32]. What has been missing until today is an effi-
cient numerical algorithm to solve fluid evolution equations
for the symmetric background as well azimuthal and rapidity
dependent perturbations in an accurate way. This gap will be
closed with the present paper.

Recently, we have already discussed some properties of
the radial expansion dynamics, in particular the mathematical
structure of the corresponding partial differential equation
with an emphasis on well-posedness and causality [33]. In the
present work we continue this discussion and provide in par-
ticular a detailed documentation of the numerical algorithm
that can solve the hyperbolic partial differential equations for
both the symmetric background and for various perturbations
around it.

One advantage of concentrating on symmetry properties
as well as the mathematical structure of the evolution equa-
tions (hyperbolicity) is that the various extensions can be
implemented in a straightforward way. While we concentrate
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here on high energy collisions described by relativistic fluid
dynamics without any conserved quantum number except
energy and momentum, one may in the future wish to include
nonvanishing baryon number, electric charge, electromagnetic
fields, or QCD fields such as the chiral order parameter, coher-
ent pion fields, etc. Because of the reduced numerical effort
in the mode expansion description it may be also feasible to
follow directly the two point function or higher-order corre-
lation functions. Because of the generic causality structure of
relativistic theories and due to general symmetry arguments,
the numerical scheme needed for such investigations would
be relatively similar to what we develop here.

II. SYMMETRIES, COORDINATES, AND HYPERBOLIC
EVOLUTION EQUATIONS

In this section we discuss a useful coordinate system and
symmetry transformations for a description of high energy
collisions in terms of a set of hyperbolic partial differential
equations. Here, we do not assume a specific form of these
differential equations, except for causality in the relativistic
sense, so that characteristic velocities are bound from above
by the velocity of light. In this case one can provide initial
conditions on a Cauchy surface with timelike (or, as a limit,
lightlike) normal vectors. The equations are then evolved from
one Cauchy surface to the next.

A. Coordinate system and symmetries

For the description of high energy nuclear collisions it
is convenient to choose a coordinate system with the ori-
gin at the collision point, in the center of the fireball. The
laboratory time t (after the collision) and the longitudinal
coordinate z (parallel to the beam axis) are conveniently
parametrized by the new Bjorken time coordinate or proper
time τ = √

t2 − z2 and the rapidity η = arctanh(z/t ), such
that t = τ cosh(η) and z = τ sinh(η). Technically, the coor-
dinate origin in rapidity and the transverse plane can be posed
such that

∫
�

d�μxνT μν = 0, where the integral runs over a
hypersurface of constant Bjorken time τ for τ → 0. In the
transverse plane it is convenient to use cylindrical coordinates
such that r =

√
x2 + y2, φ = arctan(y/x) and x = r cos(φ),

y = r sin(φ).
The coordinate system τ , r, φ, and η is particularly suited

to discuss two important symmetry transformations. The first
one corresponds to azimuthal rotations around the beam axis,
φ → φ + �φ. Any field configuration at fixed Bjorken time τ

can be decomposed into a linear superposition of irreducible
representations with respect to this U(1) symmetry. These are
plane waves eimφ , transforming as eimφ → eim�φeimφ . Because
φ = φ + 2π , the wave number m is quantized and must be
integer m ∈ Z.

The second useful class of symmetry transformations are
longitudinal boosts η → η + �η. In a similar way as for
azimuthal rotations, field configurations at fixed Bjorken time
τ can also be decomposed into irreducible representations
with respect to this translational or R1 symmetry. These are
plane waves eikη, transforming as eikη → eik�ηeikη, where
k ∈ R can now be any real number. This decomposition into

irreducible representations is particularly convenient for a
mode expansion framework to solve the equations, which we
will describe next.

B. Quasilinear and hyperbolic partial differential equations

For the following discussion we assume that we can de-
scribe our system in terms of a number of fields collected
into the “Nambu vector” or “Nambu spinor” � with N
components. In practice, � might contain the independent
components of temperature, fluid velocity, shear stress, bulk
viscous pressure, and any other field necessary for a local
description.

Moreover, we assume that the evolution is determined by a
set of hyperbolic, quasilinear partial differential equations. It
can be written in the symbolic form

A(�, τ, r) · ∂τ� + B(�, τ, r) · ∂r� + C(�, τ, r) · ∂φ�

+ D(�, τ, r) · ∂η� − S(�, τ, r) = 0. (2.1)

We use here the N × N coefficient matrices A, B, C, and
D. The “source term” S is an N-component vector. The
explicit dependence on τ and r originates from the choice of
coordinates.

C. Background-fluctuation splitting and mode expansion

We will be interested in situations where the transformation
behavior with respect to azimuthal rotation and longitudinal
Bjorken boost are useful guiding principles. This does not
imply that field configurations are invariant under these sym-
metry transformations. We rather take these to be statistical
symmetries and we will use a background-fluctuation splitting
assuming that the fluctuation part (that breaks the symmetries)
is not too large with respect to the symmetric background.
This allows us to set up an expansion scheme. Under such
circumstances, the symmetries are still very helpful to classify
field configurations and to evolve them in time as we will
discuss below. Technically, we write at some Bjorken time τ

�(τ, r, φ, η) = �0(τ, r) + ε �1(τ, r, φ, η), (2.2)

where the background field �0(τ, r) is invariant under az-
imuthal rotations and Bjorken boosts, and the deviations from
this symmetric situation are parametrized by the perturbation
or fluctuation fields �1(τ, r, φ, η). We take ε as a formal
expansion parameter, but will set ε → 1 at the end. (The
real expansion principle is the deviation from a symmetric
situation.) Obviously, if (2.2) is used in Eq. (2.1), one obtains

A(�0 + ε�1, τ, r) · ∂τ (�0 + ε�1)

+ B(�0 + ε�1, τ, r) · ∂r (�0 + ε�1)

+ C(�0 + ε�1, τ, r) · ∂φ (�0 + ε�1)

+ D(�0 + ε�1, τ, r) · ∂η(�0 + ε�1)

− S(�0 + ε�1, τ, r) = 0. (2.3)

From (2.3) one can then obtain the equations of motion for
the background fields �0 by considering only terms of zeroth
order in ε. The linearized equations for the perturbations are
then obtained by taking only terms of first order and including
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higher order terms gives rise to quadratic and higher mode
interactions.

The equations of motion for the background fields are
now partial differential equations reduced to 1 + 1 dimensions
given by

A0(�0, τ, r) · ∂τ�0(τ, r) + B0(�0, τ, r) · ∂r�0(τ, r)

− S0(�0, τ, r) = 0. (2.4)

Because of symmetry constraints, the background fields �0

in general have fewer independent components than �. For
example, in Israel-Stewart type fluid dynamics, as used below,
one may take �0 = (T, v, π

φ

φ , πη
η , πbulk). The matrices A0 and

B0 essentially correspond to the projection of the matrices
A and B to the reduced space of independent components,
evaluated on the background configuration �0. Although (2.4)
are still nonlinear partial differential equations, solving them
is easier than solving the set (2.1) in 3 + 1 dimensions.

For the perturbations, we find at linear order in ε,

A1(�0, τ, r) · ∂τ�1 + B1(�0, τ, r) · ∂r�1

+ C1(�0, τ, r) · ∂φ�1 + D1(�0, τ, r) · ∂η�1

− S1(�0, τ, r) · �1 = 0. (2.5)

The matrices A1, B1, C1, and D1 simply correspond to A, B,
C, and D evaluated on the background configuration �0. In
contrast, the source term matrix S1 contains also contributions
from the linearization of A and B around the background field,

S1(�0, τ, r) = ∂

∂�
[S(�, τ, r) − A(�, τ, r) · ∂τ�0

− B(�, τ, r) · ∂r�0]�=�0 . (2.6)

Note here that also the dependence of thermodynamic and
transport properties on the (fluid) fields needs to be taken into
account.

In practice, the matrix expressions can be algebraically
rather complex. These equations not only depend on the
background fields, but also on their derivatives, as well as
derivatives of thermodynamic and transport coefficients. This
fact makes it necessary to have differentiable transport coeffi-
cients and smooth background fields. Shock formations in the
background will cause problems in the linearized equations.
Shocks are suppressed though (but not necessarily fully pre-
vented) by viscosity and smooth initial conditions.

It is now useful to expand the fluctuation or perturbation
fields into Fourier modes,

�1(τ, r, φ, η) =
∞∑

m=−∞

∫
dk

2π
eimφ+ikη �̃1(τ, r, m, k). (2.7)

The evolution equation for the perturbations can then be
written as

A1(�0, τ, r) · ∂τ �̃1 + B1(�0, τ, r) · ∂r�̃1

+ im C1(�0, τ, r) · �̃1 + ik D1(�0, τ, r) · �̃1

− S1(�0, τ, r) · �̃1 = 0. (2.8)

Note that these are now again partial differential equations
reduced to 1 + 1 dimensions. In the following, we will some-

times also write �1 instead of �̃1 for the Fourier transformed
field but this should not lead to confusion.

D. Scalar, vector, and tensor modes and their parity

In a relativistic setting, fields are usually classified into
scalars, vectors, and tensors with respect to Lorentz symmetry.
(At some point one may wish to evolve also spinor fields,
but this is beyond our current setup.) For our purpose, mainly
the subgroups of azimuthal rotations and Bjorken boosts are
of relevance. In a coordinate system with Bjorken time τ ,
rapidity η, radius r, and rapidity η, these transformations have
become translations, and components of Lorentz vectors and
tensors, such as, e.g., the fluid velocity components uτ , ur , uφ ,
and uη, transform formally simply like scalars.

It is sometimes useful to extend the radial coordinate r
to negative values, in particular to circumvent the boundary
at r = 0 (or actually to treat it properly). This leads to a
double coverage of coordinate space because the coordinate
point (τ, r, φ, η) agrees with (τ,−r, φ + π, η). Fields can
be classified with respect to their behavior under the parity
transformation R corresponding to (r, φ) → (−r, φ + π ). In
real space, Lorentz scalars like temperature T are even with
respect to R and so are Lorentz vector components in time,
rapidity and azimuthal directions such as uτ , uφ , and uη. In
contrast, radial components such as ur are odd under R in the
sense that ur → −ur . More general, components of tensors
are odd (even) under this parity if they contain r as an index
an odd (even) number of times. For example π rφ is odd, while
π rr is even.

In the Fourier representation of fields defined in Eq. (2.7),
the R parity of each field receives an additional factor (−1)m

due to eimφ → eim(φ+π ) = (−1)meimφ . In summary, Fourier
modes with azimuthal wave number m of tensor field com-
ponents, where the index r appears n times, have R parity
(−1)m+n.

We need to discuss also the boundary conditions of var-
ious fields for r → 0. Scalar fields such as temperature are
expected to be regular and smooth for r → 0. In Cartesian
transverse coordinates x and y, the field should be ana-
lytic, i.e., expandable into a Taylor series, at the origin x =
y = 0. From this condition one can infer that the Fourier
modes �̃(τ, r, m, k) corresponding to scalar fields go like
r|m| for r → 0. A faster growth with r would correspond
to a kind of conical singularity at r = 0, which is not
expected.

For transverse vector fields such as (ux, uy) the argument is
similar. Their Fourier components vanish like r|m| for r → 0.
In terms of transverse coordinates r and φ this changes some-
what, however, because of transformation Jacobians such as
in

ur = cos(φ)ux + sin(x)uy = eiφ ux − iuy

2
+ e−iφ ux + iuy

2
,

uφ = − sin(φ)

r
ux + cos(φ)

r
uy

= eiφ

r

iux + uy

2
+ e−iφ

r

−iux + uy

2
. (2.9)
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This shows that the Fourier components of the positive circu-
lar velocity

u+ = ur + iruφ

√
2

= e−iφ ux + iuy

√
2

(2.10)

go for r → 0 like r|m+1| and the Fourier components of the
negative circular velocity

u− = ur − iruφ

√
2

= eiφ ux − iuy

√
2

(2.11)

go for r → 0 like r|m−1|. In a similar way one can analyze
linear combinations of transverse tensor components.

III. CHARACTERIZATION OF INITIAL CONDITIONS

If the evolution equations are hyperbolic differential equa-
tions, initial conditions must be provided on an appropri-
ate Cauchy surface, for example corresponding to constant
Bjorken time τ = τ0. This concerns the background field as
well as the fluctuations or perturbations around it.

A. Background configuration

For the background field �0 it is particularly convenient to
choose it symmetric under azimuthal rotations and Bjorken
boosts in the longitudinal direction. Moreover, this back-
ground is typically fixed for a given class of events, i.e.,
it does not have statistical fluctuations. One might take the
background to correspond to an expectation value or event
average for an appropriately defined ensemble of events, but
this is not strictly necessary. At a given initialization time τ0

one needs to specify then initial conditions as functions of
radius r only. Schematically, we write

�0(τ0, r) = b0(r). (3.1)

In general, the initialization includes scalar modes such as
energy density, but also the radial components of vector
fields, such as velocity ur , or tensor components allowed by
azimuthal rotation and Bjorken boost symmetry, could be
initialized as part of the background.

B. Fluctuating modes

For the fluctuating part of the fields �1, two additional
complications arise. First, they should not be taken as sym-
metric with respect to azimuthal rotations and longitudinal
boost, and second, these fields fluctuate from event to event.
They can also be subject to quantum and statistical (e.g.,
thermal) fluctuations.

On a Cauchy hypersurface of constant Bjorken time τ0

where initial conditions are specified, one can expand the
perturbation fields into Fourier modes according to Eq. (2.7).
Note that the field in Fourier space �̃1(τ0, r, m, k) is char-
acterized by the azimuthal wave number m and longitudinal
wave number k but it is still a function of radius r. It is
now very convenient to use also an expansion in terms of
a set of basis functions qm,l (r) with radial wave number
l . [The basis functions qm,l (r) need to depend also on m
because the boundary conditions at r → 0 are m dependent.]

FIG. 1. Left: Example for the function W (r) as constructed by
integrating a Woods-Saxon profile along the longitudinal direction
z and normalizing the resulting function according to Eq. (3.3).
The units are set by the Woods-Saxon radius R. We also choose
the surface thickness parameter such that a/R = 0.082. Right: the
function ρ(r) as defined in Eq. (3.5).

This amounts to writing �̃1(τ0, r, m, k) = ∑
l qm,l (r) hm,l (k)

or, using (2.7),

�1(τ0, r, φ, η) =
∞∑

m=−∞

∑
l

∫
dk

2π
eimφ+ikη qm,l (r) hm,l (k).

(3.2)
One can then characterize the initial conditions for a single
fluctuating field as an amplitude hm,l (k) that depends on
three wave numbers: m for the azimuthal dependence, k for
the longitudinal, and l for the radial dependence. An ensemble
of events can be characterized by a probability distribution
p[h] or, equivalently, by corresponding moments, cumulants,
or correlation functions, such as, e.g., 〈hm,l (k)hm′,l ′ (k′)〉.

To construct a set of basis functions qm,l (r), it is convenient
to employ a function W (r) which is positive at small radius
r and falls off for large r; see Fig. 1 for an example. It could
give the shape of the expected energy density in the transverse
plane, averaged over events and azimuthal orientations. It will
be convenient to normalize W (r) such that

2
∫ ∞

0
dr r W (r) = 1. (3.3)

Note that with this normalization, W (r) has dimensions of
inverse squared length. One may consider W (r) = dQ/(rdr)
as a transverse density of some quantity Q which happens to
integrate to the total value

∫
dQ = ∫

rdrW (r) = 1/2. Typi-
cally, W (r) will be nonzero inside some radius R and decay
quickly (e.g., exponentially) outside of it. The transverse
density W (r) is useful as a normalization factor for other
transverse densities. For example, one may write a transverse
particle density as

dN

rdrdφ
= W (r) f (r, φ) = dQ

rdr
f (r, φ). (3.4)

Under coordinate transformations r → r̃(r), the function
W (r) transforms as a density, W̃ = dQ

r̃dr̃ = rdr
r̃dr̃ W (it picks up a

Jacobian factor) while f (r, φ) transforms as a simple function,
f̃ = f .

Moreover, based on W (r) one can also construct a map
from the unbounded domain of possible radii r ∈ (0,∞) to
a radial variable on a finite interval ρ ∈ (0, 1) by setting

ρ(r) =
√

2
∫ r

0
dr′ r′ W (r′),

dρ(r)

dr
= rW (r)

ρ(r)
. (3.5)
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By construction, ρ is linear in r for small radii while ρ → 1
for r → ∞. If one again considers W (r) = dQ/(rdr) as a
transverse density, this density transforms to a uniform density
with respect to the new coordinate, dQ/(ρdρ) = 1. In other
words, the coordinate ρ(r) is constructed such that 1

2ρ2(r)
counts the integrated quantity Q inside the radius r. In Fig. 1
we show an example for both the normalized function W (r)
and the corresponding map function ρ(r).

Based on W (r), we also define the following scalar product
for dimensionless functions of radius, f (r) and g(r):

( f , g) =
∫ ∞

0
dr r W (r) f ∗(r) g(r). (3.6)

The appearance of W (r) makes sure that the region of small
radii (where the density is nonvanishing) typically dominates
the integral. Note that under the variable transform r → ρ(r)
the scalar product (3.6) becomes

( f , g) =
∫ 1

0
dρ ρ f ∗[r(ρ)] g[r(ρ)]. (3.7)

We assumed here implicitly that f (r) and g(r) are ordinary
functions and not densities. The latter would pick up an addi-
tional Jacobian weight factor from the transformation r → ρ.
As illustrated above, such densities can be constructed from
ordinary functions f (r) by multiplying with (an appropriate
power of) W (r).

An expansion scheme based on a complete and or-
thonormal set of Bessel functions has been developed in
Refs. [26–28] and refined in Appendix A of Ref. [30]. In the
following we recall the main elements of this scheme. We
concentrate on scalar fields and take the transverse energy
density ε(r, φ) as an example, but vector or tensor fields can
be treated similarly [27].

We first introduce azimuthal Fourier modes as usual,

ε(r, φ) =
∞∑

m=−∞
eimφεm(r), εm(r) = 1

2π

∫ 2π

0
dφ e−imφ ε(r, φ).

(3.8)
As argued in Sec. II D, scalar modes in Fourier space such
as εm(r) behave like r|m| for small radii r → 0. The Bessel
functions of the first kind Jm(z) have this property, and they
can also be chosen such as to fulfill an orthogonality relation
with respect to the scalar product (3.7). Together with the
discussion above, this motivates us to expand

εm(r) =
∞∑

l=1

εm,l W (r) Jm
[
z(m)

l ρ(r)
]
. (3.9)

Here, εm,l are expansion coefficients and z(m)
l are real num-

bers, corresponding to the lth zero crossing of zJ ′
m(z) +

cJm(z), where c is some arbitrary constant. The functions
Jm(z(m)

l ρ) satisfy by construction the Robin boundary con-
dition ρ f ′(ρ) + c f (ρ) = 0 at the outer boundary ρ = 1. In
Ref. [30] Dirichlet boundary conditions f (ρ) = 0 were em-
ployed, corresponding to the limit c → ∞ of the more general
Robin boundary employed here. In the following, we will
mainly employ the opposite limit c → 0, where the z(m)

l
correspond to the zero crossings of J ′

m(z) and the boundary
conditions are of von Neumann type. In principle, the Bessel

functions form a complete basis on ρ ∈ (0, 1) for any value of
c, but the convergence properties might depend on this choice.
Von Neumann boundary conditions have the advantage that
the value f (ρ) remains unconstrained for ρ → 1.

The Bessel functions have the orthogonality relation∫ ∞

0
dr r W (r) Jm

[
z(m)

l ρ(r)
]

Jm
[
z(m)

l ′ ρ(r)
]

=
∫ 1

0
dρ ρ Jm

(
z(m)

l ρ
)

Jm
(
z(m)

l ′ ρ
) = cm,l δll ′ , (3.10)

with coefficients cm,l given by

cm,l =
[(

z(m)
l

)2 − m2
]
J2

m

(
z(m)

l

) + (
z(m)

l

)2
J ′2

m

(
z(m)

l

)
2
(
z(m)

l

)2 . (3.11)

We have now constructed a complete and orthogonal basis of
mode functions with the radial wave number l . In summary,
transverse densities can be expanded in terms of Bessel func-
tions by choosing

qm,l (r) = W (r)Jm
[
z(m)

l ρ(r)
]
. (3.12)

We show the first few (l = 1, 2, 3, 4) of these basis func-
tions in Fig. 2 for m = 0, 1, 2. It is interesting to note that
for m = 0 and l = 1 one recovers the background density
function, q0,1(r) = W (r). In general, the basis functions have
l − 1 zero crossings or nodes between r = 0 and r → ∞. By
construction, they are all concentrated in the region where the
background density W (r) is nonvanishing.

We also note here that the expansion coefficients εm,l in
Eq. (3.9) are different from the commonly used event eccen-
tricities. There is, however, a connection which is worthwhile
to discuss. In our notation, event eccentricities εm and the
corresponding event angles ψm are defined by

Em = εme−imψm =
∫

r,φ ε(r, φ)rme−imφ∫
r,φ ε(r, φ)rm

=
∫ ∞

0 dr rm+1 εm(r)∫ ∞
0 dr rm+1 ε0(r)

.

(3.13)

Using the expansion (3.9) and the scalar product (3.6), one
can write this as

Em =
∑

l εm,l
(
rm, Jm

[
z(m)

l ρ(r)
])

∑
l ε0,l

(
rm, J0

[
z(0)

l ρ(r)
]) . (3.14)

The denominator is dominated by the l = 1 term which
corresponds to the background density and one can assume
ε0,1 = 1. To linear order in deviations from the background
one obtains thus

Em =
∑

l

εm,l

(
rm, Jm

[
z(m)

l ρ(r)
])

(rm, 1)
. (3.15)

The complex event eccentricity Em corresponds to a linear
superposition of the expansion coefficients εm,l . Numerically,
one finds that the coefficient of the term with l = 1 is largest
(the corresponding basis function is the only one without
nodes) and to good approximation one has in fact Em ≈
εm,1 dm where the coefficient dm is independent of the event
and corresponds to the ratio of scalar products appearing for

014905-5



FLOERCHINGER, GROSSI, AND LION PHYSICAL REVIEW C 100, 014905 (2019)

FIG. 2. Basis functions used to represent the radial dependence of transverse densities with Bessel functions according to (3.12). We
compare m = 0 (left) to m = 1 (center) and m = 2 (right). In each case we show the functions with l = 1, 2, 3, 4 as can be seen from the
number of zero crossings. The numbers z(m)

l have been chosen as the lth zero crossing of zJ ′
m(z) corresponding to von Neumann boundary

conditions at ρ = 1. Units are set by the Woods-Saxon radius R.

the l = 1 term in Eq. (3.15). In principle, one could devise an
alternative expansion scheme, where the event eccentricity ap-
pears as the lowest order coefficient and all higher order terms
correspond to orthogonal functions without any contribution
to eccentricity. This would lead to a basis of polynomials
instead of Bessel functions, but we do not explore this further
here.

IV. RELATIVISTIC FLUID DYNAMICS

Equations of motion

The equation of motion of relativistic fluids dynamics
follow from energy and momentum conservation and other
conservation laws [like, e.g., net baryon number conservation
related to a global U(1) symmetry of QCD], supplemented
with additional constitutive relations. We discuss here a rela-
tivistic fluid without (or with negligible) a net baryon number
or any other conserved charge. The relevant conservation law
is then the one for energy and momentum,

∇μT μ
ν = 0. (4.1)

It is useful to decompose the energy-momentum tensor as

T μ
ν = εuμuν + (p + πbulk)�μ

ν + πμ
ν . (4.2)

The fluid velocity uμ is defined in the so-called Landau frame
as the timelike eigenvector of T μ

ν and the energy density ε is
the corresponding eigenvalue. The fluid velocity is normalized
to uμuμ = −1. We also use the projector �μ

ν = uμuν + δμ
ν

orthogonal to the fluid velocity uμ. The pressure p and
the energy density ε are related through the thermodynamic
equation of state as in equilibrium, p = p(ε), while the bulk
viscous pressure πbulk measures the deviation of the isotropic
pressure from this. The symmetric shear stress tensor πμν

is traceless, πμ
μ = 0, and orthogonal to the fluid velocity

uμπμ
ν = 0.

From energy-momentum conservation one obtains evolu-
tion equations for energy density and fluid velocity,

uμ∂με + (ε + p+ πbulk)∇μuμ + πμ
ν ∇μuν = 0,

(ε + p+ πbulk)uν∇νuμ + �μν∂ν (p+ πbulk) + �μν∇ρπ
ρ
ν = 0.

(4.3)

In this form, the system of evolution equations is not closed,
but needs to be supplemented by additional constitutive rela-
tions for the stress tensor πμ

ν and the bulk viscous pressure

πbulk. These could be provided by constraint equations or by
additional evolution laws.

The relativistic generalization of the Navier-Stokes equa-
tion [34,35] follows the former principle; πμν as well as πbulk

can be expressed there in terms of gradients of fluid velocity.
However this approximation has been shown to violate the
relativistic causality principle and to be linearly unstable
[36,37].

Another possibility is to provide the constitutive relation
as dynamical equations for the shear stress tensor πμ

ν and
bulk viscous pressure πbulk; this idea was first introduced by
Müller as well as Israel and Stewart [38,39]. Oftentimes such
equations are organized in terms of Knudsen and Reynolds
numbers. The Knudsen number Kn is the ratio between a
microscopic scale like the mean free path and a macroscopic
one, like the size over which the macroscopic fields change
effectively. The Reynolds number is the ratio of the macro-
scopic length to the scale where perturbations are damped by
the viscosity.

The equation of motion up to second second order in
Knudsen number Kn and inverse Reynolds number Re−1 have
been obtained in Ref. [40]. Here we include terms of order
O(Re−2) and O(Kn Re−1) but drop terms of order O(Kn2)
because they are not compatible with a hyperbolic structure
and relativistic causality [33,40–43]. The evolution equation
for shear stress in then

Pμρ
νσ

[
τshear

(
uλ∇λπ

σ
ρ − 2πσλωρλ

) + 2η∇ρuσ

− ϕ7 πλ
ρ πσ

λ + τππ πσ
λ σ λ

ρ − λπ� πbulk∇ρuσ
]

+ πμ
ν [1 + δππ∇ρuρ − ϕ6 πbulk] = 0. (4.4)

The projector to the symmetric, transverse, and trace-less part
of a tensor is defined here by

Pμν
ρσ = 1

2�μ
ρ �ν

σ + 1
2�μ

σ �ν
ρ − 1

3�μν�ρσ . (4.5)

We also use the following abbreviations for symmetric and
antisymmetric combinations of fluid velocity gradients,

σμν = Pρσ
μν ∇ρuσ ,

ωμν = 1
2 (∇μuν − ∇νuμ) = 1

2 (∂μuν − ∂νuμ). (4.6)

Similarly, the evolution equation for πbulk is given by

τbulk uμ∂μ πbulk + πbulk + ζ∇μuμ + δ��πbulk∇μuμ

− ϕ1π
2
bulk − λ�ππμν∇μuν − ϕ3π

μ
ν πν

μ = 0. (4.7)
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Among the various transport coefficients introduced in
Eqs. (4.4) and (4.7), the most important ones are the shear
viscosity η and the bulk viscosity ζ which also appear in
the Navier-Stokes approximation, and the relaxation times
τshear and τbulk. The latter determine how fast the shear
stress tensor and the bulk viscous pressure relax towards
their asymptotic values πμ

ν = −2ησμ
ν and πbulk = −ζ∇ρuρ ,

respectively. The additional second order transport coefficient
τππ , δππ , λπ�, δ��, and λ�π that are of order O(Kn Re−1)
and ϕ7, ϕ6, ϕ1, and ϕ3 of order O(Re−2), can be understood
as nonlinear modifications to the relaxation type equation
[44].

Equations (4.4) and (4.7) together with (4.3) form now
a closed system of first order, quasilinear partial differential
equations for the energy density (or any other independent
thermodynamical field such as enthalpy density or tempera-
ture), the independent components of fluid velocity and shear
stress, and for bulk viscous pressure. It was shown that these
equations are actually hyperbolic [33] and in particular they
can be cast into the form (2.1) introduced previously. This
is the set of equations we will work with in the present
paper, but note here that much of our formalism can also
be used when the set of equations is extended, as long as
such extensions again lead to quasilinear, hyperbolic evolution
equations.

In practice it is of course convenient to choose an explicit
parametrization of the fluid fields. In the following we will
parametrize the thermodynamic fields either by temperature
T or by enthalpy density w = ε + p. The former is a free pa-
rameter for many microscopic calculations of thermodynamic
and transport properties in the grand canonical ensemble
and is therefore particularly convenient for the background
evolution. Enthalpy density is convenient for the parametriza-
tion of the linear perturbations because it makes explicit
that the thermodynamic equation of state enters mainly in
terms of the velocity of sound. The fluid velocity is conve-
niently parametrized in terms of the spatial components ur ,
uφ , and uη with the temporal component uτ related to this
by the normalization uμuμ = −1. The shear stress has five
independent components which may be chosen as π

φ

φ , π r
φ ,

π r
η , πη

η , and πφ
η . Finally, we have the bulk viscous pressure

πbulk.
In our background-fluctuation splitting approach, the non-

linear terms in Eqs. (4.4) and (4.7) are fully taken into account
for the evolution of the background. For the perturbations
we linearize around the nonlinearly evolved background as
discussed in Sec. II C. Nonlinear couplings between per-

turbations only appear at higher orders in the expansion
scheme.

V. THERMODYNAMIC EQUATION OF STATE
AND TRANSPORT PROPERTIES

A. Thermodynamic equation of state

Relativistic fluid dynamics depends on the thermodynamic
equation of state. At vanishing baryon and electric charge
chemical potentials, all thermodynamic information can be
derived in the grand canonical ensemble from the pressure as
a function of temperature p(T ). In the regime of the quark-
gluon plasma, the equation of state is now rather well known
from lattice QCD calculations [45,46]. At temperatures below
the crossover transition to a fluid dominated by hadronic
degrees of freedom, one can use a hadron resonance gas
approximation.

For our purpose of solving the fluid evolution equations
in a background-fluctuation splitting approach, and for the
numerical treatment with the pseudospectral method, it is
particularly important to have a regular enough equation of
state with a continuous sound velocity. Because the numerical
solution extends also into the hadronic phase, it is important
that thermal properties are physical also at low temperatures
even though such regions are already outside the freeze-out
surface and should therefore not affect experimental observ-
ables. For a numerical treatment it is particularly convenient
to have a parametrization of the equation of state in an analytic
form. For fluid dynamic perturbation theory and the mode
expansion, we need also derivatives of p(T ), for example
to calculate the velocity of sound. However, parametriza-
tions of the equation of state available in the literature are
formulated for the trace anomaly ε − 3p (which makes a
numerical integration necessary) [45] or become unphysical at
low temperatures because of a pole in the Padé approximation
[46].

For this reason, we have developed a parametrization of
the available numerical results from lattice QCD calculations
that fulfills our requirements. At temperatures above Tcrit ≈
154 MeV, our fit reproduced the results published in Ref. [45],
while at smaller temperatures it reproduces a hadron reso-
nance gas approximation following Ref. [47] based on vac-
uum masses (up to 2 GeV) and vanishing chemical potentials
reasonably well.

The parametrization of pressure as a function of tempera-
ture is taken as the following combination of exponential and
rational functions:

p(T )

T 4
= exp

[
− c2

(T/Tc)
− d2

(T/Tc)2

]⎡
⎣ (16+ 21

2 Nf )π2

90 + a1
( Tc

T

) + a2
( Tc

T

)2 + a3
( Tc

T

)3 + a4
( Tc

T

)4

1 + b1
( Tc

T

) + b2
( Tc

T

)2 + b3
( Tc

T

)3 + b4
( Tc

T

)4

⎤
⎦. (5.1)

Note that for asymptotically large temperatures p(T ) ap-
proaches the result for free gluons and Nf free quarks. Below
we take Nf = 3 and Tc = 154 MeV. The best fit results for
the fit parameter aj , b j , c, and d are reported in Table I.
The exponential terms in the prefactor in Eq. (5.1) help in

particular to reproduce the hadron resonance gas regime while
the rational term parametrizes the crossover to a quark-guon
plasma.

In the left panel of Fig. 3 we show the resulting energy
density ε, pressure p, and trace anomaly ε − 3p in units of T 4
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TABLE I. Best fit parameter for the thermodynamic equation of state as parametrized in Eq. (5.1).

a1 −0.752 335 a2 −1.8151 a3 −2.833 17 a4 4.205 17 c 0.547 521
b1 −1.687 16 b2 7.833 36 b3 −13.3421 b4 9.227 52 d 0.014 816 3

as a function of temperature. The right panel shows the square
of the thermodynamic velocity of sound c2

s as a function of
temperature. The latter is particularly important for the fluid
dynamic evolution and determines for example the character-
istic velocities in the absence of dissipative stresses.

To develop the fit (5.1) we have considered the trace
anomaly ε − 3p. In Fig. 4 we show our fit (solid curve),
together with available numerical data from the HotQCD
collaboration [46] (for 2 + 1 quark flavors, symbols with error
bars), an analytic parametrization of lattice QCD data from
Ref. [45] (for 2 + 1 + 1 flavors, dotted curve) and the hadron
resonance gas approximation (dashed line). As becomes ap-
parent, our parametrization captures both the low temperature
hadron resonance regime and the high temperature lattice
QCD results to reasonable accuracy.

B. Transport properties

In addition to the thermodynamic equation of state, rel-
ativistic fluid dynamics needs also transport properties such
as shear and bulk viscosity, corresponding relaxation times,
and other second order coefficients. Unfortunately, transport
properties are not yet understood from first principles as
good as the thermodynamic equilibrium properties [48]. For
a relatively recent computation of shear viscosity using SU(3)
Yang-Mills theory as an approximation to QCD as well as
further references, see Ref. [49]. Recently a comparison of
theoretical calculations to experimental data was done on this
basis [15].

To make progress, we make rather simplifying assumptions
for the present paper. The ratio of shear viscosity to entropy
density η/s is taken (for now) as a constant value between
0.08 and 0.3 (if no value is specified we take η/s = 0.2),
relatively close to the KSS bound [50,51]. For the shear
stress relaxation time we assume τshear = 5η/(sT ). We also
set δππ = 4τshear/3. Following Ref. [25], we parametrize the

ratio of bulk viscosity to entropy density as a Lorentz curve,

ζ

s
= 0.032

1 + (
T −0.175 GeV

0.024 GeV

)2 , (5.2)

and take for the corresponding relaxation time

τbulk = ζ

sT

1

15
(

1
3 − c2

s

) . (5.3)

All other second order transport coefficients are neglected
here but can be added in future applications of our formalism
without additional effort. Table II summarizes the transport
properties and other parameters used for the numerical evolu-
tion.

The behavior of the transport properties (equation of state,
shear viscosity, and bulk viscosity) in the low temperature
region is particularly crucial for stability. Specifically, to have
a stable evolution, the equations should be hyperbolic and
causal [33]. A nonphysical choice of the transport properties
in the low temperature region that violates causality could lead
to an instability in the numerical simulation.

VI. NUMERICAL METHODS

Equations (2.4) for the time evolution of the background
configuration constitutes a set of nonlinear (but quasilinear),
hyperbolic partial differential equations. In a similar way,
(2.8) for perturbations around this background constitutes a
set of linear, hyperbolic differential equations. Solutions to
such equations can not in general be found in closed form
and numerical methods need to be employed. In the present
section we discuss the numerical scheme we have developed
for this purpose. The main idea is to discretize the radial
coordinate r and to solve the resulting ordinary differential

FIG. 3. The thermodynamic equation of state p(T ) as parametrized in Eq. (5.1). We show energy density ε, pressure p, and the trace
anomaly ε − 3 in units of T 4 in the left panel and the squared sound velocity c2

s (T ) in the right panel. Lattice QCD data underlying the fit at
high temperatures are taken from Refs. [45,46], the hadron resonance gas approximation used at low temperatures was calculated following
Ref. [47]. In the transition region both results were smoothly connected.
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FIG. 4. The trace anomaly (ε − 3p)/T 4 as a function of tempera-
ture T . We show our parametrization in Eq. (5.1) (solid line) together
with numerical data from the HotQCD collaboration [46] (for 2 + 1
quark flavors, symbols with error bars), a parametrization of lattice
QCD data from Ref. [45] (for 2 + 1 + 1 quark flavors, dotted line),
and results of a hadron resonance gas approximation (dashed line).
As becomes apparent, our parametrization interpolates continuously
between known results in the different regimes.

equations by standard methods. For the spatial discretization
we have developed a pseudospectral scheme that allows us
to reach rather high numerical accuracy with comparatively
little computational effort [52–56]. Particular challenges are
posed by the inner boundary r → 0 and the open boundary
conditions for large radii r → ∞. For comparison and for
benchmarking, we will also employ a more standard finite dif-
ference scheme. Further numerical schemes exist, of course,
but will not be discussed here. A popular approach is for
example the higher order finite volume method. An overview
over different approaches can be found in Ref. [57].

For the specific situation of a fluid with conformal symme-
try, an analytic solution for the radial expansion has been put
forward by Gubser [58]. It will be convenient to use this solu-
tion to benchmark our numerical solution of the background
equations. The numerical methods used to solve the linearized
equations for the perturbations can in turn be benchmarked
against the background solution for an azimuthally symmetric
situation, as we discuss below.

In the following we will first briefly discuss how we solve
the system of ordinary differential equations (ODEs) resulting
from a specific discretization of the radial direction.

A. Method of lines

A common procedure to solve partial differential equations
(PDEs) is the method of lines. The spatial directions are
discretized, but time (in our case Bjorken time τ ) remains,
at least in a first step, as a continuous evolution parameter. Let
us first write the system of equations (2.4) in the form

∂τ�(τ, r) + (A−1B)(�(τ, r), τ, r) · ∂r�(τ, r)

− (A−1S)(�(τ, r), τ, r) = 0. (6.1)

We assumed here that the coefficient matrix A can be inverted
and we have dropped the index 0 denoting background fields.

In the next step we assume some discretization of the radial
direction r → r j , leading with � j (τ ) = �(τ, r j ) to

∂τ� j (τ ) + (A−1B)(� j (τ ), τ, r) ·
∑

k

Djk�k (τ )

− (A−1S)(� j (τ ), τ, r) = 0. (6.2)

The matrix Djk represents the radial derivative acting as a
linear operation on the variables �k . Its explicit form depends
on the discretization scheme. As it stands, (6.2) is now a set of
ordinary differential equations that can be solved by standard
numerical methods, such as, e.g., the Adams method.

B. Pseudospectral discretization method

Partial differential equations can be solved via spectral
methods. At a given instant of time, the solution is approx-
imated as a linear superposition of certain basis functions.
The latter have typically support on the entire spatial domain.
Spatial derivatives are represented as linear operations on the
coefficients of this expansion. In some sense, spectral methods
provide a global approach to the solution which is in contrast
to finite difference schemes at low order where derivatives are
represented by rather local, sparse matrices.

One advantage of spectral methods is the fast convergence
with the number of basis functions. For well posed prob-
lems, they are less CPU expensive than, e.g., finite difference
schemes and can reach higher accuracy. A disadvantage of
standard implementations using continuous basis functions is
that they struggle with possible discontinuities in the solution
and the reconstruction of shock waves. The most common
spectral method is probably the Fourier spectral method,
applicable for periodic boundary conditions.

Quite generally, a function u(r) on a finite domain can be
approximated by a set of basis functions Bj (r) as

uN (r) =
N∑

j=0

c jB j (r). (6.3)

For example, for periodic boundary conditions on the domain
r ∈ (0, 2π ), the basis could be chosen as Bj (r) = ei jr . In our
case, since Eqs. (6.1) are solved in cylindrical coordinates,
we need to specify boundary conditions at the coordinate
origin r = 0 and for large radii r → ∞. As was discussed
in Sec. II D, one can formally continue r to negative values
and use the R parity (r, φ) → (−r, φ + π ) to find appropriate
boundary conditions for the different fields at r = 0. For large
radii r → ∞, dimensionful physical fields such as energy
density must go to zero, which is an example for a behavioral
boundary condition [55].

A convenient set of basis functions for our purpose are the
Chebyshev polynomials of the first kind Tn(x), defined via the
following trigonometric representation:1

Tn(x) = cos[n arccos(x)], x ∈ (−1, 1). (6.4)

1Another possible choice would be the one sided Jacobi polynomi-
als (see [55], p. 385).
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FIG. 5. Basis functions as defined in Eq. (6.6) with even R parity B2n−2(r) (left) and odd R parity B2n−1(r) (right) as a function of r/L.
We use here the exponent α = 1/10.

To map the semi-infinite domain of radii r ∈ (0,∞) to a finite
interval x ∈ (0, 1), we shall use the map

r = Lx

(1 − x2)1/α
= L cos θ

sin2/α (θ )
, (6.5)

with some characteristic length L and an exponent α > 0. In
the second equation we have substituted x = cos(θ ), with θ ∈
(0, π ). With the help of the relation in Eq. (6.5) we define the
desired basis functions as

Bn(r) = Tn[x(r)] = cos[nθ (r)]. (6.6)

In Fig. 5 we show a few of these basis functions. Note that
the functions B2n−1 are odd with respect to the R parity
discussed in Sec. II D, while the even functions B2n are even.
In summary,

Bn(r) = (±1)nBn(−r). (6.7)

For an expansion of functions with definite R parity it is
natural to use the representations

f e(r) =
∞∑

n=1

anB2n−2(r), f o(r) =
∞∑

n=1

bnB2n−1(r). (6.8)

This set of polynomials inherits an orthogonality relation
form Chebyshev polynomials, and consequently from Fourier
modes, due to the transformation chain r = r(x) = r(θ ) de-
fined in Eq. (6.5). It reads∫ π

0
dθ cos(nθ ) cos(mθ )

=
∫ 1

−1

dx√
1 − x2

Tn(x)Tm(x)

=
∫ ∞

−∞
dr w(r) Bn(r)Bm(r) = πcn

2
δmn, (6.9)

where cn = 1 for n �= 0 and c0 = 2. In the last relation we also
used the weight function

w(r) = |x′(r)|√
1 − x2(r)

= |θ ′(r)|. (6.10)

It is now natural to define a scalar product in the L2 functional
space spanned by the functions Bn with a corresponding

induced norm,

( f , g)L2
w[R] =

∫ ∞

−∞
drw(r) f (r)g(r), ‖ f ‖2

L2
w[R] = ( f , f )L2

w[R].

(6.11)
Within the definition (6.11) the coefficients of the expansion
Eq. (6.8) can be computed,

an = 2

πc2n−2
( f e, B2n−2)L2

w[R], and

bn = 2

πc2n−1
( f o, B2n−1)L2

w[R]. (6.12)

While the expansion in Eq. (6.8) is not yet an approxima-
tion (for sufficiently regular functions), it becomes a useful
scheme for numerical calculations if the summations are
truncated at some finite order N . We write

f e(r) =
N∑

n=1

anB2n−2(r), f o(r) =
N∑

n=1

bnB2n−1(r). (6.13)

The spectral expansion coefficients should be obtainable for
given functions f o or f e from an approximate version of
(6.12). In practice this means that the integral for the scalar
product in Eq. (6.11) must be approximated somehow by a
finite sum. The classical solution of this last problem is to find
an appropriate quadrature rule for the integrals.

Using the parity properties and the transformation rules we
can write (6.12) as

an = 4

πc2n−2

∫ ∞

0
dr w(r) f e(r)B2n−2(r)

= 4

πc2n−2

∫ π/2

0
dθ f e[r(θ )] cos [(2n − 2)θ ],

bn = 4

πc2n−1

∫ ∞

0
dr w(r) f o(r)B2n−1(r)

= 4

πc2n−1

∫ π/2

0
dθ f o[r(θ )] cos [(2n − 1)θ ]. (6.14)

An approximation to these integrals can be found using the
midpoint rule in the interval [0, π/2] with N nodes and
constant weight in θ space, or otherwise using the corre-
sponding nodes mapped with the transformation (6.5) and
the weights modified correspondingly. More concrete, the
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evaluation points in θ are

θJ =
(
J − 1

2

)
π

2N
, J = 1, . . . , N. (6.15)

In terms of radius r these correspond to

rJ = L cos
( (J− 1

2 )π
2N

)
sin

2
α

( (J− 1
2 )π

2N

) , J = 1, . . . N. (6.16)

The resulting approximated integrals are

an = 2

Nc2n−2

N∑
J=1

f e(rJ ) cos

[
(n − 1)

(
J − 1

2

)
π

N

]
,

bn = 2

Nc2n−1

N∑
J=1

f o(rJ ) cos

[(
n − 1

2

)(
J − 1

2

)
π

N

]
.

(6.17)

In general, the midpoint rule or rectangular rule approxima-
tion to the integral of a generic function can be a rather crude
approximation, but for periodic function it yields exponen-
tially accurate results. Because we are using a map to a Fourier
basis, this approximation allows us to reach rather high accu-
racy in the determination of the coefficients an and bn.

Equation (6.17) makes an interesting relation between the
basis expansion (6.6) and Fourier transformations explicit. If
the discretization points rJ are chosen according to (6.16),
and with the midpoint quadrature rule, the coefficients an and
bn are related to the functional values f e(rJ ) and f o(rJ ) via
a discrete Fourier transform. On the other side, one has the
inverse relation

f e(rJ ) =
N∑

n=1

an cos

[
(n − 1)

(
J − 1

2

)
π

N

]
,

f o(rJ ) =
N∑

n=1

bn cos

[(
n − 1

2

)(
J − 1

2

)
π

N

]
. (6.18)

It is of course very convenient to have such relations in terms
of discrete Fourier transforms, also because fast algorithms
exist to implement them. In Appendix we express the rela-
tions in a standardized form that is directly suitable for an
algorithmic implementation.

A major task for the formalism developed above is to
yield an expression for spatial derivatives. Formally, radial
derivatives of even functions in the expansion (6.8) can be
computed as follows:

∂

∂r
f e(r) =

∞∑
n=1

an
∂

∂r
B2n−2(r)

=
∞∑

n=1

an
∂

∂r
cos [(2n − 2)θ (r)]

= −∂θ

∂r

∞∑
n=1

an(2n − 2) sin [(2n − 2)θ (r)]. (6.19)

Similarly, for odd functions one obtains

∂

∂r
f o(r) = −∂θ

∂r

∞∑
n=1

bn(2n − 1) sin [(2n − 1)θ (r)]. (6.20)

If one truncates the summations to n = 1, . . . , N and special-
izes to the evaluation points (6.16), one obtains

∂

∂r
f e(rJ )

= −∂θ (rJ )

∂r

N∑
n=1

an(2n − 2) sin

[
(n − 1)

(
J − 1

2

)
π

N

]
,

∂

∂r
f o(rJ )

= −∂θ (rJ )

∂r

N∑
n=1

bn(2n − 1) sin

[(
n − 1

2

)(
J − 1

2

)
π

N

]
.

(6.21)

Note that these expressions can be understood as discrete sine
transformations. In summary, to calculate a derivative with
respect to r, one first performs a discrete cosine transform
(6.17) to the space of spectral coefficients and uses then
the sine transform in Eq. (6.21) to obtain a position space
expression for the derivative. Using this approximation for
derivatives, one can easily compute the right-hand side of
the semidiscrete Eq. (6.2) and solve the corresponding set of
ordinary differential equations. In Appendix we collect useful
formulas for an algorithmic implementation.

C. Numerical spectral viscosity

A generic strategy to ensure the stability of a numerical
scheme for hyperbolic problems is to modify the equation
of motion by adding a diffusive term, typically a higher
(even) derivative with a coefficient that vanishes in the formal
limit N → ∞. This is commonly called numerical viscosity.
The diffusive term has to be big enough to avoid spurious
oscillations but sufficiently small in order to not destroy
the accuracy of the numerical scheme. In finite difference
schemes, stability is reached by adding a small second order
derivative to the equation, while in finite volume schemes
this is usually done by adopting a limiter function in the
reconstruction of the intercell value needed to compute the
fluxes. From a pseudospectral point of view, the spurious
oscillations originate from the high frequency part of the
spectrum, which does not decay sufficiently fast or even grows
with the number of points. A simple solution to recover the
decay of the spectrum in the UV with increasing number of
points N is to adopt a filtering technique: at each time step,
the spectrum of the unknowns is filtered with a continuous
function that reduces the high frequency part but leaves the
(physical) low frequency part unchanged.

To explain how this can be implemented time step by
time step, let us consider first the introduction of second
(or higher) order derivatives to an hyperbolic problem with
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periodic boundary condition θ = θ + 2π ,

∂

∂t
u = Lu + Q2pu. (6.22)

Here, Lu represents the discretized version of the hyperbolic
problem and

Q2pu = εN (−1)p+1 ∂2p

∂θ2p
u. (6.23)

The coefficient εN is supposed to vanish in the continuum limit
N → ∞. In Fourier space, this operator is diagonal, so it acts
independently on each mode,

Q2p cos(nθ ) = −εN n2p cos(nθ ). (6.24)

During the evolution this diffusive operator leads to an ef-
fective damping to the spectrum. Indeed, working in Fourier
space and neglecting the term Lu for a moment, we have the
solution

ûn(t + �t ) = exp[−εN n2p�t] ûn(t ). (6.25)

Choosing properly εN  1/N2p, it is possible to implement an
effective damping of the high frequency modes and leave the
low part of the spectrum nearly unchanged.

For a Chebyshev expansion, the operator Q gets modified
according to [54,56,59,60]

Q2pu = εN (−1)p+1

[√
1 − x2

∂

∂x

]2p

u, (6.26)

because one wants to preserve the property of being diagonal
in the space of modes,

Q2pTn(x) = −εN n2pTn(x). (6.27)

This still implements a damping in time of the high frequency
modes as becomes clear from the transformation law between
Chebyshev and Fourier modes. Is clear now how to generalize
this type of exponential filter operator to our basis Bn(r) in
Eq. (6.6). Using the chain rule, we have

∂

∂θ
→

√
1 − x2

∂

∂x
→ ∂r

∂θ

∂

∂r
, (6.28)

and

Q2pu = εN (−1)p+1

[
∂r

∂θ

∂

∂r

]2p

u. (6.29)

Using the basis expansion (6.13), the discretization points
(6.16), and the transformation (6.5), the actual expressions for
the numerical spectral viscosity operators for the odd and even
expansions read

Q2p f o(rJ ) = −εN

N∑
n=1

bn(2n − 1)2p cos

[(
n − 1

2

)(
J− 1

2

)
π

N

]
,

Q2p f e(rJ ) = −εN

N∑
n=1

an(2n − 2)2p cos

[
(n − 1)

(
J − 1

2

)
π

N

]
.

(6.30)

This filter has been shown to perform well and to recover
spectral accuracy for some hyperbolic problems like Burgers’

equation and to also mitigate the Gibbs phenomena in the
presence of shocks [60]. More recently a slight modification
of this operator was proposed to reduce the dissipation in the
smooth part of the solution while still guaranteeing the stabi-
lization of the numerical scheme in presence of discontinuities
[61].

D. Validation against Gubser flow

To verify and validate our numerical scheme, it is useful
to compare against a known analytic (or semianalytic) solu-
tion. For Israel-Stewart type theories, such a solution with
azimuthal rotation symmetry, longitudinal boost symmetry,
and an additional conformal symmetry has been found by
Gubser [58,62,63].

Consider the minimal set of equations for the evolution of
temperature, fluid velocity, and shear stress in the presence of
a conformal symmetry,

uλ∇λT

T
+ ∇μuμ

3
+ πμ

ν σ ν
μ

3sT
= 0,

uλ∇λuμ + �
μ

λ ∇λT

T
+ �

μ

λ ∇απαλ

sT
= 0,

τshear

sT

(
�μ

α�ν
βuλ∇λπ

αβ + 4

3
∇λuλπμν

)
+ πμν

sT
= − 2η

sT
σμν.

(6.31)

As a result of the conformal symmetry, the thermodynamic
equation of state is p = ε/3 and η/s as well as τshear/sT are
constant. The Gubser solution to the fluid evolution equations
can be most directly obtained from the following Weyl rescal-
ing of the Minkowski metric,

ds2 = −dτ 2 + dr2 + r2dφ2 + τ 2dη2

= τ 2[−dρ2 + cosh2(ρ)dθ2

+ cosh2(ρ) sin2(θ )dφ2 + dη2]. (6.32)

The change of variables is defined here by

sinh(ρ) = −1 − τ 2 + r2

2τ
, tan(θ ) = 2r

1 + τ 2 − r2
. (6.33)

Apart from the conformal factor τ 2, the metric on the right
hand side of (6.32) is the one of three-dimensional de Sitter
space times the real line, dS3 ⊗ R. In that space, the fluid
equations can be solved rather directly in the presence of
rotational and translational symmetries on hypersurfaces of
constant de Sitter time coordinate ρ. For example, the fluid
velocity ûμ is simply constant and points into the time di-
rection ρ, temperature is a function of de Sitter time only,
T̂ = T̂ (ρ), and only one component of shear stress, π̂ η

η (ρ),
is independent. The independent equations of motion are then

1

T̂

d

dρ
T̂ + 2

3
tanh ρ = 1

3
π̄ η

η tanh ρ,

c

T̂

η

ˆ̂s

[
d

dρ
π̄η

η + 4

3

(
π̄ η

η

)2
tanh ρ

]
+ π̄ η

η = 4

3

η

ŝT̂
tanh ρ, (6.34)

where we have parametrized the shear stress in terms of the
dimensionless ratio π̄ η

η = π̂ η
η /(T̂ ŝ). To recover the fluid fields
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FIG. 6. Radial fluid velocity v = ur/uτ (upper left panel), temperature T (upper right panel), and the shear stress components divided by
entropy density πη

η /s (lower left panel) and π
φ

φ /s (lower right panel) as a function of radius r at Bjorken times τ = 2 fm/c and τ = 5 fm/c. The
lines correspond to the semianalytic Gubser solution, while the points give our numerical results obtained with the pseudospectral method with
N = 150 discretization points. Within the linewidth there is no disagreement except for a few points at large radius where the density drops
and the distance between neighboring discretization points increases. We have here chosen the maximal radius to be 20 fm. For applications
to more realistic situations we choose somewhat larger values so that the region where the discretization points become sparse is further to the
right.

in our conventions one can use the relations

uμ = τ
∂ x̂ν

∂xμ
ûν, T = T̂

τ
, πμν = 1

τ 2

∂ x̂α

∂xμ

∂ x̂β

∂xν
π̂αβ, (6.35)

where xμ = (τ, r, φ, η) are Bjorken coordinates and x̂μ =
(ρ, θ, φ, η) are the coordinates of dS3 ⊗ R.

In Fig. 6 we show a comparison between our numeri-
cal solution using the pseudospectral method with N = 150
discretization points and the semianalytic Gubser solution.
We have used here the initialization time τ0 = 1 fm/c, the
shear viscosity to entropy ratio η/s = 0.2, and the shear stress
relaxation time τshear = 5η/(sT ). The general agreement is
very good, and for most regions, no disagreement is visible by
the bare eye. This includes also the regions around the local
maxima of the shear stress where other numerical schemes
show some deviations. The pseudospectral method shows
some deviations from the analytic result only in the region of
large radii where the density drops and the distance between
neighboring discretization points increases. Let us note here
that one could easily move the region where the discretization
grid becomes sparse to larger radii. To this end one would
have to choose the length parameter L in Eq. (6.16) somewhat
larger. We will in fact do this for applications to realistic heavy
ion collision profiles below.

For the plots in Fig. 6 we have used a numerical spectral
viscosity according to the description in Sec. VI C with p = 3
and εN = 1/N2p. While this numerical dissipation term is
needed to reach a numerically stable situation, it becomes
clear from the comparison to the exact solution that the effect

on the physically relevant part of the solution is modest. It
is interesting to compare the numerical accuracy for different
realizations of the numerical spectral viscosity scheme. This
is done in Fig. 7, where we compare the choices for the damp-
ing exponent p = 0, 1, 2, 3, 4, and 5. The deviation from
the exact Gubser solution �T at Bjorken time τ = 5 fm/c
decreases with increasing exponent p in the central region
until a saturated value of �T ≈ 10−7 is reached for p = 4
and a slight increase is observed for p = 5. We conclude
that p = 4 seems to be an optimal value from this point
of view. [This depends in fact on the accuracy goal of the
method used to solve the ordinary differential equation in
Eq. (6.2). If the latter is adapted, one can reach very high
numerical accuracies.] At larger radii r where the density
of discretization points decreases, the numerical accuracy
drops and is less sensitive to the implementation of numerical
spectral viscosity. In the right panel of Fig. 7 we also compare
the accuracy for different numbers of discretization points N .
For For N = 128 one reaches �T ≈ 10−7 GeV in the central
region.

It is also interesting to compare the performance of the
pseudospectral method to the one of a more standard (second
order, central) finite difference scheme. In the left panel of
Fig. 8 this is done for the temperature T as a function of
radius at Bjorken time τ = 5 fm/c. For N = 128 discretiza-
tion points, both the pseudospectral and the finite differ-
ence scheme agree rather well with the semianalytic Gubser
solution. While the former shows some deviations at large
radii where the distance between lattice points increases, the
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FIG. 7. Deviation |�T | between the numerical solution in the pseudospectral scheme and the semianalytic Gubser solution. In the left
panel we compare for N = 150 discretization point different implementations of the numerical spectral viscosity as described in Sec. VI C and
specifically vary the exponent p while the coefficient is chosen as εN = 1/N2p. The comparison to Gubsers solution is done at Bjorken time
τ = 5 fm/c. In the right panel we vary the number of discretization points N for fixed implementation of the numerical viscosity scheme with
exponent p = 3.

latter shows some deviations is the region of the extremum
of temperature. In the left panel of Fig. 8 we determine
the deviation |�T | between the numerical solution obtained
with the finite difference scheme and Gubsers solution for
different numbers of discretization points N . One finds that the
accuracy improves with increasing N , albeit not as quickly as
for the pseudospectral method where the corresponding plot
is shown in the right panel of Fig. 7.

E. Perturbations

The numerical scheme we have discussed in Secs. VI A
and VI B can also be used to evolve the linear perturbations
using Eqs. (2.8). One needs to take into account the correct
parity and boundary conditions at r = 0 which depend on the
azimuthal wave number m, but otherwise the algorithm just
works as for the background. While the background solution
has been verified against Gubsers solution, we would also
like to have a check for the numerical implementation of the
linearized equations for perturbations. This is in fact directly
possible for the modes with azimuthal wave number m = 0.

These modes can be evolved either by solving the linearized
equations for perturbations, or by adding a small perturbation
to the initial conditions of the background, evolving it forward
in time and subtracting the background solution without mod-
ification. The result should agree, at least for small enough
perturbations where the linearization is justified.

We have done this check of our implementation and show
the result for the mode with m = 0 and l = 3 in Fig. 9. Specif-
ically, we show the perturbation in energy density δε(τ, r)
as a function of radius r for Bjorken times τ = 3 fm/c and
τ = 15 fm/c, normalized by the background energy density
in the center of the fireball ε̄(τ, 0). The solid lines have
been obtained by solving the nonlinear background equations
with a perturbation in the initial state and subtracting the
corresponding solution without perturbation. In contrast, the
dots give the numerical solution of the linearized fluid dy-
namic equations of motion. For the left plot we have chosen
the amplitude of the perturbation in the initial state to be
δε(τ0, 0)/ε̄(τ0, 0) = 10−3 in the center of the fireball at the
initialization time τ0 = 0.4 fm/c. The agreement between
the solution constructed via the nonlinear equations and the

FIG. 8. Left panel: Comparison for temperature T as a function or radius at Bjorken time τ = 5 fm/c between the semianalytic Gubser
solution (blue solid line), the numerical pseudospectral method (orange triangles), and a numerical solution using a second order, central finite
difference scheme (green circles). We have used here N = 128 discretization points. Although the agreement is in general rather good, the
pseudospectral method shows some deviation for the points at large radii, while the finite difference scheme shows deviations close to the
extremum of temperature. Right panel: Deviation |�T | between the numerical solution using a finite difference scheme and the semianalytic
Gubser solution at Bjorken time τ = 5 fm/c for different numbers of discretization points N . One observes that the accuracy improves with
increasing N , albeit not as quickly as for the pseudospectral scheme (right panel of Fig. 7).
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FIG. 9. Comparison of solution for perturbations in the m = 0, l = 3 mode constructed as a difference between nonlinearly evolved
solutions (solid lines) and the solution of the linearized equations (dots). We show the perturbation in energy density normalized to the
background energy density in the center of the fireball δε(τ, r)/ε̄(τ, 0) as a function of radius r for Bjorken times τ = 3 fm/c and τ = 15 fm/c.
For the left plot we have chosen a small perturbation with δε(τ0, 0)/ε̄(τ0, 0) = 10−3 in the center of the fireball at the initialization time
τ0 = 0.4 fm/c. Here one observes perfect agreement between the two solutions (within the plot resolution) which shows the consistency of
our numerical scheme. For the right plot we have instead chosen a larger initial amplitude δε(τ0, 0)/ε̄(τ0, 0) = 1. The difference between
nonlinearly evolved solutions differs now from the solution to the linearized equations, as a consequence of nonlinear effects.

solution of the linear equations of motion is very good, which
demonstrates the validity and consistency of the numerical
scheme, as well as the linearity of the perturbation. For
the plot on the right hand side we have instead chosen a
larger magnitude of the perturbation, δε(τ0, 0)/ε̄(τ0, 0) = 1
at τ0 = 0.4 fm/c. In that case the agreement between the
difference of nonlinearly evolved solutions and the solution
to the linearized equations is not perfect, which shows how
nonlinear effects start to set in. This estimation must be seen
as a limit on the amplitude of the perturbation where the
background-fluctuation splitting at the linear level stops to be
reliable. In particular, if a fluctuation in the initial state has
an amplitude δε(τ0, 0)/ε̄(τ0, 0) = 1, the linear approximation
will not capture the full evolution of such a wave.

VII. RESULTS

A. Background evolution

We discuss now the resulting numerical solution to the evo-
lution equations of relativistic fluid dynamics, as discussed in
Sec. IV, for a symmetric background following the principles
outlined in Sec. II, and using the numerical methods discussed
in Sec. VI.

For concreteness, we choose initial conditions on a hy-
persurface of constant Bjorken time τ0 = 0.4 fm/s and set
there the fluid velocity in the radial direction, as well as the
independent shear stress components πη

η and π
φ

φ and the bulk
viscous pressure πbulk to zero. It remains to choose an initial
condition for the energy density (or equivalently temperature)
as a function of radius r.

The energy density is initialized here according to the
optical limit of the Glauber model. Specifically, we assume
a linear superposition of Ncoll and Npart scaling with mixing
parameter α = 0.118; see Ref. [64] for further details. The
overall magnitude is left as an open parameter, which should
be adjusted to the total particle multiplicity. For the present
work, for concreteness we fix the initial energy density to be
ε0 = 50 GeV/fm3 in the center of the fireball. The thermody-
namic equation of state and the fluid transport properties are

fixed as discussed in Sec. V. In Table II we provide a summary
of the transport properties and other parameters used in the
numerical solution.

In Fig. 10 we show or numerical results of the temperature
T , the radial fluid velocity v = ur/uτ , the shear stress com-
ponents πη

η and π
φ

φ , as well as the bulk viscous pressure πbulk

(the latter three divided by entropy density s) as a function
of radius for different Bjorken times τ . One observes first
the expected dilution due to the longitudinal expansion and
the buildup of a radial expansion as a result of pressure
gradients. In the radial velocity v as a function of radius
r one observes characteristic features such as local extrema
and small oscillations, which can be traced back to a local
minimum and maximum in the velocity of sound in the region
of the crossover temperature (see Fig. 3). At late times, the
radial fluid velocity smoothens out again and grows for large
radii to values approaching the velocity of light.

From the fluid velocity, the local minima and maxima get
also inherited to the independent shear stress components
divided by entropy density πη

η /s and π
φ

φ /s. Of course, the
development of the shear stress depends also (in an ap-
proximately linear way) on the ratio of shear viscosity to
entropy density η/s. The general structure of πη

η /s and π
φ

φ /s
resembles an outwards traveling wave. Both components are

TABLE II. A default set of parameters and transport coefficients
to solve the fluid evolution equations. The initial state model is the
optical Glauber model at zero impact parameter for collisions of
208Pb-208Pb.

Parameter Description “Default” value

ε0 initial energy density 50 GeV/fm3

x parameter in optical Glauber model 0.118
η/s shear viscosity to entropy density 0.2
τshear shear relaxation time 5 × η/(sT )
ζ/s bulk viscosity to entropy density Eq. (5.2)
τbulk bulk relaxation time Eq. (5.3)
τ0 initialization time 0.4 fm
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FIG. 10. Numerical solution for temperature T (upper left plot), radial fluid velocity v = ur/uτ (upper right plot), shear stress components
π

φ

φ /s (intermediate left plot) and πη
η /s (intermediate right plot) and the bulk stress πbulk/s (lowermost plot) as a function of radius at different

Bjorken times τ . We compare ideal fluid dynamics [yellow (light gray) lines] to η/s = 0.1 [red (gray) lines] and η/s = 0.2 [blue (dark gray)
lines]. The latter two cases include also bulk viscosity according to Eq. (5.2). See text for further discussion.

of similar magnitude but πη
η has negative sign (and decreases

“longitudinal pressure”), while π
φ

φ has positive sign.
Finally, we also show the bulk viscous pressure as a

function of radius for different Bjorken times τ . As expected,
it is negative for an expanding situation. It develops first
a maximum in magnitude in the region of radii where the
parametrization of bulk viscosity (5.2) has a maximum. At
later times, his maximum travels inwards and the ratio πbulk/s
becomes more monotonic, with a maximum in magnitude in
the inner region and a decrease towards larger radii.

B. Perturbations

The linearized equations of motion (2.5) can be solved for
the perturbation fields �̃1. In principle, this could be done on
an event-by-event basis but the idea of mode by mode fluid
dynamics is somewhat different. As discussed in Sec. III B,
one can expand initial conditions for fluctuating fields in a
complete set of basis functions. The linearized equations of
motion (2.5) can be solved for each of these basis functions
and an arbitrary solution can then be written as a linear super-
position of these solutions. This is very economic in the sense
that an (infinitely) large class of initial field configurations can

be propagated simultaneously. Of course, formally, the set of
basis functions is also infinite but in practice very high wave
numbers (in azimuthal, radial, and longitudinal direction)
should play a less important role because they correspond to
finer and finer details in the spatial domain and because they
are damped more efficiently by viscosity.

It remains therefore to solve the linearized fluid equations
for a set of modes, say m, l = 1, . . . , 10. Likely, this is already
more than needed for most purposes. For the continuous
azimuthal wave number k one may use a discretization. How-
ever, for the moment we concentrate on strictly boost invariant
situations, i.e., k = 0. Below, we will also concentrate on
initial density perturbations, but initial state perturbations in
fluid velocity, shear stress, or bulk viscous pressure can be
easily studied in the same framework.

For scalar transverse density perturbations we can use the
basis functions in Eq. (3.12). For given wave numbers m and
l we initialize the energy density as

δε(τ0, r, φ, η) = qm,l (r)eimφ = W (r)Jm
[
z(m)

l ρ(r)
]
eimφ. (7.1)

All other perturbed fluid fields vanish initially for this mode
but will get generated by the time evolution. The linearized
fluid equations are then solved up to a certain Bjorken time
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FIG. 11. Evolution of the perturbation fields initialized in the m = 2, l = 3, k = 0 energy density mode as a function of radius r and
Bjorken time τ . We show the perturbations in energy density δε, in radial fluid velocity δur , azimuthal fluid velocity δuφ , and different shears
stress components. The energy density and shear stress perturbations have been normalized by a time-dependent factor corresponding to the
background energy density in the center of the fireball ε̄(τ, 0) for better visibility. The orange region denotes where the background temperature
is above the freeze-out value (taken as 120 MeV here).

τ ∼ 20 fm/c, where the background temperature has dropped
well below the freeze-out temperature at ∼120 MeV. The
numerical solution is obtained by using pseudospectral meth-
ods as presented in Sec. VI. The obtained solutions can be
stored, and the contribution of each mode to final particle
spectra and flow coefficients can be evaluated as an integral
along the freeze-out surface as described in Ref. [29]; see also
[65].

In Fig. 11 we show the evolution of the mode with m = 2,
l = 2, and k = 0 in the plane of radius r and Bjorken time
τ . More specifically, we show the perturbations in energy
density, radial fluid velocity, azimuthal velocity, and different
components of the shear stress. For better visibility, we have
normalized the density and shear stress perturbations by a
time-dependent factor corresponding to the energy density in
the center of the fireball ε̄(τ, 0). One observes characteristic
evolution patterns corresponding to propagating sound waves.
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FIG. 12. Perturbations in the energy density δε(τ, r, m, k) dived by the background energy density in the center of the fireball ε̄(τ, 0) as
a function of radius r for vanishing longitudinal wave number k = 0, different values of the azimuthal wave number m = 0, . . . , 4 (from top
to bottom), and l = 1, . . . , 4 (from left to right). We show the form of the perturbation at initialization time τ = 0.4 fm/c (dashed lines) and
Bjorken time τ = 15 fm/c. For the latter curves we compare ideal fluid dynamics [red (dark gray) curves] to viscous fluid dynamics [orange
(light gray) curves]. This includes both shear viscosity (with η/s = 0.2) and bulk viscosity as discussed in Sec. V B and summarized in Table II.
One observes that in particular the modes with large values of m and l are strongly damped by viscous dissipation.

One also observes a damping at later times, which is primarily
an effect of dissipative phenomena (shear and bulk viscosity).

In a similar way, we calculate and store the solutions to
other values of the wave numbers m and l . In Fig. 12 we
show a comparison for the perturbation in energy density
δε(τ, r) for the values m = 0, . . . , 4 (from top to bottom) and
l = 1, . . . , 4 (from left to right). We divide by a Bjorken time
τ -dependent but radius r-independent normalization factor
ε̄(τ, 0) for better visibility. The dashed lines show the pertur-
bation in energy density at the initialization time τ = 0.4 fm/c
while the solid lines give the time-evolved fields at Bjorken
time τ = 15 fm/c. We compare there ideal fluid dynamics
(red curves) to viscous fluid dynamics (orange curves) includ-
ing shear and bulk viscous dissipation as discussed in Sec. V B
and summarized in Table II. One observes a strong damping
effect in the viscous case, as expected, in particular for the
modes with larger wave numbers m and l .

VIII. CONCLUSIONS

In summary, we have developed a theoretical approach to
the fluid dynamics of relativistic heavy ion collisions using
a background-fluctuation splitting and a mode expansion.
The background configuration is taken to be symmetric with
respect to azimuthal rotations and Bjorken boosts but has a

nontrivial dependence on radius r. It corresponds essentially
to an event average for an ensemble with random azimuthal
orientation. In contrast, no such assumption is made for the
perturbations around this configuration and they can depend
on azimuthal angle φ and rapidity η. Using statistical symme-
tries with respect to azimuthal rotations and Bjorken boosts,
we presented an expansion scheme in terms of orthogonal sets
of functions which can also be used favorably for a numerical
implementation of time propagation. Modes are classified
in terms of an azimuthal wave number m, a rapidity wave
number k, and a radial wave number l . For transverse density
perturbations, the resulting characterization of the initial state
differs from the widely used event eccentricities, but there is
an interesting relation as we have discussed.

Both background and perturbation fields are determined by
hyperbolic partial differential equations. We have developed
a numerical code to solve these equations based on the pseu-
dospectral method. It allows us to achieve very high numerical
accuracy while being rather efficient at the same time. We
have demonstrated this explicitly by comparing the numerical
solution to the (semi)analytically known Gubser solution on
the level of the background equations. We have also tested the
implementation of the algorithm to solve linearized equations
for the perturbations by comparing two independent ways to
propagate modes with azimuthal wave number m = 0. We
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conclude from these exercises that our numerical code works
very well and allows us to obtain rather accurate results.

To apply the formalism to realistic heavy ions collisions,
we have implemented a thermodynamic equation of state
that interpolates continuously between known results at high
temperature from lattice QCD calculations and a hadron reso-
nance gas approximation at low temperatures. We found that
a combination of exponential and rational functions leads to a
good approximation; see Eq. (5.1) for the detailed expression
and Table I for the best fit parameters. For the transport
properties, in particular shear and bulk viscosity, we have
made rather simple assumptions for the present work. They
are summarized in Table II together with parameters charac-
terizing the initial energy density as obtained from a Glauber
model.

On this basis we have solved the evolution equations for the
symmetric background fields describing temperature, radial
fluid velocity, the two independent components of shear stress,
and bulk viscous pressure in a realistic heavy ion collision
scenario. The result is shown in Fig. 10. Moreover, we have
calculated transfer functions for linear perturbations around
this solution corresponding to modes of initial density pertur-
bations with different azimuthal and radial wave numbers. The
results are illustrated in Figs. 11 and 12.

While we have demonstrated explicitly how perturbations
with azimuthal and radial dependence resulting from ini-
tial density perturbations can be evolved, we stress that the
method is more general and allows us to calculate also the
response to initial velocity, shear stress, or bulk viscous pres-
sure perturbations and to include longitudinal dependencies.
We plan to explore this in more detail in the future. Also, so
far we have concentrated on simple scenarios for the shear and
bulk viscous transport properties but we plan to investigate
other scenarios.

For a use of our algorithm to compare to experimental
data, an important ingredient is the contribution of resonance
decays to particle spectra. To this end, we have recently
developed a fast algorithm which allows us to precompute
resonance decays such that particle spectra and flow coeffi-
cients can be calculated as simple integrals over the freeze-out
surface [65]. This method is particularly suited for use in the
context of FluiduM, and we plan to do so soon.

We believe that these developments are useful in order to
gain a more quantitative understanding of heavy ion collisions
and the principles of relativistic fluid dynamics and quantum
field theory that underly them.
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APPENDIX: DISCRETE COSINE AND SINE TRANSFORM

In this Appendix we collect useful formula and conven-
tions for discrete Fourier transformations. We use the follow-
ing notation for a sequence of N elements:

{un} = (u1, . . . uN ). (A1)

A cyclic permutation is denoted by the symbol Cl such that

C+1{un} = (uN , u1, . . . uN−1),

C−1{un} = (u2, u3, . . . uN , u1). (A2)

Discrete cosine and sine Fourier transforms are usually de-
fined and implemented in terms of the following convention
[66,67]:

DCTI{un}J =
√

2

N −1

(
u1

2
+

N−1∑
n=2

un cos

[
(n −1)(J −1)

π

N

]

+(−1)J−1 uN

2

)
, (A3)

DCTII{un}J = 1√
N

N∑
n=1

uJ cos

[
(J − 1)

(
n − 1

2

)
π

N

]
, (A4)

DCTIII{un}J = 1√
N

(
u1 + 2

N∑
n=2

un cos

[(
J − 1

2

)

× (n − 1)
π

N

])
, (A5)

DCTIV{un}J =
√

2

N

N∑
n=1

un cos

[(
J − 1

2

)(
J − 1

2

)
π

N

]
, (A6)

DSTI{un}J =
√

2

N + 1

N∑
n=1

un sin

[
nJ

π

N + 1

]
, (A7)

DSTII{un}J = 1√
N

N∑
n=1

un sin

[(
n − 1

2

)
J

π

N

]
, (A8)

DSTIII{un}J = 1√
N

(
2

N−1∑
n=1

un sin

[
n

(
J − 1

2

)
π

N

]

+(−1)J−1uN

)
, (A9)

DSTIV{un}J =
√

2

N

N∑
n=1

un sin

[(
n − 1

2

)(
J − 1

2

)
π

N

]
.

(A10)

The roman index refers here to a specific periodicity condition
and the external index J refers to the resulting sequence of
numbers.
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In these conventions, the relations in Eqs. (6.17) and (6.18)
between the coefficients an, bn and the function values f e(rJ ),
f o(rJ ) can be written as

an = 2

c2n−2

√
N

DCTII{ f e(rJ )}n,

f e(rJ ) =
√

N

2
DCTIII{an}J , (A11)

bn =
√

2

N
DCTIV{ f o(rJ )}n,

f o(rJ ) =
√

N

2
DCTIV{bn}J , (A12)

where we have used the fact that c2n−1 = 1 for all n.
The formulas for radial derivatives (6.21) become in these

conventions

∂

∂r
f e(rJ ) =−∂θ

∂r

∣∣∣∣
r=rJ

DSTIII{C−1{DCTII{ f e(rJ )}n(2n − 2)}}J ,

(A13)

∂

∂r
f o(rJ ) = −∂θ

∂r

∣∣∣∣
r=rJ

DSTIV{DCTIV{ f o(rJ )}n(2n − 1)}J .

(A14)

Finally, the spectral viscosity operators in Eq. (6.30) become

Q2p f o(rJ ) = −εN DCTIV{DCTIV{ f o(rJ )}n(2n − 1)2p},
Q2p f e(rJ ) = −εN DCTIII{DCTII{ f o(rJ )}n(2n − 2)2p}. (A15)

In this form, the relations are directly amendable to a numeri-
cal implementation of the pseudospectral method.
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