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1 Introduction

One important pathway to constrain cosmological parameters is the measurement of the two-
point statistics of large-scale structure. For galaxy redshift surveys, this measurement is often
cast in a three-dimensional redshift-dependent Fourier power spectrum P (k, z). However,
this quantity is not directly observable, because redshift surveys do not map objects in
four-dimensional spacetime, but rather in the three-dimensional past-light-cone, with one
redshift and two angular coordinates. Thus P (k, z) can only be reconstructed by assuming
a fiducial cosmology and by going through some rather complicated steps. A more natural
and straightforward way to describe the two-point statistics of a galaxy catalogue is through
the angular number count power spectra C`’s for a list of redshift bins, including auto- and
cross-correlations between bins. The bin width usually reflects the measurement error of the
(photometric or spectroscopic) survey.

Although the angular spectra are a much more direct representation of galaxy redshift
survey data, analysis pipelines based on the matter power spectrum are often preferred
for computational reasons. Indeed, an accurate calculation of the angular spectra in many
redshift bins (beyond the Limber approximation) is very time-consuming compared to the
calculation of the matter power spectrum. This problem is worsened when all the General
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Relativity (GR) corrections to the number count C`’s, presented in [1–6] and implemented
in the codes CAMB sources1 [4, 7] and CLASS2 [6, 8], are taken into account. Then, even
some idealized Fisher matrix forecasts can become computationally expensive [9, 10], and
even more so MCMC parameter extractions. For instance, reference [9] presented a Fisher
matrix forecast of the sensitivity of a future hypothetical spectroscopic survey to cosmological
parameters, taking all GR corrections into account. This forecast had to be limited to
Nz ≤ 32 redshift bins in order to avoid computing times exceeding the timescale of one
week on a small computing cluster, while the figure of merit for such a survey was expected
to saturate for Nz ≥ 100. The solution to this computing issue is not just to switch off
all GR corrections: while some of them can always be safely neglected, the Redshift-Space
Distortions (RSDs) will have to be taken into account in the analysis of future high-precision
galaxy redshift surveys. The weak lensing contributions can also be significant, especially
in the case of cross-correlation spectra between redshift bins [9]. In conclusion, in order
to efficiently analyze data from future galaxy redshift surveys with the angular spectrum
method, we really need a breakthrough on the computational side.

For weak lensing (i.e. cosmic shear) surveys, the data is more often expressed in terms
of angular power spectra C`’s in a list of redshift bins, with an important role of the cross-
correlation spectra even for non-adjacent bins (since weak lensing effects are correlated for
sources laying at different redshifts). The Limber approximation based on the matter power
spectrum P (k, z) is often used at high `’s in order to speed up the calculation, but the low-`
part of the calculation remains slow, and the matching between the exact spectrum and the
Limber spectrum at some intermediate ` value is a source of inaccuracy.

For both redshift and cosmic shear surveys, there exist some alternative ways to repre-
sent the two-point statistics of the data, such as two-point correlation functions in redshift
shells (see [11]). An algorithm efficiently computing these functions has recently been de-
scribed in [12]. The purpose of this paper is, however, to stick to the angular spectra and to
re-visit the numerical method used for calculating C`’s, with a new way to separate the cos-
mological and geometrical information, even more efficient than the traditional line-of-sight
approach of [13]. The main ideas of this method were suggested recently in [14, 15], and
are based on a power law decomposition of the source functions, which allows to separate
the integrals into one part depending on cosmology and one part depending on geometry.
The integration of spherical Bessel functions, which are quickly oscillating and only slowly
damped, can then be performed analytically. The new method speeds up the calculation of
the number count and cosmic shear C`’s by one to two orders of magnitude (when weak lens-
ing corrections are taken into account, and also for number count). Thus our work contains
a step towards practical implementations of angular power spectra in the analysis pipeline
of future galaxy redshift surveys and cosmic shear surveys.

In section 2, we explain the general approach, including new developments with respect
to reference [14]. In section 3 we discuss our practical implementation of this method in
CLASS, including all GR corrections to the number count spectra C`’s, and introducing the
idea of “approximate separability”. Finally, in section 4, we give a report on the performance
of the new code (for a fixed level of precision) and conclude. The reader is encouraged to look
at [14] and [15] for more theoretical and technical details on this method and its application
to other types of spectra (such as the CMB power spectrum or general bispectra).

1https://camb.info/sources/.
2http://class-code.net/.
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2 Method

2.1 The traditional line-of-sight approach

Any observable Oα(n̂, z) can be expanded for every redshift z in spherical harmonics Y`m(n̂)
with respect to its angular position on the sky n̂,

Oα(n̂, z) =
∑
`,m

aα`m(z)Y`m(n̂) , where aα`m(z) =

∫
dΩn̂Y

∗
`m(n̂)Oα(n̂, z) . (2.1)

The angular expansion coefficients aα`m can be used to define the angular power spectrum for
the observables Oα, or more generally any cross-spectrum

Cαβ` (z1, z2) ≡
〈
aα`m(z1) aβ`m(z2)

∗〉
. (2.2)

It is well-known that the theoretical prediction for the coefficients aα`m(z) is given by a
convolution of the Fourier transform of the observable in real space Oα(k, z) with a spherical
Bessel function ̇`(kχ(z)),

aα`m(z) = 4πi`
∫

d3k

(2π)3
̇`(kχ(z))Oα(k, z)Y ∗`m(k̂) . (2.3)

Here k is a Fourier wave number, k = |k| its modulus, k̂ = k/k the corresponding unit
vector, χ(z) is the comoving distance, given by

χ(z) =

∫ z

0

dz′

a0H(z′)
, (2.4)

and H(z) is the Hubble parameter. In the following we will neglect the explicit dependence
and write χ ≡ χ(z). The quantity Oα(k, z) is usually computed by Einstein-Boltzmann
solvers like CAMB or CLASS. It can be split into a transfer function Tα(k, z) and a primordial
curvature perturbation R(k),3

Oα(k, z) = Tα(k, z)R(k) . (2.5)

The primordial curvature perturbation is randomly distributed according to a (nearly scale-
independent) primordial spectrum PR(k), defined in the following way

〈R(k)R(k′)〉 ≡ 2π2

k3
PR(k) δ(k − k′) . (2.6)

Plugging (2.5) into (2.3) and finally into (2.2), we obtain

Cαβ` (z1, z2) = 4π

∫ ∞
0

dk

k
PR(k) Tα(k, z1)̇`(kχ1) Tβ(k, z2)̇`(kχ2) . (2.7)

Furthermore, in concrete observables like galaxy number count or cosmic shear, redshift
measurement errors are described by averaging Oα(n̂, z) over some window functions W i(z)
normalised to one (i is the index of a given redshift bin). The normalised window function in

3Some contributions (like RSD, Doppler effects) cannot immediately be written in this form, but we will
show how they can be rewritten as such after using various tricks listed in section 3, like equation (3.6).
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comoving distance space is then W i(χ) =W i(z)a0H(z), where z is understood as a function
of χ, such that ∫ ∞

0
W i(χ)dχ =

∫ ∞
0
W i(z)a0H(z)dχ =

∫ ∞
0
W i(z)dz = 1 . (2.8)

Averaging equation (2.7) over these windows leads to the expression

Cαβ,ij` = 4π

∫ ∞
0

dχ1W
i(χ1)

∫ ∞
0

dχ2W
j(χ2)

×
∫ ∞

0

dk

k
PR(k) Tα(k, χ1)̇`(kχ1) Tβ(k, χ2)̇`(kχ2) . (2.9)

The usual way to solve such an integral is to calculate

Cαβ,ij` = 4π

∫ ∞
0

dk

k
PR(k) ∆α,i

` (k) ∆β,j
` (k) , (2.10)

where for every wavenumber k and every window function i the integral

∆α,i
` (k) =

∫ ∞
0

dχW i(χ)Tα(k, χ)̇`(kχ) (2.11)

has to be computed. The Spherical Bessel functions j`(x) introduce fast and slowly damped
oscillations, making it hard to compute the integrals efficiently.

2.2 Separating cosmology and geometry

It has been argued in [14] that there is a simple way to circumvent the issue with the integrals
over spherical Bessel functions. The main idea is to approximate the k-dependence of the
product PR(k)Tα(k, χ1)Tβ(k, χ2) in the relevant wavenumber range [kmin, kmax] using some
set of simple basis functions, chosen such that the integral in k can be solved analytically.
The proposal of [14] is to use the FFTlog to perform the power-law decomposition of the
relevant functions

PR(k)Tα(k, χ1)Tβ(k, χ2) =
∑
n

cαβn (χ1, χ2) kνn . (2.12)

In this expansion we will refer to cαβn as Fourier coefficients and νn as Fourier frequencies for a
given Fourier mode n. The details and the practical implementation of this decomposition will
be described in the following sections. Let us for the moment assume that such approximation
is possible and rewrite the k-integral in the following way∫ ∞

0

dk

k
PR(k)Tα(k, χ1)̇`(kχ1)Tβ(k, χ2)̇`(kχ2) =∑

n

cαβn (χ1, χ2)

∫ ∞
0

dk

k
kνn ̇`(kχ1)̇`(kχ2) .

(2.13)

If we define

I`(ν, t) ≡ 4π

∫ ∞
0

du

u
uν ̇`(u)̇`(ut) , (2.14)

the angular power spectrum can be rewritten as

Cαβ,ij` =
∑
n

∫ ∞
0

dχ1W
i(χ1)

∫ ∞
0

dχ2W
j(χ2) cαβn (χ1, χ2)χ−νn1 I`

(
νn,

χ2

χ1

)
. (2.15)
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Finally, changing the integration variables to χ = χ1 and t = χ2/χ1 we obtain a simplified
expression

Cαβ,ij` =
∑
n

∫ ∞
0

dχW i(χ)

∫ ∞
0

dtW j(χt) cαβn (χ, χt)χ1−νn I` (νn, t) . (2.16)

Notice that this expression is formally the same as in (2.10). However, the spherical Bessel
functions are now analytically integrated. The resulting function I` (ν, t) has two impor-
tant properties: first, it has a simple analytical form in terms of hypergeometric functions;
secondly, it is smooth, which allows for straightforward numerical integration in t. These
simplifications are crucial for the efficient numerical evaluation of Cαβ,ij` .

Another important advantage of decomposition (2.12) is that all cosmology dependence

is in the coefficients cαβn . This means that the function I`(ν, t) is cosmology-independent.

This provides a motivation to rewrite the expression for Cαβ,ij` such that universal geomet-
rical factors (like the function I`(ν, t)) and cosmology-dependent factors (like the coefficients
cn(χ, χt) and the window functions) are completely separated. To achieve this we can change
the order of integrations

Cαβ,ij` =
∑
n

∫ ∞
0

dt I` (νn, t)

∫ ∞
0

dχW i(χ)W j(χt)cαβn (χ, χt)χ1−νn , (2.17)

and define a cosmology-dependent function fαβ,ijn (t)

fαβ,ijn (t) ≡
∫ ∞

0
dχW i(χ)W j(χt)cαβn (χ, χt)χ1−νn . (2.18)

Using this definition, we can write the angular power spectrum as the following integral

Cαβ,ij` =
∑
n

∫ ∞
0

dt I` (νn, t) f
αβ,ij
n (t) . (2.19)

The main virtue of this expression is separation of geometry and cosmology. The cosmology-
dependent function fαβ,ijn (t) depends on the observables Oα and window functions Wi but
it is independent of the multipole `. On the other hand, the geometrical function I`(ν, t) is
cosmology-independent and it has to be calculated only once for any cosmology. (In practice

it can be stored in a file and loaded when desired.) The function fαβ,ijn (t) represent the
correlation between the two window functions W i and W j weighed by a Fourier mode n
represented by cαβn (χ, χt)χ1−νn . The parameter t corresponds to the relative correlation

distance in χ. These cosmological Fourier-weighed correlators fαβ,ijn (t) are finally convolved
with the geometrical Fourier-weighed correlators I`(νn, t) and summed over all Fourier modes
n used in the weighing.

If we try to compare this more directly to the traditional line-of-sight approach, the
integral over t in (2.18) has similarities with the integral over χ in (2.11), in which one also
convolves a cosmological function W i(χ)T (k, χ) with a geometrical function j`(kχ). The final
sum over n in (2.18) plays a role similar to the integral over k in (2.10). However, we will
see that the new method offers the advantage of better behaved integrals, which results in
increased precision and speed.

Before we discuss details and practical implementation of the power-law decomposition
and evaluation of I`(ν, t), let us finish this section by mentioning some symmetry relations
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which further simplify the expressions above. There are two such relations, which follow
simply from a substitution of the integration variables. The geometrical function I`(ν, t)
satisfies

I` (ν, 1/t) = tνI` (ν, t) , (2.20)

and the cosmological function fαβ,ijn (t) obeys

fαβ,ijn (1/t) = t2−νnfβα,jin (t) . (2.21)

This allows us to write

Cαβ,ij` =
∑
n

∫ ∞
0

dt I` (νn, t) f
αβ,ij
n (t)

=
∑
n

(∫ 1

0
dt I` (νn, t) f

αβ,ij
n (t) +

∫ ∞
1

dt I` (νn, t) f
αβ,ij
n (t)

)
=
∑
n

(∫ 1

0
dt I` (νn, t) f

αβ,ij
n (t) +

∫ 1

0
du/u2 I` (νn, 1/u) fαβ,ijn (1/u)

)
=
∑
n

(∫ 1

0
dt I` (νn, t) f

αβ,ij
n (t) +

∫ 1

0
dt I` (νn, t) f

βα,ji
n (t)

)
,

(2.22)

leading to the following result

Cαβ,ij` =
∑
n

∫ 1

0
dt I` (νn, t)

(
fαβ,ijn (t) + fβα,jin (t)

)
. (2.23)

Alternatively one may use

Cαβ,ij` =
∑
n

∫ 1

0
dt I`(νn, t)

(
fαβ,ijn (t) + tνn−2fαβ,ijn (1/t)

)
. (2.24)

The difference between the two is how the functions fαβ,ijn (t) have to be calculated. Since

Cαβ,ij` = Cβα,ji` , their calculation is required only for i ≥ j. Then in equation (2.23) one

has to calculate the fαβ,ijn for all (i, j) combinations, while in equation (2.24) only i ≥ j are
required.

In practice one has to be careful about evaluating fαβ,ijn (1/t) with enough precision. In
the integral over χ in (2.18), any grid in χ corresponds to a grid in χ/t, which appears as

an argument of the functions W j and cαβn . When t becomes very small, one must check that
the grid in χ/t does not become too coarse. Furthermore, we see that tνn−2 is divergent for
t→ 0 when <[νn] < 2 (which is usually the case, as we shall see in section 2.3). For the case

of fαβ,jin (t) these two problems do not arise, and the grid in χt is sampled even finer with
smaller t.

Both problems can be handled by noting that in many cases fαβ,ijn (1/t) only needs
to be evaluated for t values far from 0, such that 1/t is never too large. Indeed, for most
contributions to the number count spectra like e.g. density fluctuations or Redshift-Space Dis-
tortions, we can assume that the window functions W i(χ) have a finite support [χmin

i,χmax
i ].

Then, (2.18) shows that fαβ,ijn (t) is non-zero only in the range [tijmin, t
ij
max] with

tijmin = χmin
j/χmax

i , tijmax = χmax
j/χmin

i . (2.25)

– 6 –
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Thus the function can even vanish entirely in the range t ∈ [0, 1], but only when χmin
j >

χmax
i. If the redshift bins are arranged in growing redshift and distance order, this usually

does not happen for i ≥ j. However, fαβ,ijn (1/t) and fβα,jin (t) have a support given by

tjimin = χmin
i/χmax

j , tjimax = χmax
i/χmin

j , (2.26)

and thus vanish entirely for any t ∈ [0, 1] if χmin
i > χmax

j , which may happen for some index
pairs with i ≥ j. Even if neither function vanishes entirely, the minimum of tijmin and tjimin

provides an overall lower limit on t. We will also see in section 2.4 that the functions I`(ν, t)
will provide additional limits on tmin. The existence of such a minimum value of t, and thus of
a maximum value of 1/t, tells us that we can perform integrals in the form of (2.24) without
worrying too much about sampling or divergence issues in the limit t→ 0.

For other types of contributions to the spectra like e.g. weak lensing, we will see that
the window functions are defined on a support starting from χ = 0. In that case the previous
discussion does not apply and we will go back to the integral in the form of (2.23).

In the practical implementation of the new method, we actually calculate the function
fαβ,ijn (t) using a rather coarse grid in t since it is very smooth. Only when convolving with
the more oscillating function I`(ν, t) will a more fine-grained grid be required. We will then

interpolate within the coarse grid of fαβ,ijn (t) values using Cubic Hermite Spline Interpolation.

2.3 The power-law (FFTlog) decomposition

In this section we will give details of the power-law decomposition in (2.12) and the FFTlog
algorithm used to achieve it. The power-law expansion of a function f(x, k) is simply a Fourier
decomposition in log(k). To see this let us consider a generic function f(x; k), periodic in the
interval [kmin, kmax] with the period T ≡ log(kmax)− log(kmin) = log(kmax/kmin). The vector
x describes an arbitrary set of extra variables. The coefficients of the logarithmic Fourier
expansion of the function f(x, k) are given by

cn(x) =
1

T

log(kmax)∫
log(kmin)

f(x, k) exp

(
−2πi n

T
log(k)

)
d log(k) . (2.27)

Using a finite set of these Fourier coefficients we can approximate the original function as

f̄(x; k) =
∑
n

cn(x) exp

[
2πi n

log(kmax/kmin)
log(k)

]
=
∑
n

cn(x) kνn , (2.28)

which can be easily rewritten in the desired form

f̄(x; k) =
∑
n

cn(x) kνn , where νn =
2π i n

log(kmax/kmin)
. (2.29)

The more terms are kept in this sum, the closer f̄(x, k) is to the function f(x, k). In practice,
the Fourier coefficients cn(x) can be computed binning the function in log(k) and using the
Fast Fourier Transform (FFT) algorithm — hence the name “FFTlog” commonly used in
cosmology literature [14–18] (see appendix B for further details on the relation to the FFT).

One immediate question is why this method is applicable to the case we are interested
in, where the transfer functions or the primordial power spectrum are not periodic functions

– 7 –
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in k. The reason is that these smooth functions in k are always multiplied by the spherical
Bessel functions which peak for k ∼ `/χ and decay both in k → 0 and k → ∞ limit.4

Therefore, the integral picks up most of its contribution from a finite range of scales and
replacing the true function with its approximation (2.28) leads to negligible error even when
the limits of integration are taken to be 0 and ∞. However, the asymptotic behavior of
the spherical Bessel functions in two different limits is such that they do not approach zero
equally fast

j`(kχ)→ k` , k → 0 , and j`(kχ)→ k−1 , k →∞ . (2.30)

Depending on the observable and the form of the transfer functions, the result may be
much more sensitive to high or low k. Therefore, to ensure better convergence properties, it
is convenient in practice to use a slightly more general form of the Fourier transform which
allows additional freedom in regulating the asymptotic behavior. This can be simply achieved
by writing kb·k−bf(x, k) and applying the logarithmic Fourier expansion to k−bf(x, k) instead
of f(x, k). In this way, one can always choose the “tilt” b to ensure more symmetric behavior
of the integrand in the two limits. Effectively, this procedure shifts the Fourier frequencies
νn in the following way

νn =
2π i n

log(kmax/kmin)
+ b . (2.31)

We will give more details on the choice of b for different observables below.
The best convergence in (2.29) is reached when the function that we want to Fourier

transform (i.e. k−bf(x, k)) in the range [kmin, kmax] has equal values at the boundaries,

k−bminf(x, kmin) = k−bmaxf(x, kmax) , (2.32)

because it can then be considered as a sample of a periodic and continuous function in the
range [kmin, kmax]. Our strategy is choosing b is such that k−bf(k) −→ 0 on both ends of the
interval. For the values of kmin and kmax , we should in principle consider the finite range
of scales to which the C`’s that we want to compute are actually sensitive through their
convolution kernels. Then kmin should be of the order of the scale crossing the Hubble radius
today, k0 ∼ a0H0, and kmax should depend on the maximum multipole and minimum redshift
considered. Typically, one is interested in multipoles such that the non-linear corrections are
either negligible, or small enough to be well under control: this typically limits the sensitivity
of the C`’s to maximum wavenumbers of the order of 1 to 10 inverse Megaparsecs. We will
come back to the details of choice of kmin and kmax in later sections.

Given the previous discussion, we must ensure that k−bf(x, k) has vanishing values
at the boundaries of the interval [kmin, kmax], where f(x, k) is the left-hand side of equa-
tion (2.12): it is simply the product of the dimensionless primordial spectrum PR(k) and
two transfer functions Tα(k, χ). The behaviour of this function in the small-scale and large-
scale limits is known at least approximately. Observations confirm that the dimensionless
primordial spectrum is equal or close to a power-law of the form kns−1 . The transfer func-
tions depend on the gauge and on the type of observable being computed. Here we discuss
two different relevant cases.

4Indeed, this is the reason why in the commonly used Limber approximation [19–23] one can replace the
Bessel function by a properly normalized Dirac function picking up only the contribution from the point
k = (` + 1/2)/χ. In other regions the integrand is either vanishingly small and/or highly oscillatory, thus
not contributing significantly to the integral. However the Limber approximation is usually not accurate
enough for fitting data from future Large Scale Structure surveys (especially when considering narrow window
functions or cross-correlation between redshift bins).

– 8 –



J
C
A
P
1
0
(
2
0
1
8
)
0
4
7

Density transfer functions. In the important case of density fluctuations, which usually
dominate the number count spectra, Tα(k, χ) has a well-known behaviour as a function of k.
For any time after radiation-matter equality, it grows like k2 between k0 and the scale that
crossed the Hubble radius at Matter-Radiation equality, keq ∼ 10−2h/Mpc. At the level of
linear theory, it then keeps growing logarithmically on scales k > keq. Non-linear corrections
slightly increase the slope beyond the scale of non-linearity. Strong non-linear effects like
baryonic feedback occur on even larger wavenumbers and are irrelevant for the range of
multipoles usually used for cosmological parameter inference. The behavior that we just
described is valid in any gauge, since gauge differences only show up on super-Hubble scales
which are outside of our interval. Note that this precise behavior of the transfer function
in the range keq < k < kmax is not essential in our discussion, since our purpose is just to
choose the tilt b such that k−bf(x, k) is suppressed in kmax compared to its peak value.

In summary, the asymptotic behavior of the function k−bf(x, k) is typically given by

k−bf(x, k) ∼ kns+3−b (k � keq) ,

k−bf(x, k) ∼ kns−1−b ln(k)2 (k � keq) .
(2.33)

Thus any tilt factor in the range ns − 1 < b < ns + 3 will ensure that (2.32) is fullfiled, with
vanishing values at the boundaries compared to the peak value.

The choice of tilt is also important for the calculation of the geometrical function I`(νn, t)
given by (2.14). Indeed, the tilt b enters the definition of the coefficients νn in equation (2.31).
Thus it is important to choose b such that within this range, the u integral of equation (2.14)
is well behaved, such that I`(νn, t) can be calculated. This condition was already investigated
in [14] and imposes a range −2` < <[νn] < 2. For <[νn] = b, this overlaps with the previous
range ns − 1 < b < ns + 3, for whatever realistic value of ns. The optimal choice is found to
lay somewhere between 1.5 and 1.9.

However, with ns ' 1, kmax ' 1 h/Mpc and b ' 1.9 , the value of k−bf(x, k) at kmax

is not very small: it is around 10% of the peak value. Stopping the integral around this
scale would imply that we FFT-transform a periodic function with a discontinuity in kmax.
The FFT method is very sensitive to such discontinuities. If nothing is done to further
reduce the difference between the values at the edge, this small discontinuity generates a
small unphysical contribution to the FFT coefficient cn and leads to a percent-level error in
the final result. To solve this problem, one can introduce additional regulatory mechanisms.
Knowing that for the relevant C`’s, the precise form of the transfer function is not important
for wavenumbers bigger than about one inverse Megaparsec, one has a lot of freedom for
regularizing the function k−bf(x, k) in the large k limit. The choice of reference [14] was to
numerically evolve wavenumbers up to a kmax of ∼ 52h/Mpc, and to multiply the transfer
functions by an exponential cut-off around kcut ∼ 10h/Mpc. In the CLASS implementation,
we choose a computationally faster method: we extend the upper boundary in the integrals
to about kmax ' 103h/Mpc, but with an analytic extrapolation of the transfer function of
the form T (k) ∼ log(ak) above the maximum wavenumber for the numerical evaluation, set
by default by CLASS for a redhsift bin of mean conformal distance χi to knum = 2.4 `max/χi
(typically of the order of 1h/Mpc). We stress that this extrapolation is not meant to be
physical and is just a regulatory artifact. We tested different values of kmax in the range
from 10h/Mpc to 103h/Mpc and found that the result was very stable, varying by less than
one permille.

Other transfer functions. We will present in section 3.3 a list of transfer functions which
are useful for the calculation of number count spectra (with all GR corrections) and weak
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lensing spectra. We will see that the other transfer functions scale with k roughly in the same
way as the density transfer function, but with an extra gobal factor k−2. In that case, our
strategy consists in doing an FFTlog transformation of T̄α(k, χ) = k2Tα(k, χ), which then has
the same behavior in k as the density contribution. For this, we write Tα(k, χ) = k−2T̄α(k, χ),

and denote the FFT transform of the product PR(k)T̄α(k, χ1)T̄β(k, χ2) as c̄αβn (χ1, χ2). This
changes equation (2.13) to∫ ∞

0

dk

k
k−4 PR(k) T̄α(k, χ1)̇`(kχ1) T̄β(k, χ2)̇`(kχ2) =∑

n

c̄
αβ
n (χ1, χ2)

∫ ∞
0

dk

k
kνn−4 ̇`(kχ1)̇`(kχ2) .

(2.34)

Thus, this redefinition effectively replaces νn with νn − 4 or νn − 2, both in the definition
of f ij(t) in equation (2.18) and in the argument of I`(ν, t) in equations (2.23), (2.24). This
implies that the values of the tilt such that the integrals I`(ν, t) are well behaved now shift
to either −2`+ 2 < b < 4 or −2`+ 4 < b < 6. In all these cases and for ` ≥ 2, the tilt value
chosen in the density case, b ' 1.9, is still valid, and the Bessel integrals are well behaved.

Finally, let us note that the reference [14] proposes an additional trick to shift the tilt
b by using an integrations by part. In the present implementation in CLASS we did not
experience the need to use this technique. It is further discussed in section 3.3.

2.4 The analytical Bessel integrals

We conclude the discussion on the method by making a few comments on evaluation of
Bessel integrals I`(ν, t). While [14] and [15] provide explanations of how to obtain I`(ν, t) in
a fast and accurate manner, we focus here on several aspects raised when working with finite
precision arithmetics.

The I`(ν, t)’s can be expressed in terms of Hypergeometric functions for t < 1,

I`(ν, t) =
2ν−1π2Γ

(
`+ ν

2

)
Γ
(

3−ν
2

)
Γ
(
`+ 3

2

) t` 2F1

(
ν − 1

2
, `+

ν

2
; `+

3

2
t2
)
. (2.35)

For t > 1 they can be calculated using equation (2.20). From this equation it follows that
I`(ν, t) vanishes for t→ 0. For t = 1 the hypergeometric function can be expressed in terms
of gamma functions. The typical behaviour of I`(ν, t) is such that its absolute value peaks
at t = 1. Furthermore, given that I`(ν, t) ∼ t`, for high values of ` the Bessel integrals have
support only in a narrow interval close to t = 1. This means that in practice, in order to
reach a given precision, we can find some tmin such that |I`(ν, tmin)| < ε|I`(ν, 1)|, where ε� 1,
and approximate the integrals (2.23), (2.24) as ranging from tmin to 1. In this way I`(ν, t)
does not need to be evaluated for t < tmin, and the integrals over t only need to be carried
over a small range, which gets narrower with larger `’s.

For very large ` the result obtained using the Bessel integrals must agree with the
Limber approximation [19–21],

̇`(u)̇`(ut) ≈
2π2

`0
δ(`0 − u)δ(`0 − tu) , with `0 = `+ 1/2 . (2.36)

This would imply

I`(ν, t) ≈ 2π2 (`0 )ν−3 δ(1− t) , (2.37)
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which is indeed consistent with the result of the explicit computation of I`(ν, t) in this limit,
using the fact that (1 − tmin) is proportional to `−1 and I`(ν, 1) proportional to `ν−2 (see
appendix C). However, our method is such that the Limber approximation never has to be
used. Once f ijn (t) has been evaluated in the range 0 < t < 1 for the purpose of computing
the low multipoles with the full integral of (2.23), (2.24), the computational cost of the
integrals for higher multipoles is minor, because the support of integration [tmin, 1] gets
smaller. Thus there would be not much gain in using the Limber approximation and in our
CLASS implementation we currently choose not to use it for any `.

The direct evaluation of the Bessel integrals on the whole interval 0 < t < 1 using
equation (2.35) or similar other representations (see appendix C) can be relatively slow and
inaccurate. The reason is that the power series of the Gauss hypergeometric function 2F1

does not converge well in finite precision arithmetics due to large cancellations and/or many
terms in the series have to be kept. This problem is particularly relevant for large imaginary
parameters. Therefore, it is important to avoid direct evaluation whenever possible. Luckily,
there are several alternative methods to efficiently calculate the Bessel integrals which we list
below. On the basis of several speed and accuracy tests (performed by comparing with refer-
ence results provided by the python library mpmath), we have established and implemented in
our code a list of threshold values ti in the range [0, 1] at which it is advantageous to switch
from one method to another. These thresholds depend both on ν and `max .

Taylor method. For t → 0, we can use an analytic Taylor expansion of the hyperge-
ometric function in the vicinity of zero. A similar approach can be taken for t → 1,
because the hypergeometric function can first be transformed with a change of variable
t2 →

(
(1− t2)/(1 + t2)

)2
, and then expanded in small ε = 1 − t. This transformation only

works for tiny ε values, otherwise the result depends on precise cancellations between two
hypergeometric functions. The different transformations for the I`(ν, t)’s are listed in ap-
pendix C. The Taylor method is not as fast as the recursion methods discussed next, but it
is more robust in the close vicinity of the edges. We use it in two small ranges 0 < t ≤ t1
and t2 < t < 1.

Recursion methods. The Bessel integral I`(ν, t) obeys the recursion relation [14](
3 + `− ν

2

)
I`+2(ν, t) =

1 + t2

t

(
`+

3

2

)
I`+1(ν, t)−

(
`+

ν

2

)
I`(ν, t) , (2.38)

where the I0(ν, t) and I1(ν, t) are known analytically:

I0(ν, t) = 2π cos
(πν

2

)
Γ(ν − 2)t−1

[
(1 + t)2−ν − (1− t)2−ν] , (2.39)

I1(ν, t) = 2π
cos
(
πν
2

)
Γ(ν − 2)

(4− ν)t2
[
(1 + t)2−ν((1 + t)2 + νt)− (1− t)2−ν((1 + t)2 − νt)

]
.

We can follow the recursion relation in forward direction `→ `+ 1, starting from ` = 0 and
` = 1. Alternatively the recursion relation can be used in the backward direction `→ `− 1,
starting from some `seed and `seed − 1. The forward and backward recursions are always the
fastest methods but they are not always stable.

The method is only stable until a maximum value of ` which increases with t. We
employ it only above a threshold value t3 such that stability extends up to at least to the
highest multipole value `max needed for the angular spectrum computation.
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For t < t3 , we try to use the backward recursion whenever possible, starting from
some I`,seed(ν, t) and I`,seed−1(ν, t) given by the direct calculation (C.6). We mentioned
that this calculation can be slow and inaccurate, but high accuracy is not needed in this
context. Indeed, the error made on the initial terms is reduced at each iteration. Therefore,
instead of starting from the highest multipole value `max needed for the angular spectrum
computation, we start from a value offset by some amount δ` ; `seed = `max + ∆`, based
on Miller’s Recurrence Algorithm. The error on I`,max(ν, t) is then reduced by a factor t∆`.
The optimal amount of offset ∆` depends strongly on the precision with which the initial
values have been computed, but also on t and ν (for instance, we found that it should scale
as (1 − t)−1). We implemented in the code an ansatz for ∆`(ν, t), keeping in mind that it
is usually much faster to take a larger offset than to calculate the initial seeds with higher
precision. Furthermore, we can use a trick similar to the one presented in [15]: once we reach
the analytically known ` = 0, we can compare the result obtained by backward recursion
with the analytic result, calculate the complex ratio

λ(ν, t) =
I

(analytical)
0 (ν, t)

I
(recursion)
0 (ν, t)

, (2.40)

and multiply a posteriori all I`(ν, t) with this ratio.
The backward recursion is more stable for smaller t values (but not very close to zero,

which is why we use the Taylor method below t1). We find that for some values of ν, the
backward recursion gives good results in the whole range from Taylor to Forward recursion,
t1 < t < t3, allowing us to switch directly from the backward to the forward method at t3 .
For some other values of ν, the backward recursion is only accurate up to another threshold
value t2, and the last remaining range from Backward to Forward recursion, t2 < t < t3 ,
needs to be covered by a last method.

Helper function method. Finally, in regions t2 < t < t3 where neither the recursion
relations nor the Taylor expansions give a satisfyingly small error, we switch to the method
introduced in appendix E of [15], which introduces what we call a “helper function” for the
purpose of computing the hypergeometric function. We have adapted their approach for our
purposes. For instance, we do not consider different ` 6= `′ in the Bessel functions, we use
a different method for setting the seeds, and we use a different forward-backward recursion
switching criteria. This method is not as fast as the recursion methods, but it appears to be
almost universally convergent.

For the Taylor and “helper function” methods, it is important to exploit the recursion
relations for the Gamma functions Γ(x + 1) = xΓ(x) as much as possible. Otherwise, the
evaluation of a few Γ(x) from scratch in each recursion step would be prohibitively slow.

3 Different source terms

Reference [14] already addressed the fact that the transfer function of the number count
spectrum involves multiple terms, and focused in particular on Redshift-Space Distortions.
Here we want to go into the full details of all the terms and problems involved. The derivation
of all the necessary source terms for the galaxy number count is given in [3] and their concrete
expressions in CLASS are summarized in [6] (on page 19). We also give a summary of these
terms (with additional information relevant to the present work) in appendix A, tables 6
and 7.
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We write the total transfer function of number count in the form

T (k, χ) =
∑
x

Tx(k, χ) , (3.1)

where x labels the different contributions: Doppler terms and Redshift-Space Distortions,
lensing terms, and other gravitational terms (accounting for small GR corrections).5 Conse-
quently we have to introduce a double sum in the definition of the function f ijn (t),

f ijn (t) =

∫ ∞
0

dχW i(χ)W j(χt)
∑
x,y

cxyn (χ, χt) , (3.2)

with cxyn (χ, χt) defined analogously to equation (2.12), using

PR(k)Tx(k, χ1)Ty(k, χ2) =
∑
n

cxyn (χ1, χ2) kνn . (3.3)

Since the C`’s depend linearly on the Fourier coefficients cxyn , they can also be decomposed
as Cij` =

∑
x,y
Cij,xy` .

While most terms can be cast in the general form of equations (3.2) and (2.23), (2.24)
easily, there are two kinds of source terms for which this is possible, but not straightforward.
These are terms for which the transfer function ∆i

`(k) would involve not a spherical Bessel
function, but its first or second derivative (Doppler and Redshift-Space Distortion terms);
and those for which it contains one additional integral over time or comoving radius (weak
lensing and some other GR corrections). In what follows we give details of how to deal with
each of these complications separately, since they involve different challenges and solutions.

Any factors of ` appearing in the source terms can immediately and trivially be fac-

torized out from each Cij,xy` , in such a way that the cosmological functions f ij,xyn (t) remain
independent of the multipole index `. These factors only need to be taken into account later,
when doing the final summation over the (x, y) indices.

3.1 Derivatives of Bessel functions

The Doppler terms and Redshift-Space Distortions include derivatives of the Bessel functions.
They give rise to contributions of the form

Cij,xy` = 4π
∑
n

∫ ∞
0

dχ1dχ2W
i(χ1)W j(χ2) cxyn (χ1, χ2)

∫ ∞
0

dk

k
kνn j

(n1)
` (kχ1)j

(n2)
` (kχ2) ,

(3.4)

where n1, n2 = 0, 1, 2 and j
(0)
` , j

(1)
` , j

(2)
` denote respectively the zero-, first- and second-order

derivatives of the spherical Bessel function. We will make use of integrations by parts to
obtain an expression without derivatives of the Bessel functions.6 The boundary terms in

5Note that we have used labels α and β on the transfer function in the previous sections to indicate different
kind of observables in the general cross-spectra. The latin indices x and y here indicate different contributions
to a single observable. For clarity we will suppress Greek indices in this section, but it is always assumed that
our formulas apply to a generic cross spectrum.

6Note that, in principle, we could avoid any integration by parts and instead use the relation between
derivatives of Bessel functions and linear combinations of ̇`(x) and ̇`+1(x). This would require the intro-
duction of additional analytical integrals, which do not obey the same transformation properties that make
I`(ν, t) relatively easy to calculate (see appendix C for a more thorough discussion). Thus, the integration by
parts method turns out to be a simpler approach.
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the integration by parts vanish since

lim
x→0

̇`(x) = lim
x→∞

̇`(x) = 0 for l ≥ 1 . (3.5)

In the traditional line-of-sight approach, one could write that

∆i,x
` (k) =

∫ ∞
0

dχW i(χ)Tx(k, χ)
∂̇`(kχ)

∂kχ
= −

∫ ∞
0

dχ
∂
(
W i(χ)Tx(k, χ)

)
k ∂χ

̇`(kχ) . (3.6)

We see that each derivative of a Bessel function both gives us a power of k and a time
derivative of the product of the window and transfer function. We can use exactly the same
approach in the FFT formalism and, for instance, in the case (n1, n2) = (1, 0) write

Cij,xy` = 4π
∑
n

∫ ∞
0

dχ1dχ2W
j(χ2)

∂
(
W i(χ1)cxyn (χ1, χ2)

)
∂χ1

∫ ∞
0

dk

k
kνn−1 j`(kχ1)j`(kχ2) .

(3.7)

While taking derivatives of the Fourier coefficients cxyn (χ1, χ2) is possible, it would be
very slow in practice, because these derivatives should be evaluated in each point of the dis-
crete (χ1, χ2) grid. This problem is amplified by the fact that we also need all other derivatives
of the form (∂χ1)n1(∂χ2)n2cxyn (χ1, χ2). These issues could be avoided if the coefficients cxyn
were separable in χ1 and χ2, and of the form

cxyn (χ1, χ2) = Dx(χ1)Dy(χ2)cn , (3.8)

because then the derivatives could be calculated independently. This “separability” ansatz
was implicitly suggested in [14, 15]. It relies on the separability of the transfer function
into time and wavenumber dependence, Tx(k, χ) = Dx(χ)Tx(k, 0). This assumption is only
fulfilled in a ΛCDM universe without massive neutrinos, in the sub-Hubble limit and within
linear theory. However, the deviation from the “separable” limit remains small even in the
presence of massive neutrinos, non-linear corrections or other physical ingredients leading to
a scale-dependent growth factor. We can take advantage of this and define rescaled Fourier
coefficients

c̃xyn (χ1, χ2) =
cxyn (χ1, χ2)

Dx(χ1)Dy(χ2)
, (3.9)

which are only weakly dependent on conformal time. We obtain the effective growth factor
Dx(χ) by extracting it from the exact transfer function Tx(k, χ). To focus on the scales of
interest, we weigh the contributions from different positions in the k-grid differently using
weights wm,

Dx(χ) =

∑
mwmTx(km, χ)/Tx(km, 0)∑

mwm
. (3.10)

For the weights wm we choose a Gaussian in log(k), centered around some scale of interest k0

(= 1h/Mpc in our implementation), with a standard deviation of half-a-decade. The precise
form of the weights and the scale k0 do not influence our results beyond a relative deviation
of 10−6.

The rescaled Fourier coefficients of equation (3.9) allow us to work in a “semi-separable”
approximation in which we assume that the dependence of the factors c̃xyn (χ1, χ2) on confor-
mal time is much weaker than that of the growth factors Dx(χ). In this limit the derivative
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is now approximated by

∂

∂χ1
cxyn (χ1, χ2) =

∂

∂χ1

(
Dx(χ1)Dy(χ2)c̃xyn (χ1, χ2)

)
≈ Dy(χ2)

∂Dx(χ1)

dχ1
c̃xyn (χ1, χ2) ,

(3.11)

effectively giving us the same factorization as when assuming full separability. This allows
us to write the terms with derivatives of the spherical Bessel functions in a simple form. For
instance, in the example in equation (3.7), the expression for the angular power spectrum
can be written in the form

Cij,xy` =
∑
n

∫ ∞
0

dχ1dχ2
∂
(
W i(χ1)Dx(χ1)

)
∂χ1

W j(χ2)Dy(χ2)

× c̃xyn (χ1, χ2)χ
−(νn−1)
1 I`

(
νn − 1,

χ2

χ1

)
.

(3.12)

This can be evaluated very efficiently, since the derivatives of the products W iDx can be pre-
calculated and later interpolated at some χ and χt (and additionally χ/t for equation (2.24)).
This approach applies to any combination of derivatives. The precision tests presented in sec-
tion 4 prove that the semi-separable approximation of equation (3.11) does not introduce any
sizable inaccuracy, even when non-linear corrections are implemented (with fitting formulas
like Halofit [24, 25]), or when massive neutrinos are introduced (see section 4.2).

3.2 Integrals over Bessel functions

Some source terms accounting for weak lensing and other GR corrections involve an additional
integral over conformal time, such that in the traditional line-of-sight approach their harmonic
transfer function reads

∆i,x
` (k) =

∫ τ0

0
dχ′W i(χ′)

∫ χ′

0
dχ f(χ, χ′)Tx(k, χ) ̇`(kχ) , (3.13)

where τ0 is the conformal age of the universe, and f(χ, χ′) is a convolution kernel. In the
case of lensing, χ′ would be the distance to the source and χ the distance to the lens. To
obtain the same functional form as other harmonic transfer functions we can swap the order
of integration [6],

∆i,x
` (k) =

∫ τ0

0
dχ

∫ τ0

χ
dχ′W i(χ′) f(χ, χ′)Tx(k, χ) ̇`(kχ) , (3.14)

leading to the definition of an new window function

W̃ (χ) =

∫ τ0

χ
dχ′W i(χ′) f(χ, χ′) . (3.15)

Once again, the same approach can be readily transposed to the FFT method. For instance,
the cross-correlation between one integrated and one non-integrated term reads

Cij,xy` =
∑
n

∫ τ0

0
dχ1 W̃

i(χ1)

∫ τ0

0
dχ2W

j(χ2) cxyn (χ1, χ2)χ−νn1 I`

(
νn,

χ2

χ1

)
, (3.16)

with W̃ i(χ) defined like in equation (3.15).
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The important difference compared to non-integrated terms comes from the broad sup-
port of the integrated window function W̃ i(χ) . If we assume W i(χ) is non-zero in the range
[χimin, χ

i
max], then W̃ i has support in the whole [0, χimax] range. Thus W̃ i(χ) has to be sam-

pled with more points in χ, an effect that is worsened by the oscillatory nature of the χ1−νn

factor appearing in the definition of f ijn (t) in equation (2.18).

For contributions involving one integrated and one non-integrated term, the definition of
χ becomes important. It is better to define χ as the conformal distance of the non-integrated
term. In that case χ still has a restricted support, allowing for evaluation with a sparser
grid. The range of t also has to be adjusted; the new range is [0, 1], as can be seen from
equations (2.25) and (2.26).

For contributions involving two integrated terms, χ has a broad support in any case. Not
only are more sampling points required, but since small χ values are allowed, the oscillatory
nature of the χ1−νn factor in the definition of f ijn in equation (2.18) could become problematic.
We decide to integrate instead over log(χ), since this is the characteristic oscillation length
of the factor χ1−νn = cos(log(χ)(1− νn)) + i sin(log(χ)(1− νn)).

We also implement an algorithm estimating a value χcut below which W̃ i(χ) is suffi-
ciently small and contributions to the integral over χ are negligible. Even if χcut is small
(e.g. χcut ∼ 1Mpc/h ⇒ zcut ∼ 2 · 10−4), the lower integration bound in log(χ) space is still
drastically cut.

3.3 Behaviour in k

The transfer functions Tx(k, χ) of the various contributions to number count and lensing
power spectra involve the gauge-invariant perturbations D, Θ, Φ and Ψ defined in [6] and
summarized in appendix A, table 7. These account respectively for density, velocity diver-
gence and metric fluctuations. They appear in the transfer functions in combination with
various powers of k. However, after performing the transformation of section 3.1 in order to
eliminate derivatives of Bessel functions, one is left only with contributions from D, Θ/k2,
Φ, Ψ, Φ′ and Ψ′.

The gauge-invariant variables D, Θ, Φ and Ψ behave roughly like the perturbations δm,
θm, φ and ψ of the Newtonian gauge (where the index m stands for non-relativistic matter).
It is easy to show with analytical arguments or by looking at the output of Boltzmann codes
that the following quantities share roughly the same k-dependence, at least at low redshift:
D/k2 ∝ Θ/k2 ∝ φ ∝ ψ ∝ Φ′ ∝ Ψ′. This implies that all the transfer functions involved
in the problem scale in roughly the same way except for the density one: TD(k, χ)/k2 ∝
TΘ/k2(k, χ) ∝ TΦ(k, χ) ∝ · · · .

In section 2.3 we have explained how we deal with this situation for non-density terms:
instead of performing the FFTlog transformation of Tx(k, χ), we apply it to T̄x(k, χ) =
k2Tx(k, χ). This is done at the expense of changing the real part of the complex frequencies
ν for which the integrals I`(ν, t) must be evaluated. While we need to compute I`(νn, t)
always for all n’s, for non-density types we need additional computations with <[νn] equal
to b, b− 2 or b− 4, with our chosen tilt b ≈ 1.9.

Another approach would be to use a trick from [14], and to transform the density source
term TD(k, χ) using

k2̇`(kχ) = −
[
∂2

∂χ2
+

2

χ

∂

∂χ
− `(`+ 1)

χ2

]
̇`(kχ) . (3.17)
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In that way, one can bring all the terms to the same behaviour in k, and compute all I`(νn, t)
with a unique value of <[νn] equal to b − 4. Since the calculation of the I`(ν, t) can be
done only once and stored for later use, we did not adopt this trick here. In the last two
lines of table 7, we also included the new source terms that need to be computed if one
uses equation (3.17) for the density. We implemented this method in CLASS for the sake of
comparison, and the user can decide to switch to it if desired.

4 Accuracy and performance

4.1 Accuracy

We first check whether the default CLASS implementation and the new method converge to the
same results in the limit of high accuracy settings. We increased the most relevant precision
parameters up to the point of saturating the memory limits of a 16-dual-core workstation with
32GB of RAM. In figure 1, we can see that the agreement on the C`’s is in the 0.1% range
for the number count spectra (when all terms and GR corrections are taken into account).
The same applies to the cosmic shear C`’s, shown in figure 2. When only the density source
terms are involved, the level of agreement further improves to about 0.01% (figure 3). See
table 9 in appendix D for the cosmological parameters used for the comparisons. These
results validate the accuracy of the new method, since an error level of 0.1% on the full
number count or cosmic shear spectra is sufficient for fitting the experimental results of future
surveys. In order to test the “semi-separable” approximation implemented in our code, we
must repeat this exercise in presence of nonlinear corrections and/or massive neutrinos, which
both introduce a scale dependence in the density fluctuation growth factor. To this end, we
switch on Halofit corrections [24–26] and/or degenerate massive neutrinos with a total mass
Mν = 1 eV. This mass choice is rather extreme given that current cosmological upper bounds
are in the ballpark of Mν ∼ 0.1 eV to 0.3 eV, and as such, any lower mass should be captured
even better. The effect of these ingredients at redshift z̄ = 1 is visible in the upper panels of
figure 4.

We first check that the “full separability” approximation would introduce large errors.
The “full separability” approximation is implemented in the code as follows: instead of
performing the FFTlog transformation at each time step, we only do it once at redshift zero
to derive the cn’s of equation (3.8). We then rescale them at each time using the effective
growth factor defined in section 3.1. Unsurprisingly, we obtain in this case a large error in
the number count spectrum, of the order of 50% (bottom left panel in figure 4).

However, our “semi-separability” method brings the result back in very good agreement
with the traditional line-of-sight result. The residual difference between the old and new
method is better seen in the bottom right panel of figure 4, in the case of number count
with only density terms. Adding non-linear corrections leaves the residual at a level below
0.01%, while switching on a total neutrino mass Mν = 1 eV raises it to around 0.04%. When
considering number count spectra with all GR terms, we find that adding non-linear correc-
tions and/or massive neutrinos keeps the difference at the level of 0.1%, which is sufficient
for future surveys.

Thus the new method — including all the choices and approximations presented in the
previous sections — is sufficiently accurate. Still, it would be very interesting to investigate
what dominates the residual ∼ 0.1% differences found for all the spectra including a lensing
effect. If there is a clear reason to believe that most of it comes from errors in the traditional
line-of-sight approach (as implemented in the default CLASS code), then the new method
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Figure 1. (Top) Auto-correlation spectrum of number count (involving all source contributions)
in one redshift bin defined by a Gaussian window function with mean redshift z̄ = 1.0 and width
δz = 0.05 . (Bottom) Cross-correlation between two redshift bins defined by two Gaussian windows
with (z̄1, δz1) = (1.0, 0.05) and (z̄2, δz2) = (1.25, 0.05).

Figure 2. Auto-correlation spectrum of cosmic shear (or more precisely of the lensing potential Cφφ` )
in one redshift bin defined by a Gaussian window function with mean redshift z̄ = 1.0 and width
δz = 0.05 .

could actually be significantly more precise than 0.1%. Indeed, we believe that this the case,
because when we increase the precision settings, the lensing spectrum obtained with the old
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Figure 3. Auto-correlation spectrum of number count (involving only the density source term) in one
redshift bin defined by a Gaussian window function with mean redshift z̄ = 1.0 and width δz = 0.05 .

CLASS code converges very slowly towards a stable result. It is not even fully converged at
the sub-percent level when the memory limit is reached. This is not the case with the new
method, which already gives stable results for nearly the same precision settings in the case
of density and lensing contributions, while using a small amount of memory. The calculation
of the density contribution with the old code is also much more stable than that of lensing.
Thus it seems that the true level of general agreement between the old and new method
might be 0.01% rather than 0.1% due to the fact that the old method has a specific problem
to compute lensing spectra with the very high level accuracy.

This problematic feature of the default CLASS implementation can be easily explained.
It is related to the fact that in the lensing case, the support of the window function W̃ i(χ)
defined in equation (3.15) reaches χmin = 0. Indeed, in principle, the lensing of a source
standing at some finite redshift has contributions from modes located arbitrarily close to
us, for which a given angle corresponds to infinitely small wavelengths and thus infinitely
large wavenumbers. This means that in the traditional line-of-sight approach, the harmonic
transfer functions ∆α,i

` (k) of lensing converge very slowly as a function of k. Mathematically
this is seen by noticing that these transfer functions are obtained by integrating the product
W̃ i(χ)Tα(k, χ)j`(kχ) over χ. For arbitrarily large k, there is always a non-vanishing contri-
bution to the integral from a distance of χ ∼ `/k. The convergence of ∆α,i

` (k) is only ensured
by the fact that the lensing transfer function T φ+ψ(k, χ) scales like k−2 in the large k limit.
This is very different from non-integrated cases, for which convergence arises much earlier
simply because the lower edge χimin of the support of W i(χ) forces ∆α,i

` (k) to vanish above

k ∼ `/χimin. This slow convergence of ∆α,i
` (k) for lensing term is indeed problematic because

the period of oscillation of j`(kχ) as a function of χ is given by 2π/k. Thus, in order to get
precise results, one needs to increase a lot the number of sampled values in the integral over
the line-of-sight. This leads to a saturation of the memory before obtaining a sampling that
would ensure the convergence of the C`’s at the 0.1% level.

The new method avoids such problems because the integral over slowly-damped oscillat-
ing functions at large k is done analytically. The integral over large k is performed within the
FFTlog transformation, which does not involve any Bessel function and converges without
problems. There are no issues of divergences for small χ either, since the product W̃ (z)χ1−νn

always approaches zero in the limit χ → 0 for valid choices of <[νn] for which the Bessel
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Figure 4. Number count spectra involving only density terms for a redshift bin centered at z̄ = 1.0
with width δz = 0.05 . (Top Left) Total spectra w/o nonlinear corrections from Halofit and massive
neutrinos with Mν = 1 eV. (Top Right) Impact of these two corrections on the power spectrum, com-
puted as a relative difference (in %) with respect to the linear spectrum of the massless neutrino model .
(Bottom left) Result of the new method with either the “full separability” or “semi-separability” ap-
proximations compared to the traditional line-of-sight approach. (Bottom right) Relative difference
(in %) between the new and old methods. One can immediately see that the additional effects are
well captured and the error remains at the sub-permille level.

integral I`(νn, t) is well behaved (see section 2.3). Thus, the lensing spectra can be computed
as accurately as the density spectra without requiring significantly more memory. Besides
any considerations based on performance, this is a true advantage of the FFTlog method.

4.2 Performance

Precision measure. We will now estimate the CPU time needed to reach a precision of
Q = 0.1%, where we define the precision measure as

Q =

√√√√ 1

N`

∑
`

(
C` − Cref

`

Cref
`

)2

, (4.1)

with N` discrete samples in `.
To give a more fair comparison, the reference spectra are calculated for each method

separately. This means that we disregard in these tests the 0.1% level residuals between the
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reference spectra of the two methods. Indeed, as explained in the previous section, we have
strong hints that these residuals come from issues of insufficient sampling in the traditional
method, but in absence of a definite proof, we do not want to bias our conclusions by this
assumption. Thus our analysis quantifies the numerical error coming from the degradation of
the precision settings in each method, relative to the reference spectra of the same method.

` sampling. The default CLASS implementation does not compute every value of ` sep-
arately, but interpolates with a cubic spline interpolation algorithm between a reasonably
chosen set of discrete ` values at which the C`’s are actually calculated. We adopt the same
strategy in the new algorithm. The list of ` values at which the C`’s are calculated by default
(and in our tests) can be found in appendix D, tables 10 and 11. Of course, the precision
measure Q takes only these ` values into account.

Approximations. All our performance calculations use the “full separability” approxima-
tion, but we avoid using the Limber approximation, since we are interested also in effects
for small ` for which the Limber approximation deviates most from the correct result. We
looked at three important test cases: the calculation of cosmic shear spectra, of number
count spectra involving only density contributions, and of number count spectra involving
all contributions, except for the small gravitational corrections labeled as G1–G5 here and
in [6]. These are known to be time-consuming but mostly negligible in the final results.

Setup. The computation time for the geometrical integrals I`(ν, t) is explicitly taken out
from the direct comparison, since these could be stored as small binary files on the computer,
and thus would not need to be calculated every time. The execution times correspond to a
single core and thread on an Intel i5-6200U Quadcore (2.3 GHz).

Precision parameters. In each test, all relevant precision parameters in the previous
CLASS method and the new method are tuned to achieve maximum speed while remaining at
the desired accuracy of Q ' 0.1 The tuned parameters of the old method include hyper sam-

pling flat, guiding the sampling of the spherical Bessel functions, selection sampling

bessel giving the χ sampling, and q linstep and q logstep spline, both guiding the k
sampling. As described in section 2.2, the cosmological function f ijn (t) is calculated in a
rough grid and interpolated for the final integration. Thus, the tuned parameters of the new
method include the number of FFT coefficients Nc, the coarse number of t values Nt,spline,
and the number of t values for the final integration Nt. In the new method, it is possible
to use different χ samplings for integrated or normal effects, leading to the two additional
parameters Nχ,integrated and Nχ,normal. The values of the parameters used for the tests can
be found in table 1.

Nomenclature. In the two methods, we call Nz the number of redshift bins of the survey,
and Ntot the total number of redshift bin combinations. When considering contributions
from all cross correlations between redshift bins, this number is Ntot = Nz(Nz + 1)/2 and
grows quadratically. If we include only the first M closest neighbours, the number is instead
given by Ntot = (M + 1)Nz −M(M + 1)/2 and grows linearly. In our tests, for the cosmic
shear spectra, we calculated all possible cross correlations between different redshift bins.
For the number count spectra, we limit ourselves to the first two neighboring bins (M = 2),
because other correlations are expected to be strongly noise-dominated in future galaxy
redshift surveys.
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Cosmic Shear NC, density only NC, all (no gr)

Ranges

`max 3000 1000 1000

Number of ` 112 62 62

Non-Diagonals All 2 2

δz 0.05 0.01 0.01

Old parameters

hyper sampling flat 7.5 7 8

selection sampling bessel 1.5 0.9 1.7

q logstep spline 120 21 21

q linstep (ignored) 100000 100000 100000

New parameters

Nχ,integrated 75 — 50

Nχ,normal — 15 25

Nt,spline 35 20 70

Nt 130 50 100

Nc 100 95 95

Table 1. Parameter values for the different timing tests. NC = Number count. The parameter
q linstep is relevant for small wavenumbers and thus mainly for CMB observables: in our case it
generally did not affect the results.

Old New

Ntot Nz T [s] T/Nz [s] T [s] T/Ntot [ms] I`(ν, t) [s]

5050 100 850 8.5 20 4.0 2.2

2556 71 620 8.7 11 4.4 2.6

1326 51 450 8.8 6.1 4.6 2.5

351 26 240 9.2 1.6 4.6 2.6

105 14 130 9.4 0.50 4.8 2.7

10 4 42 10.5 0.12 12 2.1

Table 2. Cosmic Shear. A comparison of the computation times T for each method, revealing that
the old method scales as Nz, while the new method scales as Ntot. The new method is up to 350
times faster. The last column gives the time needed to calculate the I`(ν, t) integrals, which is of
minor importance, given that this calculation can be done once and for all.

Speedup. The performance comparison between the two methods for different numbers of
observable redshift bins is given in tables 2, 3, and 4. The new method is always faster in our
tests. The speedup of the new method ranges in our tests from factors of around 2 (density
only) to 400 (cosmic shear or lensed density). As mentioned in section 3.3, if multiple sources
are calculated, multiple <[ν] are required for the I`(ν, t), explaining the slightly longer times
in the last column of table 4 compared those in tables 2 and 3 (8 s instead of 2.5 s). This
would not be the case if we used the “tilt reduction” method of section 2.3, but this issue is
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Old New

Ntot Nz T [s] T/Nz [s] T [s] T/Ntot [ms] I`(ν, t) [s]

297 100 13 130 5.5 19 2.4

210 71 9.3 130 3.8 18 2.5

150 51 6.7 130 2.8 19 2.5

75 26 3.4 130 1.2 16 2.5

39 14 2.0 140 0.60 15 2.5

9 4 0.60 150 0.24 27 2.1

Table 3. Number Count, density contributions only. A comparison of the computation times T for
each method, revealing that the old method scales as Nz, while the new method scales as Ntot. The
new method is up to 2.5 times faster.

Old New

Ntot Nz T [s] T/Nz [s] T [s] T/Ntot [ms] I`(ν, t) [s]

297 100 7500 75 27 90 7.8

210 71 5400 76 19 90 8.0

150 51 3800 74 14 93 7.8

75 26 2000 77 7.2 96 7.9

39 14 1100 79 3.2 82 7.9

9 4 300 75 0.80 89 7.9

Table 4. Number Count, all contributions except for gravitational terms. A comparison of the
computation times T for each method, revealing that the old method scales as Nz, while the new
method scales as Ntot. The new method is up to 380 times faster.

anyway unimportant, give that the I`(ν, t)’s calculation can be done once and for all. The
results can be stored in a binary file and quickly retrieved in later executions.

Scaling with Nz and Ntot. The new method scales with Ntot instead of Nz (like the
old one) due to the different arrangement of integrations. Thus, when we consider cosmic
shear with all cross-correlation spectra, the new method scales quadratically with Nz, while
the old one scales linearly. This could be a problem for the new method when many bins
are considered, but fortunately the computation time per spectrum is much smaller in this
method, of the order of T/Ntot ' 5 ms, instead of T/Nz ' 9 s in the old method for the
same accuracy. Thus the new method is about 350 faster for 4 bins, 42 times faster for one
hundred bins, and the old method would only overtake for ∼ 4000 redshift bins (8 million
total combinations). One should keep in mind that cosmic shear analyses will always be
optimal when analysed with a rather small number of redshift bins, in order to get good
statistics in each bin: thus the most interesting cases are the ones with a dozen of bins at
most, for which we find the best gains with the new method.

When considering instead cluster counts with only two non-diagonal terms (M = 2),
both method scale linearly with Nz, and the gain is roughly independent of the number of
bins. This gain is still very large when including integrated terms like lensing, since the new
method gives accurate spectra without requiring integrals over slowly-converging oscillatory
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functions in k space. We find a speed up by a factor of the order of 380 in that case. When
including only the leading density term, the new method is still faster, by about 2.5. This
comparison is valid forM = 2: the new method performs even better when consideringM = 1
or when calculating only auto-correlation spectra, while the old method would overtake for
M ≥ 8 when computing density terms only.

Scaling with precision parameters. We have also qualitatively evaluated how the new
method scales with the different precision parameters. Most scaling relations are approxi-
mately linear, although with some minimal constant offset. This is likely due to other parts
of the code becoming the dominant time consuming contributions in those cases. The pa-
rameters Nc, Nχ, Nt, Nt,spline , and N` show this scaling. The calculation of the geometrical
integrals I`(ν, t) on the other hand is linearly proportional to Nc, `max , and the number of t
values for which they are calculated. It also depends non-trivially on Re[ν] .

Scaling with bin width. In the old method, the χ integration over a very narrow redshift
bin around some χ∗ results in a particular ̇`(kχ

∗) effectively being selected, thus the k
sampling has to be rather precise to effectively capture the oscillatory nature of the spherical
Bessel function. Schematically, we can describe this by approximating the narrow Gaussian
window function as a Dirac-delta distribution,

∆α,i(k) =

∫ ∞
0

dχ Tα(k, χ) ̇`(kχ) W i(χ)

≈
∫ ∞

0
dχ Tα(k, χ) ̇`(kχ) δ(χ− χ∗)

= Tα(k, χ∗) ̇`(kχ
∗) .

(4.2)

Thus the final integral in k oscillates like the Spherical Bessel function, meaning it has to
be evaluated with a rather fine grid. A very broad redshift bin instead effectively results in
averaging the ̇`(kχ) over several oscillations, canceling out some of the oscillatory nature
of the Bessel functions. Of course a broader redshift window requires more sampling points
in χ instead. Thus there is a trade-off, and for number count the old method is quicker for
intermediate bin widths (δz ∼ 0.01) than for very wide or thin bins. For the new method, the
Bessel functions are already integrated to obtain I`(ν, t) , always canceling out most of the
oscillations. However, as the window width is shrunk, a smaller range of t values is allowed,
leading to a speedup of the new method. Table 5 shows that the new method is always
faster, but the gain is minimal for δz ∼ 0.01, and grows on both sides of this value. Note
that the previous performance tests of this section assumed with δz ∼ 0.01, which is the most
unfavorable case for the new method, with a factor two improvement for number count with
density terms only. With δz ∼ 0.001 the speed up factor reaches 40. Thus the new method
will perform very well for spectroscopic surveys with typical bin widths δz ∼ 0.001(1 + z).

5 Conclusions

In this paper we have further developed and implemented in the CLASS code a method pro-
posed in [14] (see also [15]) to efficiently evaluate the angular power spectra for large-scale
structure observables. We particularly focus on the angular power spectrum of the number
counts including all relevant terms such as redshift-space distortions, weak lensing, rela-
tivistic corrections etc., and the angular power spectrum of cosmic shear. The method is
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Old New (without I`(ν, t))

Nz 100 71 51 26 14 100 71 51 26 14

Width Speedup

0.5 62 48 33 17 9.0 7.8 5.5 4.0 2.0 1.0 8

0.1 42 33 22 11 6 8.4 6.0 4.4 2.2 1.1 5

0.05 37 31 20 10 5.6 7.4 5.2 3.8 1.86 0.96 5

0.01 13 9.3 6.7 3.4 2.0 5.5 3.8 2.8 1.2 0.6 2

0.005 60 48 31 16 8 3.6 2.5 1.8 0.86 0.41 20

0.001 80 45 33 17 9 1.9 1.3 0.93 0.45 0.22 40

Table 5. The scaling of the different methods with the redshift bin width for number count spectra.
While the old method takes longer for either very broad or very thin redshift bins, the new method
always increases in speed for thinner bins. The precision parameters for these runs can be found in
the appendix, table 8. Our previous tests were conservatively performed in the case δz = 0.01 leading
to minimal speedup.

based on the power-law decomposition of the k-dependent function integrated over spher-
ical Bessel functions which allows for the analytical solutions of the momentum integrals.
This power-law decomposition is achieved using the FFTlog algorithm. Compared to earlier
studies we make one step further in separating the functions that depend on cosmology form
cosmology-independent geometrical factors. We also discuss and test many important aspects
of practical implementation of the algorithm. All these improvements lead to significant gain
in speed and accuracy.

In order to test our code we evaluate the angular power spectra for number counts and
cosmic shear for many different configurations of window functions and redshift bins and
compare it to the default CLASS implementation. We find that the new method is always
more efficient, with the speedup up to a factor of O(400). At the same time the accuracy
of the results remains very good, with the relative error below 0.1%. There are reasons to
believe that this error is due to numerical integration in the standard approach and that
the accuracy of the new method can be easily an order of magnitude better. Given that the
relative error of 0.1% is sufficient for all practical purposes for current and planned large-scale
structure surveys, we leave the further investigation of this issue for future work. We plan to
publicly release the CLASS modifications discussed in this work within a few months, after
further polishing and minor improvements in the new parts of the code.

With such a speed up, it should become possible to perform Fisher matrix or MCMC
forecasts of the sensitivity of future Large Scale Structure surveys to cosmological parameters,
even with a very high number Nz of redshifts bins in the case of spectroscopic redshift surveys.
In the future, we plan to perform such forecasts, and to study the feasibility of concretely
using angular power spectra in the analysis of future galaxy redshift surveys.

Another clever way of speeding up Boltzmann codes has been proposed by the authors
of [27]. This approach, called Angpow, sticks to the same sequence of operations as the tradi-
tional line-of-sight approach until the calculation of the transfer functions ∆α,i

` (k). However

the latter are sampled in particular k values, allowing to compute the Cαβ,ij` efficiently with
a Clenshaw-Curtis-Chebyshev algorithm. This allows to reduce the number of sampled k
values by a significant amount. We note that this method is interesting per se, but cannot

– 25 –



J
C
A
P
1
0
(
2
0
1
8
)
0
4
7

be combined with the current approach since we infer the Cαβ,ij` through a very different
integral.

Throughout this paper we have focused on the power spectrum only and we have dis-
cussed only the large-scale structure observables. However, the method we presented is
equally applicable to other cases such as for example the CMB primary anisotropies. It
would be very interesting to see whether similar improvements are possible for the CMB
observables. Another direction for future work is the application of our method to higher
point correlation functions. In particular, as shown in [14], the case of the CMB or large-
scale structure bispectra seems promising. Yet another possible application of our method is
efficient evaluation of the covariance matrix for angular power spectra. All these examples
are quite relevant and it would be worth exploring them in more details in the future.
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A Types of source terms

We summarize in table 6 the different source functions contributing to the number count
spectra.

The column “Window function” corresponds to the combination D(χ)W i(χ) or D(χ)
· W̃ i(χ) of the main text (e.g. equation (3.12)), and the column “Source” to what is called
Tα(k, χ). The “Prefactor” is an overall factor for the window function which comes from the
different operations in section 3, like the integration by parts leading to factors of ∂/∂χ in
section 3.1, possibly some extra ` factors, and the k behavior intrinsic to the window function
as in section 3.3. For convenience, we also list the resulting overall behavior of the product
of source and window functions in the column “k scaling”. The source function contributing
to the cosmic shear spectra is identical to the “lensing” source function (second entry of the
table).

The transfer functions refer to gauge-independent variables whose expression in the
newtonian and synchronous gauge is explicitely given in table 7 below. The last two entries
in table 6 are not used in our default implementation. We switch from the “Density” to
“Density Split” terms when testing the method that uses equation (3.17) to reduce the tilt.
These sources use the operator D given by

D =

[
− ∂2

∂χ2
+

2

χ

∂

∂χ
− 2

χ2

]
. (A.1)

In table 7 we summarize the different gauge invariant source functions Tα(k, χ) used through-
out this paper.
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Name Prefactor Window function Source k scaling

Density 1 bW TD 1

Lensing `(`+ 1)
∞∫
χ
dχ′

(
2−5s

2

) χ′−χ
χχ′ W T φ+ψ 1/k2

Doppler 1 − 1
k2

∂
∂χ W

(
1 + H′

aH + 2−5s
χaH + 5s− fevo

)
T θ 1/k2

Doppler 2 1
k2

W (fevo − 3)aH T θ 1/k2

RSD 1
k2

∂2

∂χ2
1
aHW T θ 1/k2

GR 1 1 W
(

2 + H′

aH2 + 2−5s
χaH + 5s− fevo

)
Tψ 1/k2

GR 2 1 −W (2− 5s) Tψ 1/k2

GR 3 1 W/(aH) Tψ
′

1/k2

GR 4 1
∞∫
χ
dχ′
(

2−5s
χ′

)
W T φ+ψ 1/k2

GR 5 1
∞∫
χ
dχ′
(

1 + H′

aH + 2−5s
χ′aH + 5s− fevo

)
W T (φ+ψ)′ 1/k2

Density Split 1 D bW TD 1/k2

Density Split 2 `(`+1)
χ2 bW TD 1/k2

Table 6. Different terms appearing in the total source functions with their respective prefactors. b is
the (linear) bias, s is the magnification bias, fevo is a possible evolution of dN/dz, all in accordance
with [6], where they are defined more precisely. The layout of the table is discussed further in the
text below.

Source Name & Symbol Newtonian Gauge Synchronous Gauge

Density TD δm + 3aH
k2
θm δm + 3aH

k2
θm

Velocity TΘ θm θm + k2α

Bardeen Potential TΦ φ η −Hα
Bardeen Potential TΨ ψ Hα+ α′

Table 7. Gauge invariant quantities in Newtonian and Synchronous Gauge. These correspond to the
source functions in CLASS. For the notation of Synchronous Gauge see [28]. See also [6].
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B Details on the power law decomposition

In this section we want to discuss how the power law decomposition in equation (2.29) is
done in practice on a finite-precision computer. We want to perform an expansion of the type

f(x; k) =
∑
n

cn(x) kνn , where νn =
2πi n

log(kmax/kmin)
+ b . (2.29)

First, we should note that the precise form of νn depends on our choice of sampling in log(k).
In our code, we use a slightly modified definition,

ν̃n =
2πi n

T

N − 1

N
+ b , (B.1)

where N is the number of samples in log(k) and T = log(kmax/kmin).
This choice is based on the following argument: for N evenly sampled values of log(km)

with m ∈ {0, . . . , N − 1} we obtain

log(km) = log(kmin) +
m

N − 1
(log(kmax)− log(kmin)) , (B.2)

such that the sampling is linear, starts at kmin and ends at kmax .
If we first set the tilt b to zero, the FFT coefficients calculated by the direct FFT

algorithm are simply given as

c̃n =
∑
m

f(km) exp(−2πi nm/N) , (B.3)

and transforming them according to

cn =
1

N
(kmin)−ν̃n c̃n =

1

N
exp

(
− log(kmin)2πi n

/
T
N − 1

N

)
c̃n , (B.4)

gives us the coefficients with our desired back-transformation properties

∑
n

cnk
ν̃n
a =

∑
m

∑
n

f(km) exp(−2πinm/N) exp

(
−log(kmin)2πi n

/
T
N−1

N

)
kν̃na

/
N

=
∑
m

∑
n

f(km) exp(−2πi nm/N) exp

(
(log(ka)−log(kmin))2πi n

/
T
N−1

N

)/
N

=
∑
m

∑
n

f(km) exp(−2πi nm/N) exp

(
a

N−1
2πi n

N−1

N

)/
N

=
∑
m

∑
n

f(km) exp(2π i n(a−m)n/N)/N

=
∑
m

f(km)δam = f(ka) .

(B.5)
The factor (N − 1)/N in the definition of the ν̃n can thus be explicitly seen as a “correction”
for our choice of sampling in log(k), which involved a scaling m/(N − 1) instead of m/N for
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the usual FFT. This sampling was chosen in such a way as to have kmax be the maximum
sampled value.

Transforming instead f(k)k−b introduces the tilt b in our definition of the Fourier mode
νn. If we choose to transform precisely f(k)(k/kmin)−b, the relation cn = 1

N (kmin)−ν̃n c̃n
remains valid even for general b 6= 0 . Overall, the coefficients cn can be obtained by a fast
implementation using the FFT algorithm and a simple multiplication by (kmin)−ν̃n/N .

C Transformations of the Bessel integrals

Analytic limit. Many properties used in the following section can be found on http:
//functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1. Further discussion
on hypergeometric functions can also be found in [14].

First we note that

2F1 (a, b; c 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

, where Re[c− a− b] > 0 . (C.1)

In our case Re[c−a−b] = 2−Re[νn], requiring Re[νn] < 2. This corresponds to the analytical
result

I`(ν, 1) =
π

3
2 Γ
(
`+ ν

2

)
Γ
(
1− ν

2

)
Γ
(

3−ν
2

)
Γ
(
`+ 2− ν

2

) . (C.2)

This is the analytic limit for t→ 1.

Limber limit. We now want to discuss the Limber limit, not used in our implementation
but mentioned in equation (2.37) for self-consistency checks. First, we want to note that one
has to be careful not to double-count the point t = 1 when using equation (2.37). Thus, the
replacement for the I`(ν, t) for the integration from t in [0, 1] is actually

I`(ν, t) −−−→
`→∞

π2 (`0 )ν−3 δ(1− t) , (C.3)

which explicitly counts the point t = 1 only once per integration. Using the Sterling approx-
imation,

lim
z→∞

√
2πz (z/e)z

Γ(z + 1)
= 1 , (C.4)

we find that for large ` this result converges towards

I`(ν, 1) −−−→
`→∞

π
3
2

Γ
(
1− ν

2

)
Γ
(

3−ν
2

) ``+ν/2

``+2−ν/2 , (C.5)

which supports the statement that for large ` we have I`(ν, 1) ∼ `ν−2 in the Limber approx-
imation. If we assume that the dominant t dependence stems from the t` factor for large `
(this is a good approximation), we can immediately see that the condition t`min = ε implies
tmin = ε1/` ≈ 1 + log(ε)/` + O(1/`2), and thus 1 − tmin ≈ log(1/ε)/` + O(1/`2), which is
proportional to 1/` for ε � 1 . Since the support of the function shrinks like 1/` while its
amplitude grows as `ν−2, we recover the argument that the Limber limit reads `ν−3δ(1 − t)
for large ` . This is further supported by figures 5 and 6. We have additionally confirmed
using Mathematica and mpmath in Python, that the integrated area behaves like `ν−3 for
large ` as expected.
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`3−ν ∫ I`(ν, t)dt
π2

Figure 5. An illustration of the Limber limit: for large ` the area under the curve I`(ν, t) approaches
π2`ν−3 when integrated from 0 to 1. We see that the factor `3−ν I`(ν, t) approaches the constant π2,
which is an equivalent statement.

10 100 1000

10−2

10−1

100

101

1
t m

in

tmin

const/`

101 102 103

10 3

10 2

10 1

100

|I
(

,1
)/

2 |

Figure 6. Another consequence of the Limber limit: for large ` the tmin parameter behaves as 1/`
(left), and the |I`(ν, 1)/`ν−2| is constant as in equation (C.5) (right). Note that the oscillations due to
imaginary ν are correctly captured and the relative size approaches the correct constant. The black
lines indicate the behavior for ν = −2.1 + 30i and ε = 10−4, while the grey lines specify asymptotes.
On the left, the grey line is `−1 times an arbitrary constant (here 30/`), while on the right side the
constant is fixed by C.5. The constant for tmin is not exactly log(1/ε) because of the influence of the
hypergeometric function.

Transformations. For high t we can transform our original I`(ν, t) using the properties
of hypergeometric functions to speed up convergence, by bringing the argument closer to 0,
where the hypergeometric function’s Taylor expansion converges faster. We find for high t
the transformation

I`(ν, t) =
π

3
2 t`
(

2
1+z

)`+ν/2
Γ
(

3−ν
2

) [
Γ
(

2`+ν
2

)
Γ
(

2−ν
2

)
Γ
(

4+2`−ν
2

) 2F1

(
2`+ ν

4
,
2`+ ν + 2

4
,
ν

2
,

(
1− z
1 + z

)2
)

+Γ

(
ν − 2

2

)(
2

(
1 + z

1− z

))ν−2

2F1

(
2`+ 6− ν

4
,
2`+ 4− ν

4
, 2− ν

2
,

(
1− z
1 + z

)2
)]

,

(C.6)

where z = t2. For small t, this formula depends on a precise cancellation between the two
hypergeometric functions, disfavoring its use in this regime. Instead, for small t we find
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another transformation that allows for the efficient calculation of I`(ν, t)

I`(ν, t) =
2ν−1π2t` (1 + z)−(`+ ν

2 )

Γ
(

3−ν
2

) Γ
(

2`+ν
2

)
Γ (`+ 3/2)

2F1

(
2`+ ν

4
,
2`+ ν + 2

4
, `+

3

2
,

4z

(1 + z)2

)
.

(C.7)
Notice that on the right hand side of this formula the imaginary frequencies ν in the argu-
ments of the hypergeometric function are divided by a factor of 4. This is very helpful for
faster convergence of the numerical evaluation. Similarly to [14] we prescribe to switch from
version (C.7) to (C.6) above some t∗. One can easily perform numerical test to find the most
optimal choice of t∗ is roughly t∗ ≈ 0.9.

Derivatives of the Bessel functions. The integration by parts method in section 3.1
works well most of the time, but there are some situations in which it can fail:

1. When the window function is a Dirac distribution, which makes the operation of taking
derivatives very imprecise.

2. When the window function is a function similar to a top-hat, for which the second
derivatives are very localized around the edges of the function. This results in narrow
peaks in the f ijn (t) function at values corresponding to the edge ratios.

In our current implementation, we just discard these two cases. We can give however some
hints of possible solutions. First of all, it is possible to use the following equation to translate
a derivative into a change of `,

∂

∂x
̇`(x) =

`

x
̇`(x)− ̇`+1(x) . (C.8)

Thus, for each derivative of the Bessel function we obtain the two integrals, `I`(ν − 1, t) and

4π

∞∫
0

duuν−1̇`+1(u)̇`(ut) ≡ J
(1)
` (ν, t) . (C.9)

Thus the integrals I`(ν, t) and J
(1)
` (ν, t) provide a basis for all derivatives of Bessel functions.

Sadly, the J
(1)
` (ν, t) does not have nice symmetry properties with respect to t as I`(ν, t) does.

In order to deal only with t < 1, we could decide to define

J
(2)
` (ν, t) ≡ 4π

∞∫
0

duuν−1̇`(u)̇`+1(ut) , (C.10)

and relate J (1)(ν, t) for t > 1 to J (2)(ν, 1/t) and vice versa.
Secondly, one can relate all derivatives of the Bessel functions to the derivatives of

I`(ν, t), e.g.

4π

∞∫
0

duuν−1̇`(u)
∂̇`(x)

∂x

∣∣∣∣
x=ut

= ∂t I`(ν − 1, t) ,

4π

∞∫
0

duuν−1 ∂̇`(x)

∂x

∣∣∣∣
x=u

̇`(ut) = −t ∂t I`(ν − 1, t) + (1− ν)I`(ν − 1, t) .

(C.11)
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δz 0.5 0.1 0.05 0.01 0.005 0.01

q logstep 80 50 33 21 5 0.05

selection sampling bessel 1.0 1.9 2.5 1.0 1.0 9.0

hyper sampling flat 7 7.5 7 7 7 7

Table 8. Precision parameters used for the tests presented in table 5.

Name Value Name Value

Common parameters h 0.6711 Tcmb 2.726K

ωb 0.02207 YHe 0.25

Neff 3.04 As 2.22 · 10−9

zreio 10. ns 0.97

Massless neutrinos ωcdm 0.12029

Massive neutrinos ωcdm 0.10965534872 Nncdm 1

mncdm 3 · 0.33eV

Table 9. The cosmological parameters used in the comparison study of section 4.

Of course, since the derivatives of the hypergeometric functions are known analytically, these
expressions are also known from analytic formulas. In either case, there is a strong compu-
tational effort involved compared to the simple integration by parts method that we use for
smooth window functions.

If one wants to use the relations from appendix G of [15], one would also have to expand
the Doppler terms involving only first derivatives using the following equation

k̇`(kχ) =
`− 1

χ
̇`−1(kχ)− ∂

∂χ
̇`−1(kχ) , (C.12)

to keep the separation of appearing Bessel functions to ∆` = 2, which allows the given
recursion relations in ∆` to be used. The Redshift-Space Distortion term results only in
δ` = −2, 0, 2 .

D Further notes

Width measurement parameters. We give below the precision parameters used in our
tests involving different bin widths, presented in table 5.

Cosmological parameters. In all our tests, we used a fixed set of ΛCDM model param-
eters summarized in table 9. The value of ΩΛ is adjusted to cancel the spatial curvature.
YHe is the Helium fraction, zreio is the redshift of reionization, Neff is the effective neutrino
number. The index ncdm refers to non-cold Dark Matter, in our case massive neutrinos.
We assumed 3 neutrino species with degenerate mass of 0.33 eV , for which we held constant
Neff , H0 , ΩΛ , and ωb , implying fixed ωm.

Discrete ` values. The list of ` values used in section 4 for testing purposes is given below.
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2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 19 21 23 25 27 30 33 36

40 44 49 54 60 67 75 83 92 103 115 128

143 160 179 200 223 249 278 311 348 388 428 468

508 548 588 628 668 708 748 788 828 868 908 948

988 1000

Table 10. The ` values for the calculation of the number count spectra (`max = 1000 , N` = 62).

2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 19 21 23 25 27 30 33 36

40 44 49 54 60 67 75 83 92 103 115 128

143 160 179 200 223 249 278 311 348 388 428 468

508 548 588 628 668 708 748 788 828 868 908 948

988 1028 1068 1108 1148 1188 1228 1268 1308 1348 1388 1428

1468 1508 1548 1588 1628 1668 1708 1748 1788 1828 1868 1908

1948 1988 2028 2068 2108 2148 2188 2228 2268 2308 2348 2388

2428 2468 2508 2548 2588 2628 2668 2708 2748 2788 2828 2868

2908 2948 2988 3000

Table 11. The ` values for the calculation of the Cosmic shear spectra (`max = 3000 , N` = 112).
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