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(57) ABSTRACT

A device may receive a first image. The device may process
the first image to identify an object in the first image and a
location of the object within the first image. The device may
extract a second image from the first image based on the
location of the object within the first image. The device may
process the second image to determine at least one of a
coarse-grained viewpoint estimate or a fine-grained view-
point estimate associated with the object. The device may
determine an object viewpoint associated with the second
vehicle based on the at least one of the coarse-grained
viewpoint estimate or the fine-grained viewpoint estimate.
The device may perform one or more actions based on the
object viewpoint.
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SYSTEMS AND METHODS FOR UTILIZING
A DEEP LEARNING MODEL TO
DETERMINE VEHICLE VIEWPOINT
ESTIMATIONS

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application claims priority to Italian Applica-
tion No. 102020000011875, filed on May 21, 2020, entitled
“SYSTEMS AND METHODS FOR UTILIZING A DEEP
LEARNING MODEL TO DETERMINE VEHICLE VIEW-
POINT ESTIMATIONS,” which is hereby expressly incor-
porated by reference herein.

BACKGROUND

[0002] An autonomous driving system may utilize road
scene understanding to perform one or more actions asso-
ciated with controlling an operation of a vehicle.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] FIGS. 1A-1K are diagrams of one or more example
implementations described herein.

[0004] FIG. 2 is a diagram an example of training a
machine learning model.

[0005] FIG. 3 is a diagram illustrating an example of
applying a trained machine learning model to a new obser-
vation.

[0006] FIG. 4 is a diagram of an example environment in
which systems and/or methods described herein may be
implemented.

[0007] FIG. 5 is a diagram of example components of one
or more devices of FIG. 4.

[0008] FIG. 6 is a flow chart of an example process
relating to utilizing a deep learning model to determine
vehicle viewpoint estimations.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

[0009] The following detailed description of example
implementations refers to the accompanying drawings. The
same reference numbers in different drawings may identity
the same or similar elements.

[0010] A vehicle may include an autonomous driving
system that is configured to perform one or more actions
associated with an operation of the vehicle as the vehicle
travels along a roadway, along a trail, in the air, through the
water, and/or the like. For example, the autonomous driving
system may analyze image data obtained by a camera to
identify an object located in a path of the vehicle and to
determine a direction that the object is facing. The autono-
mous driving system may perform an action based on
identifying the object and based on determining the direction
that the object is facing, such as providing a warning to a
driver of the vehicle, causing the vehicle to slow down or
stop, causing the vehicle to perform a maneuver to avoid the
object, and/or the like.

[0011] The determined action may be different depending
on the direction that the object is facing. For example, the
autonomous driving system may determine to perform a first
action if the object is facing in the same direction as the
vehicle (e.g., cause the vehicle to slow down, cause the
vehicle to maintain a current speed, cause the vehicle to
swerve around the object, and/or the like) and may perform

Nov. 25, 2021

a different, second action if the object is facing towards the
vehicle (e.g., cause the vehicle to stop, issue a warning to the
driver, and/or the like).

[0012] Because the autonomous driving system may
determine to perform different actions depending on the
direction that the object is facing, the autonomous driving
system may ensure that an accuracy or confidence level
associated with determining the direction that the object is
facing satisfies a threshold. If the accuracy or confidence
level fails to satisty the threshold, the autonomous driving
system may utilize additional computing resources (e.g.,
processor resources, memory resources, communication
resources, and/or the like) to obtain additional data (e.g.,
additional images, data from other sensors, and/or the like)
and to re-calculate the direction that the object is facing
based on the additional data.

[0013] Further, the amount of time that elapses while the
autonomous driving system obtains the additional data and/
or performs the recalculation may prevent the autonomous
driving system from having sufficient time to perform the
determined action prior to the vehicle reaching a location of
the object (e.g., the vehicle may not have enough time to
come to a complete stop prior to reaching the location of the
object, the vehicle may not have enough time to maneuver
around the object, and/or the like). A failure to perform the
determined action prior to the vehicle reaching the location
of'the object may cause the vehicle to collide with the object
thereby resulting in damage to the vehicle, the object, and/or
the like.

[0014] Some implementations described herein may pro-
vide a viewpoint system for determining a direction that an
object is facing (e.g., a direction that the object is facing
relative to a vehicle, relative to a coordinate system, and/or
the like). The viewpoint system may receive image data
obtained by a camera on-board a vehicle. The viewpoint
system may utilize a machine learning model to analyze the
image data to detect an object included in the image data and
to determine a direction that the object is facing. When the
accuracy and/or confidence level satisfies a predetermined
(or dynamic in some embodiments) threshold, the viewpoint
system may not obtain additional data (e.g., additional
images, data from other sensors, and/or the like) and/or may
not re-perform a process for determining the direction that
the object is facing. In this way, the viewpoint system may
utilize fewer computing resources (e.g., processor resources,
memory resources, communication resources, and/or the
like) than prior systems used to determine a direction that an
object is facing.

[0015] When the accuracy and/or confidence level does
not satisfy the predetermined or dynamic threshold, the
viewpoint system may obtain additional data and/or may
re-perform the process for determining the direction that the
object is facing. In this way, the viewpoint system ensures
that a result of the viewpoint system (e.g., a direction the
object is facing) satisfies a threshold level of accuracy and/or
confidence level.

[0016] Further, because the viewpoint system may not
obtain additional data and/or may not re-perform the process
for determining the direction that the object is facing, the
viewpoint system may allow an autonomous driving system
sufficient time to determine and/or perform an action prior to
a vehicle reaching a location of an object. In this way, the
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viewpoint system may allow a vehicle to avoid a collision
with an object thereby preventing damage to the vehicle, the
object, and/or the like.

[0017] FIGS. 1A-1K are diagrams of one or more example
implementations 100 described herein. As shown in FIGS.
1A-1K, and collectively shown in FIG. 1F, vehicle device
105 may be associated with a vehicle 110 and a viewpoint
system 115. The vehicle device 105 may include a device
(e.g., a dash camera, a parking assist camera, a backup assist
camera, and/or the like) that captures image data (e.g.,
images and/or video) associated with the vehicle 110.
[0018] The vehicle 110 may be an autonomous or semi-
autonomous vehicle that includes an autonomous driving
system. The autonomous driving system may perform one or
more actions to control an operation of the vehicle 110 based
on the image data captured by the vehicle device 105 and/or
based on data received from the viewpoint system 115.
[0019] The viewpoint system 115 may include a system
that obtains image data from the vehicle device 105 and
analyzes the image data to detect an object included in the
image and to determine a direction that the object is facing
(e.g., a direction that the object is facing relative to a vehicle,
relative to a coordinate system, and/or the like). The direc-
tion that the object is facing may be referred to as an object
viewpoint. In some implementations, the viewpoint system
115 may utilize machine learning to analyze the image data,
to detect the object included in the image, and/or to deter-
mine the object viewpoint, as described in further detail
below.

[0020] In some implementations, the viewpoint system
115 is located on-board the vehicle 110. For example, the
viewpoint system 115 may be part of an autonomous driving
system associated with the vehicle 110. In some implemen-
tations, the viewpoint system 115 may be located remotely
from the vehicle 110. For example, the viewpoint system
115 may be included on a server device associated with a
service provider that provides object viewpoint determina-
tions as a service. In some implementations, the viewpoint
system 115 may be located at or near an edge of a network
(e.g., a wireless communication network), such as within a
multi-access edge computing (MEC) environment. In some
implementations, the viewpoint system 115 may be a dis-
tributed system in that a portion of the viewpoint system 115
may be implemented within the vehicle 110 and a portion of
the viewpoint system 115 may be implemented remote from
the vehicle 110, such as in a location at or near an edge of
a wireless communication network.

[0021] The viewpoint system 115 may generate and/or
obtain a deep learning model. The deep learning model may
employ a classification technique, rather than a regression
technique, to determine the plurality of object viewpoints.
The viewpoint system 115 may utilize a dataset to train the
deep learning model to generate a trained deep learning
model.

[0022] The dataset may include a plurality of images of
vehicles. Each image may be associated with an annotation
that includes information used to train the deep learning
model, such as information identifying an object included in
the image, information identifying a location of the object
within the image, information identifying a ground truth
azimuth angle (e.g., an azimuth angle determined manually,
determined utilizing LIDAR, and/or the like corresponding
to a direction that the object is facing in the image), and/or
the like.
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[0023] In some implementations, the viewpoint system
115 may obtain the dataset from a data structure (e.g., a
database) stored in a memory. For example, the viewpoint
system 115 may obtain an annotated dataset from a database
storing a nuScenes dataset, a Pascal3D+ dataset, a dataset
that contains images and corresponding orientations for
objects and/or vehicles, and/or the like.

[0024] In some implementations, the annotated dataset
may be an internal dataset (e.g., stored in a memory asso-
ciated with the viewpoint system 115). The annotated dataset
may include images of objects obtained by the viewpoint
system 115 (e.g., images obtained from vehicle devices
105). An image included in the dataset may include an image
of an object and may be associated with an annotation. The
annotation may include information identifying a location of
the object within the image (e.g., a bounding box), infor-
mation identifying a direction the object is facing, and/or the
like.

[0025] In some implementations, the annotated dataset
may be a large-scale autonomous driving dataset that may be
a collection of driving scenes from a point of view of a
vehicle. The annotated dataset may be collected by a plu-
rality of vehicle devices included on one or more vehicles.
For example, multiple vehicle devices may be positioned at
different positions on a vehicle. In some implementations,
the vehicle includes vehicle devices positioned at a front-
center position of the vehicle, a front-right position of the
vehicle, a front-left position of the vehicle, a rear-center
position of the vehicle, a rear-right position of the vehicle,
and/or a rear-left position of the vehicle. The vehicle devices
may include image capture devices (e.g., dashcams, cam-
eras, and/or the like) that capture image data as the vehicle
travels along a road. The positioning of the vehicle devices
may cause an elevation and/or tilt of objects in the image
data to be substantially the same.

[0026] The annotated dataset may include one or more
annotations associated with each image included in the
dataset. The one or more annotations may include informa-
tion identifying a ground truth azimuth associated with an
object (e.g., a vehicle) included in the image, information
identifying an object class associated with an object
included in the image, information identifying a location of
an object in the image, and/or the like.

[0027] The annotated dataset may include annotations that
include information identifying visual object classes (VOC)
associated with the images included in the annotated dataset
and/or three-dimension (3D) annotations. The 3D annota-
tions may include an azimuth angle annotation that includes
information identifying a ground truth azimuth associated
with an object (e.g., a vehicle) in an image, a location
annotation that includes information identifying a location
of the object in the image, a class annotation that includes
information identifying a class (e.g., vehicle, car, truck,
and/or the like) associated with the object in the image,
and/or the like.

[0028] In some implementations, the viewpoint system
115 may process the dataset prior to training the deep
learning model. For example, the viewpoint system 115 may
resize the images in the dataset to a common size, reduce a
size of the images in the dataset, apply random horizontal
flipping to one or more images in the dataset, normalize the
images in the dataset (e.g., by subtracting a mean and
dividing by a standard deviation of the images in the
dataset), and/or the like.



US 2021/0366144 Al

[0029] In some implementations, the viewpoint system
115 may utilize one or more portions of the dataset to train
the deep learning model. As shown in FIG. 1A, and by
reference number 120, the viewpoint system 115 may pro-
cess a first batch of images (e.g., 64 images, 128 images,
1,000 images, 10,000 images, and/or the like) with a deep
learning model to perform a first iteration of a process for
training the deep learning model to determine a coarse-
grained viewpoint estimate and a fine-grained viewpoint
estimate for each vehicle depicted in the first batch of
images, as described in more detail below.

[0030] As shown in FIG. 1B, the deep learning model
includes a backbone that receives an image of a vehicle from
the first batch of images and processes the image to extract
one or more features of the vehicle from the image. The
backbone may be a well-established neural network associ-
ated with analyzing images, such as a CNN (e.g., Mobile-
NetV2, Resnet50, VGG16, Inception, and/or the like), a
Siamese neural network, and/or the like. In some implemen-
tations, the extracted one or more features may be output by
the backbone as a feature map.

[0031] As shown in FIG. 1B, the output of the backbone
(e.g., a feature map) is provided to a pooling layer of the
deep learning model. The pooling layer may be a global
average pooling layer, an attention layer, a flatten layer,
and/or the like that aggregates space information into a
single vector. The pooling layer may utilize a sliding win-
dow to reduce a dimensionality of the output of the back-
bone based on an average value. In this way, the pooling
layer may minimize overfitting by reducing a total number
of parameters (e.g., weights and/or biases).

[0032] As further shown in FIG. 1B, an output of the
global average pooling layer is provided to an output layer
of the deep learning model. The output layer may be a fully
connected layer that processes the output of the global
average pooling layer to determine one or more coarse-
grained viewpoint estimates and one or more fine-grained
viewpoint estimates associated with the vehicle in the
image.

[0033] In some implementations, the deep learning model
determines a viewpoint estimate based on the output of the
pooling layer. The viewpoint estimate may be a series of
probabilities. A probability, of the series of probabilities,
may indicate a likelihood that a viewpoint (e.g., an azimuth
angle) associated with the image of the vehicle is a particular
value included in a range of possible values between 0-360
degrees. For example, a first probability, of the series of
probabilities, may indicate a likelihood that the viewpoint
associated with the vehicle is 0 degrees, a second probabil-
ity, of the series of probabilities, may indicate a likelihood
that the viewpoint associated with the vehicle is 1 degree,
and/or the like.

[0034] The deep learning model may determine the
coarse-grained viewpoint estimate and/or the fine-grained
viewpoint estimate based on forming multiple sets of groups
of the series of probabilities. A quantity of groups of the
series of probabilities associated with the coarse-grained
estimate may be less than a quantity of groups of the series
of probabilities associated with the fine-grained estimate.
[0035] For example, the deep learning model may deter-
mine the coarse-grained viewpoint estimate based on group-
ing the series of probabilities into a particular number of
groups, such as four groups. A first group may include a
group of probabilities associated with a sub-range of the
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possible values from 315 to 45 degrees (e.g., a probability
indicating a likelihood that the viewpoint associated with the
image of the vehicle is 315 degrees, a probability indicating
a likelihood that the viewpoint associated with the image of
the vehicle is 316 degrees, . . . , a probability indicating a
likelihood that the viewpoint associated with the image of
the vehicle is 45 degrees). A second group may include a
group of probabilities associated with a sub-range of the
possible values from 45 to 135 degrees. A third group may
include a group of probabilities associated with a sub-range
of the possible values from 135 to 225 degrees. A fourth
group may include a sub-range of the possible values from
225 to 315 degrees.

[0036] The deep learning model may determine a sum of
the probabilities included in each group (e.g., a sum of the
group of probabilities associated with a sub-range of the
possible values from 315 to 45 degrees, a sum of the group
of probabilities associated with a sub-range of the possible
values from 45 to 135 degrees, a sum of the group of
probabilities associated with a sub-range of the possible
values from 135 to 225 degrees, and a sum of the group of
probabilities associated with a sub-range of the possible
values from 225 to 315 degrees). The deep learning model
may generate a first output indicating the sum of the prob-
abilities included in each respective group.

[0037] The viewpoint system 115 may determine the
coarse-grained viewpoint estimate based on the first output.
For example, the viewpoint system 115 may determine the
coarse-grained estimate based on a sub-range of the possible
values associated with a group for which the sum of the
group of probabilities is a greatest value relative to the other
sums of the groups of probabilities.

[0038] As another example, the deep learning model may
determine the fine-grained estimate based on grouping the
series of probabilities into a particular number of groups,
such as twenty-four groups. Each group may be associated
with a range of fifteen possible values. For example, a first
group may include a group of probabilities associated with
a sub-range of the possible values from 353 to 8 degrees, a
second group may include a group of probabilities associ-
ated with a sub-range of the possible values from 8 to 23
degrees, and so on.

[0039] The deep learning model may determine a sum of
the probabilities included in each group. The deep learning
model may generate a second output indicating the sum of
the probabilities included in each respective group. The
viewpoint system 115 may determine the fine-grained view-
point estimate based on the second output. For example, the
viewpoint system 115 may determine the fine-grained esti-
mate based on a sub-range of the possible values associated
with a group for which the sum of the group of probabilities
is a greatest value relative to the other sums of the groups of
probabilities.

[0040] As shown in FIG. 1C, and by reference number
125, the deep learning model utilizes a loss function to
evaluate each of the coarse-grained viewpoint estimate and
the fine-grained viewpoint estimate relative to the ground
truth azimuth to determine an accuracy associated with the
viewpoint estimates.

[0041] In some implementations, the deep learning model
is a multi-task model that simultaneously estimates different
object viewpoints based on a summation of a network output
(e.g., a summation of groups of probabilities), as described
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above. A loss function utilized to train the multi-task deep
learning model may be defined by the following equation:

L5 L o35 where $o=Sofimax(s,), 1

where a result of a summation of the network output f{W.X)

for discretization a may be defined as S, ER *R -

[0042] In some implementations, the multi-task deep
learning model includes a Siamese network. An input image
(X) included in the first batch of images may have an
azimuth angle label indicating an azimuth angle (6) associ-
ated with a vehicle depicted in the image. The viewpoint
system 115 may flip the input image horizontally to obtain
a flipped image X, with an azimuth angle that is mirrored

with respect to the Y axis. An operator flip: R”R " may
be defined that maps y=(y,, ¥,, - - ., ¥,,) to flip(y)=(y,,, ¥,,.1

.., y,). Each image (X) included in the first batch of images
and a corresponding flipped image (X4,,) may be input to the
deep learning model. A loss associated with the image and
flipped image pairs (e.g., (f(W,X),0), (flip(f{W,X,,.)), 0),
respectively, may be computed using equation (1), described
above. The viewpoint system 115 may apply horizontal
flipping and the Siamese network to enforce horizontal
flipping invariance. In this way, a total accuracy, as well as
an accuracy per object class (e.g., car, motorcycle, bicycle,
and/or the like) of the deep learning model may be signifi-
cantly increased relative to other deep learning models that
do not apply horizontal flipping and a Siamese network.
[0043] A final loss may be determined based on the
following equation:

L_LiL prmxfpfmx,,)), @

where D: R3%0xR 303 R is a distance function, AER is

a regularization term, £ and £ #p are obtained by applying
equation (2) to the image (X) and the flipped image (X,,),
respectively. D a function of the square [.2 distance and the
angular distance:

DXy, X2) = X1 - Xl3 ©)

XX, 4

1
D(Xy, X;) = —arcos————,
g [IX X

where X,, X, R”.

[0044] To complete the first iteration of the process for
training the deep learning model, the deep learning model
may process each image included in the first batch of images
in a manner similar to that described above with respect to
FIGS. 1A-1B. In some implementations, the deep learning
model modifies one or more parameters of the deep learning
model based on a result of the loss function determined for
each image included in the first batch of images. The result
of the loss function determined for an image may represent
an accuracy of the coarse-grained viewpoint estimate and/or
the fine-grained viewpoint estimate determined for the
image relative to the ground truth azimuth associated with
the image. As shown in FIG. 1D, and by reference number
130, the deep learning model adjusts one or more weights of
the neural network based on the result of the loss function.
[0045] As shown in FIG. 1E, and by reference number
135, the deep learning model performs multiple iterations of
the process for training the deep learning model with other
batches of images to generate a trained deep learning model.
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In some implementations, the deep learning model may
continue to perform iterations of the process with different
batches of images for a certain number of iterations, until an
accuracy associated with the viewpoint estimates stops
increasing with respect to accuracies determined for previ-
ous batches of images, until an accuracy associated with the
viewpoint estimates decreases or increases by an amount
that does not satisty a threshold with respect to accuracies
determined for previous batches of images, and/or the like.
[0046] In some implementations, the viewpoint system
115 may utilize the trained deep learning model to determine
viewpoint estimates for vehicles depicted in images captured
by vehicle devices. As indicated above, in some implemen-
tations, the viewpoint system 115 may be implemented
within a vehicle. In this case, the vehicle may utilize the
trained deep learning model to determine viewpoint esti-
mates for vehicles depicted in images captured by a vehicle
device of the vehicle.

[0047] As shown in FIG. 1F, and by reference number
140, the viewpoint system 115 receives, from a vehicle
device 105 of a vehicle 110, an image captured by the
vehicle device 105 and depicting one or more vehicles. For
example, the vehicle device 105 may include a dashcam that
captures an image of an environment in which the vehicle
110 is located. In some implementations, the image may be
a single image captured by the vehicle device 105. For
example, the vehicle device 105 may be a camera device
such as a dashcam and the image may be a single monocular
red-green-blue (RGB) image, a grayscale image, a thermal
image, a large band spectrum image, a narrow band spec-
trum image, and/or the like. Alternatively, and/or addition-
ally, the image may be included in a plurality of images
provided to the viewpoint system 115. For example, the
vehicle device 105 may capture video of the environment in
which the vehicle 110 is located. The video may include a
plurality of images (e.g., a plurality of frames of image data)
that includes the image and the vehicle device 105 may
provide the plurality of images to the viewpoint system 115.
[0048] In some implementations, the vehicle device 105
captures the image and/or provides the image to the view-
point system 115 based on an occurrence of an event. For
example, the vehicle device 105 may provide the image to
the viewpoint system 115 based on receiving an input from
a user, receiving an instruction to capture and/or provide the
image to the viewpoint system 115 from another device
(e.g., a controller included in an autonomous driving system,
the viewpoint system 115, and/or the like), determining that
the vehicle 110 is operating in an autonomous driving mode,
and/or the like.

[0049] In some implementations, the vehicle device 105
provides the image to the viewpoint system 115 in real-time.
For example, the vehicle device 105 may be included in an
autonomous driving system of the vehicle 110. The vehicle
device 105 may capture and/or provide images to the
viewpoint system 115 as the vehicle 110 travels along a
roadway to cause the viewpoint system 115 to analyze the
images and to provide information identifying objects
included in the images and/or information indicating an
object viewpoint associated with the objects to the autono-
mous driving system.

[0050] In some implementations, the vehicle device 105
transmits the image directly to the viewpoint system 115.
For example, the vehicle device 105 may include a com-
munication device for communicating data over a cellular
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network (e.g., a 3G network, a 4G network, a 5G network,
and/or the like). The vehicle device 105 may utilize the
communication device to transmit the image to the view-
point system 115 via the cellular network.

[0051] In some implementations, the vehicle device 105
transmits the image to the viewpoint system 115 via another
device associated with the vehicle 110. For example, the
vehicle device 105 may transmit, via a wired and/or wireless
connection, the image to a communication device included
in an autonomous driving system, to a mobile device of a
user in the vehicle (e.g., a driver, a passenger, and/or the
like), and/or the like. The communication device, the mobile
device, and/or the like may receive the image from the
vehicle device 105 and may transmit the image to the
viewpoint system 115.

[0052] In some implementations, the viewpoint system
115 may analyze the image to identify one or more objects
depicted in the image based on receiving the image. For
example, as shown in FIG. 1G, and by reference number
145, the viewpoint system 115 may process the image, with
an object detection model, to identify the one or more
vehicles in the image and to determine locations of the one
or more vehicles within the image based on receiving the
image from the vehicle device 105. While the description
herein will focus on objects that are vehicles, the description
also applies to other types of objects, such as people,
bicycles, traffic signs, and/or the like.

[0053] The object detection model may include a you-
only-look-once (YOLO) object detector, a single shot detec-
tor (SSD), a Faster-region convolutional neural network
(RCNN) object detector, and/or the like. The object detec-
tion model may receive the image as an input and may
output information indicating that the image depicts the one
or more vehicles and information identifying a location of
the one or more vehicles within the image.

[0054] The object detection model may be trained in a
manner similar to that described below with respect to FIG.
2. For example, the viewpoint system 115 may train the
object detection model based on one or more parameters,
such as a number of classes of objects, a batch size (e.g., a
number of images used in one iteration to update the
parameters of the object detection model (e.g., weights,
parameters, and/or the like)), a parameter associated with
penalizing particular changes to the parameters of the object
detection model between iterations (e.g., a momentum
parameter that penalizes certain changes to a weight param-
eter between iterations and/or the like), and/or the like. The
viewpoint system 115 may train the object detection model
using image data containing images of vehicles according to
the one or more parameters.

[0055] The trained object detection model may receive the
image from the viewpoint system 115 as an input and may
process the image to detect the images of the one or more
vehicles and to determine the information identifying the
location of the one or more vehicles within the image. The
trained object detection model may process the image in a
manner similar to that described below with respect to FIG.
3.

[0056] In some implementations, the information identi-
fying the location of a vehicle, of the one or more vehicles
depicted in the image, includes information identifying a
bounding box for the vehicle. The information identifying
the bounding box may include information identifying a
perimeter of the bounding box. The perimeter of the bound-
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ing box may surround the entire vehicle depicted in the
image. For example, the bounding box may be a two-
dimensional bounding box (e.g., a rectangle) and the infor-
mation identifying the perimeter of the bounding box may
include a set of coordinates corresponding to an upper left
corner of the bounding box within the image, a set of
coordinates corresponding to a lower right corner of the
bounding box within the image, information identifying an
angular displacement of the bounding box relative to a line
extending along an edge and/or a center of the image, and/or
the like.

[0057] In some implementations, the viewpoint system
115 may receive the information indicating that the image
depicts the one or more vehicles and/or the information
identifying the location of the one or more vehicles within
the image from the vehicle 110. For example, the object
detection model may be included in an autonomous driving
system associated with the vehicle 110. The vehicle device
105 may provide the image to the autonomous driving
system based on capturing the image. The autonomous
driving system may process the image, with the object
detection model, to identify the one or more vehicles in the
image and to determine the locations of the one or more
vehicles within the image based on receiving the image from
the vehicle device 105. The autonomous driving system may
provide the image, the information indicating that the image
depicts the one or more vehicles, and/or the information
identifying the location of the one or more vehicles within
the image to the viewpoint system 115.

[0058] As shown in FIG. 1H, and by reference number
150, the viewpoint system 115 extracts, from the image,
images of the one or more vehicles based on the output of
the object detection model. The viewpoint system 115 may
determine a location of a vehicle depicted in the image based
on the information identifying the bounding box associated
with the vehicle. The viewpoint system 115 may extract the
image of the vehicle from the image by extracting a portion
of the image inside the perimeter of the bounding box
associated with the image of the vehicle. In some imple-
mentations, the viewpoint system 115 extracts the image of
the vehicle by cropping the image to remove a portion of the
image that is located outside the perimeter of the bounding
box associated with the image of the vehicle.

[0059] As shownin FIG. 11, and by reference number 155,
the viewpoint system 115 processes the images of the one or
more vehicles with the trained deep learning model to
determine one or more coarse-grained viewpoint estimates
and one or more fine-grained viewpoint estimates for the one
or more vehicles. In some implementations, the viewpoint
system 115 determines the one or more coarse-grained
viewpoint estimates and the one or more fine-grained view-
point estimates in a manner similar to that described above
with respect to FIGS. 1A-1B.

[0060] Asshown in FIG. 1], and by reference number 160,
the viewpoint system 115 determines an object viewpoint
associated with a vehicle, of the one or more vehicles, based
on the one or more coarse-grained viewpoint estimates
and/or the one or more fine-grained viewpoint. For example,
the one or more coarse-grained viewpoint estimates and the
one or more fine-grained estimates may include multiple
viewpoint estimates ranging from a coarsest-grained view-
point estimate (e.g., a viewpoint estimate determined based
on grouping the series of probabilities into four groups) to a
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finest-grained viewpoint estimate (e.g., a viewpoint estimate
determined based on grouping the series of probabilities into
24 groups).

[0061] Each viewpoint estimate may be associated with
accuracy information (e.g., information indicating an accu-
racy, a confidence level, and/or the like). The viewpoint
system 115 may determine the viewpoint associated with the
object based on the multiple viewpoint estimates and based
on the accuracy information. For example, the multiple
viewpoint estimates may include a coarsest-grained view-
point estimate associated with first accuracy information, a
coarse-grained viewpoint estimate associated with second
accuracy information, a fine-grained viewpoint estimate
associated with third accuracy information, and a finest-
grained viewpoint estimate associated with fourth accuracy
information.

[0062] The viewpoint system 115 may identify each view-
point estimate, of the multiple viewpoint estimates, associ-
ated with accuracy information that satisfies a threshold
(e.g., 90% accurate, 95% accurate, 98% accurate, and/or the
like). For example, the viewpoint system 115 may determine
that the first accuracy information, the second accuracy
information, and the third accuracy information satisfy the
threshold and/or that the fourth accuracy information does
not satisty the threshold.

[0063] In some implementations, the threshold may be
determined based on an average accuracy associated with
training the deep learning model. For example, the threshold
may be determined based on an accuracy (e.g., an average
accuracy, a highest accuracy, a lowest accuracy, and/or the
like) achieved by the deep learning model when analyzing a
test set of images.

[0064] Alternatively, and/or additionally, the threshold
may be determined based on a size of an object in the image
being analyzed. The viewpoint system 115 may utilize a
larger threshold (e.g., 95%) when the object is larger than a
threshold size in the image, when the object comprises at
least a threshold percentage of the entire image, and/or the
like. The viewpoint system 115 may utilize a smaller thresh-
old (e.g., 90%) when the object is smaller than the threshold
size in the image, when the object comprises less than the
threshold percentage of the entire image, and/or the like.
[0065] The viewpoint system 115 may determine that the
fine-grained viewpoint estimate is the finest-grained view-
point estimate of the viewpoint estimates associated with
accuracy information satistying the threshold. Stated differ-
ently, the viewpoint system 115 may determine that a
granularity of the fine-grained viewpoint estimate is the
finest granularity relative to every other viewpoint estimate
(whether course-grained or fine-grained) associated with
accuracy information that satisfies the threshold. The view-
point system 115 may determine the object viewpoint based
on the fine-grained viewpoint estimate being the finest-
grained viewpoint estimate of the viewpoint estimates asso-
ciated with accuracy information satisfying the threshold.
[0066] In some implementations, the object viewpoint is a
range of azimuth angles. For example, the viewpoint system
115 may determine a range of azimuth angles associated
with the selected viewpoint estimate (e.g., the fine-grained
viewpoint estimate from the example described above). The
viewpoint system 115 may determine the object viewpoint
based on the range of azimuth angles.

[0067] In some implementations, the viewpoint system
115 determines a direction of travel associated with the
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vehicle based on the object viewpoint. For example, the
viewpoint system 115 may determine a range of azimuth
angles associated with the selected viewpoint estimate. The
viewpoint system 115 may determine that the range of
azimuth angles corresponds to a particular direction (e.g.,
east, west, north, south, toward the vehicle 110, away from
the vehicle 110, and/or the like). The viewpoint system 115
may determine the vehicle is facing the particular direction
based on the range of azimuth angles corresponding to the
particular direction.

[0068] The viewpoint system 115 may obtain an addi-
tional image of the vehicle (e.g., from vehicle device 105).
The viewpoint system 115 may utilize the object detection
model to process the additional image and to determine a
bounding box indicating a location of the vehicle within the
additional image. The viewpoint system 115 may compare
the bounding box determined based on the additional image
with a bounding box determined based on the image to
determine a direction of movement associated with the
bounding boxes.

[0069] For example, the viewpoint system 115 may deter-
mine that the bounding box determined based on the image
has a center point that is a first distance from a bottom edge
of'the image and is a second distance from a left edge of the
image. The viewpoint system 115 may determine that the
bounding box determined based on the additional image has
a center point that is a third distance from the bottom edge
of the image and is the second distance from the left edge of
the image.

[0070] The viewpoint system 115 may determine that the
vehicle is facing away from the vehicle 110 based on the
selected viewpoint estimate (e.g., the range of azimuths
associated with the selected viewpoint estimate is from 350
to 10 degrees). The viewpoint system 115 may determine
that the movement of direction associated with the bounding
boxes corresponds to the direction that the vehicle is facing
and, therefore, that the direction of travel of the vehicle is in
the particular direction, when the third distance is greater
than the first distance. The viewpoint system 115 may
determine that the movement of direction associated with
the bounding boxes does not correspond to the direction that
the vehicle is facing and, therefore, that the vehicle is
moving in a direction opposite to the particular direction
(e.g., the vehicle is driving in reverse gear) when the third
distance is less than the first distance.

[0071] In some implementations, the viewpoint system
115 may identify one or more lane directions of a roadway
being traveled by the one or more vehicles and/or the vehicle
110 based on the direction of travel. For example, the
viewpoint system 115 may determine that a vehicle, of the
one or more vehicles, is traveling in a lane of a roadway
adjacent to a lane of the roadway in which the vehicle 110
is traveling based on the object viewpoint. The viewpoint
system 115 may determine a lane direction of the adjacent
lane based on the direction of travel of the vehicle.

[0072] As shown in FIG. 1K, and by reference number
165, the viewpoint system 115 may perform one or more
actions based on determining the object viewpoint. In some
implementations, the one or more actions may include
providing information identifying a direction of travel asso-
ciated with the one or more vehicles. For example, the
viewpoint system 115 may determine a direction of travel
associated with a vehicle, of the one or more vehicles, in a
manner similar to that described above with respect to FIG.
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1J. The viewpoint system 115 may provide information
identifying the direction of travel to an autonomous driving
system of the vehicle 110. The autonomous driving system
may control an operation of the vehicle 110 based on the
information identifying the direction of travel. In this way,
the viewpoint system 115 may assist the autonomous driving
system in controlling the operation of the vehicle 110 in an
efficient manner.

[0073] Further, in some implementations where the view-
point system 115 is located remotely from the vehicle 110
(e.g., the viewpoint system 115 is implemented in one or
more MEC nodes, a cloud computing environment, and/or
the like), a cost associated with the computing resources
utilized to determine the object viewpoint, the direction of
travel, and/or the like may be shared by multiple autono-
mous driving systems. By sharing the cost associated with
the computing resources, a cost of operating an autonomous
vehicle 110 may be reduced.

[0074] In some implementations, the one or more actions
may include performing scene reconstruction utilizing the
object viewpoint with object detection and depth estimation.
For example, the viewpoint system 115 may identify the one
or more vehicles and one or more additional objects depicted
in the image based on an output of the object detection
model. The viewpoint system 115 may utilize a depth
estimation model that receives the image as an input and
generates a depth image as an output. The depth image may
include information indicating a distance of the one or more
vehicles and the one or more additional objects from the
vehicle 110. The viewpoint system 115 may generate a
digital representation of the one or more vehicles and/or the
one or more additional objects based on the viewpoint
estimates, the distance of the one or more vehicles from the
vehicle 110, and/or the distance of the one or more addi-
tional objects from the vehicle 110. The digital representa-
tion and/or digital representations generated based on one or
more other images, may be utilized to determine a series of
events resulting in an occurrence of an event (e.g., an
accident, a traffic violation, and/or the like) and/or to provide
an automated description of scenes depicted in video and/or
still-image data. In this way, the viewpoint system 115 may
analyze large amounts of video and/or still-image data
relative to other systems for performing scene reconstruction
and/or automated description of scenes, which improves an
accuracy of the scene reconstruction and/or automated
description of scenes.

[0075] In some implementations, the one or more actions
may include providing information identifying one or more
lane directions of a roadway being traveled by the vehicle
110. For example, the viewpoint system 115 may provide the
information identifying the lane directions to an autonomous
driving system of the vehicle 110, to a network device
associated with providing driving directions to a user device,
the autonomous driving system, and/or the like, and/or the
like.

[0076] As an example, the vehicle device 105 may capture
an image of a road having two lanes. The image includes a
first vehicle in a first lane and a second vehicle in a second,
adjacent lane. The viewpoint system 115 may obtain the
image from the vehicle device 105 and may utilize the deep
learning model to determine a direction each vehicle is
facing relative to the vehicle device 105. The viewpoint
system 115 may determine that the first vehicle is facing
towards the vehicle device 105 (e.g., has an orientation of
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zero degrees) and that the second vehicle is facing away
from the vehicle device 105 (e.g., has an orientation of 180
degrees). The viewpoint system 115 may determine a lane
direction of the first lane is opposite to a lane direction of the
second lane based on the first vehicle facing towards the
vehicle device 105 and the second vehicle facing away from
the vehicle device 105. The viewpoint system 115 may
provide information identifying the lane directions to an
autonomous driving system of the vehicle 110. In this way,
information regarding changes to lane directions caused by
accidents, construction, and/or the like may be propagated
through the viewpoint system 115 more quickly and effi-
ciently relative to prior systems for propagating information
identifying changes to lane directions.

[0077] In some implementations, the one or more actions
may include transmitting an instruction to an autonomous
driving system of a vehicle. For example, the viewpoint
system 115 may determine that the vehicle 110 is to perform
a particular action (e.g., slow down, stop, turn, and/or the
like) based on the direction of travel, the lane direction of the
roadway, and/or the like. The viewpoint system 115 may
transmit an instruction to the autonomous driving system of
the vehicle 110 to cause the autonomous driving system to
cause the vehicle 110 to perform the particular action. In this
way, one or more functions performed by the autonomous
driving system may be performed by the viewpoint system
115. By having the viewpoint system 115 perform one or
more functions of the autonomous driving system, the
autonomous driving system may utilize fewer computing
resources to control the operation of the vehicle 110.
[0078] In some implementations, the one or more actions
may include retraining the deep learning model based on the
object viewpoint. For example, the image, information iden-
tifying the object viewpoint, and/or information identifying
the ground truth azimuth of the one or more vehicles may be
included in a dataset used to train the deep learning model
to generate a modified dataset. The deep learning model may
be re-trained based on the modified dataset in a manner
similar to that described with respect to FIGS. 1A-1E. In this
way, an accuracy of the deep learning model with respect to
determining the coarse-grained viewpoint estimate and/or
the fine-grained viewpoint estimate may be increased.
[0079] According to some implementations described
herein, the viewpoint system 115 may determine an object
viewpoint estimate based on an image of an object without
obtaining additional data, without using expensive LIDAR,
and with an accuracy that satisfies a threshold level of
accuracy. In this way, the viewpoint system 115 may con-
serve computing resources (e.g., processing resource,
memory resources, communication resources, and/or the
like) relative to prior systems used to determine object
viewpoint estimation.

[0080] As indicated above, FIGS. 1A-1K are provided as
an example. Other examples may differ from what is
described with regard to FIGS. 1A-1K. The number and
arrangement of devices shown in FIGS. 1A-1K are provided
as an example. In practice, there may be additional devices,
fewer devices, different devices, or differently arranged than
those shown in FIGS. 1A-1K. Furthermore, two or more
devices shown in FIGS. 1A-1K may be implemented within
a single device, or a single device shown in FIGS. 1A-1K
may be implemented as multiple, distributed devices. Addi-
tionally, or alternatively, a set of devices (e.g., one or more
devices) shown in FIGS. 1A-1K may perform one or more
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functions described as being performed by another set of
devices shown in FIGS. 1A-1K.

[0081] FIG. 2 is a diagram illustrating an example 200 of
training a machine learning model. The machine learning
model training described herein may be performed using a
machine learning system. The machine learning system may
include a computing device, a server, a cloud computing
environment, and/or the like, such as viewpoint system 115.
[0082] As shown by reference number 205, a machine
learning model may be trained using a set of observations.
The set of observations may be obtained and/or input from
historical data, such as data gathered during one or more
processes described herein. In some implementations, the
machine learning system may receive the set of observations
(e.g., as input) from the viewpoint system 115. In some
implementations, the machine learning system may obtain
the set of observations from a data structure (e.g., a data-
base) stored in a memory. For example, the machine learning
system may obtain the set of observations from a database
storing an annotated dataset such as, for example, a nuS-
cenes dataset, a Pascal3D+ dataset, a dataset including
images annotated with object bounding boxes and orienta-
tion information, and/or the like.

[0083] As shown by reference number 210, a feature set
may be derived from the set of observations. The feature set
may include a set of variable types. A variable type may be
referred to as a feature. A specific observation may include
a set of variable values corresponding to the set of variable
types. A set of variable values may be specific to an
observation. In some cases, different observations may be
associated with different sets of variable values, sometimes
referred to as feature values. In some implementations, the
machine learning system may determine variable values for
a specific observation based on input received from view-
point system 115 and/or vehicle device 105. For example,
the machine learning system may identify a feature set (e.g.,
one or more features and/or corresponding feature values)
from structured data input to the machine learning system,
such as by extracting data from a particular column of a
table, extracting data from a particular field of a form,
extracting data from a particular field of a message, extract-
ing data received in a structured data format, and/or the like.
In some implementations, the machine learning system may
determine features (e.g., variables types) for a feature set
based on input received from viewpoint system 115 and/or
vehicle device 105, such as by extracting or generating a
name for a column, extracting or generating a name for a
field of a form and/or a message, extracting or generating a
name based on a structured data format, and/or the like.
Additionally, or alternatively, the machine learning system
may receive input from an operator to determine features
and/or feature values. In some implementations, the machine
learning system may perform natural language processing
and/or another feature identification technique to extract
features (e.g., variable types) and/or feature values (e.g.,
variable values) from text (e.g., unstructured data) input to
the machine learning system, such as by identifying key-
words and/or values associated with those keywords from
the text.

[0084] As an example, a feature set for a set of observa-
tions may include a first feature, a second feature, a third
feature, and so on. As shown, for a first observation, the first
feature may have a value of fender, the second feature may
have a value of headlights, the third feature may have a value
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of door, and so on. These features and feature values are
provided as examples, and may differ in other examples. In
some implementations, the machine learning system may
perform one or more actions to pre-process and/or perform
dimensionality reduction to reduce the feature set and/or
combine features of the feature set to a minimum feature set.
[0085] A machine learning model may be trained on the
minimum feature set, thereby conserving resources of the
machine learning system (e.g., processing resources,
memory resources, and/or the like) used to train the machine
learning model.

[0086] As shown by reference number 215, the set of
observations may be associated with a target variable type.
The target variable type may represent a variable having a
numeric value (e.g., an integer value, a floating point value,
and/or the like), may represent a variable having a numeric
value that falls within a range of values or has some discrete
possible values, may represent a variable that is selectable
from one of multiple options (e.g., one of multiples classes,
classifications, labels, and/or the like), may represent a
variable having a Boolean value (e.g., 0 or 1, True or False,
Yes or No), and/or the like. A target variable type may be
associated with a target variable value, and a target variable
value may be specific to an observation. In some cases,
different observations may be associated with different tar-
get variable values.

[0087] The target variable may represent a value that a
machine learning model is being trained to predict, and the
feature set may represent the variables that are input to a
trained machine learning model to predict a value for the
target variable. The set of observations may include target
variable values so that the machine learning model can be
trained to recognize patterns in the feature set that lead to a
target variable value. A machine learning model that is
trained to predict a target variable value may be referred to
as a supervised learning model, a predictive model, and/or
the like. When the target variable type is associated with
continuous target variable values (e.g., a range of numbers
and/or the like), the machine learning model may employ a
regression technique. When the target variable type is asso-
ciated with categorical target variable values (e.g., classes,
labels, and/or the like), the machine learning model may
employ a classification technique.

[0088] In some implementations, the machine learning
model may be trained on a set of observations that do not
include a target variable (or that include a target variable, but
the machine learning model is not being executed to predict
the target variable). This may be referred to as an unsuper-
vised learning model, an automated data analysis model, an
automated signal extraction model, and/or the like. In this
case, the machine learning model may learn patterns from
the set of observations without labeling or supervision, and
may provide output that indicates such patterns, such as by
using clustering and/or association to identify related groups
of items within the set of observations.

[0089] As further shown, the machine learning system
may partition the set of observations into a training set 220
that includes a first subset of observations, of the set of
observations, and a test set 225 that includes a second subset
of observations of the set of observations. The training set
220 may be used to train (e.g., fit, tune, and/or the like) the
machine learning model, while the test set 225 may be used
to evaluate a machine learning model that is trained using
the training set 220. For example, for supervised learning,
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the training set 220 may be used for initial model training
using the first subset of observations, and the test set 225
may be used to test whether the trained model accurately
predicts target variables in the second subset of observa-
tions. In some implementations, the machine learning sys-
tem may partition the set of observations into the training set
220 and the test set 225 by including a first portion or a first
percentage of the set of observations in the training set 220
(e.g., 50%, 75%, 80%, or 85%, among other examples) and
including a second portion or a second percentage of the set
of observations in the test set 225 (e.g., 50%, 25%, 20%, or
15%, among other examples). In some implementations, the
machine learning system may randomly select observations
to be included in the training set 220 and/or the test set 225.

[0090] As shown by reference number 230, the machine
learning system may train a machine learning model using
the training set 220. This training may include executing, by
the machine learning system, a machine learning algorithm
to determine a set of model parameters based on the training
set 220. In some implementations, the machine learning
algorithm may include a regression algorithm (e.g., linear
regression, logistic regression, and/or the like), which may
include a regularized regression algorithm (e.g., Lasso
regression, Ridge regression, Elastic-Net regression, and/or
the like). Additionally, or alternatively, the machine learning
algorithm may include a decision tree algorithm, which may
include a tree ensemble algorithm (e.g., generated using
bagging and/or boosting), a random forest algorithm, a
boosted trees algorithm, and/or the like.

[0091] A model parameter may include an attribute of a
machine learning model that is learned from data input into
the model (e.g., the training set 220). For example, for a
regression algorithm, a model parameter may include a
regression coefficient (e.g., a weight). For a decision tree
algorithm, a model parameter may include a decision tree
split location, as an example.

[0092] As shown by reference number 235, the machine
learning system may use one or more hyperparameter sets
240 to tune the machine learning model. A hyperparameter
may include a structural parameter that controls execution of
a machine learning algorithm by the machine learning
system, such as a constraint applied to the machine learning
algorithm. Unlike a model parameter, a hyperparameter is
not learned from data input into the model. An example
hyperparameter for a regularized regression algorithm
includes a strength (e.g., a weight) of a penalty applied to a
regression coeflicient to mitigate overfitting of the machine
learning model to the training set 220. The penalty may be
applied based on a size of a coefficient value (e.g., for Lasso
regression, such as to penalize large coefficient values), may
be applied based on a squared size of a coefficient value
(e.g., for Ridge regression, such as to penalize large squared
coeflicient values), may be applied based on a ratio of the
size and the squared size (e.g., for Elastic-Net regression),
may be applied by setting one or more feature values to zero
(e.g., for automatic feature selection), and/or the like.
Example hyperparameters for a decision tree algorithm
include a tree ensemble technique to be applied (e.g.,
bagging, boosting, a random forest algorithm, a boosted
trees algorithm, and/or the like), a number of features to
evaluate, a number of observations to use, a maximum depth
of each decision tree (e.g., a number of branches permitted
for the decision tree), a number of decision trees to include
in a random forest algorithm, and/or the like.
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[0093] To train a machine learning model, the machine
learning system may identify a set of machine learning
algorithms to be trained (e.g., based on operator input that
identifies the one or more machine learning algorithms,
based on random selection of a set of machine learning
algorithms, and/or the like), and may train the set of machine
learning algorithms (e.g., independently for each machine
learning algorithm in the set) using the training set 220. The
machine learning system may tune each machine learning
algorithm using one or more hyperparameter sets 240 (e.g.,
based on operator input that identifies hyperparameter sets
240 to be used, based on randomly generating hyperparam-
eter values, and/or the like). The machine learning system
may train a particular machine learning model using a
specific machine learning algorithm and a corresponding
hyperparameter set 240. In some implementations, the
machine learning system may train multiple machine learn-
ing models to generate a set of model parameters for each
machine learning model, where each machine learning
model corresponds to a different combination of a machine
learning algorithm and a hyperparameter set 240 for that
machine learning algorithm.

[0094] In some implementations, the machine learning
system may perform cross-validation when training a
machine learning model. Cross validation can be used to
obtain a reliable estimate of machine learning model per-
formance using only the training set 220, and without using
the test set 225, such as by splitting the training set 220 into
a number of groups (e.g., based on operator input that
identifies the number of groups, based on randomly select-
ing a number of groups, and/or the like) and using those
groups to estimate model performance. For example, using
k-fold cross-validation, observations in the training set 220
may be split into k groups (e.g., in order or at random). For
atraining procedure, one group may be marked as a hold-out
group, and the remaining groups may be marked as training
groups. For the training procedure, the machine learning
system may train a machine learning model on the training
groups and then test the machine learning model on the
hold-out group to generate a cross-validation score. The
machine learning system may repeat this training procedure
using different hold-out groups and different test groups to
generate a cross-validation score for each training proce-
dure. In some implementations, the machine learning system
may independently train the machine learning model k
times, with each individual group being used as a hold-out
group once and being used as a training group k-1 times.
The machine learning system may combine the cross-vali-
dation scores for each training procedure to generate an
overall cross-validation score for the machine learning
model. The overall cross-validation score may include, for
example, an average cross-validation score (e.g., across all
training procedures), a standard deviation across cross-
validation scores, a standard error across cross-validation
scores, and/or the like.

[0095] In some implementations, the machine learning
system may perform cross-validation when training a
machine learning model by splitting the training set into a
number of groups (e.g., based on operator input that iden-
tifies the number of groups, based on randomly selecting a
number of groups, and/or the like). The machine learning
system may perform multiple training procedures and may
generate a cross-validation score for each training proce-
dure. The machine learning system may generate an overall
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cross-validation score for each hyperparameter set 240 asso-
ciated with a particular machine learning algorithm. The
machine learning system may compare the overall cross-
validation scores for different hyperparameter sets 240 asso-
ciated with the particular machine learning algorithm, and
may select the hyperparameter set 240 with the best (e.g.,
highest accuracy, lowest error, closest to a desired threshold,
and/or the like) overall cross-validation score for training the
machine learning model. The machine learning system may
then train the machine learning model using the selected
hyperparameter set 240, without cross-validation (e.g., using
all of data in the training set 220 without any hold-out
groups), to generate a single machine learning model for a
particular machine learning algorithm. The machine learn-
ing system may then test this machine learning model using
the test set 225 to generate a performance score, such as a
mean squared error (e.g., for regression), a mean absolute
error (e.g., for regression), an area under receiver operating
characteristic curve (e.g., for classification), and/or the like.
If the machine learning model performs adequately (e.g.,
with a performance score that satisfies a threshold), then the
machine learning system may store that machine learning
model as a trained machine learning model 245 to be used
to analyze new observations, as described below in connec-
tion with FIG. 3.

[0096] In some implementations, the machine learning
system may perform cross-validation, as described above,
for multiple machine learning algorithms (e.g., indepen-
dently), such as a regularized regression algorithm, different
types of regularized regression algorithms, a decision tree
algorithm, different types of decision tree algorithms, and/or
the like. Based on performing cross-validation for multiple
machine learning algorithms, the machine learning system
may generate multiple machine learning models, where each
machine learning model has the best overall cross-validation
score for a corresponding machine learning algorithm. The
machine learning system may then train each machine
learning model using the entire training set 220 (e.g., with-
out cross-validation), and may test each machine learning
model using the test set 225 to generate a corresponding
performance score for each machine learning model. The
machine learning model may compare the performance
scores for each machine learning model, and may select the
machine learning model with the best (e.g., highest accu-
racy, lowest error, closest to a desired threshold, and/or the
like) performance score as the trained machine learning
model 245.

[0097] As indicated above, FIG. 2 is provided as an
example. Other examples may differ from what is described
in connection with FIG. 2. For example, the machine learn-
ing model may be trained using a different process than what
is described in connection with FIG. 2. Additionally, or
alternatively, the machine learning model may employ a
different machine learning algorithm than what is described
in connection with FIG. 2, such as a Bayesian estimation
algorithm, a k-nearest neighbor algorithm, an a priori algo-
rithm, a k-means algorithm, a support vector machine algo-
rithm, a neural network algorithm (e.g., a convolutional
neural network algorithm), a deep learning algorithm, and/or
the like.

[0098] FIG. 3 is a diagram illustrating an example 300 of
applying a trained machine learning model to a new obser-
vation. The new observation may be input to a machine
learning system that stores a trained machine learning model
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305. In some implementations, the trained machine learning
model 305 may be the trained machine learning model 245
described above in connection with FIG. 2. The machine
learning system may include a computing device, a server,
a cloud computing environment, and/or the like, such as
viewpoint system 115.

[0099] As shown by reference number 310, the machine
learning system may receive a new observation (or a set of
new observations), and may input the new observation to the
machine learning model 305. As shown, the new observation
may include a first feature, a second feature, a third feature,
and so on, as an example. The machine learning system may
apply the trained machine learning model 305 to the new
observation to generate an output (e.g., a result). The type of
output may depend on the type of machine learning model
and/or the type of machine learning task being performed.
For example, the output may include a predicted (e.g.,
estimated) value of target variable (e.g., a value within a
continuous range of values, a discrete value, a label, a class,
a classification, and/or the like), such as when supervised
learning is employed. Additionally, or alternatively, the
output may include information that identifies a cluster to
which the new observation belongs, information that indi-
cates a degree of similarity between the new observation and
one or more prior observations (e.g., which may have
previously been new observations input to the machine
learning model and/or observations used to train the
machine learning model), and/or the like, such as when
unsupervised learning is employed.

[0100] In some implementations, the trained machine
learning model 305 may predict a value of an azimuth angle
for the target variable of determined viewpoint for the new
observation, as shown by reference number 315. Based on
this prediction (e.g., based on the value having a particular
label/classification, based on the value satisfying or failing
to satisfy a threshold, and/or the like), the machine learning
system may output information, such as information iden-
tifying a type of vehicle detected in an image (e.g., car,
truck, motorcycle, and/or the like), information identifying
a make of a vehicle detected in an image, information
identifying a location of the vehicle within the image, and/or
the like. Additionally, or alternatively, the machine learning
system may perform an automated action and/or may cause
an automated action to be performed (e.g., by instructing
another device to perform the automated action), such as
providing a result output by the machine learning model to
be input into another machine learning model, extracting the
image of an object from the image, and/or the like. In some
implementations, the recommendation and/or the automated
action may be based on the target variable value having a
particular label (e.g., classification, categorization, and/or
the like), may be based on whether the target variable value
satisfies one or more threshold (e.g., whether the target
variable value is greater than a threshold, is less than a
threshold, is equal to a threshold, falls within a range of
threshold values, and/or the like), and/or the like.

[0101] In some implementations, the trained machine
learning model 305 may classity (e.g., cluster) the new
observation in a cluster, as shown by reference number 320.
The observations within a cluster may have a threshold
degree of similarity (e.g., associated with an object view-
point estimation within a same range of azimuth angles).
Based on classifying the new observation in the cluster, the
machine learning system may provide information, such



US 2021/0366144 Al

information indicating that the image includes multiple
objects of a same type (e.g., multiple vehicles), information
indicating that the image includes a single object of a
particular type (e.g., a single vehicle), information indicating
a classification associated with the object, and/or the like.
Additionally, or alternatively, the machine learning system
may perform an automated action and/or may cause an
automated action to be performed (e.g., by instructing
another device to perform the automated action), such as
extracting an image of an object from the image, providing
the image to another device, providing information identi-
fying a location of an object within the image to another
device, and/or the like.

[0102] Inthis way, the machine learning system may apply
a rigorous and automated process to determining object
viewpoint estimations. The machine learning system enables
recognition and/or identification of tens, hundreds, thou-
sands, or millions of features and/or feature values for tens,
hundreds, thousands, or millions of observations, thereby
increasing an accuracy and consistency of determining
object viewpoint estimations relative to requiring computing
resources to be allocated for tens, hundreds, or thousands of
operators to manually determine object viewpoint estima-
tions and/or to use another type of deep learning model to
determine object viewpoint estimations using the features or
feature values.

[0103] As indicated above, FIG. 3 is provided as an
example. Other examples may differ from what is described
in connection with FIG. 3.

[0104] FIG. 4 is a diagram of an example environment 400
in which systems and/or methods described herein may be
implemented. As shown in FIG. 4, environment 400 may
include a viewpoint system 115. The viewpoint system 115
may include one or more elements of a cloud computing
system 402 and/or may execute within the cloud computing
system 402 (e.g., as one or more virtual computing systems
406). The cloud computing system 402 may include one or
more elements 403-417, as described in more detail below.
As further shown in FIG. 4, environment 400 may include
a network 420 and/or a vehicle device 105. Devices of
environment 400 may interconnect via wired connections,
wireless connections, or a combination of wired and wire-
less connections.

[0105] The cloud computing system 402 includes com-
puting hardware 403, a resource management component
404, a host operating system (OS) 405, and/or one or more
virtual computing systems 406. The resource management
component 404 may perform virtualization (e.g., abstrac-
tion) of computing hardware 403 to create the one or more
virtual computing systems 406. Using such virtualization,
the resource management component 404 enables a single
computing device (e.g., a computer, a server, a host device,
and/or the like) to operate as if the single computing device
were multiple computing devices, such as by creating mul-
tiple isolated virtual computing systems 406 from comput-
ing hardware 403 of the single computing device. The
multiple virtual computing systems 406 operate indepen-
dently from one another and do not interact with one
another. In this way, computing hardware 403 can operate
more efficiently, with lower power consumption, higher
reliability, higher availability, higher utilization, greater
flexibility, and lower cost than using separate computing
devices.
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[0106] Computing hardware 403 includes hardware and
corresponding resources from one or more computing
devices. For example, computing hardware 403 may include
hardware from a single computing device (e.g., a single
server or host device) or from multiple computing devices
(e.g., multiple servers or host devices), such as multiple
computing devices in one or more data centers, server farms,
server pools, and/or the like. As shown, computing hardware
403 may include one or more processors 407, one or more
memories 408, one or more storage components 409, and/or
one or more networking components 410. Computing hard-
ware 403 may be interconnected via one or more wired
and/or wireless buses, which may interconnect computing
hardware 403 within a single computing device and/or
across multiple computing devices.

[0107] A processor 407 includes a central processing unit,
a graphics processing unit, and/or the like. A memory 408
includes random access memory, read-only memory, and/or
the like. The memory 408 may store a set of instructions
(e.g., one or more instructions) for execution by the proces-
sor 407. The processor 407 may execute the set of instruc-
tions to perform one or more operations or processes
described herein. In some implementations, execution of the
set of instructions, by one or more processors 407, causes the
one or more processors 407 and/or the viewpoint system 115
to perform one or more operations or processes described
herein. A storage component 409 includes a hard disk or
another type of storage device that stores information, data,
and/or software (e.g., code, instructions, and/or the like)
related to the operation and use of the viewpoint system 115.
In some implementations, memory 408 and/or storage com-
ponent 409 is/are implemented as a non-transitory computer
readable medium. A networking component 410 includes a
network interface and corresponding hardware that enables
the viewpoint system 115 to communicate with other
devices of environment 400 via a wired connection and/or a
wireless connection, such as via network 420. Additional
examples of a processor, a memory, a storage component,
and a networking component (e.g., a communication inter-
face) are described elsewhere herein.

[0108] The resource management component 404 includes
a virtualization application (e.g., executing on hardware,
such as computing hardware 403) capable of virtualizing
computing hardware 403 to start (e.g., create or spin up),
stop (e.g., delete or tear down), and/or manage one or more
virtual computing systems 406. Such virtualization may
include operating system virtualization, shared kernel vir-
tualization (e.g., container-based virtualization), kernel level
virtualization, hypervisor virtualization, paravirtualization,
full virtualization, hardware virtualization, and/or the like.
The resource management component 404 may control
access to and/or use of computing hardware 403 and/or
software executing on computing hardware 403. Addition-
ally, or alternatively, the resource management component
404 may perform binary rewriting to scan instructions
received from a virtual computing system 406 and replace
any privileged instructions with safe emulations of those
instructions. The resource management component 404 may
include a hypervisor or a virtual machine monitor, such as
when the virtual computing systems 406 are virtual
machines 411. Additionally, or alternatively, the resource
management component 404 may include a container man-
ager, such as when the virtual computing systems 406 are
containers 412.
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[0109] In some implementations, the resource manage-
ment component 404 executes within and/or in coordination
with a host operating system 405. For example, the resource
management component 404 may execute on top of the host
operating system 405 rather than interacting directly with
computing hardware 403, such as when the resource man-
agement component 404 is a hosted hypervisor (e.g., a Type
2 hypervisor) or a container manager. In this case, the host
operating system 405 may control access to and/or use of
computing hardware 403 and/or software executing on com-
puting hardware 403 based on information and/or instruc-
tions received from the resource management component
404. Alternatively, the resource management component
404 may interact directly with computing hardware 403
rather than interacting with the host operating system 405,
such as when the resource management component 404 is a
bare-metal hypervisor (e.g., a Type 1 hypervisor). Thus, in
some implementations, the cloud computing system 402
does not include a host operating system 405. In some
implementations, the host operating system 405 includes
and/or executes an administrator application to enable a
system administrator to manage, customize, and/or config-
ure cloud computing system 402.

[0110] A virtual computing system 406 includes a virtual
environment that enables cloud-based execution of opera-
tions and/or processes described herein using computing
hardware 403. As shown, a virtual computing system 406
may include a virtual machine 411, a container 412, a hybrid
environment 413 that includes a virtual machine and a
container, and/or the like. A virtual computing system 406
may execute one or more applications 414 using a file
system 415. The file system 415 may include binary files,
software libraries, and/or other resources required to execute
applications 414 on a guest operating system 416 or the host
operating system 405. In some implementations, a virtual
computing system 406 (e.g., a virtual machine 411 or a
hybrid environment 413) includes a guest operating system
416. In some implementations, a virtual computing system
406 (e.g., a container 412 or a hybrid environment 413)
includes a container manager 417.

[0111] A virtual machine 411 is an emulation of a com-
puting device that enables execution of separate, isolated
instances of virtual computing devices (e.g., multiple virtual
machines 411) on the same computing hardware 403. The
guest operating systems 416 and applications 414 of mul-
tiple virtual machines 411 may share computing hardware
403 from a single computing device or from multiple
computing devices (e.g., a pool of computing devices). Each
separate virtual machine 411 may include a guest operating
system 416, a file system 415, and one or more applications
414. With a virtual machine 411, the underlying computing
hardware 403 is virtualized, and the guest operating system
416 executes on top of this virtualized hardware. Using
virtual machines 411 enables different types of guest oper-
ating systems 416 to execute on the same computing hard-
ware 403 in an isolated environment, but with more resource
usage and overhead than containers 412.

[0112] Unlike a virtual machine 411, a container 412
virtualizes a host operating system 405 rather than the
underlying computing hardware 403. Thus, a container 412
does not require a guest operating system 416 because the
application(s) 414 included in the container 412 execute
directly on the host operating system 405 using a file system
415 included in the container 412. Each separate container
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412 may share the kernel of the host operating system 405,
and different applications 414 within a single container 412
may share a file system 415. This sharing of a file system
415 among multiple applications 414 reduces the need to
reproduce operating system code for different applications,
and enables a single host operating system 405 to execute
multiple applications 414 and/or containers 412. As a result,
containers 412 enable a greater quantity of applications 414
to execute on a smaller quantity of computing devices as
compared to virtual machines 411.

[0113] A hybrid environment 413 includes elements of a
virtual machine 411 and a container 412. For example, a
hybrid environment 413 may include a guest operating
system 416 that executes on top of virtualized hardware. A
container manager 417 may execute on top of the guest
operating system 416 to start, stop, and/or manage one or
more containers within the hybrid environment 413. Using
a hybrid environment 413 enables different types of guest
operating systems 416 to execute on the same computing
hardware 403 in an isolated environment, while also
enabling lightweight containers to execute on top of the
guest operating system 416.

[0114] The quantity of applications 414 shown in FIG. 4
as executing within each virtual computing system 406 is
shown as an example, and a different quantity of applica-
tions 414 may execute within each virtual computing sys-
tem. Furthermore, although the viewpoint system 115 may
include one or more elements 403-417 of the cloud com-
puting system 402, may execute within the cloud computing
system 402, and/or may be hosted within the cloud com-
puting system 402, in some implementations, the viewpoint
system 115 may not be cloud-based (e.g., may be imple-
mented outside of a cloud computing system) or may be
partially cloud-based. For example, the viewpoint system
115 may include one or more devices that are not part of the
cloud computing system 402, such as device 500 of FIG. 5,
which may include a standalone server or another type of
computing device. The viewpoint system 115 may perform
one or more operations and/or processes described in more
detail elsewhere herein.

[0115] Network 420 includes one or more wired and/or
wireless networks. For example, network 420 may include a
cellular network (e.g., a fifth generation (5G) network, a
fourth generation (4G) network, a long-term evolution
(LTE) network, a third generation (3G) network, a code
division multiple access (CDMA) network, etc.), a public
land mobile network (PLMN), a local area network (LAN),
a wide area network (WAN), a metropolitan area network
(MAN), a telephone network (e.g., the Public Switched
Telephone Network (PSTN)), a private network, an ad hoc
network, an intranet, the Internet, a fiber optic-based net-
work, and/or the like, and/or a combination of these or other
types of networks. The network 420 enables communication
among the devices of environment 400.

[0116] The vehicle device 105 includes one or more
devices capable of receiving, generating, storing, process-
ing, and/or providing information, such as information
described herein. For example, vehicle device 105 may
include a device included in a vehicle (e.g., vehicle 110) for
obtaining image data associated with the vehicle traveling
along a route. For example, vehicle device 105 may include
a video camera, a dash camera, a parking assist camera, a
backup assist camera, a thermal camera, lidar, radar, and/or
the like. In some implementations, vehicle device 105 may
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include a device for obtaining other types of data associated
with the vehicle 110 traveling along a route. For example,
vehicle device 105 may include an inertial measurement
unit, a three-axis accelerometer, a gyroscope, a global posi-
tioning system (GPS) device, an OBD device, an ECU,
and/or the like.

[0117] The number and arrangement of devices and net-
works shown in FIG. 4 are provided as an example. In
practice, there may be additional devices and/or networks,
fewer devices and/or networks, different devices and/or
networks, or differently arranged devices and/or networks
than those shown in FIG. 4. Furthermore, two or more
devices shown in FIG. 4 may be implemented within a
single device, or a single device shown in FIG. 4 may be
implemented as multiple, distributed devices. Additionally,
or alternatively, a set of devices (e.g., one or more devices)
of environment 400 may perform one or more functions
described as being performed by another set of devices of
environment 400.

[0118] FIG. 5 is a diagram of example components of a
device 500. Device 500 may correspond to viewpoint sys-
tem 115 and/or vehicle device 105. In some implementa-
tions, viewpoint system 115 and/or vehicle device 105 may
include one or more devices 500 and/or one or more
components of device 500. As shown in FIG. 5, device 500
may include a bus 510, one or more processor(s) 520, a
memory 530, a storage component 540, an input component
550, an output component 560, and a communication inter-
face 570.

[0119] Bus 510 includes a component that permits com-
munication among the components of device 500. Processor
520 is implemented in hardware, firmware, or a combination
of hardware and software. Processor 520 is a central pro-
cessing unit (CPU), a graphics processing unit (GPU), an
accelerated processing unit (APU), a microprocessor, a
microcontroller, a digital signal processor (DSP), a field-
programmable gate array (FPGA), an application-specific
integrated circuit (ASIC), or another type of processing
component. In some implementations, processor 520
includes one or more processors capable of being pro-
grammed to perform a function. Memory 530 includes a
random access memory (RAM), a read only memory
(ROM), and/or another type of dynamic or static storage
device (e.g., a flash memory, a magnetic memory, and/or an
optical memory) that stores information and/or instructions
for use by processor 520.

[0120] Storage component 540 stores information and/or
software related to the operation and use of device 500. For
example, storage component 540 may include a hard disk
(e.g., a magnetic disk, an optical disk, a magneto-optic disk,
and/or a solid state disk), a compact disc (CD), a digital
versatile disc (DVD), a floppy disk, a cartridge, a magnetic
tape, and/or another type of non-transitory computer-read-
able medium, along with a corresponding drive.

[0121] Input component 550 includes a component that
permits device 500 to receive information, such as via user
input (e.g., a touch screen display, a keyboard, a keypad, a
mouse, a button, a switch, and/or a microphone). Addition-
ally, or alternatively, input component 550 may include a
sensor for sensing information (e.g., a global positioning
system (GPS) component, an accelerometer, a gyroscope,
and/or an actuator). Output component 560 includes a com-
ponent that provides output information from device 500
(e.g., a display, a speaker, and/or one or more LEDs).
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[0122] Communication interface 570 includes a trans-
ceiver-like component (e.g., a transceiver and/or a separate
receiver and transmitter) that enables device 500 to com-
municate with other devices, such as via a wired connection,
a wireless connection, or a combination of wired and wire-
less connections. Communication interface 570 may permit
device 500 to receive information from another device
and/or provide information to another device. For example,
communication interface 570 may include an Ethernet inter-
face, an optical interface, a coaxial interface, an infrared
interface, an RF interface, a universal serial bus (USB)
interface, a wireless local area interface, a cellular network
interface, and/or the like.

[0123] Device 500 may perform one or more processes
described herein. Device 500 may perform these processes
based on processor 520 executing software instructions
stored by a non-transitory computer-readable medium, such
as memory 530 and/or storage component 540. A computer-
readable medium is defined herein as a non-transitory
memory device. A memory device includes memory space
within a single physical storage device or memory space
spread across multiple physical storage devices.

[0124] Software instructions may be read into memory
530 and/or storage component 540 from another computer-
readable medium or from another device via communication
interface 570. When executed, software instructions stored
in memory 530 and/or storage component 540 may cause
processor 520 to perform one or more processes described
herein. Additionally, or alternatively, hardwired circuitry
may be used in place of or in combination with software
instructions to perform one or more processes described
herein. Thus, implementations described herein are not
limited to any specific combination of hardware circuitry
and software.

[0125] The number and arrangement of components
shown in FIG. 5 are provided as an example. In practice,
device 500 may include additional components, fewer com-
ponents, different components, or differently arranged com-
ponents than those shown in FIG. 5. Additionally, or alter-
natively, a set of components (e.g., one or more components)
of device 500 may perform one or more functions described
as being performed by another set of components of device
500.

[0126] FIG. 6 is a flow chart of an example process 600 for
relating to utilizing a deep learning model to determine
vehicle viewpoint estimations. In some implementations,
one or more process blocks of FIG. 6 may be performed by
a device (e.g., viewpoint system 115). In some implemen-
tations, one or more process blocks of FIG. 6 may be
performed by another device or a group of devices separate
from or including the device, such as vehicle device 105
and/or the like. Additionally, or alternatively, one or more
process blocks of FIG. 6 may be performed by one or more
components of a device 300, such as processor 520, memory
530, storage component 540, input component 550, output
component 560, communication interface 570, and/or the
like.

[0127] As shown in FIG. 6, process 600 may include
receiving a first image (block 610). For example, the device
may receive a first image, as described above. The device
may receive the first image from a vehicle device of a
vehicle. The vehicle device may include a single dash
camera provided in the vehicle.
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[0128] As further shown in FIG. 1, process 600 may
include processing the first image to identify an object in the
first image and a location of the object within the first image
(block 620). For example, the device may process the first
image to identify an object in the first image and a location
of the object within the first image, as described above. In
some implementations, the device may use an object detec-
tion model to process the first image. The object detection
model may include one or more of a “you only look once
model”, “a single-shot detector model”, or a “faster region
convolutional neural network model”.

[0129] As further shown in FIG. 6, process 600 may
include extracting the second image from the first image
based on the location of the object within the first image
(block 630). For example, the device may extract the second
image from the first image based on the location of the
object within the first image, as described above.

[0130] As further shown in FIG. 6, process 600 may
include processing the second image to determine at least
one of a coarse-grained viewpoint estimate or a fine-grained
viewpoint estimate associated with the object (block 640).
For example, the device may process the second image to
determine a coarse-grained viewpoint estimate or a fine-
grained viewpoint estimate associated with the object, as
described above. The coarse-grained viewpoint estimate
may be associated with a first range of azimuth angles. The
fine-grained viewpoint estimate may be associated with a
second range of azimuth angles that is less than the first
range of azimuth angles.

[0131] In some implementations, the device may process
the second object with a deep learning model. The deep
learning model may include one or more of a convolutional
neural network model, a Siamese neural network model, or
a combination of a convolutional neural network model and
a Siamese neural network model. Process 600 may include
training the deep learning model, based on the image data
and a Siamese technique, to generate a trained deep learning
model.

[0132] The deep learning model may be trained based on
image data identifying driving scenes captured by vehicle
devices at different positions in vehicles.

[0133] Process 600 may include applying, prior to training
the deep learning model, random horizontal flipping to
images of the image data; and normalizing, prior to training
the deep learning model, the images of the image data by
subtracting a mean and dividing by a standard deviation of
the image data. In some implementations, the deep learning
model determines a plurality of coarse-grained viewpoint
estimates and a plurality of fine-grained viewpoint esti-
mates.

[0134] In some implementations, processing the second
image comprises providing an output of the object detection
model as an input to a neural network portion of the deep
learning model, and determining the coarse-grained view-
point and the fine-grained viewpoint based on an output of
the neural network portion of the deep learning model.
[0135] In some implementations, processing the second
image further comprises providing the output of the neural
network portion of the deep learning model to a pooling
layer of the deep learning model and the coarse-grained
viewpoint and the fine-grained viewpoint may be deter-
mined based on an output of the pooling layer.

[0136] Alternatively, and/or additionally, processing the
second image may comprise processing the second image to
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determine a series of probabilities; grouping the series of
probabilities into a first quantity of groups; determining the
coarse-grained viewpoint estimate based on grouping the
series of probabilities into the first quantity of groups;
grouping the series of probabilities into a second quantity of
groups, the second quantity is greater than the first quantity,
and determining the fine-grained viewpoint estimate based
on grouping the series of probabilities into the second
quantity of groups.

[0137] As further shown in FIG. 6, process 600 may
include determining that the at least one of the coarse-
grained object viewpoint estimate or the fine-grained object
viewpoint estimate satisfies a threshold (block 650). For
example, the device may determine that the at least one of
the coarse-grained object viewpoint estimate or the fine-
grained object viewpoint estimate satisfies a threshold, as
described above.

[0138] As further shown in FIG. 6, process 600 may
include determining an object viewpoint associated with the
object based on the at least one of the coarse-grained
viewpoint estimate or the fine-grained viewpoint estimate
(block 660). For example, the device may determine an
object viewpoint associated with the object based on at least
one of the coarse-grained viewpoint estimate or the fine-
grained viewpoint estimate, as described above.

[0139] In some implementations, determining the object
viewpoint comprises determining that an accuracy associ-
ated with the fine-grained viewpoint estimate satisfies the
threshold, and determining the object viewpoint based on
the fine-grained viewpoint estimate based on the fine-
grained viewpoint estimate satisfying the threshold.

[0140] Alternatively, and/or additionally, determining the
object viewpoint may comprise determining a first confi-
dence level associated with the coarse-grained viewpoint
estimate and a second confidence level associated with the
fine-grained viewpoint estimate; determining that the first
confidence level satisfies a threshold; determining that the
second confidence level fails to satisfy a threshold; and
determining the object viewpoint based on the coarse-
grained viewpoint estimate based on the first confidence
level satisfying the threshold and based on the second
confidence level failing to satisfy the threshold.

[0141] Insome implementations, process 600 may include
determining that an accuracy associated with a fine-grained
viewpoint estimate, of one or more fine-grained viewpoint
estimates determined by the deep learning model, satisfies a
threshold; and determining that a granularity associated with
the fine-grained viewpoint estimate is a finer granularity
relative to other fine-grained viewpoint estimates, of the one
or more fine-grained viewpoint estimates, and a granularity
of one or more coarse-grained viewpoint estimates deter-
mined by the deep learning model. The object viewpoint
may be determined based on the fine-grained viewpoint
estimate based on the accuracy information associated with
the fine-grained viewpoint estimate satisfying the threshold
and the granularity associated with the fine-grained view-
point estimate being the finer granularity.

[0142] Process 600 may include determining a direction
an object (e.g., a vehicle) is facing based on the object
viewpoint.

[0143] As further shown in FIG. 6, process 600 may
include performing one or more actions based on the object
viewpoint (block 670). For example, the device may per-
form one or more actions based on the object viewpoint, as
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described above. Performing the one or more actions may
include providing information identifying the object view-
point to a vehicle.

[0144] Process 600 may further include determining,
based on the object viewpoint, a direction of travel associ-
ated with the object.

[0145] Although FIG. 6 shows example blocks of process
600, in some implementations, process 600 may include
additional blocks, fewer blocks, different blocks, or differ-
ently arranged blocks than those depicted in FIG. 6. Addi-
tionally, or alternatively, two or more of the blocks of
process 600 may be performed in parallel.

[0146] The foregoing disclosure provides illustration and
description, but is not intended to be exhaustive or to limit
the implementations to the precise form disclosed. Modifi-
cations and variations may be made in light of the above
disclosure or may be acquired from practice of the imple-
mentations.

[0147] As used herein, the term “component” is intended
to be broadly construed as hardware, firmware, or a com-
bination of hardware and software.

[0148] To the extent the aforementioned implementations
collect, store, or employ personal information of individuals,
it should be understood that such information shall be used
in accordance with all applicable laws concerning protection
of personal information. Additionally, the collection, stor-
age, and use of such information can be subject to consent
of the individual to such activity, for example, through well
known “opt-in” or “opt-out” processes as can be appropriate
for the situation and type of information. Storage and use of
personal information can be in an appropriately secure
manner reflective of the type of information, for example,
through various encryption and anonymization techniques
for particularly sensitive information.

[0149] It will be apparent that systems and/or methods
described herein may be implemented in different forms of
hardware, firmware, and/or a combination of hardware and
software. The actual specialized control hardware or soft-
ware code used to implement these systems and/or methods
is not limiting of the implementations. Thus, the operation
and behavior of the systems and/or methods are described
herein without reference to specific software code—it being
understood that software and hardware can be used to
implement the systems and/or methods based on the descrip-
tion herein.

[0150] Even though particular combinations of features
are recited in the claims and/or disclosed in the specification,
these combinations are not intended to limit the disclosure of
various implementations. In fact, many of these features
may be combined in ways not specifically recited in the
claims and/or disclosed in the specification. Although each
dependent claim listed below may directly depend on only
one claim, the disclosure of various implementations
includes each dependent claim in combination with every
other claim in the claim set.

[0151] No element, act, or instruction used herein should
be construed as critical or essential unless explicitly
described as such. Also, as used herein, the articles “a” and
“an” are intended to include one or more items, and may be
used interchangeably with “one or more.” Further, as used
herein, the article “the” is intended to include one or more
items referenced in connection with the article “the” and
may be used interchangeably with “the one or more.”
Furthermore, as used herein, the term “set” is intended to

Nov. 25, 2021

include one or more items (e.g., related items, unrelated
items, a combination of related and unrelated items, etc.),
and may be used interchangeably with “one or more.”
Where only one item is intended, the phrase “only one” or
similar language is used. Also, as used herein, the terms
“has,” “have,” “having,” or the like are intended to be
open-ended terms. Further, the phrase “based on” is intended
to mean “based, at least in part, on” unless explicitly stated
otherwise. Also, as used herein, the term “or” is intended to
be inclusive when used in a series and may be used inter-
changeably with “and/or,” unless explicitly stated otherwise
(e.g., if used in combination with “either” or “only one of™).
What is claimed is:
1. A method comprising:
receiving, by a device, a first image;
processing, by the device, the first image to identify an
object in the first image and a location of the object
within the first image;
extracting, by the device, a second image from the first
image based on the location of the object within the first
image;
processing, by the device, the second image to determine
at least one of a coarse-grained viewpoint estimate or a
fine-grained viewpoint estimate associated with the
object;
determining, by the device, that the at least one of the
coarse-grained viewpoint estimate or the fine-grained
viewpoint estimate satisfies a threshold;
determining, by the device, an object viewpoint associ-
ated with the object based on the at least one of the
coarse-grained viewpoint estimate or the fine-grained
viewpoint estimate satisfying the threshold; and
performing, by the device, one or more actions based on
the object viewpoint.
2. The method of claim 1, wherein processing the second
image comprises:
processing the second image to determine a series of
probabilities;
grouping the series of probabilities into a first quantity of
groups;
determining the coarse-grained viewpoint estimate based
on grouping the series of probabilities into the first
quantity of groups;
grouping the series of probabilities into a second quantity
of groups,
wherein the second quantity of groups is greater than
the first quantity of groups; and
determining the fine-grained viewpoint estimate based on
grouping the series of probabilities into the second
quantity of groups.
3. The method of claim 1, wherein processing the second
image comprises:
providing an output of an object detection model as an
input to a neural network portion of a deep learning
model; and
determining the coarse-grained viewpoint estimate and
the fine-grained viewpoint estimate based on an output
of the neural network portion of the deep learning
model.
4. The method of claim 3, wherein processing the second
image further comprises:
providing the output of the neural network portion of the
deep learning model to a pooling layer of the deep
learning model,
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wherein the coarse-grained viewpoint estimate and the
fine-grained viewpoint estimate are determined
based on an output of the pooling layer.

5. The method of claim 1, wherein processing the first
image comprises:

processing the first image with an object detection model

to identify the object in the first image and a bounding
box corresponding to the location of the object within
the first image.

6. The method of claim 1, wherein performing the one or
more actions comprises:

providing information identifying the object viewpoint to

an autonomous driving system of a vehicle.

7. The method of claim 1, wherein the deep learning
model includes one or more of:

a convolutional neural network model,

a Siamese neural network model, or

a combination of the convolutional neural network model

and the Siamese neural network model.

8. A device, comprising:

one or more processors configured to:

receive, from a vehicle device of a first vehicle, a first
image;
process the first image to identify an object in the first
image and a location of the object within the first
image;
extract, from the first image, the second image based on
the location of the object within the first image;
process the second image to determine a coarse-grained
viewpoint estimate and a fine-grained viewpoint
estimate for the object;
determine that at least one of the coarse-grained
viewpoint estimate or the fine-grained viewpoint
estimate satisfies a threshold confidence level;
determine an object viewpoint associated with the
object based on the at least one of the coarse-
grained viewpoint estimate or the fine-grained
viewpoint estimate; and
perform one or more actions based on the object
viewpoint.

9. The device of claim 8, wherein the first image is
processed using an object detection model, and wherein the
object detection model includes one or more of:

a you only look once model,

a single-shot detector model, or

a faster region convolutional neural network model.

10. The device of claim 8, wherein the vehicle device
includes a single dash camera provided in the vehicle.

11. The device of claim 8, wherein the one or more
processors, when determining that the at least one of the
coarse-grained viewpoint estimate or the fine-grained view-
point estimate satisfies the threshold confidence level, are
further configured to:

determine a first confidence level associated with the

coarse-grained viewpoint estimate and a second confi-
dence level associated with the fine-grained viewpoint
estimate;

determine that the first confidence level satisfies the

threshold confidence level; and

determine that the second confidence level fails to satisfy

the threshold confidence level,
wherein the object viewpoint is determined based on
the coarse-grained viewpoint estimate based on the

Nov. 25, 2021

first confidence level satisfying the threshold and
based on the second confidence level failing to
satisfy the threshold.

12. The device of claim 8, wherein the object comprises
a vehicle, and wherein the one or more processors are
configured further to:

determine, based on the object viewpoint, a direction of

travel associated with the vehicle.

13. The device of claim 8, wherein a deep learning model
is utilized to process the second image, and wherein the one
or more processors are further configured to:

apply, prior to training the deep learning model, random

horizontal flipping to images of image data used to train
the deep learning model; and

train the deep learning model based on applying the

random horizontal flipping and applying a Siamese
network to the images of the image data.

14. The device of claim 13, wherein the one or more
processors are further configured to:

normalize, prior to training the deep learning model, the

images of the image data by subtracting a mean and
dividing by a standard deviation of the image data.

15. A non-transitory computer-readable medium storing
instructions, the instructions comprising:

one or more instructions that, when executed by one or

more processors, cause the one or more processors to:

receive, from a vehicle device of a vehicle, a first
image;

process the first image, with an object detection model,
to identify an object in the first image and a location
of the object within the first image;

extract, from the first image, a second image of the
object based on the location of the object within the
first image;

process the second image, with a deep learning model,
to determine one or more coarse-grained viewpoint
estimates and one or more fine-grained viewpoint
estimates associated with the object;

determine an object viewpoint associated with the
object based on the one or more coarse-grained
viewpoint estimates or the one or more fine-grained
viewpoint estimates; and

provide information identifying the object viewpoint to
the vehicle.

16. The non-transitory computer-readable medium of
claim 15, wherein the one or more coarse-grained viewpoint
estimates include a plurality of coarse-grained viewpoint
estimates and the one or more fine-grained viewpoint esti-
mates include a plurality of fine-grained viewpoint esti-
mates.

17. The non-transitory computer-readable medium of
claim 15, wherein the one or more instructions, when
executed by the one or more processors, further cause the
one or more processors to:

determine a direction that the object is facing based on the

object viewpoint.

18. The non-transitory computer-readable medium of
claim 15, wherein the one or more instructions, when
executed by the one or more processors, further cause the
one or more processors to:

determine that an accuracy associated with the one or

more fine-grained viewpoint estimates fails to satisfy a
threshold,
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wherein the object viewpoint is determined based on a wherein the object viewpoint is determined as the
course-grained viewpoint estimate, of the one or fine-grained viewpoint estimate based on the accu-
more coarse-grained Vie.:wpoint.estimates, and based racy associated with the fine-grained viewpoint esti-
on the accuracy associated with the one or more mate satisfying the threshold and the granularity
?hI;Z-s%roalldn.ed viewpoint estimates failing to satisfy the ass.ociated with the ﬁne.-grained viewpoint estimate
19. The non-transitory computer-readable medium of being the finer granularity.
claim 15, wherein the one or more instructions, when 20. The non-transitory computer-readable medium of
executed by the one or more processors, further cause the claim 15, wherein:
one or more processors to:
determine that an accuracy associated with a fine-grained a coarse-grained viewpoint estimate, of the one or more
viewpoint estimate, of the one or more fine-grained coarse-grained viewpoint estimates, is associated with
viewpoint estimates, satisfies a threshold; and a first range of azimuth angles, and

determine that a granularity associated with the fine-
grained viewpoint estimate is a finer granularity rela-
tive to other fine-grained viewpoint estimates, of the
one or more fine-grained viewpoint estimates, and a
granularity of the one or more coarse-grained view-
point estimates, I T S

a fine-grained viewpoint estimate, of the one or more
fine-grained viewpoint estimates, is associated with a
second range of azimuth angles that is less than the first
range of azimuth angles.



