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Abstract

If an unknown �nite set C ⊂ Z2 is cut by lines parallel to given directions, then one may count the
number of points of C that are intercepted by each line, that is, the projections of C in the given
directions. The inverse problem consists in reconstructing the set C, interpreted as a binary image,
from the knowledge of its projections.
In general, this challenging combinatorial problem, also related to the tomographic reconstruction
of an unknown homogeneous object by means of X-rays, is ill-posed, meaning that di�erent binary
images exist that match the available projections. Therefore, as a preliminary step, one can try to
�nd conditions to be imposed on the considered directions in order to limit the number of allowed
solutions.
In this paper we address the above problems for sets C contained in a �nite assigned lattice grid,
and generalize some results known in literature.
First, we describe special sets of lattice directions, called simple cycles, and focus on some of their
properties. Then we prove that uniqueness of reconstruction for binary images is guaranteed if and
only if the line sums are computed along suitable simple cycles having even cardinality.
As a second item, we prove that the unique binary solution can be explicitly reconstructed from
a real-valued solution having minimal Euclidean norm. This leads to an explicit reconstruction
algorithm, tested on four di�erent phantoms and compared with previous results, which points out
a signi�cant improvement of the corresponding performance.
Keywords: Binary tomography; discrete tomography; lattice grid; lattice set; line sum; minimum
norm solution; simple cycle; uniqueness of reconstruction; X-ray.
AMS Subject Classi�cation: 52C05, 15A06, 68U05, 68U10

1. Introduction

In the lattice Z2 of points having integer coordinates, let A = {(ξ, η) ∈ Z2 : 0 ≤ ξ < M, 0 ≤ η < N}
be a grid of size M ×N , with M,N positive integers. Let S = {u1, . . . , ud} be a given set of lattice
directions. A stimulating combinatorial problem is the reconstruction of an unknown set C ⊆ A
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from the knowledge of the number of points of C intercepted by the straight lines of Z2 that are
parallel to the directions in S.
From a functional point of view, this consists in looking for a function f : A → {0, 1} having C as
its support, namely C = supp(f) = {(ξ, η) ∈ A : f(ξ, η) = 1}, to be determined from the knowledge
of the sums of its values along all lines parallel to the given directions and intersecting A. In this
perspective, the set C is a binary image and the combinatorial problem represents the discrete
analogous of the tomographic reconstruction of homogeneous (namely, with a single density value)
objects by means of projection data, collected by detectors, and corresponding to the absorption of
energy along the given directions (see [15, 16] for additional details).
The classical theoretical model of Computerized Tomography goes back to the earlier results by
J. Radon, and bases on the Radon Transform and its inversion, which requires the knowledge of
the projections along all possible directions (see for instance the English reprint [19] of the original
paper). However, in the real world only a �nite number of projections can be collected, and this
leads to the loss of injectivity of the Radon transform. This results in the existence of S-ghosts,
namely, non-trivial images that are invisible along the considered set S of directions. An S-ghost
can be added to any solution of the tomographic problem without changing the X-ray data, so
providing a di�erent solution.
An S-ghost is represented by a non-trivial function g : A → R having zero line sums along all lines
parallel to the given directions. In particular, if g has range {−1, 0, 1}, then we speak of binary
S-ghost. Adding a binary S-ghost g to a binary solution f : A → {0, 1} could return a function
f +g that is still binary and consequently, having the same line sums as f , could provide a di�erent
solution of the same problem. Di�erently, f + g is never a binary solution if |g(ξ, η)| > 1 for some
(ξ, η) ∈ A. A weakly bad con�guration FS ⊂ Z2 is the set of minimal size supporting an S-ghost,
namely, FS consists of positively and negatively weighted lattice points, summing to zero along all
lines in the directions belonging to S. For any u ∈ R2 such that FS + u ⊂ A, we also consider
the elementary S-ghost gu : A → R, whose support is Gu = FS + u. Any other S-ghost is a linear
combination of elementary ghosts [14].
A fruitful area of research consists in looking for some kind of extra information to be incorporated
in the tomographic problem, with the aim of understanding the combinatorial and the geometric
structure of ghosts, so reducing the number of allowed solutions and, possibly, to prove uniqueness
results (for several results by di�erent perspectives see for instance [1, 2, 3, 5, 6, 7, 8, 10, 11, 12,
13, 14, 18, 20], and also [15, 16] for a general overview and related topics).
For some special classes of objects, uniqueness results are known independently of a grid A, so in the
whole lattice Z2. This is the case, for instance, of convex bodies, when S is any set of seven lattice
directions, or any set of four directions having cross-ratio di�erent from 2, 3, 4, up to rearrangement
of the order of the directions [11, 12]. However, working with no restrictions on the object to
be reconstructed does not avoid binary ghosts, since the linear combination of a su�ciently large
number of elementary ghosts could provide a binary ghost. This suggests con�ning the tomographic
problem to a lattice grid A.
In this paper we deal with the above problem, �rst by proving a uniqueness theorem, and then by
applying the result to get an explicit reconstruction algorithm.
Since we deal with homogeneous sets (namely, with binary images), we must impose that no binary
S-ghost exists. In particular, we must guarantee that some points of the weakly bad con�guration
FS have weight greater than 1, and this remains true for any other S-ghost g : A → R.
In [4, 5], a solution has been obtained for a set S of four directions in Z2, and in [6] the result has
been generalized by exploiting sets of d independent directions in Zn, with 3 ≤ d ≤ n. As a �rst step,
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we note that the assumption of independence adopted in [6] can be relaxed by using the notion of
simple cycle, which provides sets of directions whose corresponding weakly bad con�guration always
has a multiple point, positively or negatively weighted, whenever the weakly bad con�guration has
to remain inside A. In order to preserve such a multiple point under translations, the set of allowed
translations inside the given lattice grid A is determined. This gives the so-called enlarging region
of each point of FS , and leads to Theorem 2. It provides a necessary and su�cient condition for a
simple cycle S to be a set of uniqueness in a bounded lattice grid A, meaning that the line sums
taken along the directions in S uniquely determine any subset of A.
The second step of our approach consists in applying the obtained uniqueness theorem to get an
explicit reconstruction algorithm for binary images. For sets S of four suitable lattice directions,
this is done by the Binary Reconstruction Algorithm (BRA) in [10], which is based on the results
in [5]. Though perfect reconstructions are always obtained, a drawback of such an approach is
that the directions in S are usually long, meaning that these have a large norm, and consequently
the lines parallel to the given directions intercept a small number of lattice points. This is not
convenient from a pure application point of view, since the acquisition system should contain a
huge number of detectors, and consequently would be very expensive. In addition, X-rays in very
skew directions would be strongly a�ected by physical and technical constraints, so would easily
lead to the presence of artifacts in the reconstructed images.
Consequently, having extended the uniqueness result obtained in [5] for four directions to simple
cycles, we are encouraged to adopt the same strategy as in [10], but exploiting simple cycles con-
sisting of d > 4 lattice directions. This allows us to reduce the norm of each employed direction, so
collecting a larger number of lattice points on each line.
The paper is organized as follows. In Section 2 we introduce the adopted notation and the main
de�nitions. Section 3 is devoted to reach a uniqueness result for simple cycles. In Section 4 we state
and prove Theorem 3, that provides a binary rounding theorem for simple cycles of uniqueness.
This leads to the algorithm e-BRA (extended BRA), that uniquely and perfectly reconstructs any
binary image by exploiting the real-valued solution having minimum Euclidean norm. In Section 5
we test e-BRA on four di�erent binary phantoms, comparing the results with those of BRA, which
shows an improvement of the performance. Section 6 resumes the obtained results and gives some
details on possible further generalizations.

2. Preliminaries

We work in the lattice Z2, consisting of points having integer coordinates. A lattice set is a �nite
subset C ⊂ Z2. We denote by |C| the cardinality of C, and by C + u the lattice set obtained by
translating each point of C along a vector u ∈ Z2. We denote by −C the symmetric of C with
respect to the origin. A partition of a set C as the disjoint union of two subsets C1, C2 ⊂ C is
denoted by C = C1 ∪̇C2.
A �nite set of points C ⊂ Z2 can also be considered as a binary image, whose minimum bounding
grid, up to translation, is A = {(ξ, η) ∈ Z2 : 0 ≤ ξ < M, 0 ≤ η < N} for some positive
integers M,N . When referring to the elements of a binary image we can say pixels instead of
points, so MN =: n is the number of pixels. Any image can also be considered as a function
f : A → R. In particular, a binary image is f : A → {0, 1}. Denote by ∥f∥ the norm of f , namely,
∥f∥ = max(ξ,η)∈A{|f(ξ, η)|}.
By (lattice) direction we mean a pair (a, b) of coprime integers such that a ≥ 0, where we assume
b = 1 if a = 0. A line of direction (a, b) ∈ Z2 has equation ay = bx+ t, t ∈ Z.
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In a binary tomography perspective, we work in the so-called grid model, where pixels correspond
to lattice points having integer coordinates and X-rays1 are discrete lattice lines. The line sum, or
projection, of a function f : A → {0, 1} along the lattice line ay = bx + t is

∑
aη=bξ+t f(ξ, η), so a

projection counts the number of lattice points intercepted by X-rays taken in the assigned direction.
The algebraic approach to image reconstruction bases on solving the linear system

Wx = p, (1)

where x ∈ Rn encodes the image to be reconstructed, p ∈ Rs is the vector collecting the measures
and W = [wij ] is the s × n projection matrix, whose entries are computed di�erently according to
di�erent models. In the grid model, wij = 1 if the j-th pixel belongs to the i-th X-ray, and wij = 0
otherwise. For a given set S = {(ar, br) : r = 1, . . . , d} of d lattice directions, each one of the s rows
of W provides the contribution of all the n pixels along a single line (usually called bin), having
one of the directions in S.
Referring to (1), we are in the case p ∈ Ns and look for solutions x ∈ {0, 1}n. Let be h :=

∑d
r=1 ar

and k :=
∑d

r=1 |br|. Uniqueness of reconstruction is guaranteed inside the grid A by the so-called
Katz condition [17]:

h ≥ M or k ≥ N. (2)

Di�erently, if h < M and k < N we say that S is a valid set of directions for A. In this case,
uniqueness of reconstruction is not guaranteed without introducing some extra information, since
binary S-ghosts g : A → {−1, 0, 1} could exist, namely, non-zero solutions xg of the homogeneous
system Wx = 0. A binary ghost, added to a binary solution f : A → {0, 1}, could still provide
a {0, 1}-ranged function f + g, i.e., a di�erent binary solution of the same problem. The set
supp(g) = {(ξ, η) ∈ A : g(ξ, η) ̸= 0} is the support of g. If supp(g) = ∅, then g is called trivial
ghost.
For r = 1, . . . , d, let us consider

f(ar,br)(x, y) =


xarybr − 1 if ar ̸= 0, br > 0,

xar − y−br if ar ̸= 0, br < 0,

x− 1 if ar = 1, br = 0,

y − 1 if ar = 0, br = 1,

and de�ne

FS(x, y) =

d∏
r=1

f(ar,br)(x, y).

For a vector u = (a, b) ∈ Z2, we often simply write xu to denote the monomial xayb 2. For each A ⊆
S, let be u(A) =

∑
u∈A u, with u(∅) = 0 ∈ Z2. It results that FS(x, y) =

∑
A⊆S(−1)|S|−|A|xu(A),

where we underline that the sign of the monomial xu(A) is determined by the parity of (the cardi-
nality of) the set S\A.

1The term X-ray is usually employed in discrete tomography either to mean the measurement (see for instance [12])
or a line intercepting grid points (see [10]). Here we use the second option.

2We use the same symbol x for both a solution of (1) and the monomial xu = xayb. However, due to the presence
of the exponent, no misinterpretation exists.
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A monomial mxξyη ∈ Z[x, y] can be associated to the lattice point (ξ, η), together with its weight
m. We say that |m| is the multiplicity of (ξ, η). For any function g : A → R, the corresponding
generating function is the polynomial de�ned by

Gg(x, y) =
∑

(ξ,η)∈A

g(ξ, η)xξyη.

Remark 1. The above de�nition of f(ar,br)(x, y) avoids negative exponents for y, so that FS(x, y)
is in fact a polynomial. This implies that, for each A ⊆ S, the exponent u(A) of the associated

monomial of FS(x, y) corresponds to the lattice point u(A) + (0, q), where q =
∑

(a,b)∈S,b<0

|b|.

Note that if the generating function of f : A → R is the polynomial FS(x, y), then f has zero sums
along the lines taken in the directions in S [14]. Moreover, being S valid for A, supp(f) is contained
in A.
For a polynomial G(x, y), we denote by G+(x, y) (respectively, G−(x, y)) the polynomial as the
sum of the monomials of G(x, y) having positive (respectively, negative) coe�cients. The sets
consisting of the lattice points (counted with their multiplicities) corresponding to G(x, y), G+(x, y)
and G−(x, y) are here denoted by G, G+ and G−, respectively. If G(x, y) = Gg(x, y), g a ghost, then
the pair G = (G+,G−) is said to be a (weakly) bad con�guration. This consists of two sets having
the same absolute sums along all lines with directions taken in S, up to count each pixel with its
proper multiplicity. In case G = (G+,G−) does not contain points having multiplicity greater than
1, then G is said to be a bad con�guration.
Let FS = {λt : t ∈ I− ∪ I+} be the (weakly) bad con�guration associated to a set S of valid
directions for a lattice grid A = {(ξ, η) ∈ Z2 : 0 ≤ ξ < M, 0 ≤ η < N}, where I+ (respectively, I−)
is the set of indices t such that λt ∈ FS has positive (respectively, negative) weight. The enlarging
region associated to FS is the rectangle E = {(ξ, η) : 0 ≤ ξ ≤ M − h − 1, 0 ≤ η ≤ N − k − 1}.
Further, for each (ξ, η) ∈ A, de�ne E+(ξ, η) = {u ∈ E : (ξ, η) = λi + u, i ∈ I+} and E−(ξ, η) =
{u ∈ E : (ξ, η) = λt + u, t ∈ I−}. The enlarging region associated to a pixel λ ∈ FS is the set
λ+ E.
Indeed, when looking for a uniqueness result in A, the union of the enlarging regions associated
to all pixels of FS plays a special role, since it provides the region where FS can be moved still
remaining inside the grid [10]. In what follows we refer to a set S of uniqueness for a bounded
lattice grid A, meaning that any binary lattice set contained in A can be exactly reconstructed
from the knowledge of its projections along the directions in S.

3. A uniqueness theorem

We wish to investigate the problem of reconstructing an unknown binary image by exploiting special
sets of directions when the Katz's inequalities (2) do not hold. In particular, we are interested in
sets consisting of few directions, taken with short Euclidean norm (with respect to the grid size),
as well as in related algorithms that, assuming there is no noise, lead to perfect reconstructions.

De�nition 1. A set S = {u1, . . . , ud} of lattice directions is a cycle if there exists a partition of
S = I ∪̇ J such that u(I) = u(J). A cycle S is called simple if no proper subset S′ of S is a cycle,
namely, no other pair A,B of disjoint subsets of S exists such that A ∪̇B = S′ and u(A) = u(B).
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Example 1. The set S1 = {(5,−3), (10, 11), (15, 4), (19, 4), (20, 13), (15,−29), (7, 6), (7, 26)} is a
simple cycle. It can be obtained as I ∪̇ J , with I = {(5,−3), (10, 11), (15, 4), (19, 4)} and J =
{(20, 13), (15,−29), (7, 6), (7, 26)}, while no other complementary pair of disjoint subsets A,B of S
such that u(A) = u(B) exists, as one can easily (but tediously) check by sorting all the subsets of S.
On the other hand, the cycle S2 = {(1, 2), (2, 1), (4, 7)} ∪ {(0, 1), (4, 5), (3, 4)} is not a simple cycle,
since u(A) = u(B) for the subsets A = {(1, 2), (3, 4)} and B = {(0, 1), (4, 5)}.

Proposition 1. Let S = I ∪̇ J = {u1, . . . , ud} be a simple cycle. Then FS has a multiple point if
and only if d is even. Moreover, there is exactly one coe�cient of FS(x, y) not in {−1, 0, 1}, and
its value is either 2 or −2.

Proof. If d is odd, then |I| and |J | have di�erent parities, so the monomials xu(I) and xu(J) in FS

have opposite coe�cients and therefore vanish.
Conversely, if d is even then |I| and |J | have the same parity, and the coe�cients of xu(I) and
xu(J) are both 1 or −1, giving the monomial ±2xu(I). Since S is a simple cycle, then no other pair
{A,B} ̸= {I, J} exists such that u(A) = u(B), and consequently no other monomial in FS having
coe�cient greater than 1 in absolute value.

Example 2. The set S = {(3,−1), (1, 2), (1, 3), (1,−3), (7, 3), (3,−4)} is a simple cycle of length
six partitioned in two sets, I = {(3,−1), (1, 2), (1, 3), (3,−4)} and J = {(1,−3), (7, 3)}, so that
u(I) = u(J) = (8, 0). Since q = 8, according to Remark 1 the unique double point of the weakly bad
con�guration FS is (8, 8). The associated polynomial is

FS(x, y) = x16y8−x15y11−x15y6−x15y5+x14y9+x14y8+x14y3−x13y12−x13y9−x13y6+x12y15+
x12y12+x12y10+x12y9+x12y7+x12y6−x11y13−x11y12−x11y10−x11y9−x11y7−x11y4+x10y13+

x10y10 + x10y7 − x9y16 − x9y11 − x9y10 − x9y5 + x8y14 + x8y13 + 2x8y8 + x8y3 + x8y2 − x7y11 −
x7y6−x7y5−x7+x6y9+x6y6+x6y3−x5y12−x5y9−x5y7−x5y6−x5y4−x5y3+x4y10+x4y9+
x4y7 + x4y6 + x4y4 + x4y − x3y10 − x3y7 − x3y4 + x2y13 + x2y8 + x2y7 − xy11 − xy10 − xy5 + y8.

The boxed monomial is the only one in FS(x, y) that has a coe�cient greater than 1 in absolute
value. Figure 1 shows the displacement of the weakly bad con�guration FS associated to FS(x, y),
contained in an 18× 18 lattice grid, and consisting of all lattice points having coordinates equal to
u(A) + (0, 8) for all A ⊆ S. In this case, M = N = 18 and h = k = 16, therefore the enlarging
region is E = {(ξ, η) : 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1}. It consists of four points, so each pixel λ ∈ FS can
be moved in the region λ+ E still preserving the double point and without exceeding the grid size.

A necessary condition for S to be a set of binary uniqueness for a �nite grid A is that FS represents
a weakly bad con�guration in A, namely, FS must have a multiple point. In particular, due to
Proposition 1, even simple cycles have a single double point, so these represent the easiest case
to be investigated. This leads us to characterize the sets of directions S that provide even simple
cycles, so from now on we will assume d ≥ 4 and even.
Note that for a simple cycle S, once I ⊂ S has been selected, then there exists only one J ⊂ S such
that S = I ∪̇ J . If S consists of d = 2d′ directions, then there exist d′ partitions of |S| as the sum
of two integers |I|, |J | having the same parity (two partitions obtained by exchanging the values of
|I| and |J | are considered as the same partition).
The case d = 4 has been already considered in [5, 11, 13], where, assuming for instance |I| ≥ |J |, the
two possible partitions correspond to the choices |I| = 3 and |J | = 1, and |I| = |J | = 2, respectively.
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(0, 0)

(17, 17)

Figure 1: The set S = {(3,−1), (1, 2), (1, 3), (1,−3), (7, 3), (3,−4)} and the corresponding weakly bad con�guration
in a grid of dimension 18×18. Black points correspond to monomials with negative sign, white points to the positive
ones. There is one only multiple (positive) point, marked with a double circle and framed enlarging region. The
enlarging regions of other pixels could overlap, as shown on the lower-left side of the double pixel.

In order to provide a su�cient condition for uniqueness, we now consider the shift of the S-weakly
bad con�guration by a vector w ∈ Z2, thus de�ning fw

− and fw
+ as the maps whose generating

functions are Gfw
−
(x, y) = (xw − 1)FS(x, y) and Gfw

+
(x, y) = (xw + 1)FS(x, y), respectively.

We study in which cases fw
− and fw

+ correspond to bad con�gurations, i.e., we seek the translations
w such that the double point in FS vanishes.

Lemma 1. Let S = {u1, . . . , ud} be an even simple cycle, and I ∪̇ J be the partition such that
u(I) = u(J) is the double point in the corresponding weakly bad con�guration. Then

1. ∥fw
−∥ ≤ 1 if and only if w ∈ {±(u(I ′)− u(J ′)) : I ′ ⊆ I, J ′ ⊆ J, |I ′| ≡2 |J ′|};

2. ∥fw
+∥ ≤ 1 if and only if w ∈ {±(u(I ′)− u(J ′)) : I ′ ⊆ I, J ′ ⊆ J, |I ′| ̸≡2 |J ′|}.

Proof. We focus on fw
− , since the other case can be treated similarly.

Suppose �rst that ∥fw
−∥ ≤ 1, namely, all the coe�cients of Gfw

−
(x, y) = xwFS(x, y) − FS(x, y)

belong to the set {−1, 0, 1}.
Being |S| even, we can write FS(x, y) =

∑
A⊆S(−1)|A|xu(A), and

Gfw
−
(x, y) =

∑
A⊆S

(−1)|A|xw+u(A) −
∑
B⊆S

(−1)|B|xu(B). (3)

Since S is an even simple cycle, then |I| ≡2 |J |. Also, by Proposition 1, the only monomials in
xwFS(x, y) and FS(x, y) having coe�cients outside the set {−1, 0, 1} are

� (−1)|I|2xw+u(I), that is obtained by adding the monomials (−1)|I|xw+u(I) and (−1)|J|xw+u(J)

in the �rst sum;
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� (−1)|I|2xu(I), that is obtained by adding the monomials (−1)|I|xu(I) and (−1)|J|xu(j) in the
second sum.

Since ∥fw
−∥ ≤ 1, the monomial (−1)|I|2xw+u(I) must have the same exponent and the same sign of a

monomial in the second sum. Then, there exists K ⊂ S such that |K| ≡2 |I| and w+u(I) = u(K),
that is w = u(K) − u(I). Since S = I ∪̇ J , then there exist T ⊆ I, J ′

1 ⊆ J such that K = T ∪̇ J ′
1.

Therefore u(K) = u(T ) + u(J ′
1), and consequently

w = u(T ) + u(J ′
1)− u(I) = u(J ′

1)− (u(I)− u(T )) = u(J ′
1)− u(I ′1),

where I ′1 is the complement of T in I. Note that |I ′1| = |I| − |T | = |I| − |K|+ |J ′
1| ≡2 |J ′

1|.
Similarly, the monomial (−1)|I|2xu(I) must have the same exponent and the same sign of a monomial
in the �rst sum. Then there exists H ⊂ S such that |H| ≡2 |I| and u(I) = w + u(H), that
is w = u(I) − u(H). Therefore, there exist Q ⊆ I, J ′

2 ⊆ J such that H = Q ∪̇ J ′
2, so that

u(H) = u(Q) + u(J ′
2), and consequently

w = u(I)− u(Q)− u(J ′
2) = u(I ′2)− u(J ′

2),

where I ′2 is the complement of Q in I. Note that |I ′2| = |I| − |Q| = |I| − |H|+ |J ′
2| ≡2 |J ′

2|.
Therefore, in any case, w ∈ {±(u(I ′)− u(J ′))} for some I ′, J ′ with I ′ ⊆ I, J ′ ⊆ J, |I ′| ≡2 |J ′|.
Conversely, assume that w ∈ {±(u(I ′)− u(J ′)) : I ′ ⊆ I, J ′ ⊆ J, |I ′| ≡2 |J ′|}.
Suppose that A,B ⊂ S correspond to monomials having the same exponent in the �rst and in the
second sum in (3), respectively, namely, w+u(A) = u(B). Then w = u(B)−u(A), so, by de�nition
of w, we get u(B)−u(A) = u(I ′)−u(J ′). Let C = A∩B, so we can write u(B) = u(B \C)+u(C)
and u(A) = u(A \ C) + u(C), so that

u(B \ C)− u(A \ C) = u(I ′)− u(J ′), (4)

being A \ C and B \ C disjoint sets. Let us consider the following sets:

BI = (B \ C) ∩ I, AI = (A \ C) ∩ I,
BJ = (B \ C) ∩ J, AJ = (A \ C) ∩ J.

Since I ∩ J = ∅, we can write u(B \ C) = u(BI ∪ BJ) = u(BI) + u(BJ). Analogously, we have
u(A \ C) = u(AI) + u(AJ). From (4), we get

u(BI) + u(BJ)− u(AI)− u(AJ) = u(I ′)− u(J ′).

Note that AI ∩ BI = ∅ and AJ ∩ BJ = ∅, so we can write u(BI) − u(AI) = u(BI ∪ (−AI)).
Analogously, u(BJ)− u(AJ) = u(BJ ∪ (−AJ)). Consequently, we have

u(BI ∪ (−AI)) + u(BJ ∪ (−AJ)) = u(I ′)− u(J ′) = u(I ′) + u(−J ′).

Since AI , BI , I
′ ⊂ I, AJ , BJ , J

′ ⊂ J , and I ∩J = ∅, it must be BI ∪ (−AI) = I ′, and BJ ∪ (−AJ) =
−J ′. Since |I ′| ≡2 |J ′|, then |BI∪(−AI)| ≡2 |BJ∪(−AJ)|, and, being AI∩BI = ∅ and AJ∩BJ = ∅,
we get

|BI |+ |AI | ≡2 |BJ |+ |AJ |. (5)

If |BI | ≡2 |BJ |, then also |AI | ≡2 |AJ |, and |B| = |BI |+ |BJ | ≡2 |AI |+ |AJ | = |A|. If |BI | ̸≡2 |BJ |,
then also |AI | ̸≡2 |AJ |, and we still have |B| = |BI | + |BJ | ≡2 |AI | + |AJ | = |A|. Therefore, in
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each case the monomials (−1)|A|xw+u(A) and (−1)|B|xu(B) have the same exponent and the same
coe�cient. As a consequence, they mutually cancel in Gfw

−
(x, y) in case the corresponding lattice

points have the same multiplicities (namely, both 1, or both 2), or sum to a monomial having
coe�cient ±1 otherwise. Therefore, ∥fw

−∥ ≤ 1 and the statement follows.
When considering fw

+ the proof proceeds similarly, apart changing ≡2 with ̸≡2 in (5).

Example 3. Let us consider again the simple cycle S as in Example 2 and assume I ′ = {(3,−1)},
J ′ = {(7, 3)}, w = u(J ′)− u(I ′) = (4, 4). Then we have

xwFS(x, y) = x4y4FS(x, y) = x20y12−x19y15−x19y10−x19y9+x18y13+x18y12+x18y7−x17y16−
x17y13 − x17y10 + x16y19 + x16y16 + x16y14 + x16y13 + x16y11 + x16y10 − x15y17 − x15y16 − x15y14 −
x15y13 − x15y11 − x15y8 + x14y17 + x14y14 + x14y11 − x13y20 − x13y15 − x13y14 − x13y9 + x12y18 +

x12y17 + 2x12y12 + x12y7 + x12y6 − x11y15 − x11y10 − x11y9 − x11y4 + x10y13 + x10y10 + x10y7 −
x9y16−x9y13−x9y11−x9y10−x9y8−x9y7+x8y14+x8y13+x8y11+x8y10+x8y8+x8y5−x7y14−
x7y11 − x7y8 + x6y17 + x6y12 + x6y11 − x5y15 − x5y14 − x5y9 + x4y12.

The only monomial of FS(x, y) having coe�cient outside {−1, 0, 1} is 2x8y8, so the only monomial
of xwFS(x, y) having coe�cient outside {−1, 0, 1} must be the boxed one. Since I ′ and J ′ have the
same parity, by Lemma 1, the double coe�cient must simplify in Gfw

−
(x, y). In fact, we get

(xw − 1)FS(x, y) = (x4y4 − 1)FS(x, y) = x20y12 − x19y15 − x19y10 − x19y9 + x18y13 + x18y12 +
x18y7 − x17y16 − x17y13 − x17y10 + x16y19 + x16y16 + x16y14 + x16y13 + x16y11 + x16y10 − x16y8 −
x15y17 − x15y16 − x15y14 − x15y13 − x15y8 + x15y6 + x15y5 + x14y17 + x14y14 + x14y11 − x14y9 −
x14y8 − x14y3 − x13y20 − x13y15 − x13y14 + x13y12 + x13y6 + x12y18 + x12y17 − x12y15 + x12y12 −
x12y10 − x12y9 − x11y15 + x11y13 + x11y12 + x11y7 − x9y13 − x9y8 − x9y7 + x9y5 + x8y11 + x8y10 −
x8y8 + x8y5 − x8y3 − x8y2 − x7y14 − x7y8 + x7y6 + x7y5 + x7 + x6y17 + x6y12 + x6y11 − x6y9 −
x6y6 − x6y3 − x5y15 − x5y14 + x5y12 + x5y7 + x5y6 + x5y4 + x5y3 + x4y12 − x4y10 − x4y9 − x4y7 −
x4y6 − x4y4 − x4y + x3y10 + x3y7 + x3y4 − x2y13 − x2y8 − x2y7 + xy11 + xy10 + xy5 − y8.

Let us now assume I ′ = {(1, 2), (1, 3)}, J ′ = {(7, 3)}, w = u(J ′)− u(I ′) = (5,−2). Then we have

xwFS(x, y) = x5y−2FS(x, y) = x21y6−x20y9−x20y4−x20y3+x19y7+x19y6+x19y−x18y10−x18y7−
x18y4+x17y13+x17y11+x17y9+x17y7+x17y5+x17y4−x16y11−x16y10−x16y8−x16y7−x16y5−
x16y2+x15y11+x15y8+x15y5−x14y14−x14y9−x14y8−x14y3+x13y12+x13y11+ 2x13y6 +x13y+x13−
x12y9−x12y4−x12y3−x12+x11y7+x11y4+x11y−x10y10−x10y7−x10y5−x10y4−x10y2−x10y+x9y8+
x9y7+x9y5+x9y4+x9y2+x9y−1−x8y8−x8y5−x8y2+x7y11+x7y6+x7y5−x6y9−x6y8−x6y3+x5y6.
Since I ′ and J ′ have di�erent parities, according to Lemma 1, the double boxed coe�cient must
simplify in Gfw

+
(x, y). In fact, we get

(xw + 1)FS(x, y) = (x5y−2 + 1)FS(x, y) = x21y6 − x20y9 − x20y4 − x20y3 + x19y7 + x19y6 + x19y −
x18y10 − x18y7 − x18y4 + x17y13 + x17y10 + x17y8 + x17y7 + x17y5 + x17y4 − x16y11x16y10 − x16y7 −
x16y5 − x16y2 + x15y8 − x15y6 − x14y14 + x13y11 − x13y9 + x13y6 + x13y + x13 + x12y15 + x12y12 +
x12y10+x12y7+x12y6−x12y4−x12y3−x12y−2−x11y13−x11y12−x11y10−x11y9+x11y+x10y13−
x10y5−x10y4−x10y2−x10y−x9y16−x9y11−x9y10+x9y8+x9y7+x9y4+x9y2+x9y−1+x8y14+
x8y13+x8y8−x8y5+x8y3−x7−x6y8+x6y6−x5y12−x5y9−x5y7−x5y4−x5y3+x4y10+x4y9+
x4y7 + x4y6 + x4y4 + x4y − x3y10 − x3y7 − x3y4 + x2y13 + x2y8 + x2y7 − xy11 − xy10 − xy5 + y8.

By Lemma 1, for an even simple cycle S = I∪̇J the set

D = {±(u(I ′)− u(J ′)) : I ′ ⊆ I, J ′ ⊆ J} (6)
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provides the set of the single switchings of FS that give rise to a bad con�guration, so points of
multiplicity greater than 1 are not allowed.
In the following theorem we describe the generating polynomial of any {−1, 0,+1}-valued function.

Theorem 1. Let S = {u1, . . . , ud} be an even simple cycle, and I ∪̇ J be the partition such that
u(I) = u(J) is the double point in the corresponding weakly bad con�guration. Let g : Z2 → Z be a
non-trivial function having zero line sums along the directions in S. If ∥g∥ ≤ 1, then there exists
r ∈ N such that

Gg(x, y) =

r∑
t=1

(δtx
ut + µtx

vt)FS(x, y), (7)

where δt, µt ∈ {±1} and ut − vt ∈ D.

Proof. By Lemma 1, the statement follows by the same arguments as in [4, Theorem 3] and in [6,
Theorem 11], up to use the set D as in (6) and replace the independence of the directions with the
notion of simple cycle.

Remark 2. The two cases when g = fw
− and g = fw

+ can be obtained for r = 1, by choosing
u1 = w, v1 = (0, 0), with δ1 = 1, µ1 = −1 , and δ1 = µ1 = 1, respectively.

Starting from the previous results, we now characterize the simple cycles that are sets of uniqueness
for a grid A of �xed size M ×N . Recall that h =

∑d
r=1 ar and k =

∑d
r=1 |br|.

Theorem 2. Let S = {u1, . . . , ud} be an even simple cycle, valid for a lattice grid A = {(ξ, η) ∈
Z2 : 0 ≤ ξ < M, 0 ≤ η < N}. Then S is a set of uniqueness for A if and only if for each
w = (w1, w2) ∈ D it holds |w1| ≥ M − h or |w2| ≥ N − k.

Proof. Let be ur = (ar, br), r = 1, . . . , d, and let g : A → Z be a function such that ∥g∥ ≤ 1, having
zero line sums along the directions in S. We have to show that g is identically zero if and only if
for each w ∈ D it holds |w1| ≥ M − h or |w2| ≥ N − k.

First, let us show that a non-trivial function g : A → Z with ∥g∥ ≤ 1 exists, if we assume that, for
some w = (w1, w2) ∈ D, both |w1| < M − h and |w2| < N − k.
Since w ∈ D, we know that either ∥fw

−∥ ≤ 1 or ∥fw
+∥ ≤ 1 holds (see Lemma 1). By the assumption

on w, we also know that Gfw
−
(x, y) and Gfw

+
(x, y) both have maximum degree equal to |w1| + h

and |w2| + k w.r.t. x and y, respectively. Therefore, both functions are non-trivial and, since
|w1|+ h < M and |w2|+ k < N , their support is inside A. Consequently, we can choose g = fw

+ or
g = fw

− , depending on which one has norm less than one.

Conversely, assume that for each w = (w1, w2) ∈ D it holds |w1| ≥ M − h or |w2| ≥ N − k, and let
us show that a function g : A → Z having zero line sums along the directions in S and such that
∥g∥ ≤ 1 must be identically zero.
Suppose that some non-trivial function g : A → Z exists having zero line sums along the directions
in S and such that ∥g∥ ≤ 1. Then Gg(x, y) is a polynomial as in (7) and, being g de�ned on the
grid A, then Gg(x, y) must have degree less than M in x and less than N in y. However, for each
t ∈ {1, . . . , r}, Gg(x, y) contains the expression

(δtx
ut + µtx

vt)FS(x, y) = xvt
(
δtx

ut−vt + µt

)
FS(x, y).
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Since ut − vt ∈ D, say ut − vt = (w1(t), w2(t)), then, by the assumption on the components
of elements of D, we have |w1(t)| ≥ M − h or |w2(t)| ≥ N − k. Since degxFS(x, y) = h and
degyFS(x, y) = k, then we get degxGg(x, y) ≥ M or degyGg(x, y) ≥ N , a contradiction.
It follows that g is identically zero, which completes the proof.

In case S is an even simple cycle that satis�es the assumptions of Theorem 2, we say that S is a
simple cycle of uniqueness in the given lattice grid.

Remark 3. The notion of simple cycle is independent of being in the planar case, so it can be
preserved even for sets of directions in Zn, for any n ≥ 2. Indeed, the proof of Theorem 2 exploits
the same arguments as in [6, Theorem 12], so the uniqueness result in [6] holds true even under the
weaker condition that S is a simple cycle of uniqueness in Zn, n ≥ 3, instead of a set of independent
directions.

4. Extension of BRA to simple cycles of uniqueness

In [5], a uniqueness theorem for binary tomography has been obtained in a �nite lattice grid, by
means of X-rays taken along four suitable directions. In [10], a Binary Reconstruction Algorithm
(BRA) has been considered, that, based on the uniqueness result in [5], provides a perfect noise-free
reconstruction of a binary image in polynomial time, and running with sets of four suitably selected
directions. As discussed in the Introduction, a drawback of the considered approach is that the
exploited sets of uniqueness consist of long directions, so that each line meets only a small number
of lattice points.
In order to overcome the problem, a usual strategy is to highly increase the number of employed
directions, so to reduce their size and collect several lattice points on each line. However, without
a uniqueness result, this re�ects in the introduction of ghosts, and consequently in ambiguous
reconstructions (see for instance [2]).
In this paper, thanks to Theorem 2, we have extended to simple cycles of uniqueness the result
in [5]. This encourages us to look for a generalization of BRA to such simple cycles of uniqueness
consisting of d > 4 directions.
To this, we investigate possible links between the unique binary solution (say x) of the tomographic
problem Wx = pS and the solution having minimum Euclidean norm (called central solution,
see [2]). Let FS = {λi : i ∈ I− ∪ I+} be the weakly bad con�guration associated to a simple cycle
of uniqueness S. For u = (p, q) ∈ E (where E denotes the enlarging region, see Section 2 for its
de�nition), let Gu = FS +u, and let gu : A → R be the S-ghost generated by xpyqFS(x, y), namely,

gu(ξ, η) =

 0 if (ξ, η) /∈ Gu,
1 if (ξ, η) = λi + u, i ∈ I+,

−1 if (ξ, η) = λi + u, i ∈ I−.

Then we have
y(ξ, η) = x(ξ, η) +

∑
u∈E

αugu(ξ, η)

for any solution y of Wx = pS , for all (ξ, η) ∈ A and for suitable coe�cients αu ∈ R, where

∑
u∈E

αugu(ξ, η) =


0 if (ξ, η) /∈ H,∑
u∈E(ξ,η)

m(ξ, η)αu otherwise,

11



being m(ξ, η) the multiplicity of (ξ, η) and H =
⋃

u∈E Gu = FS + E. Let {α∗
u ∈ R : u ∈ E} be the

set of real-valued coe�cients corresponding to the central solution x∗, namely,

x∗(ξ, η) = x(ξ, η) +
∑
u∈E

α∗
ugu(ξ, η).

Setting w∗(ξ, η) =
∑

u∈E α∗
ugu(ξ, η), it results x∗(ξ, η) = x(ξ, η) + w∗(ξ, η), and x(ξ, η) can be

reconstructed from x∗(ξ, η) once we can explicitly compute w∗(ξ, η) for all (ξ, η) ∈ A. Denote by
round(x) the closest integer to x. The following theorem is a generalization to simple cycles of
uniqueness of [10, Theorem 13] and [9]. The arguments are the same, however some di�erences
occur, so, for the readers' convenience, we provide the proof explicitly.

Theorem 3. Let S be a simple cycle of uniqueness for a lattice grid A = {(ξ, η) ∈ Z2 : 0 ≤ ξ <
M, 0 ≤ η < N}, and let x∗ be the central solution of Wx = pS. Then, for all u ∈ E it results

α∗
u = x∗(λδ + u)− round(x∗(λδ + u)).

Proof. Since S is a simple cycle, the multiplicity of each point of FS belongs to the set {±1,±2},
with a single point λδ ∈ FS such that |m(λδ)| = 2.
For each u ∈ E, let f : R → R be the following function:

f(αu) =
∑

i∈I+∪I−

(x(λi + u) + αum(λi))
2
.

For a real-valued solution y of Wx = pS , it results

∥y∥22 =
∑

(ξ,η)∈A

y2(ξ, η) =
∑

(ξ,η)∈A

x(ξ, η) +
∑

u∈E+(ξ,η)∪E−(ξ,η)

αugu(ξ, η)

2

=
∑

(ξ,η)/∈H

x2(ξ, η) +
∑

(ξ,η)∈H

x(ξ, η) +
∑

u∈E+(ξ,η)∪E−(ξ,η)

αugu(ξ, η)

2

=
∑

(ξ,η)/∈H

x2(ξ, η) +
∑
u∈E

[ ∑
i∈I+∪I−

(x(λi + u) + αugu(λi + u))
2

]

=
∑

(ξ,η)/∈H

x2(ξ, η) +
∑
u∈E

[ ∑
i∈I+∪I−

(x(λi + u) +m(λi)αu)
2

]

=
∑

(ξ,η)/∈H

x2(ξ, η) +
∑
u∈E

f(αu).

The central solution x∗ is obtained when ∥y∥22 attains its minimum value. Note that f(αu) ≥ 0 for
all u ∈ E. Therefore, ∥y∥22 is the sum of the constant term

∑
(ξ,η)/∈H x2(ξ, η) and of |E| copies of

the non-negative number f(αu), for all u ∈ E. Consequently, the minimum of ∥y∥22 is obtained by
minimizing f , separately with respect to each variable αu. Computing the derivative we get

f ′(αu) = 2
∑

i∈I+∪I−

m(λi) (x(λi + u) + αum(λi)) .
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Therefore, it results

αu,min = α∗
u = −

∑
i∈I+∪I− m(λi)x(λi + u)∑

i∈I−∪I+ m2(λi)
.

Let δ ∈ I be the index such that λδ is the unique double point of FS . Then m(λδ) = −2 implies
|I−| = 2|S|−1 − 1 and |I+| = 2|S|−1, while m(λδ) = 2 implies |I−| = 2|S|−1 and |I+| = 2|S|−1 − 1.
Therefore, the minimum of α∗

u is attained when x(λi) = 0 for all i ∈ I− and x(λi) = 1 for all
i ∈ I+, while the maximum is attained when x(λi) = 0 for all i ∈ I+ and x(λi) = 1 for all i ∈ I−.
Consequently, we have

α∗
u ∈

[
−
∑

i∈I+ m(λi)

2|S| + 2
,

∑
i∈I− m(λi)

2|S| + 2

]
=

[
− 2|S|−1

2|S| + 2
,
2|S|−1

2|S| + 2

]
⊂

(
−1

2
,
1

2

)
. (8)

By [10, Lemma 10], the enlarging region of λδ does not intersect the enlarging region of any other
λi ∈ FS , meaning that, for all u ∈ E, there exists a unique αu to be computed for each pixel in
λδ + E. Therefore, by (8) it results

round(x∗(λδ + u)) = round (x(λδ + u) + α∗
u) = x(λδ + u).

Hence, the unique binary solution x is exactly reconstructed in λδ+E. This also allows to explicitly
compute the value of each α∗

u. In fact, since x∗(λδ + u) = x(λδ + u) + α∗
u, we have

α∗
u = x∗(λδ + u)− x(λδ + u) = x∗(λδ + u)− round(x∗(λδ + u)),

which proves the theorem.

Corollary 1. Let S be a simple cycle of uniqueness for a lattice grid A. Then the unique binary
solution x is uniquely and explicitly reconstructible from x∗.

Proof. We have

x(ξ, η) = x∗(ξ, η)− w∗(ξ, η) =


x∗(ξ, η) if (ξ, η) /∈ H,

x∗(ξ, η)−
∑

u∈E(ξ,η)

m(ξ, η)α∗
u otherwise,

and, by Theorem 3, the value of each α∗
u is known.

Remark 4. In case the enlarging regions of the pixels of FS are pairwise disjoint, then, for each
(ξ, η) ∈ H, x(ξ, η) di�ers from x∗(ξ, η) for a single α∗

u ∈
(
− 1

2 ,
1
2

)
, so x(ξ, η) = round(x∗(ξ, η)).

Our results allow to de�ne a new algorithm, e-BRA, for the reconstruction of binary images under
sets of uniqueness having an arbitrary even cardinality, that is a natural extension of the algorithm
BRA introduced in [10]. The implementation is precisely the same, with the only di�erence that
projections are collected along a set of directions S that form a simple cycle of any even size d ≥ 4.
The solution x∗ having minimum Euclidean norm is computed by means of the conjugate gradient
least square subroutine (CGLS).
The computational cost of e-BRA is the same of BRA, mainly related to CGLS, and depending
on the number of iterations and on the sparsity of the projection matrix W . It is estimated as
O(max{s

√
MN, (M − h)(N − k)(MN)}) [10], where s is the number of rows of W . In particular,

we underline that the cost also depends on the size of the enlarging region, (M − h)(N − k), that
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consequently plays an important role in selecting a suitable simple cycle of uniqueness S as an input
of the algorithm.
Actually, as highlighted in the experimental results reported in the next section, a careful choice of S
allows to reach a perfect reconstruction even avoiding the process of update of weights, that was the
key point of the algorithm BRA [10]. As a matter of fact, it is su�cient to select the set S such that,
in the corresponding weakly bad con�guration, no overlapping occurs among the enlarging regions
of the points of FS . In this way, the explicit computation of the weights α∗

v becomes super�uous
(see Remark 4), and the unique existing binary solution x can be computed by the simple integer
rounding of the central solution x∗, thus noticeably improving the computational cost, and so the
whole performance of the reconstruction strategy.

5. Experimental results

In this section we provide some experimental results deriving from the application of e-BRA to the
reconstruction of four binary images of size 512×512. We test our algorithm on the same phantoms
used in [10] (see Figure 2), and compare its performance to that of BRA.

(a) (b) (c) (d)

Figure 2: The four binary images which are used to test the sets of directions.

We employed simple cycles of six directions, chosen among 106 randomly generated sets of size six,
and then imposing the conditions of Theorem 2 for uniqueness. For the reasons outlined in the
Introduction, we prefer directions that are not too long, and whose norms do not di�er too much.
This re�ects in generating simple cycles S = I ∪̇ J in which I and J have the same cardinality,
namely |I| = |J | = 3.
After the random generation, we have selected two simple cycles of uniqueness, according to two
di�erent parameters.
For the �rst test, we considered the cycle in which the norm of the longest direction is minimum
among all the randomly generated sets. For the second test, we used (and minimized all over the

random generated sets of directions) the parameter R =
n2
max·|E|
MN , where nmax is the length of the

longest direction of the cycle, |E| is the area of the associated enlarging region and MN is the
size of the binary image we wish to reconstruct (namely, the size of the lattice grid A). Di�erent
motivations lead to the choice of such parameters. On one side, directions of short length allow
increasing the number of lattice points collected along each line, and consequently are preferable in
view of real applications. On the other side, a small parameter R re�ects in having enlarging regions
of small size for the di�erent pixels of FS , which increases the probability of empty intersection
among them, so providing faster reconstructions and lower computational costs. Let us also remark
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that, since the computation of x∗ is returned after a �nite number of iterations, of course a �nal
integer rounding step is required to remove the numerical errors and get the unique binary solution.
In Tables 1 and 3 we report the results of the reconstruction test obtained with the simple cycle
of minimum norm, that is S1 = {(92,−47), (91,−61), (71, 59), (44,−89), (98, 39), (112, 1)}, with its
partition I = {(92,−47), (91,−61), (71, 59)} ∪̇ J = {(44,−89), (98, 39), (112, 1)}.
By increasing progressively the number of iterations in the CGLS subroutine, returning the corre-
sponding approximations of the central solution x∗, we compared the results with the output ob-
tained in [10] w.r.t. the choice of the simple cycle of size four S = {(80, 77), (81, 91), (80, 83), (241, 251)}.
It turns out that, using S1, drastically reduces the number of CGLS iterations that are required to
get the exact reconstruction of each phantom. In particular, for the �rst phantom only 10 iterations
are enough, against the 350 required when using S. Similarly for the other phantoms, with only
45, 40 and 85 iterations instead of 500, 650 and 550, respectively (see [10]).
Tables 2 and 4 show the performance related to the second simple cycle of directions, namely
S2 = {(98,−81), (99, 19), (58,−55), (65, 68), (1, 51), (189,−236)}, obtained for the minimum value
of the parameter R over all the randomly generated cycles. Here the results are even more surprising,
since the exact reconstruction of any phantom can be reached with at most 14 iterations of the
CGLS. The choice of this set also reveals to be more e�cient in terms of computational cost. In fact,
the size of the enlarging regions is very small, namely |E| = 4, so, di�erently from what happens
in the case of the simple cycle S1, no overlapping exists among them (see also Figure 3), which
considerably reduces the running time of e-BRA, that actually coincides with the rounding of the
central solution computed by the CGLS (see Remark 4).
In the case of S1, due to the non-empty intersections between various enlarging regions, perfect
reconstructions are obtained with an average running time of ∼ 49 minutes. However, the only
integer rounding of the central solution computed by the CGLS subroutine performs in ∼ 10 seconds
only (see the caption of Table 1), still providing perfect reconstructions using less iterations, which
is better than BRA [10] even from this point of view.
As highlighted in [10], the performance of the reconstruction is strongly a�ected by the shape of the
binary image we want to detect, such as its boundary or the presence of holes, even if the perfect
reconstruction is always achieved in a limited number of iterations.

6. Conclusions and perspectives

We have proven that any set C contained in a �nite lattice grid A can be uniquely and perfectly
reconstructed from the knowledge of the number of points intercepted in C by lines parallel to
special sets of lattice directions. Such sets, called simple cycles of uniqueness, have even cardinality
and generalize the sets of four directions considered in [5].
The obtained uniqueness theorem has been later matched with Theorem 3, a useful rounding result
that leads to an explicit reconstruction algorithm. This has been tested on four phantoms by using
two simple cycles of uniqueness, selected among 106 randomly generated sets of six directions.
The selection has been carried out by imposing the required conditions of uniqueness determined
in Theorem 2. Then, we have extracted two simple cycles of uniqueness among the resulting
ones, by optimizing two di�erent parameters related to the underlying geometric structure of the
problem. In both cases the algorithm e-BRA showed a signi�cant improvement of the performance
if compared with the results in [10], so providing perfect reconstruction with a largely decreased
number of iterations. Furthermore, we showed that a careful choice of the set S allows to replace
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Figure 3: Top: The enlarging regions corresponding to each pixel of the weakly bad con�guration FS1
associated to

the simple cycle S1. Note the various intersections among them. Bottom: The enlarging regions corresponding to
each pixel of the weakly bad con�guration FS2

associated to the simple cycle S2. In this case, the enlarging regions
are pairwise disjoint.
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Phantom (a) Phantom (b) Phantom (c) Phantom (d)
% reconstruction % reconstruction % reconstruction % reconstruction

♯ iterations BRA r(CGLS) BRA r(CGLS) BRA r(CGLS) BRA r(CGLS)

5 87, 4092 99, 7715 91, 2003 98, 8316 96, 5935 99, 6399 95, 3346 99, 2786
10 89, 4630 100 93, 1129 99, 6948 98, 0015 99, 8970 96, 9589 99, 7692
15 90, 9096 100 93, 9625 99, 7490 98, 8770 99, 9287 97, 7921 99, 8798
20 92, 9287 100 94, 5007 99, 8356 99, 1268 99, 9619 98, 2510 99, 9359
25 93, 1965 100 94, 8883 99, 9325 99, 1817 99, 9771 98, 5619 99, 9699
30 93, 1419 100 94, 9764 99, 9805 99, 2161 99, 9889 98, 7358 99, 9866
35 93, 1881 100 95, 0813 99, 9958 99, 2851 99, 9981 98, 8308 99, 9931
40 93, 2270 100 95, 1820 99, 9985 99, 3397 100 98, 8640 99, 9962
45 93, 2526 100 95, 2492 100 99, 4194 100 98, 9540 99, 9985
50 93, 3460 100 95, 4098 100 99, 4907 100 99, 0292 99, 9992
70 94, 1795 100 96, 4542 100 99, 6288 100 99, 1974 99, 9996
85 95, 1431 100 97, 2759 100 99, 6510 100 99, 2123 100

Table 1: The table shows the percentage of pixels that were correctly reconstructed by round(CGLS), w.r.t. the
number of iterations of CGLS, by choosing the cycle of uniqueness S1. For each phantom the performance of
the new algorithm is compared with the results reached with BRA. The average running time of round(CGLS) is
9.6828s (Phantom (a)), 9.6798s (Phantom (b)), 9.6894s (Phantom (c)) and 9.7351s (Phantom (d)), against 35.9991s,
37.1793s, 36.2200s, and 36.7735s performed by BRA, respectively. If we include the computation of the values α∗

u,
namely, we move from round(CGLS) to e-BRA, the running time of the algorithm increases to ∼ 49 minutes, since
the enlarging regions in FS1 are not pairwise disjoint. In any case, the number of required iterations to reach perfect
reconstructions does not signi�cantly di�er from those ones required by round(CGLS), since the overlappings are not
so substantial (see Fig. 3). The improvement of the performance using six directions instead of four is evident.
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Phantom (a) Phantom (b) Phantom (c) Phantom (d)
% reconstruction % reconstruction % reconstruction % reconstruction

♯ iterations BRA r(CGLS) BRA r(CGLS) BRA r(CGLS) BRA r(CGLS)

1 72, 0032 99, 9474 67, 5571 97, 3408 80, 6828 87, 7895 77, 6054 83, 6227
2 78, 6480 100 79, 6726 98, 7370 88, 6410 97, 8024 85, 7597 96, 5656
3 85, 1456 100 87, 1723 99, 7883 93, 3338 99, 5544 91, 3975 98, 7869
4 87, 4401 100 91, 1255 99, 9462 95, 8172 99, 9268 94, 3275 99, 4404
5 87, 4092 100 91, 2003 99, 9905 96, 5935 99, 9928 95, 3346 99, 7250
6 87, 9543 100 91, 7496 100 96, 9959 100 95, 9316 99, 8768
7 88, 5426 100 92, 1745 100 97, 2382 100 96, 2200 99, 9245
8 89, 0572 100 92, 6483 100 97, 5616 100 96, 5168 99, 9439
9 89, 3127 100 92, 9394 100 97, 8333 100 96, 7274 99, 9638
10 89, 4630 100 93, 1129 100 98, 0015 100 96, 9589 99, 9840
11 89, 5687 100 93, 2533 100 98, 1678 100 97, 1081 99, 9924
12 89, 8548 100 93, 4521 100 98, 3734 100 97, 2919 99, 9962
13 90, 1440 100 93, 6581 100 98, 5573 100 97, 4491 99, 9985
14 90, 5163 100 93, 8484 100 98, 7583 100 97, 6395 100

Table 2: The table shows the percentage of pixels that were correctly reconstructed by round(CGLS), w.r.t. the
number of iterations of CGLS, by choosing the cycle of uniqueness S2. For each phantom the performance of the new
algorithm is compared with the results reached with BRA. The average running time of round(CGLS) is 16.4376s
(Phantom (a)), 16.5854s (Phantom (b)), 16.6367s (Phantom (c)) and 16.8537s (Phantom (d)), against 37.2501s,
36.4100s, 35.8227s, and 36.3038s performed by BRA, respectively. In this case, e-BRA coincides with round(CGLS),
since all the enlarging regions in FS2

are pairwise disjoint (see Remark 4). The improvement of the performance
w.r.t. BRA is evident.

Phantom (a) Phantom (b) Phantom (c) Phantom (d)
♯ wrong pixel ♯ wrong pixel ♯ wrong pixel ♯ wrong pixel

♯ iterations BRA r(CGLS) BRA r(CGLS) BRA r(CGLS) BRA r(CGLS)

5 33006 599 23068 3063 8930 944 12230 1891
10 27622 0 18054 800 5239 270 7972 605
15 23830 0 15827 658 2944 187 5788 315
20 18537 0 14416 431 2289 100 4585 168
25 17835 0 13400 177 2145 60 3770 79
30 17978 0 13169 51 2055 29 3314 35
35 17857 0 12894 11 1874 5 3065 18
40 17755 0 12630 4 1731 0 2978 10
45 17688 0 12454 0 1522 0 2742 4
50 17443 0 12033 0 1335 0 2545 2
70 15258 0 9295 0 973 0 2104 1
85 12732 0 7141 0 915 0 2065 0

Table 3: The table shows the number of wrong pixels in the reconstruction of the binary image when choosing the
cycle of uniqueness S1, w.r.t. the number of iterations selected for CGLS. The performance is also compared with
the algorithm BRA.
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Phantom (a) Phantom (b) Phantom (c) Phantom (d)
♯ wrong pixel ♯ wrong pixel ♯ wrong pixel ♯ wrong pixel

♯ iterations BRA r(CGLS) BRA r(CGLS) BRA r(CGLS) BRA r(CGLS)

1 73392 138 85047 6971 50639 32009 58706 42932
2 55973 0 53287 3311 29777 5761 37330 9003
3 38940 0 33627 555 17475 1168 22551 3180
4 32925 0 23264 141 10965 192 14870 1467
5 33006 0 23068 25 8930 19 12230 721
6 31577 0 21628 0 7875 0 10665 323
7 30035 0 20514 0 7240 0 9909 198
8 28686 0 19272 0 6392 0 9131 147
9 28016 0 18509 0 5680 0 8579 95
10 27622 0 18054 0 5239 0 7972 42
11 27345 0 17686 0 4803 0 7581 20
12 26595 0 17165 0 4264 0 7099 10
13 25837 0 16625 0 3782 0 6687 4
14 24861 0 16126 0 3255 0 6188 0

Table 4: The table shows the number of wrong pixels in the reconstruction of the binary image when choosing the
cycle of uniqueness S2, w.r.t. the number of iterations selected for CGLS. The performance is also compared with
the algorithm BRA.

the algorithm e-BRA with round(CGLS), drastically reducing the computational cost and running
time of the performance.
Even if not explicitly included in the present paper, we have also considered simple cycles of unique-
ness consisting of eight directions, and tested the algorithm on the same previous four phantoms.
The number of required iterations has been further reduced, even if the improvement is not so evi-
dent as when moving from four to six directions. Also, in view of real applications to tomographic
reconstructions, we emphasize that working with as few directions as possible is highly desirable, in
order to reduce the employed radiation dose. Therefore, it seems that simple cycles having cardi-
nality six are an optimal choice for the considered tomographic problem. As a further step, it could
be of interest to explore the robustness to noise of the proposed approach, as well as a possible
extension to non homogeneous objects.
We also remark that simple cycles can be de�ned independently of the lattice dimension, so that
the same notion could be considered even in Zn, n > 2, and consequently adopted in a possible
extension of the reconstruction algorithm to higher dimensions.
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