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SYSTEMS AND METHODS FOR UTILIZING 
A DEEP LEARNING MODEL TO 

DETERMINE VEHICLE VIEWPOINT 
ESTIMATIONS 

CROSS - REFERENCE TO RELATED 
APPLICATION 

[ 0001 ] This application claims priority to Italian Applica 
tion No. 102020000011875 , filed on May 21 , 2020 , entitled 
" SYSTEMS AND METHODS FOR UTILIZING A DEEP 
LEARNING MODEL TO DETERMINE VEHICLE VIEW 
POINT ESTIMATIONS , ” which is hereby expressly incor 
porated by reference herein . 

BACKGROUND 

[ 0002 ] An autonomous driving system may utilize road 
scene understanding to perform one or more actions asso 
ciated with controlling an operation of a vehicle . 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0003 ] FIGS . 1A - 1K are diagrams of one or more example 
implementations described herein . 
[ 0004 ] FIG . 2 is a diagram an example of training a 
machine learning model . 
[ 0005 ] FIG . 3 is a diagram illustrating an example of 
applying a trained machine learning model to a new obser 
vation . 
[ 0006 ] FIG . 4 is a diagram of an example environment in 
which systems and / or methods described herein may be 
implemented . 
[ 0007 ] FIG . 5 is a diagram of example components of one 
or more devices of FIG . 4 . 
[ 0008 ] FIG . 6 is a flow chart of an example process 
relating to utilizing a deep learning model to determine 
vehicle viewpoint estimations . 

a different , second action if the object is facing towards the 
vehicle ( e.g. , cause the vehicle to stop , issue a warning to the 
driver , and / or the like ) . 
[ 0012 ] Because the autonomous driving system may 
determine to perform different actions depending on the 
direction that the object is facing , the autonomous driving 
system may ensure that an accuracy or confidence level 
associated with determining the direction that the object is 
facing satisfies a threshold . If the accuracy or confidence 
level fails to satisfy the threshold , the autonomous driving 
system may utilize additional computing resources ( e.g. , 
processor resources , memory resources , communication 
resources , and / or the like ) to obtain additional data ( e.g. , 
additional images , data from other sensors , and / or the like ) 
and to re - calculate the direction that the object is facing 
based on the additional data . 

[ 0013 ] Further , the amount of time that elapses while the 
autonomous driving system obtains the additional data and / 
or performs the recalculation may prevent the autonomous 
driving system from having sufficient time to perform the 
determined action prior to the vehicle reaching a location of 
the object ( e.g. , the vehicle may not have enough time to 
come to a complete stop prior to reaching the location of the 
object , the vehicle may not have enough time to maneuver 
around the object , and / or the like ) . A failure to perform the 
determined action prior to the vehicle reaching the location 
of the object may cause the vehicle to collide with the object 
thereby resulting in damage to the vehicle , the object , and / or 
the like . 

[ 0014 ] Some implementations described herein may pro 
vide a viewpoint system for determining a direction that an 
object is facing ( e.g. , a direction that the object is facing 
relative to a vehicle , relative to a coordinate system , and / or 
the like ) . The viewpoint system may receive image data 
obtained by a camera on - board a vehicle . The viewpoint 
system may utilize a machine learning model to analyze the 
image data to detect an object included in the image data and 
to determine a direction that the object is facing . When the 
accuracy and / or confidence level satisfies a predetermined 
( or dynamic in some embodiments ) threshold , the viewpoint 
system may not obtain additional data ( e.g. , additional 
images , data from other sensors , and / or the like ) and / or may 
not re - perform a process for determining the direction that 
the object is facing . In this way , the viewpoint system may 
utilize fewer computing resources ( e.g. , processor resources , 
memory resources , communication resources , and / or the 
like ) than prior systems used to determine a direction that an 
object is facing . 
[ 0015 ] When the accuracy and / or confidence level does 
not satisfy the predetermined or dynamic threshold , the 
viewpoint system may obtain additional data and / or may 
re - perform the process for determining the direction that the 
object is facing . In this way , the viewpoint system ensures 
that a result of the viewpoint system ( e.g. , a direction the 
object is facing ) satisfies a threshold level of accuracy and / or 
confidence level . 

[ 0016 ] Further , because the viewpoint system may not 
obtain additional data and / or may not re - perform the process 
for determining the direction that the object is facing , the 
viewpoint system may allow an autonomous driving system 
sufficient time to determine and / or perform an action prior to 
a vehicle reaching a location of an object . In this way , the 

DETAILED DESCRIPTION OF PREFERRED 
EMBODIMENTS 

a 

a 

[ 0009 ] The following detailed description of example 
implementations refers to the accompanying drawings . The 
same reference numbers in different drawings may identify 
the same or similar elements . 
[ 0010 ] A vehicle may include an autonomous driving 
system that is configured to perform one or more actions 
associated with an operation of the vehicle as the vehicle 
travels along a roadway , along a trail , in the air , through the 
water , and / or the like . For example , the autonomous driving 
system may analyze image data obtained by a camera to 
identify an object located in a path of the vehicle and to 
determine a direction that the object is facing . The autono 
mous driving system may perform an action based on 
identifying the object and based on determining the direction 
that the object is facing , such as providing a warning to a 
driver of the vehicle , causing the vehicle to slow down or 
stop , causing the vehicle to perform a maneuver to avoid the 
object , and / or the like . 
[ 0011 ] The determined action may be different depending 
on the direction that the object is facing . For example , the 
autonomous driving system may determine to perform a first 
action if the object is facing in the same direction as the 
vehicle ( e.g. , cause the vehicle to slow down , cause the 
vehicle to maintain a current speed , cause the vehicle to 
swerve around the object , and / or the like ) and may perform 
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viewpoint system may allow a vehicle to avoid a collision 
with an object thereby preventing damage to the vehicle , the 
object , and / or the like . 
[ 0017 ] FIGS . 1A - 1K are diagrams of one or more example 
implementations 100 described herein . As shown in FIGS . 
1A - 1K , and collectively shown in FIG . 1F , vehicle device 
105 may be associated with a vehicle 110 and a viewpoint 
system 115. The vehicle device 105 may include a device 
( e.g. , a dash camera , a parking assist camera , a backup assist 
camera , and / or the like ) that captures image data ( e.g. , 
images and / or video ) associated with the vehicle 110 . 
[ 0018 ] The vehicle 110 may be an autonomous or semi 
autonomous vehicle that includes an autonomous driving 
system . The autonomous driving system may perform one or 
more actions to control an operation of the vehicle 110 based 
on the image data captured by the vehicle device 105 and / or 
based on data received from the viewpoint system 115 . 
[ 0019 ] The viewpoint system 115 may include a system 
that obtains image data from the vehicle device 105 and 
analyzes the image data to detect an object included in the 
image and to determine a direction that the object is facing 
( e.g. , a direction that the object is facing relative to a vehicle , 
relative to a coordinate system , and / or the like ) . The direc 
tion that the object is facing may be referred to as an object 
viewpoint . In some implementations , the viewpoint system 
115 may utilize machine learning to analyze the image data , 
to detect the object included in the image , and / or to deter 
mine the object viewpoint , as described in further detail 
below . 
[ 0020 ] In some implementations , the viewpoint system 
115 is located on - board the vehicle 110. For example , the 
viewpoint system 115 may be part of an autonomous driving 
system associated with the vehicle 110. In some implemen 
tations , the viewpoint system 115 may be located remotely 
from the vehicle 110. For example , the viewpoint system 
115 may be included on a server device associated with a 
service provider that provides object viewpoint determina 
tions as a service . In some implementations , the viewpoint 
system 115 may be located at or near an edge of a network 
( e.g. , a wireless communication network ) , such as within a 
multi - access edge computing ( MEC ) environment . In some 
implementations , the viewpoint system 115 may be a dis 
tributed system in that a portion of the viewpoint system 115 
may be implemented within the vehicle 110 and a portion of 
the viewpoint system 115 may be implemented remote from 
the vehicle 110 , such as in a location at or near an edge of 
a wireless communication network . 
[ 0021 ] The viewpoint system 115 may generate and / or 
obtain a deep learning model . The deep learning model may 
employ a classification technique , rather than a regression 
technique , to determine the plurality of object viewpoints . 
The viewpoint system 115 may utilize a dataset to train the 
deep learning model to generate a trained deep learning 
model . 
[ 0022 ] The dataset may include a plurality of images of 
vehicles . Each image may be associated with an annotation 
that includes information used to train the deep learning 
model , such as information identifying an object included in 
the image , information identifying a location of the object 
within the image , information identifying a ground truth 
azimuth angle ( e.g. , an azimuth angle determined manually , 
determined utilizing LIDAR , and / or the like corresponding 
to a direction that the object is facing in the image ) , and / or 
the like . 

[ 0023 ] In some implementations , the viewpoint system 
115 may obtain the dataset from a data structure ( e.g. , a 
database ) stored in a memory . For example , the viewpoint 
system 115 may obtain an annotated dataset from a database 
storing a nuScenes dataset , a Pascal3D + dataset , a dataset 
that contains images and corresponding orientations for 
objects and / or vehicles , and / or the like . 
[ 0024 ] In some implementations , the annotated dataset 
may be an internal dataset ( e.g. , stored in a memory asso 
ciated with the viewpoint system 115 ) . The annotated dataset 
may include images of objects obtained by the viewpoint 
system 115 ( e.g. , images obtained from vehicle devices 
105 ) . An image included in the dataset may include an image 
of an object and may be associated with an annotation . The 
annotation may include information identifying a location of 
the object within the image ( e.g. , a bounding box ) , infor 
mation identifying a direction the object is facing , and / or the 
like . 
[ 0025 ] In some implementations , the annotated dataset 
may be a large - scale autonomous driving dataset that may be 
a collection of driving scenes from a point of view of a 
vehicle . The annotated dataset may be collected by a plu 
rality of vehicle devices included on one or more vehicles . 
For example , multiple vehicle devices may be positioned at 
different positions on a vehicle . In some implementations , 
the vehicle includes vehicle devices positioned at a front 
center position of the vehicle , a front - right position of the 
vehicle , a front - left position of the vehicle , a rear - center 
position of the vehicle , a rear - right position of the vehicle , 
and / or a rear - left position of the vehicle . The vehicle devices 
may include image capture devices ( e.g. , dashcams , cam 
eras , and / or the like ) that capture image data as the vehicle 
travels along a road . The positioning of the vehicle devices 
may cause an elevation and / or tilt of objects in the image 
data to be substantially the same . 
( 0026 ] The annotated dataset may include one or more 
annotations associated with each image included in the 
dataset . The one or more annotations may include informa 
tion identifying a ground truth azimuth associated with an 
object ( e.g. , a vehicle ) included in the image , information 
identifying an object class associated with an object 
included in the image , information identifying a location of 
an object in the image , and / or the like . 
[ 0027 ] The annotated dataset may include annotations that 
include information identifying visual object classes ( VOC ) 
associated with the images included in the annotated dataset 
and / or three - dimension ( 3D ) annotations . The 3D annota 
tions may include an azimuth angle annotation that includes 
information identifying a ground truth azimuth associated 
with an object ( e.g. , a vehicle ) in an image , a location 
annotation that includes information identifying a location 
of the object in the image , a class annotation that includes 
information identifying a class ( e.g. , vehicle , car , truck , 
and / or the like ) associated with the object in the image , 
and / or the like . 
[ 0028 ] In some implementations , the viewpoint system 
115 may process the dataset prior to training the deep 
learning model . For example , the viewpoint system 115 may 
resize the images in the dataset to a common size , reduce a 
size of the images in the dataset , apply random horizontal 
flipping to one or more images in the dataset , normalize the 
images in the dataset ( e.g. , by subtracting a mean and 
dividing by a standard deviation of the images in the 
dataset ) , and / or the like . 
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[ 0029 ] In some implementations , the viewpoint system 
115 may utilize one or more portions of the dataset to train 
the deep learning model . As shown in FIG . 1A , and by 
reference number 120 , the viewpoint system 115 may pro 
cess a first batch of images ( e.g. , 64 images , 128 images , 
1,000 images , 10,000 images , and / or the like ) with a deep 
learning model to perform a first iteration of a process for 
training the deep learning model to determine a coarse 
grained viewpoint estimate and a fine - grained viewpoint 
estimate for each vehicle depicted in the first batch of 
images , as described in more detail below . 
[ 0030 ] As shown in FIG . 1B , the deep learning model 
includes a backbone that receives an image of a vehicle from 
the first batch of images and processes the image to extract 
one or more features of the vehicle from the image . The 
backbone may be a well - established neural network associ 
ated with analyzing images , such as a CNN ( e.g. , Mobile 
NetV2 , Resnet50 , VGG16 , Inception , and / or the like ) , a 
Siamese neural network , and / or the like . In some implemen 
tations , the extracted one or more features may be output by 
the backbone as a feature map . 
[ 0031 ] As shown in FIG . 1B , the output of the backbone 
( e.g. , a feature map ) is provided to a pooling layer of the 
deep learning model . The pooling layer may be a global 
average pooling layer , an attention layer , a flatten layer , 
and / or the like that aggregates space information into a 
single vector . The pooling layer may utilize a sliding win 
dow to reduce a dimensionality of the output of the back 
bone based on an average value . In this way , the pooling 
layer may minimize overfitting by reducing a total number 
of parameters ( e.g. , weights and / or biases ) . 
[ 0032 ] As further shown in FIG . 1B , an output of the 
global average pooling layer is provided to an output layer 
of the deep learning model . The output layer may be a fully 
connected layer that processes the output of the global 
average pooling layer to determine one or more coarse 
grained viewpoint estimates and one or more fine - grained 
viewpoint estimates associated with the vehicle in the 
image . 
[ 0033 ] In some implementations , the deep learning model 
determines a viewpoint estimate based on the output of the 
pooling layer . The viewpoint estimate may be a series of 
probabilities . A probability , of the series of probabilities , 
may indicate a likelihood that a viewpoint ( e.g. , an azimuth 
angle ) associated with the image of the vehicle is a particular 
value included in a range of possible values between 0-360 
degrees . For example , a first probability , of the series of 
probabilities , may indicate a likelihood that the viewpoint 
associated with the vehicle is 0 degrees , a second probabil 
ity , of the series of probabilities , may indicate a likelihood 
that the viewpoint associated with the vehicle is 1 degree , 
and / or the like . 
[ 0034 ] The deep learning model may determine the 
coarse - grained viewpoint estimate and / or the fine - grained 
viewpoint estimate based on forming multiple sets of groups 
of the series of probabilities . A quantity of groups of the 
series of probabilities associated with the coarse - grained 
estimate may be less than a quantity of groups of the series 
of probabilities associated with the fine - grained estimate . 
[ 0035 ] For example , the deep learning model may deter 
mine the coarse - grained viewpoint estimate based on group 
ing the series of probabilities into a particular number of 
groups , such as four groups . A first group may include a 
group of probabilities associated with a sub - range of the 

possible values from 315 to 45 degrees ( e.g. , a probability 
indicating a likelihood that the viewpoint associated with the 
image of the vehicle is 315 degrees , a probability indicating 
a likelihood that the viewpoint associated with the image of 
the vehicle is 316 degrees , a probability indicating a 
likelihood that the viewpoint associated with the image of 
the vehicle is 45 degrees ) . A second group may include a 
group of probabilities associated with a sub - range of the 
possible values from 45 to 135 degrees . A third group may 
include a group of probabilities associated with a sub - range 
of the possible values from 135 to 225 degrees . A fourth 
group may include a sub - range of the possible values from 
225 to 315 degrees . 
[ 0036 ] The deep learning model may determine a sum of 
the probabilities included in each group ( e.g. , a sum of the 
group of probabilities associated with a sub - range of the 
possible values from 315 to 45 degrees , a sum of the group 
of probabilities associated with a sub - range of the possible 
values from 45 to 135 degrees , a sum of the group of 
probabilities associated with a sub - range of the possible 
values from 135 to 225 degrees , and a sum of the group of 
probabilities associated with a sub - range of the possible 
values from 225 to 315 degrees ) . The deep learning model 
may generate a first output indicating the sum of the prob 
abilities included in each respective group . 
[ 0037 ] The viewpoint system 115 may determine the 
coarse - grained viewpoint estimate based on the first output . 
For example , the viewpoint system 115 may determine the 
coarse - grained estimate based on a sub - range of the possible 
values associated with a group for which the sum of the 
group of probabilities is a greatest value relative to the other 
sums of the groups of probabilities . 
[ 0038 ] As another example , the deep learning model may 
determine the fine - grained estimate based on grouping the 
series of probabilities into a particular number of groups , 
such as twenty - four groups . Each group may be associated 
with a range of fifteen possible values . For example , a first 
group may include a group of probabilities associated with 
a sub - range of the possible values from 353 to 8 degrees , a 
second group may include a group of probabilities associ 
ated with a sub - range of the possible values from 8 to 23 
degrees , and so on . 
[ 0039 ] The deep learning model may determine a sum of 
the probabilities included in each group . The deep learning 
model may generate a second output indicating the sum of 
the probabilities included in each respective group . The 
viewpoint system 115 may determine the fine - grained view 
point estimate based on the second output . For example , the 
viewpoint system 115 may determine the fine - grained esti 
mate based on a sub - range of the possible values associated 
with a group for which the sum of the group of probabilities 
is a greatest value relative to the other sums of the groups of 
probabilities . 
[ 0040 ] As shown in FIG . 1C , and by reference number 
125 , the deep learning model utilizes a loss function to 
evaluate each of the coarse - grained viewpoint estimate and 
the fine - grained viewpoint estimate relative to the ground 
truth azimuth to determine an accuracy associated with the 
view point estimates . 
[ 0041 ] In some implementations , the deep learning model 
is a multi - task model that simultaneously estimates different 
object viewpoints based on a summation of a network output 
( e.g. , a summation of groups of probabilities ) , as described 

a 

a 
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above . A loss function utilized to train the multi - task deep 
learning model may be defined by the following equation : 

L - 269 Laleve , josa ) , where wa = Softmax ( Sa ) , ( 1 ) 

where a result of a summation of the network output f ( W , X ) 
for discretization a may be defined as SQER « R 
[ 0042 ] In some implementations , the multi - task deep 
learning model includes a Siamese network . An input image 
( X ) included in the first batch of images may have an 
azimuth angle label indicating an azimuth angle ( 0 ) associ 
ated with a vehicle depicted in the image . The viewpoint 
system 115 may flip the input image horizontally to obtain 
a flipped image X flip with an azimuth angle that is mirrored 
with respect to the Y axis . An operator flip : RnR Hn may 
be defined that maps y = ( y? , Y2 , ... , Yn ) to flip ( y ) = ( yn , Yn - 19 Y12 

y , ) . Each image ( X ) included in the first batch of images 
and a corresponding flipped image ( X flip ) may be input to the 
deep learning model . A loss associated with the image and 
flipped image pairs ( e.g. , ( f ( W.X ) , 0 ) , ( flip ( f ( W.X Alip ) ) , e ) , 
respectively , may be computed using equation ( 1 ) , described 
above . The viewpoint system 115 may apply horizontal 
flipping and the Siamese network to enforce horizontal 
flipping invariance . In this way , a total accuracy , as well as 
an accuracy per object class ( e.g. , car , motorcycle , bicycle , 
and / or the like ) of the deep learning model may be signifi 
cantly increased relative to other deep learning models that 
do not apply horizontal flipping and a Siamese network . 
[ 0043 ] A final loss may be determined based on the 
following equation : 

L - L.L © flip + hD ( { ( W.X ) , flip ( ( ( W.XAlip ) ) ) , ( 2 ) 

where D : R 360 XR 360 HR is a distance function , ER is 
a regularization term , L and L are obtained by applying flip 
equation ( 2 ) to the image ( X ) and the flipped image ( Xflip ) , 
respectively . D a function of the square L2 distance and the 
angular distance : 

+ 
S 
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In some implementations , the deep learning model may 
continue to perform iterations of the process with different 
batches of images for a certain number of iterations , until an 
accuracy associated with the viewpoint estimates stops 
increasing with respect to accuracies determined for previ 
ous batches of images , until an accuracy associated with the 
viewpoint estimates decreases or increases by an amount 
that does not satisfy a threshold with respect to accuracies 
determined for previous batches of images , and / or the like . 
[ 0046 ] In some implementations , the viewpoint system 
115 may utilize the trained deep learning model to determine 
viewpoint estimates for vehicles depicted in images captured 
by vehicle devices . As indicated above , in some implemen 
tations , the viewpoint system 115 may be implemented 
within a vehicle . In this case , the vehicle may utilize the 
trained deep learning model to determine viewpoint esti 
mates for vehicles depicted in images captured by a vehicle 
device of the vehicle . 
[ 0047 ] As shown in FIG . 1F , and by reference number 
140 , the viewpoint system 115 receives , from a vehicle 
device 105 of a vehicle 110 , an image captured by the 
vehicle device 105 and depicting one or more vehicles . For 
example , the vehicle device 105 may include a dashcam that 
captures an image of an environment in which the vehicle 
110 is located . In some implementations , the image may be 
a single image captured by the vehicle device 105. For 
example , the vehicle device 105 may be a camera device 
such as a dashcam and the image may be a single monocular 
red - green - blue ( RGB ) image , a grayscale image , a thermal 
image , a large band spectrum image , a narrow band spec 
trum image , and / or the like . Alternatively , and / or addition 
ally , the image may be included in a plurality of images 
provided to the viewpoint system 115. For example , the 
vehicle device 105 may capture video of the environment in 
which the vehicle 110 is located . The video may include a 
plurality of images ( e.g. , a plurality of frames of image data ) 
that includes the image and the vehicle device 105 may 
provide the plurality of images to the viewpoint system 115 . 
[ 0048 ] In some implementations , the vehicle device 105 
captures the image and / or provides the image to the view 
point system 115 based on an occurrence of an event . For 
example , the vehicle device 105 may provide the image to 
the viewpoint system 115 based on receiving an input from 
a user , receiving an instruction to capture and / or provide the 
image to the viewpoint system 115 from another device 
( e.g. , a controller included in an autonomous driving system , 
the viewpoint system 115 , and / or the like ) , determining that 
the vehicle 110 is operating in an autonomous driving mode , 
and / or the like . 
[ 0049 ] In some implementations , the vehicle device 105 
provides the image to the viewpoint system 115 in real - time . 
For example , the vehicle device 105 may be included in an 
autonomous driving system of the vehicle 110. The vehicle 
device 105 may capture and / or provide images to the 
viewpoint system 115 as the vehicle 110 travels along a 
roadway to cause the viewpoint system 115 to analyze the 
images and to provide information identifying objects 
included in the images and / or information indicating an 
object viewpoint associated with the objects to the autono 
mous driving system . 
[ 0050 ] In some implementations , the vehicle device 105 
transmits the image directly to the viewpoint system 115 . 
For example , the vehicle device 105 may include a com 
munication device for communicating data over a cellular 

a 

D ( X1 , X2 ) = || X1 – X2 || Z ( 3 ) 
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where X1 , X , R " . 
[ 0044 ] To complete the first iteration of the process for 
training the deep learning model , the deep learning model 
may process each image included in the first batch of images 
in a manner similar to that described above with respect to 
FIGS . 1A - 1B . In some implementations , the deep learning 
model modifies one or more parameters of the deep learning 
model based on a result of the loss function determined for 
each image included in the first batch of images . The result 
of the loss function determined for an image may represent 
an accuracy of the coarse - grained viewpoint estimate and / or 
the fine - grained viewpoint estimate determined for the 
image relative to the ground truth azimuth associated with 
the image . As shown in FIG . 1D , and by reference number 
130 , the deep learning model adjusts one or more weights of 
the neural network based on the result of the loss function . 
[ 0045 ] As shown in FIG . 1E , and by reference number 
135 , the deep learning model performs multiple iterations of 
the process for training the deep learning model with other 
batches of images to generate a trained deep learning model . 
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network ( e.g. , a 3G network , a 4G network , a 5G network , 
and / or the like ) . The vehicle device 105 may utilize the 
communication device to transmit the image to the view 
point system 115 via the cellular network . 
[ 0051 ] In some implementations , the vehicle device 105 
transmits the image to the viewpoint system 115 via another 
device associated with the vehicle 110. For example , the 
vehicle device 105 may transmit , via a wired and / or wireless 
connection , the image to a communication device included 
in an autonomous driving system , to a mobile device of a 
user in the vehicle ( e.g. , a driver , a passenger , and / or the 
like ) , and / or the like . The communication device , the mobile 
device , and / or the like may receive the image from the 
vehicle device 105 and may transmit the image to the 
viewpoint system 115 . 
[ 0052 ] In some implementations , the viewpoint system 
115 may analyze the image to identify one or more objects 
depicted in the image based on receiving the image . For 
example , as shown in FIG . 16 , and by reference number 
145 , the viewpoint system 115 may process the image , with 
an object detection model , to identify the one or more 
vehicles in the image and to determine locations of the one 
or more vehicles within the image based on receiving the 
image from the vehicle device 105. While the description 
herein will focus on objects that are vehicles , the description 
also applies to other types of objects , such as people , 
bicycles , traffic signs , and / or the like . 
[ 0053 ] The object detection model may include a you 
only - look - once ( YOLO ) object detector , a single shot detec 
tor ( SSD ) , a Faster - region convolutional neural network 
( RCNN ) object detector , and / or the like . The object detec 
tion model may receive the image as an input and may 
output information indicating that the image depicts the one 
or more vehicles and information identifying a location of 
the one or more vehicles within the image . 
[ 0054 ] The object detection model may be trained in a 
manner similar to that described below with respect to FIG . 
2. For example , the viewpoint system 115 may train the 
object detection model based on one or more parameters , 
such as a number of classes of objects , a batch size ( e.g. , a 
number of images used in one iteration to update the 
parameters of the object detection model ( e.g. , weights , 
parameters , and / or the like ) ) , a parameter associated with 
penalizing particular changes to the parameters of the object 
detection model between iterations ( e.g. , a momentum 
parameter that penalizes certain changes to a weight param 
eter between iterations and / or the like ) , and / or the like . The 
viewpoint system 115 may train the object detection model 
using image data containing images of vehicles according to 
the one or more parameters . 
[ 0055 ] The trained object detection model may receive the 
image from the viewpoint system 115 as an input and may 
process the image to detect the images of the one or more 
vehicles and to determine the information identifying the 
location of the one or more vehicles within the image . The 
trained object detection model may process the image in a 
manner similar to that described below with respect to FIG . 
3 . 
[ 0056 ] In some implementations , the information identi 
fying the location of a vehicle , of the one or more vehicles 
depicted in the image , includes information identifying a 
bounding box for the vehicle . The information identifying 
the bounding box may include information identifying a 
perimeter of the bounding box . The perimeter of the bound 

ing box may surround the entire vehicle depicted in the 
image . For example , the bounding box may be a two 
dimensional bounding box ( e.g. , a rectangle ) and the infor 
mation identifying the perimeter of the bounding box may 
include a set of coordinates corresponding to an upper left 
corner of the bounding box within the image , a set of 
coordinates corresponding to a lower right corner of the 
bounding box within the image , information identifying an 
angular displacement of the bounding box relative to a line 
extending along an edge and / or a center of the image , and / or 
the like . 
[ 0057 ] In some implementations , the viewpoint system 
115 may receive the information indicating that the image 
depicts the one or more vehicles and / or the information 
identifying the location of the one or more vehicles within 
the image from the vehicle 110. For example , the object 
detection model may be included in an autonomous driving 
system associated with the vehicle 110. The vehicle device 
105 may provide the image to the autonomous driving 
system based on capturing the image . The autonomous 
driving system may process the image , with the object 
detection model , to identify the one or more vehicles in the 
image and to determine the locations of the one or more 
vehicles within the image based on receiving the image from 
the vehicle device 105. The autonomous driving system may 
provide the image , the information indicating that the image 
depicts the one or more vehicles , and / or the information 
identifying the location of the one or more vehicles within 
the image to the viewpoint system 115 . 
[ 0058 ] As shown in FIG . 1H , and by reference number 
150 , the viewpoint system 115 extracts , from the image , 
images of the one or more vehicles based on the output of 
the object detection model . The viewpoint system 115 may 
determine a location of a vehicle depicted in the image based 
on the information identifying the bounding box associated 
with the vehicle . The viewpoint system 115 may extract the 
image of the vehicle from the image by extracting a portion 
of the image inside the perimeter of the bounding box 
associated with the image of the vehicle . In some imple 
mentations , the viewpoint system 115 extracts the image of 
the vehicle by cropping the image to remove a portion of the 
image that is located outside the perimeter of the bounding 
box associated with the image of the vehicle . 
[ 0059 ] As shown in FIG . 11 , and by reference number 155 , 
the viewpoint system 115 processes the images of the one or 
more vehicles with the trained deep learning model to 
determine one or more coarse - grained viewpoint estimates 
and one or more fine - grained viewpoint estimates for the one 
or more vehicles . In some implementations , the viewpoint 
system 115 determines the one or more coarse - grained 
viewpoint estimates and the one or more fine - grained view 
point estimates in a manner similar to that described above 
with respect to FIGS . 1A - 1B . 
[ 0060 ] As shown in FIG . 1J , and by reference number 160 , 
the viewpoint system 115 determines an object viewpoint 
associated with a vehicle , of the one or more vehicles , based 
on the one or more coarse - grained viewpoint estimates 
and / or the one or more fine - grained viewpoint . For example , 
the one or more coarse - grained viewpoint estimates and the 
one or more fine - grained estimates may include multiple 
viewpoint estimates ranging from a coarsest - grained view 
point estimate ( e.g. , a viewpoint estimate determined based 
on grouping the series of probabilities into four groups ) to a 
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finest - grained viewpoint estimate ( e.g. , a viewpoint estimate 
determined based on grouping the series of probabilities into 
24 groups ) . 
[ 0061 ] Each viewpoint estimate may be associated with 
accuracy information ( e.g. , information indicating an accu 
racy , a confidence level , and / or the like ) . The viewpoint 
system 115 may determine the viewpoint associated with the 
object based on the multiple viewpoint estimates and based 
on the accuracy information . For example , the multiple 
viewpoint estimates may include a coarsest - grained view 
point estimate associated with first accuracy information , a 
coarse - grained viewpoint estimate associated with second 
accuracy information , a fine - grained viewpoint estimate 
associated with third accuracy information , and a finest 
grained viewpoint estimate associated with fourth accuracy 
information . 
[ 0062 ] The viewpoint system 115 may identify each view 
point estimate , of the multiple viewpoint estimates , associ 
ated with accuracy information that satisfies a threshold 
( e.g. , 90 % accurate , 95 % accurate , 98 % accurate , and / or the 
like ) . For example , the viewpoint system 115 may determine 
that the first accuracy information , the second accuracy 
information , and the third accuracy information satisfy the 
threshold and / or that the fourth accuracy information does 
not satisfy the threshold . 
[ 0063 ] In some implementations , the threshold may be 
determined based on an average accuracy associated with 
training the deep learning model . For example , the threshold 
may be determined based on an accuracy ( e.g. , an average 
accuracy , a highest accuracy , a lowest accuracy , and / or the 
like ) achieved by the deep learning model when analyzing a 
test set of images . 
[ 0064 ] Alternatively , and / or additionally , the threshold 
may be determined based on a size of an object in the image 
being analyzed . The viewpoint system 115 may utilize a 
larger threshold ( e.g. , 95 % ) when the object is larger than a 
threshold size in the image , when the object comprises at 
least a threshold percentage of the entire image , and / or the 
like . The viewpoint system 115 may utilize a smaller thresh 
old ( e.g. , 90 % ) when the object is smaller than the threshold 
size in the image , when the object comprises less than the 
threshold percentage of the entire image , and / or the like . 
[ 0065 ] The viewpoint system 115 may determine that the 
fine - grained viewpoint estimate is the finest - grained view 
point estimate of the viewpoint estimates associated with 
accuracy information satisfying the threshold . Stated differ 
ently , the viewpoint system 115 may determine that a 
granularity of the fine - grained viewpoint estimate is the 
finest granularity relative to every other viewpoint estimate 
( whether course - grained or e - grained ) associated with 
accuracy information that satisfies the threshold . The view 
point system 115 may determine the object viewpoint based 
on the fine - grained viewpoint estimate being the finest 
grained viewpoint estimate of the viewpoint estimates asso 
ciated with accuracy information satisfying the threshold . 
[ 0066 ] In some implementations , the object viewpoint is a 
range of azimuth angles . For example , the viewpoint system 
115 may determine a range of azimuth angles associated 
with the selected viewpoint estimate ( e.g. , the fine - grained 
viewpoint estimate from the example described above ) . The 
viewpoint system 115 may determine the object viewpoint 
based on the range of azimuth angles . 
[ 0067 ] In some implementations , the viewpoint system 
115 determines a direction of travel associated with the 

vehicle based on the object viewpoint . For example , the 
viewpoint system 115 may determine a range of azimuth 
angles associated with the selected viewpoint estimate . The 
viewpoint system 115 may determine that the range of 
azimuth angles corresponds to a particular direction ( e.g. , 
east , west , north , south , toward the vehicle 110 , away from 
the vehicle 110 , and / or the like ) . The viewpoint system 115 
may determine the vehicle is facing the particular direction 
based on the range of azimuth angles corresponding to the 
particular direction . 
[ 0068 ] The viewpoint system 115 may obtain an addi 
tional image of the vehicle ( e.g. , from vehicle device 105 ) . 
The viewpoint system 115 may utilize the object detection 
model to process the additional image and to determine a 
bounding box indicating a location of the vehicle within the 
additional image . The viewpoint system 115 may compare 
the bounding box determined based on the additional image 
with a bounding box determined based on the image to 
determine a direction of movement associated with the 
bounding boxes . 
[ 0069 ] For example , the viewpoint system 115 may deter 
mine that the bounding box determined based on the image 
has a center point that is a first distance from a bottom edge 
of the image and is a second distance from a left edge of the 
image . The viewpoint system 115 may determine that the 
bounding box determined based on the additional image has 
a center point that is a third distance from the bottom edge 
of the image and is the second distance from the left edge of 
the image . 
[ 0070 ] The viewpoint system 115 may determine that the 
vehicle is facing away from the vehicle 110 based on the 
selected viewpoint estimate ( e.g. , the range of azimuths 
associated with the selected viewpoint estimate is from 350 
to 10 degrees ) . The viewpoint system 115 may determine 
that the movement of direction associated with the bounding 
boxes corresponds to the direction that the vehicle is facing 
and , therefore , that the direction of travel of the vehicle is in 
the particular direction , when the third distance is greater 
than the first distance . The viewpoint system 115 may 
determine that the movement of direction associated with 
the bounding boxes does not correspond to the direction that 
the vehicle is facing and , therefore , that the vehicle is 
moving in a direction opposite to the particular direction 
( e.g. , the vehicle is driving in reverse gear ) when the third 
distance is less than the first distance . 
[ 0071 ] In some implementations , the viewpoint system 
115 may identify one or more lane directions of a roadway 
being traveled by the one or more vehicles and / or the vehicle 
110 based on the direction of travel . For example , the 
viewpoint system 115 may determine that a vehicle , of the 
one or more vehicles , is traveling in a lane of a roadway 
adjacent to a lane of the roadway in which the vehicle 110 
is traveling based on the object viewpoint . The viewpoint 
system 115 may determine a lane direction of the adjacent 
lane based on the direction of travel of the vehicle . 
[ 0072 ] As shown in FIG . 1K , and by reference number 
165 , the viewpoint system 115 may perform one or more 
actions based on determining the object viewpoint . In some 
implementations , the one or more actions may include 
providing information identifying a direction of travel asso 
ciated with the one or more vehicles . For example , the 
viewpoint system 115 may determine a direction of travel 
associated with a vehicle , of the one or more vehicles , in a 
manner similar to that described above with respect to FIG . 
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1J . The viewpoint system 115 may provide information 
identifying the direction of travel to an autonomous driving 
system of the vehicle 110. The autonomous driving system 
may control an operation of the vehicle 110 based on the 
information identifying the direction of travel . In this way , 
the viewpoint system 115 may assist the autonomous driving 
system in controlling the operation of the vehicle 110 in an 
efficient manner . 
[ 0073 ] Further , in some implementations where the view 
point system 115 is located remotely from the vehicle 110 
( e.g. , the viewpoint system 115 is implemented in one or 
more MEC nodes , a cloud computing environment , and / or 
the like ) , a cost associated with the computing resources 
utilized to determine the object viewpoint , the direction of 
travel , and / or the like may be shared by multiple autono 
mous driving systems . By sharing the cost associated with 
the computing resources , a cost of operating an autonomous 
vehicle 110 may be reduced . 
[ 0074 ] In some implementations , the one or more actions 
may include performing scene reconstruction utilizing the 
object viewpoint with object detection and depth estimation . 
For example , the viewpoint system 115 may identify the one 
or more vehicles and one or more additional objects depicted 
in the image based on an output of the object detection 
model . The viewpoint system 115 may utilize a depth 
estimation model that receives the image as an input and 
generates a depth image as an output . The depth image may 
include information indicating a distance of the one or more 
vehicles and the one or more additional objects from the 
vehicle 110. The viewpoint system 115 may generate a 
digital representation of the one or more vehicles and / or the 
one or more additional objects based on the viewpoint 
estimates , the distance of the one or more vehicles from the 
vehicle 110 , and / or the distance of the one or more addi 
tional objects from the vehicle 110. The digital representa 
tion and / or digital representations generated based on one or 
more other images , may be utilized to determine a series of 
events resulting in an occurrence of an event ( e.g. , an 
accident , a traffic violation , and / or the like ) and / or to provide 
an automated description of scenes depicted in video and / or 
still - image data . In this way , the viewpoint system 115 may 
analyze large amounts of video and / or still - image data 
relative to other systems for performing scene reconstruction 
and / or automated description of scenes , which improves an 
accuracy of the scene reconstruction and / or automated 
description of scenes . 
[ 0075 ] In some implementations , the one or more actions 
may include providing information identifying one or more 
lane directions of a roadway being traveled by the vehicle 
110. For example , the viewpoint system 115 may provide the 
information identifying the lane directions to an autonomous 
driving system of the vehicle 110 , to a network device 
associated with providing driving directions to a user device , 
the autonomous driving system , and / or the like , and / or the 
like . 
[ 0076 ] As an example , the vehicle device 105 may capture 
an image of a road having two lanes . The image includes a 
first vehicle in a first lane and a second vehicle in a second , 
adjacent lane . The viewpoint system 115 may obtain the 
image from the vehicle device 105 and may utilize the deep 
learning model to determine a direction each vehicle is 
facing relative to the vehicle device 105. The viewpoint 
system 115 may determine that the first vehicle is facing 
towards the vehicle device 105 ( e.g. , has an orientation of 

zero degrees ) and that the second vehicle is facing away 
from the vehicle device 105 ( e.g. , has an orientation of 180 
degrees ) . The viewpoint system 115 may determine a lane 
direction of the first lane is opposite to a lane direction of the 
second lane based on the first vehicle facing towards the 
vehicle device 105 and the second vehicle facing away from 
the vehicle device 105. The viewpoint system 115 may 
provide information identifying the lane directions to an 
autonomous driving system of the vehicle 110. In this way , 
information regarding changes to lane directions caused by 
accidents , construction , and / or the like may be propagated 
through the viewpoint system 115 more quickly and effi 
ciently relative to prior systems for propagating information 
identifying changes to lane directions . 
[ 0077 ] In some implementations , the one or more actions 
may include transmitting an instruction to an autonomous 
driving system of a vehicle . For example , the viewpoint 
system 115 may determine that the vehicle 110 is to perform 
a particular action ( e.g. , slow down , stop , turn , and / or the 
like ) based on the direction of travel , the lane direction of the 
roadway , and / or the like . The viewpoint system 115 may 
transmit an instruction to the autonomous driving system of 
the vehicle 110 to cause the autonomous driving system to 
cause the vehicle 110 to perform the particular action . In this 
way , one or more functions performed by the autonomous 
driving system may be performed by the viewpoint system 
115. By having the viewpoint system 115 perform one or 
more functions of the autonomous driving system , the 
autonomous driving system may utilize fewer computing 
resources to control the operation of the vehicle 110 . 
[ 0078 ] In some implementations , the one or more actions 
may include retraining the deep learning model based on the 
object viewpoint . For example , the image , information iden 
tifying the object viewpoint , and / or information identifying 
the ground truth azimuth of the one or more vehicles may be 
included in a dataset used to train the deep learning model 
to generate a modified dataset . The deep learning model may 
be re - trained based on the modified dataset in a manner 
similar to that described with respect to FIGS . 1A - 1E . In this 
way , an accuracy of the deep learning model with respect to 
determining the coarse - grained viewpoint estimate and / or 
the fine - grained viewpoint estimate may be increased . 
[ 0079 ] According to some implementations described 
herein , the viewpoint system 115 may determine an object 
viewpoint estimate based on an image of an object without 
obtaining additional data , without using expensive LIDAR , 
and with an accuracy that satisfies a threshold level of 
accuracy . In this way , the viewpoint system 115 may con 
serve computing resources ( e.g. , processing resource , 
memory resources , communication resources , and / or the 
like ) relative to prior systems used to determine object 
viewpoint estimation . 
[ 0080 ] As indicated above , FIGS . 1A - 1K are provided as 
an example . Other examples may differ from what is 
described with regard to FIGS . 1A - 1K . The number and 
arrangement of devices shown in FIGS . 1A - 1K are provided 
as an example . In practice , there may be additional devices , 
fewer devices , different devices , or differently arranged than 
those shown in FIGS . 1A - 1K . Furthermore , two or more 
devices shown in FIGS . 1A - 1K may be implemented within 
a single device , or a single device shown in FIGS . 1A - 1K 
may be implemented as multiple , distributed devices . Addi 
tionally , or alternatively , a set of devices ( e.g. , one or more 
devices ) shown in FIGS . 1A - 1K may perform one or more 
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functions described as being performed by another set of 
devices shown in FIGS . 1A - 1K . 
[ 0081 ] FIG . 2 is a diagram illustrating an example 200 of 
training a machine learning model . The machine learning 
model training described herein may be performed using a 
machine learning system . The machine learning system may 
include a computing device , a server , a cloud computing 
environment , and / or the like , such as viewpoint system 115 . 
[ 0082 ] As shown by reference number 205 , a machine 
learning model may be trained using a set of observations . 
The set of observations may be obtained and / or input from 
historical data , such as data gathered during one or more 
processes described herein . In some implementations , the 
machine learning system may receive the set of observations 
( e.g. , as input ) from the viewpoint system 115. In some 
implementations , the machine learning system may obtain 
the set of observations from a data structure ( e.g. , a data 
base ) stored in a memory . For example , the machine learning 
system may obtain the set of observations from a database 
storing an annotated dataset such as , for example , a nuS 
cenes dataset , a Pascal3D + dataset , a dataset including 
images annotated with object bounding boxes and orienta 
tion information , and / or the like . 
[ 0083 ] As shown by reference number 210 , a feature set 
may be derived from the set of observations . The feature set 
may include a set of variable types . A variable type may be 
referred to as a feature . A specific observation may include 
a set of variable values corresponding to the set of variable 
types . A set of variable values may be specific to an 
observation . In some cases , different observations may be 
associated with different sets of variable values , sometimes 
referred to as feature values . In some implementations , the 
machine learning system may determine variable values for 
a specific observation based on input received from view 
point system 115 and / or vehicle device 105. For example , 
the machine learning system may identify a feature set ( e.g. , 
one or more features and / or corresponding feature values ) 
from structured data input to the machine learning system , 
such as by extracting data from a particular column of a 
table , extracting data from a particular field of a form , 
extracting data from a particular field of a message , extract 
ing data received in a structured data format , and / or the like . 
In some implementations , the machine learning system may 
determine features ( e.g. , variables types ) for a feature set 
based on input received from viewpoint system 115 and / or 
vehicle device 105 , such as by extracting or generating a 
name for a column , extracting or generating a name for a 
field of a form and / or a message , extracting or generating a 
name based on a structured data format , and / or the like . 
Additionally , or alternatively , the machine learning system 
may receive input from an operator to determine features 
and / or feature values . In some implementations , the machine 
learning system may perform natural language processing 
and / or another feature identification technique to extract 
features ( e.g. , variable types ) and / or feature values ( e.g. , 
variable values ) from text ( e.g. , unstructured data ) input to 
the machine learning system , such as by identifying key 
words and / or values associated with those keywords from 
the text . 
[ 0084 ] As an example , a feature set for a set of observa 
tions may include a first feature , a second feature , a third 
feature , and so on . As shown , for a first observation , the first 
feature may have a value of fender , the second feature may 
have a value of headlights , the third feature may have a value 

of door , and so on . These features and feature values are 
provided as examples , and may differ in other examples . In 
some implementations , the machine learning system may 
perform one or more actions to pre - process and / or perform 
dimensionality reduction to reduce the feature set and / or 
combine features of the feature set to a minimum feature set . 
[ 0085 ] A machine learning model may be trained on the 
minimum feature set , thereby conserving resources of the 
machine learning system ( e.g. , processing resources , 
memory resources , and / or the like ) used to train the machine 
learning model . 
[ 0086 ] As shown by reference number 215 , the set of 
observations may be associated with a target variable type . 
The target variable type may represent a variable having a 
numeric value ( e.g. , an integer value , a floating point value , 
and / or the like ) , may represent a variable having a numeric 
value that falls within a range of values or has some discrete 
possible values , may represent a variable that is selectable 
from one of multiple options ( e.g. , one of multiples classes , 
classifications , labels , and / or the like ) , may represent a 
variable having a Boolean value ( e.g. , 0 or 1 , True or False , 
Yes or No ) , and / or the like . A target variable type may be 
associated with a target variable value , and a target variable 
value may be specific to an observation . In some cases , 
different observations may be associated with different tar 
get variable values . 
[ 0087 ] The target variable may represent a value that a 
machine learning model is being trained to predict , and the 
feature set may represent the variables that are input to a 
trained machine learning model to predict a value for the 
target variable . The set of observations may include target 
variable values so that the machine learning model can be 
trained to recognize patterns in the feature set that lead to a 
target variable value . A machine learning model that is 
trained to predict a target variable value may be referred to 
as a supervised learning model , predictive model , and / or 
the like . When the target variable type is associated with 
continuous target variable values ( e.g. , a range of numbers 
and / or the like ) , the machine learning model may employ a 
regression technique . When the target variable type is asso 
ciated with categorical target variable values ( e.g. , classes , 
labels , and / or the like ) , the machine learning model may 
employ a classification technique . 
[ 0088 ] In some implementations , the machine learning 
model may be trained on a set of observations that do not 
include a target variable ( or that include a target variable , but 
the machine learning model is not being executed to predict 
the target variable ) . This may be referred to as an unsuper 
vised learning model , an automated data analysis model , an 
automat signal extraction model , and / or the like . In this 
case , the machine learning model may learn patterns from 
the set of observations without labeling or supervision , and 
may provide output that indicates such patterns , such as by 
using clustering and / or association to identify related groups 
of items within the set of observations . 
[ 0089 ] As further shown , the machine learning system 
may partition the set of observations into a training set 220 
that includes a first subset of observations , of the set of 
observations , and a test set 225 that includes a second subset 
of observations of the set of observations . The training set 
220 may be used to train ( e.g. , fit , tune , and / or the like ) the 
machine learning model , while the test set 225 may be used 
to evaluate a machine learning model that is trained using 
the training set 220. For example , for supervised learning , 

a 

a a 
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the training set 220 may be used for initial model training 
using the first subset of observations , and the test set 225 
may be used to test whether the trained model accurately 
predicts target variables in the second subset of observa 
tions . In some implementations , the machine learning sys 
tem may partition the set of observations into the training set 
220 and the test set 225 by including a first portion or a first 
percentage of the set of observations in the training set 220 
( e.g. , 50 % , 75 % , 80 % , or 85 % , among other examples ) and 
including a second portion or a second percentage of the set 
of observations in the test set 225 ( e.g. , 50 % , 25 % , 20 % , or 
15 % , among other examples ) . In some implementations , the 
machine learning system may randomly select observations 
to be included in the training set 220 and / or the test set 225 . 
[ 0090 ] As shown by reference number 230 , the machine 
learning system may train a machine learning model using 
the training set 220. This training may include executing , by 
the machine learning system , a machine learning algorithm 
to determine a set of model parameters based on the training 
set 220. In some implementations , the machine learning 
algorithm may include a regression algorithm ( e.g. , linear 
regression , logistic regression , and / or the like ) , which may 
include a regularized regression algorithm ( e.g. , Lasso 
regression , Ridge regression , Elastic - Net regression , and / or 
the like ) . Additionally , or alternatively , the machine learning 
algorithm may include a decision tree algorithm , which may 
include a tree ensemble algorithm ( e.g. , generated using 
bagging and / or boosting ) , a random forest algorithm , a 
boosted trees algorithm , and / or the like . 
[ 0091 ] A model parameter may include an attribute of a 
machine learning model that is learned from data input into 
the model ( e.g. , the training set 220 ) . For example , for a 
regression algorithm , a model parameter may include a 
regression coefficient ( e.g. , a weight ) . For a decision tree 
algorithm , a model parameter may include a decision tree 
split location , as an example . 
[ 0092 ] As shown by reference number 235 , the machine 
learning system may use one or more hyperparameter sets 
240 to tune the machine learning model . A hyperparameter 
may include a structural parameter that controls execution of 
a machine learning algorithm by the machine learning 
system , such as a constraint applied to the machine learning 
algorithm . Unlike a model parameter , a hyperparameter is 
not learned from data input into the model . An example 
hyperparameter for a regularized regression algorithm 
includes a strength ( e.g. , a weight ) of a penalty applied to a 
regression coefficient to mitigate overfitting of the machine 
learning model to the training set 220. The penalty may be 
applied based on a size of a coefficient value ( e.g. , for Lasso 
regression , such as to penalize large coefficient values ) , may 
be applied based on a squared size of a coefficient value 
( e.g. , for Ridge regression , such as to penalize large squared 
coefficient values ) , may be applied based on a ratio of the 
size and the squared size ( e.g. , for Elastic - Net regression ) , 

be applied by setting one or more feature values to zero 
( e.g. , for automatic feature selection ) , and / or the like . 
Example hyperparameters for a decision tree algorithm 
include a tree ensemble technique to be applied ( e.g. , 
bagging , boosting , a random forest algorithm , a boosted 
trees algorithm , and / or the like ) , a number of features to 
evaluate , a number of observations to use , a maximum depth 
of each decision tree ( e.g. , a number of branches permitted 
for the decision tree ) , a number of decision trees to include 
in a random forest algorithm , and / or the like . 

[ 0093 ] To train a machine learning model , the machine 
learning system may identify a set of machine learning 
algorithms to be trained ( e.g. , based on operator input that 
identifies the one or more machine learning algorithms , 
based on random selection of a set of machine learning 
algorithms , and / or the like ) , and may train the set of machine 
learning algorithms ( e.g. , independently for each machine 
learning algorithm in the set ) using the training set 220. The 
machine learning system may tune each machine learning 
algorithm using one or more hyperparameter sets 240 ( e.g. , 
based on operator input that identifies hyperparameter sets 
240 to be used , based on randomly generating hyperparam 
eter values , and / or the like ) . The machine learning system 
may train a particular machine learning model using a 
specific machine learning algorithm and a corresponding 
hyperparameter set 240. In some implementations , the 
machine learning system may train multiple machine learn 
ing models to generate a set of model parameters for each 
machine learning model , where each machine learning 
model corresponds to a different combination of a machine 
learning algorithm and a hyperparameter set 240 for that 
machine learning algorithm . 
[ 0094 ] In some implementations , the machine learning 
system may perform cross - validation when training a 
machine learning model . Cross validation can be used to 
obtain a reliable estimate of machine learning model per 
formance using only the training set 220 , and without using 
the test set 225 , such as by splitting the training set 220 into 
a number of groups ( e.g. , based on operator input that 
identifies the number of groups , based on randomly select 
ing a number of groups , and / or the like ) and using those 
groups to estimate model performance . For example , using 
k - fold cross - validation , observations in the training set 220 
may be split into k groups ( e.g. , in order or at random ) . For 
a training procedure , one group may be marked as a hold - out 
group , and the remaining groups may be marked as training 
groups . For the training procedure , the machine learning 
system may train a machine learning model on the training 
groups and then test the machine learning model on the 
hold - out group to generate a cross - validation score . The 
machine learning system may repeat this training procedure 
using different hold - out groups and different test groups to 
generate a cross - validation score for each training proce 
dure . In some implementations , the machine learning system 
may independently train the machine learning model k 
times , with each individual group being used as a hold - out 
group once and being used as a training group k - 1 times . 
The machine learning system may combine the cross - vali 
dation scores for each training procedure to generate an 
overall cross - validation score for the machine learning 
model . The overall cross - validation score may include , for 
example , an average cross - validation score ( e.g. , across all 
training procedures ) , a standard deviation across cross 
validation scores , a standard error across cross - validation 
scores , and / or the like . 
[ 0095 ] In some implementations , the machine learning 
system may perform cross - validation when training a 
machine learning model by splitting the training set into a 
number of groups ( e.g. , based on operator input that iden 
tifies the number of groups , based on randomly selecting a 
number of groups , and / or the like ) . The machine learning 
system may perform multiple training procedures and may 
generate a cross - validation score for each training proce 
dure . The machine learning system may generate an overall 

may 
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cross - validation score for each hyperparameter set 240 asso 
ciated with a particular machine learning algorithm . The 
machine learning system may compare the overall cross 
validation scores for different hyperparameter sets 240 asso 
ciated with the particular machine learning algorithm , and 
may select the hyperparameter set 240 with the best ( e.g. , 
highest accuracy , lowest error , closest to a desired threshold , 
and / or the like ) overall cross - validation score for training the 
machine learning model . The machine learning system may 
then train the machine learning model using the selected 
hyperparameter set 240 , without cross - validation ( e.g. , using 
all of data in the training set 220 without any hold - out 
groups ) , to generate a single machine learning model for a 
particular machine learning algorithm . The machine learn 
ing system may then test this machine learning model using 
the test set 225 to generate a performance score , such as a 
mean squared error ( e.g. , for regression ) , a mean absolute 
error ( e.g. , for regression ) , an area under receiver operating 
characteristic curve ( e.g. , for classification ) , and / or the like . 
If the machine learning model performs adequately ( e.g. , 
with a performance score that satisfies a threshold ) , then the 
machine learning system may store that machine learning 
model as a trained machine learning model 245 to be used 
to analyze new observations , as described below in connec 
tion with FIG . 3 . 
[ 0096 ] In some implementations , the machine learning 
system may perform cross - validation , as described above , 
for multiple machine learning algorithms ( e.g. , indepen 
dently ) , such as a regularized regression algorithm , different 
types of regularized regression algorithms , a decision tree 
algorithm , different types of decision tree algorithms , and / or 
the like . Based on performing cross - validation for multiple 
machine learning algorithms , the machine learning system 
may generate multiple machine learning models , where each 
machine learning model has the best overall cross - validation 
score for a corresponding machine learning algorithm . The 
machine learning system may then train each machine 
learning model using the entire training set 220 ( e.g. , with 
out cross - validation ) , and may test each machine learning 
model using the test set 225 to generate a corresponding 
performance score for each machine learning model . The 
machine learning model may compare the performance 
scores for each machine learning model , and may select the 
machine learning model with the best ( e.g. , highest accu 
racy , lowest error , closest to a desired threshold , and / or the 
like ) performance score as the trained machine learning 
model 245 . 
[ 0097 ] As indicated above , FIG . 2 is provided as an 
example . Other examples may differ from what is described 
in connection with FIG . 2. For example , the machine learn 
ing model may be trained using a different process than what 
is described in connection with FIG . 2. Additionally , or 
alternatively , the machine learning model may employ a 
different machine learning algorithm than what is described 
in connection with FIG . 2 , such as a Bayesian estimation 
algorithm , a k - nearest neighbor algorithm , an a priori algo 
rithm , a k - means algorithm , a support vector machine algo 
rithm , a neural network algorithm ( e.g. , a convolutional 
neural network algorithm ) , a deep learning algorithm , and / or 
the like . 
[ 0098 ] FIG . 3 is a diagram illustrating an example 300 of 
applying a trained machine learning model to a new obser 
vation . The new observation may be input to a machine 
learning system that stores a trained machine learning model 

305. In some implementations , the trained machine learning 
model 305 may be the trained machine learning model 245 
described above in connection with FIG . 2. The machine 
learning system may include a computing device , a server , 
a cloud computing environment , and / or the like , such as 
viewpoint system 115 . 
[ 0099 ] As shown by reference number 310 , the machine 
learning system may receive a new observation ( or a set of 
new observations ) , and may input the new observation to the 
machine learning model 305. As shown , the new observation 
may include a first feature , a second feature , a third feature , 
and so on , as an example . The machine learning system may 
apply the trained machine learning model 305 to the new 
observation to generate an output ( e.g. , a result ) . The type of 
output may depend on the type of machine learning model 
and / or the type of machine learning task being performed . 
For example , the output may include a predicted ( e.g. , 
estimated ) value of target variable ( e.g. , a value within a 
continuous range of values , a discrete value , a label , a class , 
a classification , and / or the like ) , such as when supervised 
learning is employed . Additionally , or alternatively , the 
output may include information that identifies a cluster to 
which the new observation belongs , information that indi 
cates a degree of similarity between the new observation and 
one or more prior observations ( e.g. , which may have 
previously been new observations input to the machine 
learning model and / or observations used to train the 
machine learning model ) , and / or the like , such as when 
unsupervised learning is employed . 
[ 0100 ] In some implementations , the trained machine 
learning model 305 may predict a value of an azimuth angle 
for the target variable of determined viewpoint for the new 
observation , as shown by reference number 315. Based on 
this prediction ( e.g. , based on the value having a particular 
label / classification , based on the value satisfying or failing 
to satisfy a threshold , and / or the like ) , the machine learning 
system may output information , such as information iden 
tifying a type of vehicle detected in an image ( e.g. , car , 
truck , motorcycle , and / or the like ) , information identifying 
a make of a vehicle detected in an image , information 
identifying a location of the vehicle within the image , and / or 
the like . Additionally , or alternatively , the machine learning 
system may perform an automated action and / or may cause 
an automated action to be performed ( e.g. , by instructing 
another device to perform the automated action ) , such as 
providing a result output by the machine learning model to 
be input into another machine learning model , extracting the 
image of an object from the image , and / or the like . In some 
implementations , the recommendation and / or the automated 
action may be based on the target variable value having a 
particular label ( e.g. , classification , categorization , and / or 
the like ) , may be based on whether the target variable value 
satisfies one or more threshold ( e.g. , whether the target 
variable value is greater than a threshold , is less than a 
threshold , is equal to a threshold , falls within a range of 
threshold values , and / or the like ) , and / or the like . 
[ 0101 ] In some implementations , the trained machine 
learning model 305 may classify ( e.g. , cluster ) the new 
observation in a cluster , as shown by reference number 320 . 
The observations within a cluster may have a threshold 
degree of similarity ( e.g. , associated with an object view 
point estimation within a same range of azimuth angles ) . 
Based on classifying the new observation in the cluster , the 
machine learning system may provide information , such a 
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information indicating that the image includes multiple 
objects of a same type ( e.g. , multiple vehicles ) , information 
indicating that the image includes a single object of a 
particular type ( e.g. , a single vehicle ) , information indicating 
a classification associated with the object , and / or the like . 
Additionally , or alternatively , the machine learning system 
may perform an automated action and / or may cause an 
automated action to be performed ( e.g. , by instructing 
another device to perform the automated action ) , such as 
extracting an image of an object from the image , providing 
the image to another device , providing information identi 
fying a location of an object within the image to another 
device , and / or the like . 
[ 0102 ] In this way , the machine learning system may apply 
a rigorous and automated process to determining object 
viewpoint estimations . The machine learning system enables 
recognition and / or identification of tens , hundreds , thou 
sands , or millions of features and / or feature values for tens , 
hundreds , thousands , or millions of observations , thereby 
increasing an accuracy and consistency of determining 
object viewpoint estimations relative to requiring computing 
resources to be allocated for tens , hundreds , or thousands of 
operators to manually determine object viewpoint estima 
tions and / or to use another type of deep learning model to 
determine object viewpoint estimations using the features or 
feature values . 

[ 0103 ] As indicated above , FIG . 3 is provided as an 
example . Other examples may differ from what is described 
in connection with FIG . 3 . 
[ 0104 ] FIG . 4 is a diagram of an example environment 400 
in which systems and / or methods described herein may be 
implemented . As shown in FIG . 4 , environment 400 may 
include a viewpoint system 115. The viewpoint system 115 
may include one or more elements of a cloud computing 
system 402 and / or may execute within the cloud computing 
system 402 ( e.g. , as one or more virtual computing systems 
406 ) . The cloud computing system 402 may include one or 
more elements 403-417 , as described in more detail below . 
As further shown in FIG . 4 , environment 400 may include 
a network 420 and / or a vehicle device 105. Devices of 
environment 400 may interconnect via wired connections , 
wireless connections , or a combination of wired and wire 
less connections . 
[ 0105 ] The cloud computing system 402 includes com 
puting hardware 403 , a resource management component 
404 , a host operating system ( OS ) 405 , and / or one or more 
virtual computing systems 406. The resource management 
component 404 may perform virtualization ( e.g. , abstrac 
tion ) of computing hardware 403 to create the one or more 
virtual computing systems 406. Using such virtualization , 
the resource management component 404 enables a single 
computing device ( e.g. , a computer , a server , a host device , 
and / or the like ) to operate as if the single computing device 
were multiple computing devices , such as by creating mul 
tiple isolated virtual computing systems 406 from comput 
ing hardware 403 of the single computing device . The 
multiple virtual computing systems 406 operate indepen 
dently from one another and do not interact with one 
another . In this way , computing hardware 403 can operate 
more efficiently , with lower power consumption , higher 
reliability , higher availability , higher utilization , greater 
flexibility , and lower cost than using separate computing 
devices . 

[ 0106 ] Computing hardware 403 includes hardware and 
corresponding resources from one or more computing 
devices . For example , computing hardware 403 may include 
hardware from a single computing device ( e.g. , a single 
server or host device ) or from multiple computing devices 
( e.g. , multiple servers or host devices ) , such as multiple 
computing devices in one or more data centers , server farms , 
server pools , and / or the like . As shown , computing hardware 

include one or more processors 407 , one or more 
memories 408 , one or more storage components 409 , and / or 
one or more networking components 410. Computing hard 
ware 403 may be interconnected via one or more wired 
and / or wireless buses , which may interconnect computing 
hardware 403 within a single computing device and / or 
across multiple computing devices . 
[ 0107 ] A processor 407 includes a central processing unit , 
a graphics processing unit , and / or the like . A memory 408 
includes random access memory , read - only memory , and / or 
the like . The memory 408 may store a set of instructions 
( e.g. , one or more instructions ) for execution by the proces 
sor 407. The processor 407 may execute the set of instruc 
tions to perform one or more operations or processes 
described herein . In some implementations , execution of the 
set of instructions , by one or more processors 407 , causes the 
one or more processors 407 and / or the viewpoint system 115 
to perform one or more operations or processes described 
herein . A storage component 409 includes a hard disk or 
another type of storage device that stores information , data , 
and / or software ( e.g. , code , instructions , and / or the like ) 
related to the operation and use of the viewpoint system 115 . 
In some implementations , memory 408 and / or storage com 
ponent 409 is / are implemented as a non - transitory computer 
readable medium . A networking component 410 includes a 
network interface and corresponding hardware that enables 
the viewpoint system 115 to communicate with other 
devices of environment 400 via a wired connection and / or a 
wireless connection , such as via network 420. Additional 
examples of a processor , a memory , a storage component , 
and a networking component ( e.g. , a communication inter 
face ) are described elsewhere herein . 
[ 0108 ] The resource management component 404 includes 
a virtualization application ( e.g. , executing on hardware , 
such as computing hardware 403 ) capable of virtualizing 
computing hardware 403 to start ( e.g. , create or spin up ) , 
stop ( e.g. , delete or tear down ) , and / or manage one or more 
virtual computing systems 406. Such virtualization may 
include operating system virtualization , shared kernel vir 
tualization ( e.g. , container - based virtualization ) , kernel level 
virtualization , hypervisor virtualization , paravirtualization , 
full virtualization , hardware virtualization , and / or the like . 
The resource management component 404 may control 
access to and / or use of computing hardware 403 and / or 
software executing on computing hardware 403. Addition 
ally , or alternatively , the resource management component 
404 may perform binary rewriting to scan instructions 
received from a virtual computing system 406 and replace 
any privileged instructions with safe emulations of those 
instructions . The resource management component 404 may 
include a hypervisor or a virtual machine monitor , such as 
when the virtual computing systems 406 are virtual 
machines 411. Additionally , or alternatively , the resource 
management component 404 may include a container man 
ager , such as when the virtual computing systems 406 are 
containers 412 . 
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[ 0109 ] In some implementations , the resource manage 
ment component 404 executes within and / or in coordination 
with a host operating system 405. For example , the resource 
management component 404 may execute on top of the host 
operating system 405 rather than interacting directly with 
computing hardware 403 , such as when the resource man 
agement component 404 is a hosted hypervisor ( e.g. , a Type 
2 hypervisor ) or a container manager . In this case , the host 
operating system 405 may control access to and / or use of 
computing hardware 403 and / or software executing on com 
puting hardware 403 based on information and / or instruc 
tions received from the resource management component 
404. Alternatively , the resource management component 
404 may interact directly with computing hardware 403 
rather than interacting with the host operating system 405 , 
such as when the resource management component 404 is a 
bare - metal hypervisor ( e.g. , a Type 1 hypervisor ) . Thus , in 
some implementations , the cloud computing system 402 
does not include a host operating system 405. In some 
implementations , the host operating system 405 includes 
and / or executes an administrator application to enable a 
system administrator to manage , customize , and / or config 
ure cloud computing system 402 . 
[ 0110 ] A virtual computing system 406 includes a virtual 
environment that enables cloud - based execution of opera 
tions and / or processes described herein using computing 
hardware 403. As shown , a virtual computing system 406 
may include a virtual machine 411 , a container 412 , a hybrid 
environment 413 that includes a virtual machine and a 
container , and / or the like . A virtual computing system 406 
may execute one or more applications 414 using a file 
system 415. The file system 415 may include binary files , 
software libraries , and / or other resources required to execute 
applications 414 on a guest operating system 416 or the host 
operating system 405. In some implementations , a virtual 
computing system 406 ( e.g. , a virtual machine 411 or a 
hybrid environment 413 ) includes a guest operating system 
416. In some implementations , a virtual computing system 
406 ( e.g. , a container 412 or a hybrid environment 413 ) 
includes a container manager 417 . 
[ 0111 ] A virtual machine 411 is an emulation of a com 
puting device that enables execution of separate , isolated 
instances of virtual computing devices ( e.g. , multiple virtual 
machines 411 ) on the same computing hardware 403. The 
guest operating systems 416 and applications 414 of mul 
tiple virtual machines 411 may share computing hardware 
403 from a single computing device or from multiple 
computing devices ( e.g. , a pool of computing devices ) . Each 
separate virtual machine 411 may include a guest operating 
system 416 , a file system 415 , and one or more applications 
414. With a virtual machine 411 , the underlying computing 
hardware 403 is virtualized , and the guest operating system 
416 executes on top of this virtualized hardware . Using 
virtual machines 411 enables different types of guest oper 
ating systems 416 to execute on the same computing hard 
ware 403 in an isolated environment , but with more resource 
usage and overhead than containers 412 . 
[ 0112 ] Unlike a virtual machine 411 , a container 412 
virtualizes a host operating system 405 rather than the 
underlying computing hardware 403. Thus , a container 412 
does not require a guest operating system 416 because the 
application ( s ) 414 included in the container 412 execute 
directly on the host operating system 405 using a file system 
415 included in the container 412. Each separate container 

412 may share the kernel of the host operating system 405 , 
and different applications 414 within a single container 412 
may share a file system 415. This sharing of a file system 
415 among multiple applications 414 reduces the need to 
reproduce operating system code for different applications , 
and enables a single host operating system 405 to execute 
multiple applications 414 and / or containers 412. As a result , 
containers 412 enable a greater quantity of applications 414 
to execute on a smaller quantity of computing devices as 
compared to virtual machines 411 . 
[ 0113 ] A hybrid environment 413 includes elements of a 
virtual machine 411 and a container 412. For example , a 
hybrid environment 413 may include a guest operating 
system 416 that executes on top of virtualized hardware . A 
container manager 417 may execute on top of the guest 
operating system 416 to start , stop , and / or manage one or 
more containers within the hybrid environment 413. Using 
a hybrid environment 413 enables different types of guest 
operating systems 416 to execute on the same computing 
hardware 403 in an isolated environment , while also 
enabling lightweight containers to execute on top of the 
guest operating system 416 . 
[ 0114 ] The quantity of applications 414 shown in FIG . 4 
as executing within each virtual computing system 406 is 
shown as an example , and a different quantity of applica 
tions 414 may execute within each virtual computing sys 
tem . Furthermore , although the viewpoint system 115 may 
include one or more elements 403-417 of the cloud com 
puting system 402 , may execute within the cloud computing 
system 402 , and / or may be hosted within the cloud com 
puting system 402 , in some implementations , the viewpoint 
system 115 may not be cloud - based ( e.g. , may be imple 
mented outside of a cloud computing system ) or may be 
partially cloud - based . For example , the viewpoint system 
115 may include one or more devices that are not part of the 
cloud computing system 402 , such as device 500 of FIG . 5 , 
which may include a standalone server or another type of 
computing device . The viewpoint system 115 may perform 
one or more operations and / or processes described in more 
detail elsewhere herein . 
[ 0115 ] Network 420 includes one or more wired and / or 
wireless networks . For example , network 420 may include 
cellular network ( e.g. , a fifth generation ( 56 ) network , a 
fourth generation ( 4G ) network , a long - term evolution 
( LTE ) network , a third generation ( 3G ) network , a code 
division multiple access ( CDMA ) network , etc. ) , a public 
land mobile network ( PLMN ) , a local area network ( LAN ) , 
a wide area network ( WAN ) , a metropolitan area network 
( MAN ) , a telephone network ( e.g. , the Public Switched 
Telephone Network ( PSTN ) ) , a private network , an ad hoc 
network , an intranet , the Internet , a fiber optic - based net 
work , and / or the like , and / or a combination of these or other 
types of networks . The network 420 enables communication 
among the devices of environment 400 . 
[ 0116 ] The vehicle device 105 includes one or more 
devices capable of receiving , generating , storing , process 
ing , and / or providing information , such as information 
described herein . For example , vehicle device 105 may 
include a device included in a vehicle ( e.g. , vehicle 110 ) for 
obtaining image data associated with the vehicle traveling 
along a route . For example , vehicle device 105 may include 
a video camera , a dash camera , a parking assist camera , a 
backup assist camera , a thermal camera , lidar , radar , and / or 
the like . In some implementations , vehicle device 105 may 
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include a device for obtaining other types of data associated 
with the vehicle 110 traveling along a route . For example , 
vehicle device 105 may include an inertial measurement 
unit , a three - axis accelerometer , a gyroscope , a global posi 
tioning system ( GPS ) device , an OBD device , an ECU , 
and / or the like . 
[ 0117 ] The number and arrangement of devices and net 
works shown in FIG . 4 are provided as an example . In 
practice , there may be additional devices and / or networks , 
fewer devices and / or networks , different devices and / or 
networks , or differently arranged devices and / or networks 
than those shown in FIG . 4. Furthermore , two or more 
devices shown in FIG . 4 may be implemented within a 
single device , or a single device shown in FIG . 4 may be 
implemented as multiple , distributed devices . Additionally , 
or alternatively , a set of devices ( e.g. , one or more devices ) 
of environment 400 may perform one or more functions 
described as being performed by another set of devices of 
environment 400 . 
[ 0118 ] FIG . 5 is a diagram of example components of a 
device 500. Device 500 may correspond to viewpoint sys 
tem 115 and / or vehicle device 105. In some implementa 
tions , viewpoint system 115 and / or vehicle device 105 may 
include one or more devices 500 and / or one or more 
components of device 500. As shown in FIG . 5 , device 500 
may include a bus 510 , one or more processor ( s ) 520 , a 
memory 530 , a storage component 540 , an input component 
550 , an output component 560 , and a communication inter 
face 570 . 
[ 0119 ] Bus 510 includes a component that permits com 
munication among the components of device 500. Processor 
520 is implemented in hardware , firmware , or a combination 
of hardware and software . Processor 520 is a central pro 
cessing unit ( CPU ) , a graphics processing unit ( GPU ) , an 
accelerated processing unit ( APU ) , a microprocessor , a 
microcontroller , a digital signal processor ( DSP ) , a field 
programmable gate array ( FPGA ) , an application - specific 
integrated circuit ( ASIC ) , or another type of processing 
component . In some implementations , processor 520 
includes one or more processors capable of being pro 
grammed to perform a function . Memory 530 includes a 
random access memory ( RAM ) , a read only memory 
( ROM ) , and / or another type of dynamic or static storage 
device ( e.g. , a flash memory , a magnetic memory , and / or an 
optical memory ) that stores information and / or instructions 
for use by processor 520 . 
[ 0120 ] Storage component 540 stores information and / or 
software related to the operation and use of device 500. For 
example , storage component 540 may include a hard disk 
( e.g. , a magnetic disk , an optical disk , a magneto - optic disk , 
and / or a solid state disk ) , a compact disc ( CD ) , a digital 
versatile disc ( DVD ) , a floppy disk , a cartridge , a magnetic 
tape , and / or another type of non - transitory computer - read 
able medium , along with a corresponding drive . 
[ 0121 ] Input component 550 includes a component that 
permits device 500 to receive information , such as via user 
input ( e.g. , a touch screen display , a keyboard , a keypad , a 
mouse , a button , a switch , and / or a microphone ) . Addition 
ally , or alternatively , input component 550 may include a 
sensor for sensing information ( e.g. , a global positioning 
system ( GPS ) component , an accelerometer , a gyroscope , 
and / or an actuator ) . Output component 560 includes a com 
ponent that provides output information from device 500 
( e.g. , a display , a speaker , and / or one or more LEDs ) . 

[ 0122 ] Communication interface 570 includes a trans 
ceiver - like component ( e.g. , a transceiver and / or a separate 
receiver and transmitter ) that enables device 500 to com 
municate with other devices , such as via a wired connection , 
a wireless connection , or a combination of wired and wire 
less connections . Communication interface 570 may permit 
device 500 to receive information from another device 
and / or provide information to another device . For example , 
communication interface 570 may include an Ethernet inter 
face , an optical interface , a coaxial interface , an infrared 
interface , an RF interface , a universal serial bus ( USB ) 
interface , a wireless local area interface , a cellular network 
interface , and / or the like . 
[ 0123 ] Device 500 may perform one or more processes 
described herein . Device 500 may perform these processes 
based on processor 520 executing software instructions 
stored by a non - transitory computer - readable medium , such 
as memory 530 and / or storage component 540. A computer 
readable medium is defined herein as a non - transitory 
memory device . A memory device includes memory space 
within a single physical storage device or memory space 
spread across multiple physical storage devices . 
[ 0124 ] Software instructions may be read into memory 
530 and / or storage component 540 from another computer 
readable medium or from another device via communication 
interface 570. When executed , software instructions stored 
in memory 530 and / or storage component 540 may cause 
processor 520 to perform one or more processes described 
herein . Additionally , or alternatively , hardwired circuitry 
may be used in place of or in combination with software 
instructions to perform one or more processes described 
herein . Thus , implementations described herein are not 
limited to any specific combination of hardware circuitry 
and software . 
[ 0125 ] The number and arrangement of components 
shown in FIG . 5 are provided as an example . In practice , 
device 500 may include additional components , fewer com 
ponents , different components , or differently arranged com 
ponents than those shown in FIG . 5. Additionally , or alter 
natively , a set of components ( e.g. , one or more components ) 
of device 500 may perform one or more functions described 
as being performed by another set of components of device 
500 . 

[ 0126 ] FIG . 6 is a flow chart of an example process 600 for 
relating to utilizing a deep learning model to determine 
vehicle viewpoint estimations . In some implementations , 
one or more process blocks of FIG . 6 may be performed by 
a device ( e.g. , viewpoint system 115 ) . In some implemen 
tations , one or more process blocks of FIG . 6 may be 
performed by another device or a group of devices separate 
from or including the device , such as vehicle device 105 
and / or the like . Additionally , or alternatively , one or more 
process blocks of FIG . 6 may be performed by one or more 
components of a device 300 , such as processor 520 , memory 
530 , storage component 540 , input component 550 , output 
component 560 , communication interface 570 , and / or the 
like . 

[ 0127 ] As shown in FIG . 6 , process 600 may include 
receiving a first image ( block 610 ) . For example , the device 
may receive a first image , as described above . The device 
may receive the first image from a vehicle device of a 
vehicle . The vehicle device may include a single dash 
camera provided in the vehicle . 
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[ 0128 ] As further shown in FIG . 1 , process 600 may 
include processing the first image to identify an object in the 
first image and a location of the object within the first image 
( block 620 ) . For example , the device may process the first 
image to identify an object in the first image and a location 
of the object within the first image , as described above . In 
some implementations , the device may use an object detec 
tion model to process the first image . The object detection 
model may include one or more of a “ you only look once 
model ” , “ a single - shot detector model ” , or a “ faster region 
convolutional neural network model ” . 
[ 0129 ] As further shown in FIG . 6 , process 600 may 
include extracting the second image from the first image 
based on the location of the object within the first image 
( block 630 ) . For example , the device may extract the second 
image from the first image based on the location of the 
object within the first image , as described above . 
[ 0130 ] As further shown in FIG . 6 , process 600 may 
include processing the second image to determine at least 
one of a coarse - grained viewpoint estimate or a fine - grained 
viewpoint estimate associated with the object ( block 640 ) . 
For example , the device may process the second image to 
determine a coarse - grained viewpoint estimate or a fine 
grained viewpoint estimate associated with the object , as 
described above . The coarse - grained viewpoint estimate 
may be associated with a first range of azimuth angles . The 
fine - grained viewpoint estimate may be associated with a 
second range of azimuth angles that is less than the first 
range of azimuth angles . 
[ 0131 ] In some implementations , the device may process 
the second object with a deep learning model . The deep 
learning model may include one or more of a convolutional 
neural network model , a Siamese neural network model , or 
a combination of a convolutional neural network model and 
a Siamese neural network model . Process 600 may include 
training the deep learning model , based on the image data 
and a Siamese technique , to generate a trained deep learning 
model . 
[ 0132 ] The deep learning model may be trained based on 
image data identifying driving scenes captured by vehicle 
devices at different positions in vehicles . 
[ 0133 ] Process 600 may include applying , prior to training 
the deep learning model , random horizontal flipping to 
images of the image data ; and normalizing , prior to training 
the deep learning model , the images of the image data by 
subtracting a mean and dividing by a standard deviation of 
the image data . In some implementations , the deep learning 
model determines a plurality of coarse - grained viewpoint 
estimates and a plurality of fine - grained viewpoint esti 
mates . 
[ 0134 ] In some implementations , processing the second 
image comprises providing an output of the object detection 
model as an input to a neural network portion of the deep 
learning model , and determining the coarse - grained view 
point and the fine - grained viewpoint based on an output of 
the neural network portion of the deep learning model . 
[ 0135 ] In some implementations , processing the second 
image further comprises providing the output of the neural 
network portion of the deep learning model to a pooling 
layer of the deep learning model and the coarse - grained 
viewpoint and the fine - grained viewpoint may be deter 
mined based on an output of the pooling layer . 
[ 0136 ] Alternatively , and / or additionally , processing the 
second image may comprise processing the second image to 

determine a series of probabilities ; grouping the series of 
probabilities into a first quantity of groups ; determining the 
coarse - grained viewpoint estimate based on grouping the 
series of probabilities into the first quantity of groups ; 
grouping the series of probabilities into a second quantity of 
groups , the second quantity is greater than the first quantity , 
and determining the fine - grained viewpoint estimate based 
on grouping the series of probabilities into the second 
quantity of groups . 
[ 0137 ] As further shown in FIG . 6 , process 600 may 
include determining that the at least one of the coarse grained object viewpoint estimate or the fine - grained object 
viewpoint estimate satisfies a threshold ( block 650 ) . For 
example , the device may determine that the at least one of 
the coarse - grained object viewpoint estimate or the fine 
grained object viewpoint estimate satisfies a threshold , as 
described above . 
[ 0138 ] As further shown in FIG . 6 , process 600 may 
include determining an object viewpoint associated with the 
object based on the at least one of the coarse - grained 
viewpoint estimate or the fine - grained viewpoint estimate 
( block 660 ) . For example , the device may determine an 
object viewpoint associated with the object based on at least 
one of the coarse - grained viewpoint estimate or the fine 
grained viewpoint estimate , as described above . 
[ 0139 ] In some implementations , determining the object 
viewpoint comprises determining that an accuracy associ 
ated with the fine - grained viewpoint estimate satisfies the 
threshold , and determining the object viewpoint based on 
the fine - grained viewpoint estimate based on the fine 
grained viewpoint estimate satisfying the threshold . 
[ 0140 ] Alternatively , and / or additionally , determining the 
object viewpoint may comprise determining a first confi 
dence level associated with the coarse - grained viewpoint 
estimate and a second confidence level associated with the 
fine - grained viewpoint estimate ; determining that the first 
confidence level satisfies a threshold ; determining that the 
second confidence level fails to satisfy a threshold ; and 
determining the object viewpoint based on the coarse 
grained viewpoint estimate based on the first confidence 
level satisfying the threshold and based on the second 
confidence level failing to satisfy the threshold . 
[ 0141 ] In some implementations , process 600 may include 
determining that an accuracy associated with a fine - grained 
viewpoint estimate , of one or more fine - grained viewpoint 
estimates determined by the deep learning model , satisfies a 
threshold ; and determining that a granularity associated with 
the fine - grained viewpoint estimate is a finer granularity 
relative to other fine - grained viewpoint estimates , of the one 
or more fine - grained viewpoint estimates , and a granularity 
of one or more coarse - grained viewpoint estimates deter 
mined by the deep learning model . The object viewpoint 
may be determined based on the fine - grained viewpoint 
estimate based on the accuracy information associated with 
the fine - grained viewpoint estimate satisfying the threshold 
and the granularity associated with the fine - grained view 
point estimate being the finer granularity . 
[ 0142 ] Process 600 may include determining a direction 
an object ( e.g. , a vehicle ) is facing based on the object 
viewpoint . 
[ 0143 ] As further shown in FIG . 6 , process 600 may 
include performing one or more actions based on the object 
viewpoint ( block 670 ) . For example , the device may per 
form one or more actions based on the object viewpoint , as 
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described above . Performing the one or more actions may 
include providing information identifying the object view 
point to a vehicle . 
[ 0144 ] Process 600 may further include determining , 
based on the object viewpoint , a direction of travel associ 
ated with the object . 
[ 0145 ] Although FIG . 6 shows example blocks of process 
600 , in some implementations , process 600 may include 
additional blocks , fewer blocks , different blocks , or differ 
ently arranged blocks than those depicted in FIG . 6. Addi 
tionally , or alternatively , two or more of the blocks of 
process 600 may be performed in parallel . 
[ 0146 ] The foregoing disclosure provides illustration and 
description , but is not intended to be exhaustive or to limit 
the implementations to the precise form disclosed . Modifi 
cations and variations may be made in light of the above 
disclosure or may be acquired from practice of the imple 
mentations . 
[ 0147 ] As used herein , the term “ component ” is intended 
to be broadly construed as hardware , firmware , or a com 
bination of hardware and software . 
[ 0148 ] To the extent the aforementioned implementations 
collect , store , or employ personal information of individuals , 
it should be understood that such information shall be used 
in accordance with all applicable laws concerning protection 
of personal information . Additionally , the collection , stor 
age , and use of such information can be subject to consent 
of the individual to such activity , for example , through well 
known “ opt - in ” or “ opt - out ” processes as can be appropriate 
for the situation and type of information . Storage and use of 
personal information can be in an appropriately secure 
manner reflective of the type of information , for example , 
through various encryption and anonymization techniques 
for particularly sensitive information . 
[ 0149 ] It will be apparent that systems and / or methods 
described herein may be implemented in different forms of 
hardware , firmware , and / or a combination of hardware and 
software . The actual specialized control hardware or soft 
ware code used to implement these systems and / or methods 
is not limiting of the implementations . Thus , the operation 
and behavior of the systems and / or methods are described 
herein without reference to specific software code it being 
understood that software and hardware can be used to 
implement the systems and / or methods based on the descrip 
tion herein . 
[ 0150 ] Even though particular combinations of features 
are recited in the claims and / or disclosed in the specification , 
these combinations are not intended to limit the disclosure of 
various implementations . In fact , many of these features 
may be combined in ways not specifically recited in the 
claims and / or disclosed in the specification . Although each 
dependent claim listed below may directly depend on only 
one claim , the disclosure of various implementations 
includes each dependent claim in combination with every 
other claim in the claim set . 
[ 0151 ] No element , act , or instruction used herein should 
be construed as critical or essential unless explicitly 
described as such . Also , as used herein , the articles “ a ” and 
“ an ” are intended to include one or more items , and may be 
used interchangeably with " one or more . ” Further , as used 
herein , the article “ the ” is intended to include one or more 
items referenced in connection with the article “ the ” and 
may be used interchangeably with " the one or more . " 
Furthermore , as used herein , the term “ set ” is intended to 

include one or more items ( e.g. , related items , unrelated 
items , a combination of related and unrelated items , etc. ) , 
and may be used interchangeably with “ one or more . 
Where only one item is intended , the phrase " only one ” or 
similar language is used . Also , as used herein , the terms 
“ has , " " have , ” “ having , ” or the like are intended to be 
open - ended terms . Further , the phrase “ based on ” is intended 
to mean “ based , at least in part , on ” unless explicitly stated 
otherwise . Also , as used herein , the term “ or ” is intended to 
be inclusive when used in a series and may be used inter 
changeably with " and / or , " unless explicitly stated otherwise 
( e.g. , if used in combination with “ either ” or “ only one of ” ) . 
What is claimed is : 
1. A method comprising : 
receiving , by a device , a first image ; 
processing , by the device , the first image to identify an 

object in the first image and a location of the object 
within the first image ; 

extracting , by the device , a second image from the first 
image based on the location of the object within the first 
image ; 

processing , by the device , the second image to determine 
at least one of a coarse - grained viewpoint estimate or a 
fine - grained viewpoint estimate associated with the 
object ; 

determining , by the device , that the at least one of the 
coarse - grained viewpoint estimate or the fine - grained 
viewpoint estimate satisfies a threshold ; 

determining , by the device , an object viewpoint associ 
ated with the object based on the at least one of the 
coarse - grained viewpoint estimate or the fine - grained 
viewpoint estimate satisfying the threshold ; and 

performing , by the device , one or more actions based on 
the object viewpoint . 

2. The method of claim 1 , wherein processing the second 
image comprises : 

processing the second image to determine a series of 
probabilities ; 

grouping the series of probabilities into a first quantity of 
groups ; 

determining the coarse - grained viewpoint estimate based 
on grouping the series of probabilities into the first 
quantity of groups ; 

grouping the series of probabilities into a second quantity 
of groups , 
wherein the second quantity of groups is greater than 

the first quantity of groups ; and 
determining the fine - grained viewpoint estimate based on 

grouping the series of probabilities into the second 
quantity of groups . 

3. The method of claim 1 , wherein processing the second 
image comprises : 

providing an output of an object detection model as an 
input to a neural network portion of a deep learning 
model ; and 

determining the coarse - grained viewpoint estimate and 
the fine - grained viewpoint estimate based on an output 
of the neural network portion of the deep learning 
model . 

4. The method of claim 3 , wherein processing the second 
image further comprises : 

providing the output of the neural network portion of the 
deep learning model to a pooling layer of the deep 
learning model , 
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wherein the coarse - grained viewpoint estimate and the 
fine - grained viewpoint estimate are determined 
based on an output of the pooling layer . 

5. The method of claim 1 , wherein processing the first 
image comprises : 

processing the first image with an object detection model 
to identify the object in the first image and a bounding 
box corresponding to the location of the object within 
the first image . 

6. The method of claim 1 , wherein performing the one or 
more actions comprises : 

providing information identifying the object viewpoint to 
an autonomous driving system of a vehicle . 

7. The method of claim 1 , wherein the deep learning 
model includes one or more of : 

a convolutional neural network model , 
a Siamese neural network model , or 
a combination of the convolutional neural network model 

and the Siamese neural network model . 
8. A device , comprising : 
one or more processors configured to : 

receive , from a vehicle device of a first vehicle , a first 
image ; 

process the first image to identify an object in the first 
image and a location of the object within the first 
image ; 

extract , from the first image , the second image based on 
the location of the object within the first image ; 

process the second image to determine a coarse - grained 
viewpoint estimate and a fine - grained viewpoint 
estimate for the object ; 
determine that at least one of the coarse - grained 

viewpoint estimate or the fine - grained viewpoint 
estimate satisfies a threshold confidence level ; 

determine an object viewpoint associated with the 
object based on the at least one of the coarse 
grained viewpoint estimate or the fine - grained 
viewpoint estimate ; and 

perform one or more actions based on the object 
viewpoint 

9. The device of claim 8 , wherein the first image is 
processed using an object detection model , and wherein the 
object detection model includes one or more of : 

a you only look once model , 
a single - shot detector model , or 
a faster region convolutional neural network model . 
10. The device of claim 8 , wherein the vehicle device 

includes a single dash camera provided in the vehicle . 
11. The device of claim 8 , wherein the one or more 

processors , when determining that the at least one of the 
coarse - grained viewpoint estimate or the fine - grained view 
point estimate satisfies the threshold confidence level , are 
further configured to : 

determine a first confidence level associated with the 
coarse - grained viewpoint estimate and a second confi 
dence level associated with the fine - grained viewpoint 
estimate ; 

determine that the first confidence level satisfies the 
threshold confidence level ; and 

determine that the second confidence level fails to satisfy 
the threshold confidence level , 
wherein the object viewpoint is determined based on 

the coarse - grained viewpoint estimate based on the 

first confidence level satisfying the threshold and 
based on the second confidence level failing to 
satisfy the threshold . 

12. The device of claim 8 , wherein the object comprises 
a vehicle , and wherein the one or more processors are 
configured further to : 

determine , based on the object viewpoint , a direction of 
travel associated with the vehicle . 

13. The device of claim 8 , wherein a deep learning model 
is utilized to process the second image , and wherein the one 
or more processors are further configured to : 

apply , prior to training the deep learning model , random 
horizontal flipping to images of image data used to train 
the deep learning model ; and 

train the deep learning model based on applying the 
random horizontal flipping and applying a Siamese 
network to the images of the image data . 

14. The device of claim 13 , wherein the one or more 
processors are further configured to : 

normalize , prior to training the deep learning model , the 
images of the image data by subtracting a mean and 
dividing by a standard deviation of the image data . 

15. A non - transitory computer - readable medium storing 
instructions , the instructions comprising : 

one or more instructions that , when executed by one or 
more processors , cause the one or more processors to : 
receive , from a vehicle device of a vehicle , a first 

image ; 
process the first image , with an object detection model , 

to identify an object in the first image and a location 
of the object within the first image ; 

extract , from the first image , a second image of the 
object based on the location of the object within the 
first image ; 

process the second image , with a deep learning model , 
to determine one or more coarse - grained viewpoint 
estimates and one or more fine - grained viewpoint 
estimates associated with the object ; 

determine an object viewpoint associated with the 
object based on the one or more coarse - grained 
viewpoint estimates or the one or more fine - grained 
viewpoint estimates ; and 

provide information identifying the object viewpoint to 
the vehicle . 

16. The non - transitory computer - readable medium of 
claim 15 , wherein the one or more coarse - grained viewpoint 
estimates include a plurality of coarse - grained viewpoint 
estimates and the one or more fine - grained viewpoint esti 
mates include a plurality of fine - grained viewpoint esti 
mates . 

17. The non - transitory computer - readable medium of 
claim 15 , wherein the one or more instructions , when 
executed by the one or more processors , further cause the 
one or more processors to : 

determine a direction that the object is facing based on the 
object viewpoint . 

18. The non - transitory computer - readable medium of 
claim 15 , wherein the one or more instructions , when 
executed by the one or more processors , further cause the 
one or more processors to : 

determine that an accuracy associated with the one or 
more fine - grained viewpoint estimates fails to satisfy a 
threshold , 
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wherein the object viewpoint is determined based on a 
course - grained viewpoint estimate , of the one or 
more coarse - grained viewpoint estimates , and based 
on the accuracy associated with the one or more 
fine - grained viewpoint estimates failing to satisfy the 
threshold . 

19. The non - transitory computer - readable medium of 
claim 15 , wherein the one or more instructions , when 
executed by the one or more processors , further cause the 
one or more processors to : 

determine that an accuracy associated with a fine - grained 
viewpoint estimate , of the one or more fine - grained 
viewpoint estimates , satisfies a threshold ; and 

determine that a granularity associated with the fine 
grained viewpoint estimate is a finer granularity rela 
tive to other fine - grained viewpoint estimates , of the 
one or more fine - grained viewpoint estimates , and a 
granularity of the one or more coarse - grained view 
point estimates , 

wherein the object viewpoint is determined as the 
fine - grained viewpoint estimate based on the accu 
racy associated with the fine - grained viewpoint esti 
mate satisfying the threshold and the granularity 
associated with the fine - grained viewpoint estimate 
being the finer granularity . 

20. The non - transitory computer - readable medium of 
claim 15 , wherein : 

a coarse - grained viewpoint estimate , of the one or more 
coarse - grained viewpoint estimates , is associated with 
a first range of azimuth angles , and 

a fine - grained viewpoint estimate , of the one or more 
fine - grained viewpoint estimates , is associated with a 
second range of azimuth angles that is less than the first 
range of azimuth angles . 
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