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ABSTRACT
A novel series of twelve aromatic bis-ureido-substituted benzenesulfonamides was synthesised by conju-
gation of aromatic aminobenzenesulfonamides with aromatic bis-isocyanates. The obtained bis-ureido-sub-
stituted derivatives were tested against four selected human carbonic anhydrase isoforms (hCA I, hCA II,
hCA IX and hCA XII). Most of the new compounds showed an effective inhibitory profile against isoforms
hCA IX and hCA XII, also having some selectivity with respect to hCA I and hCA II. The inhibition constants
of these compounds against isoforms hCA IX and XII were in the range of 6.73–835 and 5.02–429nM,
respectively. Since hCA IX and hCA XII are important drug targets for anti-cancer/anti-metastatic drugs,
these effective inhibitors reported here may be considered of interest for cancer related studies in which
these enzymes are involved.
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Introduction

Carbonic anhydrases (CAs, EC 4.2.1.1) are a superfamily of abundant
metalloenzymes that catalyse a physiologically very important reaction,
which is the reversible conversion of the carbon dioxide (CO2) to bicar-
bonate (HCO3

�) and proton ions (Hþ). This reaction is also occurring
under noncatalytic conditions but it is very slow for most life processes
in which it is involved1–8. Up to now, eight genetically distinct CA fami-
lies (a, b, c, d, f, g, h, and more recently i) were reported and they are
present in all kingdoms of life9–16. Among them, in humans, 16 differ-
ent isozymes which are all belong to the a-CAs were discovered, pos-
sessing a diverse sub-cellular localisation, catalytic activity and
organ/tissue distribution17–24. These isoforms were classified according
to their localisation, including the cytosolic forms (CA I, II, III, VII, and
XIII), membrane-bound ones (CA IV, IX, XII, XIV, and XV), mitochondrial
isoforms (CA VA and VB), and one secreted in saliva and milk (CA VI)21–
26. Among these isoforms, two of the membrane-bound ones (CA IX
and CA XII), have been identified as tumour-associated enzymes and
attracted much attention in the search of novel, potent and selective
cancer drugs, in the last decades17–24. These isoforms have a crucial
role as diagnostic tools for imaging hypoxic tumours but also in the
metabolism, survival, migration and invasion of tumour cells, by regu-
lating pH and other processes connected to tumorigenesis. Therefore,
potent and selective inhibitors of these isoforms with new class of
compounds might be a strategy to develop efficient antitumor/antime-
tastatic agents17–24.

Ureido-substituted primary benzenesulfonamides were extensively
studied as potent and selective CA inhibitors (CAIs), and among
them 4-[[(4-fluorophenyl) carbamoyl] amino] benzenesulfonamide

(SLC-0111) (Figure 1) has reached to Phase Ib/II clinical trials for the
management of advanced metastatic solid tumors12–14. Initially, ure-
ido-substituted benzenesulfonamides were investigated as hCA I,
hCA II, and bCA IV inhibitors possessing high activity and unexpect-
edly high selectivity25. Later, other such ureido bearing compounds
(benzenesulfonamides and benzenesulfamates) have been designed,
synthesised and explored as potent and selective hCA IX and XII
inhibitors12–14. On the other hand, more recently, secondary and ter-
tiary benzenesulfonamides started to be also investigated as CAIs,
some of which showed strong affinity against several important iso-
zymes, although they were generally less effective, compared to pri-
mary counterparts26,27.

In continuation of our recent efforts to develop effective and
isoform selective CAIs28–30, in the present study, we report bis-ure-
ido-substituted primary benzenesulfonamides acting as potent
human (h) hCA inhibitors using the design strategy summarised in
Figure 1. To the best of our knowledge, this is the first bis-ureido-
substituted primary benzenesulfonamide study, which examined
the inhibition profile of these compounds on selected hCAs,
namely off-target cytosolic isoforms hCA I and II, and tumour-
overexpressed membrane-bound isoforms hCA IX and XII.

Materials and methods

Chemistry

Unless otherwise noted, all the chemicals and anhydrous solvents
were purchased from Sigma-Aldrich, Merck, Alfa Aesar and TCI
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and used without further purification. Melting points (mp) were
determined with SMP20 melting point apparatus and are uncor-
rected. FT-IR spectra were obtained by using Perkin Elmer
Spectrum 100 FT-IR spectrometer. Nuclear Magnetic Resonance
(1H-NMR and 13C-NMR) spectra of compounds were recorded
using a Bruker Advance III 300Mhz spectrometer in DMSO-d6 as
the solvent, and TMS as the internal standard operating at
300Mhz for 1H-NMR and 75Mhz for 13C-NMR. Chemical shifts are
expressed in ppm relative to tetramethylsilane. Splitting patterns
are designated as singlet (s), doublet (d), triplet (t), quartette (q),
and multiplet (m). Thin layer chromatography (TLC) was carried
out on Merck silica gel 60 F254 plates.

General procedure for preparation of bis-ureido substituted
primary benzenesulfonamide derivatives (8-19)

4-aminobenzenesulfonamide/3-aminobenzenesulfonamide/4(2-
aminoethyl)benzenesulfonamide (2mmol) was dissolved in aceto-
nitrile (10-15ml) and then treated with subsequent bis-isocyanates
(1.1mmol) (1,4-Phenylene diisocyanide for Y1, 4,40-Methylenebis

(phenyl isocyanate) for Y2, 3,30-Dimethyl-4,40-biphenylene diiso-
cyanate for Y3, 4-Methyl-1,3-phenylene diisocyanate for Y4). The
mixture was stirred at room temperature for 3h, and then heated
at 50 �C until completion (TLC monitoring). The obtained precipi-
tate was filtered off, washed with diethyl ether (50ml) and water,
and dried in vacuo. The obtained products (compounds 8-19)
were characterised in detail by spectroscopic and analytic meth-
ods (FT-IR, 1H-NMR, 13C-NMR, and melting points) (Scheme 1).

4,4’-(((1,4-Phenylenebis(azanediyl))bis(carbonyl))bis(azanediyl))
dibenzenesulfonamide (8)

Yield: 88%; Colour: white solid; Melting Point: >300 �C; FT-IR
(cm�1): 3387, 3331, 3222 (NH), 1689 (C¼O), 1306, 1154 (symmet-
ric) (S¼O); 1H-NMR (DMSO-d6, 300MHz, d ppm): 9.02 (s, 2H, -NH-),
8.69 (s, 2H, -NH-), 7.73 (d, J¼ 7.5 Hz, 4H, Ar-H), 7.61 (d, J¼ 7.5 Hz,

Figure 1. The design strategy of novel bis-ureido substituted primary benzenesulfonamides 8–19.

Scheme 1. General synthetic route for the synthesis of the primary benzenesulfonamides incorporating bis-ureido moieties 8–19.
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4H, Ar-H), 7.40 (s, 4H, -SO2NH2), 7.21 (s, 4H, Ar-H); 13C-NMR
(DMSO-d6, 75MHz, d ppm): 150.65, 141.31, 135.00, 132.30, 125.16,
117.57, 115.61.

4,4’-((((Methylenebis(4,1-phenylene))bis(azanediyl))bis(carbonyl))bis
(azanediyl))dibenzenesulfonamide (9)

Yield: 82%; Colour: white solid; Melting Point: 293–294 �C; FT-IR
(cm�1): 3374, 3324, 3262 (NH), 1656 (C¼O), 1328, 1151 (symmet-
ric) (S¼O); 1H-NMR (DMSO-d6, 300MHz, d ppm): 9.05 (s, 2H, -NH-),
8.76 (s, 2H, -NH-), 7.75 (d, J¼ 8.4 Hz, 4H, Ar-H), 7.63 (d, J¼ 8.7 Hz,
4H, Ar-H), 7.40 (d, J¼ 8.4 Hz, 4H, Ar-H), 7.25 (s, 4H, -SO2NH2), 7.15
(d, J¼ 8.7 Hz, 4H, Ar-H), 3.84 (s, 2H, Ph-CH2-Ph);

13C-NMR (DMSO-
d6, 75MHz, d ppm): 152.74, 143.39, 137.64, 137.18, 135.87, 129.46,
127.31, 119.11, 118.82, 117.85.

4,4’-((((3,3’-Dimethyl-[1,1’-biphenyl]-4,4’-diyl)bis(azanediyl))bis
(carbonyl))bis(azanediyl))dibenzenesulfonamide (10)

Yield: 76%; Colour: white solid; Melting Point: >300 �C; FT-IR
(cm�1): 3412, 3348, 3292 (NH), 1693 (C¼O), 1304, 1148 (symmet-
ric) (S¼O); 1H-NMR (DMSO-d6, 300MHz, d ppm): 9.45 (s, 2H, -NH-),
8.13 (s, 2H, -NH-), 7.99–7.95 (m, 4H, Ar-H), 7.77 (d, J¼ 8.4 Hz, 4H,
Ar-H), 7.66 (d, J¼ 8.4 Hz, 4H, Ar-H), 7.52–7.45 (m, 4H, Ar-H), 7.25 (s,
4H, -SO2NH2), 2.30 (s, 6H, -CH3);

13C-NMR (DMSO-d6, 75MHz, d
ppm): 152.76, 146.07, 143.43, 137.11, 136.16, 134.18, 128.56,
127.60, 124.20, 121.99, 117.31, 18.61.

4,4’-((((4-Methyl-1,3-phenylene)bis(azanediyl))bis(carbonyl))bis
(azanediyl))dibenzenesulfonamide (11)

Yield: 63%; Colour: white solid; Melting Point: 279–281 �C; FT-IR
(cm�1): 3391, 3309, 3190 (NH), 1701 (C¼O), 1310, 1154 (symmet-
ric) (S¼O); 1H-NMR (DMSO-d6, 300MHz, d ppm): 9.45 (s, 1H, -NH-),
8.94 (s, 1H, -NH-), 8.80 (d, J¼ 7.5 Hz, 2H, Ar-H), 8.44 (s, 1H, -NH-),
8.29 (s, 1H, -NH-), 8.04 (s, 2H, Ar-H), 7.78–7.59 (m, 5H, Ar-H), 7.23
(s, 4H, -SO2NH2), 7.18–7.08 (m, 2H, Ar-H), 2.21 (s, 3H, -CH3);

13C-
NMR (DMSO-d6, 75MHz, d ppm): 152.74, 152.38, 147.11, 143.42,
138.20, 137.83, 137.40, 130.61, 127.21, 121.89, 117.63, 115.96,
111.67, 104.71, 17.63.

3,3’-(((1,4-Phenylenebis(azanediyl))bis(carbonyl))bis(azanediyl))
dibenzenesulfonamide (12)

Yield: 92%; Colour: white solid; Melting Point: >300 �C; FT-IR
(cm�1): 3362, 3322, 3267 (NH), 1638 (C¼O), 1338, 1153 (symmet-
ric) (S¼O); 1H-NMR (DMSO-d6, 300MHz, d ppm): 8.96 (s, 2H, -NH-),
8.61 (s, 2H, -NH-), 8.07 (s, 2H, Ar-H), 7.55 (d, J¼ 7.2 Hz, 2H, Ar-H),
7.46 (t, 2H, Ar-H), 7.42–7.40 (m, 6H, Ar-H and -SO2NH2), 7.36 (s, 4H,
Ar-H); 13C-NMR (DMSO-d6, 75MHz, d ppm): 152.96, 145.43, 140.78,
134.47, 129.87, 121.43, 119.67, 119.17, 115.44.

3,3’-((((Methylenebis(4,1-phenylene))bis(azanediyl))bis(carbonyl))
bis(azanediyl))dibenzenesulfonamide (13)

Yield: 82%; Colour: white solid; Melting Point: 293–295 �C; FT-IR
(cm�1): 3357, 3322, 3268 (NH), 1644 (C¼O), 1339, 1154 (symmet-
ric) (S¼O); 1H-NMR (DMSO-d6, 300MHz, d ppm): 8.99 (s, 2H, -NH-),
8.68 (s, 2H, -NH-), 8.09 (s, 2H, Ar-H), 7.54 (d, J¼ 7.5 Hz, 2H, Ar-H),
7.50–7.41 (m, 8H, Ar-H), 7.38 (s, 4H, -SO2NH2), 7.15 (d, J¼ 8.4 Hz,
4H, Ar-H), 3.84 (s, 2H, Ph-CH2-Ph);

13C-NMR (DMSO-d6, 75MHz, d
ppm): 152.88, 145.14, 140.71, 137.78, 135.80, 129.88, 129.44,
121.46, 119.23, 119.04, 115.43.

3,3’-((((3,3’-Dimethyl-[1,1’-biphenyl]-4,4’-diyl)bis(azanediyl))bis
(carbonyl))bis(azanediyl))dibenzenesulfonamide (14)

Yield: 80%; Colour: white solid; Melting Point: >300 �C; FT-IR
(cm�1): 3367, 3306, 3284 (NH), 1639 (C¼O), 1302, 1151 (symmet-
ric) (S¼O); 1H-NMR (DMSO-d6, 300MHz, d ppm): 9.42 (s, 2H, -NH-),
8.13 (s, 2H, -NH-), 8.06 (s, 2H, Ar-H), 7.96 (d, J¼ 8.4 Hz, 2H, Ar-H),
7.60 (d, J¼ 7.5 Hz, 2H, Ar-H), 7.52–7.46 (m, 8H, Ar-H), 7.40 (s, 4H,
-SO2NH2), 2.34 (s, 6H, -CH3);

13C-NMR (DMSO-d6, 75MHz, d ppm):
153.04, 145.20, 140.78, 136.71, 134.75, 130.01, 128.46, 124.47,
121.73, 121.28, 119.24, 115.27, 18.51.

3,3’-((((4-Methyl-1,3-phenylene)bis(azanediyl))bis(carbonyl))bis
(azanediyl))dibenzenesulfonamide (15)

Yield: 76%; Colour: white solid; Melting Point: 233–234 �C; FT-IR
(cm�1): 3388, 3322, 3272 (NH), 1692, 1645 (C¼O), 1308, 1150 (sym-
metric) (S¼O); 1H-NMR (DMSO-d6, 300MHz, d ppm): 9.42 (s, 1H,
-NH-), 8.88 (s, 1H, -NH-), 8.77 (s, 1H, -NH-), 8.17 (s, 1H, Ar-H), 8.10
(d, J¼ 7.8 Hz, 2H, Ar-H), 7.98 (s, 1H, Ar-H), 7.56–7.45 (m, 6H, Ar-H),
7.39 (s, 5H, -SO2NH2 and Ar-H), 7.18 (d, J¼ 7.2 Hz, 1H, Ar-H), 7.10
(d, J¼ 8.4 Hz, 1H, Ar-H), 2.21 (s, 3H, -CH3);

13C-NMR (DMSO-d6,
75MHz, d ppm): 152.87, 152.78, 145.19, 140.76, 138.07, 137.83,
130.79, 130.03, 129.89, 121.44, 121.31, 121.21, 119.21, 115.33,
113.53, 111.38, 17.71.
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4,4’-((((1,4-Phenylenebis(azanediyl))bis(carbonyl))bis(azanediyl))
bis(ethane-2,1-diyl))dibenzenesulfonamide (16)

Yield: 88%; Colour: white solid; Melting Point: >300 �C; FT-IR
(cm�1): 3361, 3333, 3266 (NH), 1626 (C¼O), 1333, 1156 (symmet-
ric) (S¼O); 1H-NMR (DMSO-d6, 300MHz, d ppm): 8.28 (s, 2H,
-CH2CH2NH-CO-NH-), 7.77 (d, J¼ 8.4 Hz, 4H, Ar-H), 7.43 (d,
J¼ 8.4 Hz, 4H, Ar-H), 7.33 (s, 4H, -SO2NH2), 7.23 (s, 4H, Ar-H), 6.05
(t, 2H, -CH2CH2NH-CO-NH-), 3.35 (q, 4H, -CH2CH2NH-CO-NH-), 2.82
(t, 4H, -CH2CH2NH-CO-NH-);

13C-NMR (DMSO-d6, 75MHz, d ppm):
155.76, 144.37, 142.47, 134.73, 129.65, 126.19, 118.88, 40.76, 36.11.

4,4’-(((((Methylenebis(4,1-phenylene))bis(azanediyl))bis(carbonyl))-
bis(azanediyl))bis(ethane-2,1-diyl))dibenzenesulfonamide (17)

Yield: 86%; Colour: white solid; Melting Point: 270–272 �C; FT-IR
(cm�1): 3361, 3335, 3268 (NH), 1636 (C¼O), 1341, 1161 (symmet-
ric) (S¼O); 1H-NMR (DMSO-d6, 300MHz, d ppm): 8.40 (s, 2H,
-CH2CH2NH-CO-NH-), 7.78 (d, J¼ 8.4 Hz, 4H, Ar-H), 7.42 (d,
J¼ 8.4 Hz, 4H, Ar-H), 7.33 (s, 4H, -SO2NH2), 7.28 (d, J¼ 8.7 Hz, 4H,
Ar-H), 7.04 (d, J¼ 8.4 Hz, 4H, Ar-H), 6.10 (t, 2H, -CH2CH2NH-CO-NH-
), 3.75 (s, 2H, Ph-CH2-Ph), 3.35 (q, 4H, -CH2CH2NH-CO-NH-), 2.83 (t,
4H, -CH2CH2NH-CO-NH-);

13C-NMR (DMSO-d6, 75MHz, d ppm):
155.63, 144.53, 142.53, 138.79, 134.76, 129.64, 129.23, 126.19,
118.24, 40.70, 36.04.

4,4’-(((((3,3’-Dimethyl-[1,1’-biphenyl]-4,4’-diyl)bis(azanediyl))bis
(carbonyl))bis(azanediyl))bis(ethane-2,1-diyl))dibenzenesulfona-
mide (18)

Yield: 85%; Colour: white solid; Melting Point: >300 �C; FT-IR
(cm�1): 3365, 3330, 3276 (NH), 1629 (C¼O), 1334, 1151 (symmet-
ric) (S¼O); 1H-NMR (DMSO-d6, 300MHz, d ppm): 7.89 (d, J¼ 8.4 Hz,
2H, Ar-H), 7.80 (d, J¼ 8.1 Hz, 4H, Ar-H), 7.73 (s, 2H, -CH2CH2NH-CO-
NH-), 7.46 (d, J¼ 8.4 Hz, 4H, Ar-H), 7.40–7.35 (m, 8H, Ar-H and
-SO2NH2), 6.62 (t, 2H, -CH2CH2NH-CO-NH-), 3.40 (q, 4H,
-CH2CH2NH-CO-NH-), 2.86 (t, 4H, -CH2CH2NH-CO-NH-), 2.24 (s, 6H,
-CH3);

13C-NMR (DMSO-d6, 75MHz, d ppm): 155.82, 144.40, 142.51,
137.55, 133.95, 129.69, 128.17, 127.55, 126.21, 124.22, 121.27,
40.75, 36.08, 18.57.

4,4’-(((((4-Methyl-1,3-phenylene)bis(azanediyl))bis(carbonyl))bis
(azanediyl))bis(ethane-2,1-diyl))dibenzenesulfonamide (19)

Yield: 79%; Colour: white solid; Melting Point: 245–247 �C; FT-IR
(cm�1): 3344, 3309, 3261 (NH), 1627 (C¼O), 1330, 1152 (symmet-
ric) (S¼O); 1H-NMR (DMSO-d6, 300MHz, d ppm): 8.41 (s, 1H,
-CH2CH2NH-CO-NH-), 7.78 (dd, J1 ¼ 8.4 Hz, J2 ¼ 1.5 Hz, 5H, Ar-H),

7.59 (s, 1H, Ar-H), 7.43 (dd, J1 ¼ 8.4 Hz, J2 ¼ 2.4 Hz, 4H, Ar-H), 7.34
(s, 4H, -SO2NH2), 7.13 (d, J¼ 8.7 Hz, 1H, Ar-H), 6.95 (d, J¼ 8.7 Hz,
1H, Ar-H), 6.59 (t, 1H, -CH2CH2NH-CO-NH-), 6.02 (t, 1H, -CH2CH2NH-
CO-NH-), 3.38(q, 4H, -CH2CH2NH-CO-NH-), 2.85 (t, 4H, -CH2CH2NH-
CO-NH-), 2.01 (s, 3H, -CH3);

13C-NMR (DMSO-d6, 75MHz, d ppm):
155.75, 155.64, 144.37, 142.45, 138.95, 138.55, 130.44, 129.67,
126.21, 119.83, 112.10, 110.70, 40.73, 36.10, 17.70.

CA inhibition

An SX.18MV-R Applied Photophysics (Oxford, UK) stopped-flow
instrument has been used to assay the catalytic/inhibition of vari-
ous CA isozymes31. Phenol Red (at a concentration of 0.2mM) has
been used as an indicator, working at the absorbance maximum
of 557 nm, with 10mM Hepes (pH 7.4) as a buffer, 0.1M Na2SO4

or NaClO4 (for maintaining constant the ionic strength; these
anions are not inhibitory in the used concentration), following the
CA-catalyzed CO2 hydration reaction for a period of 5–10 s.
Saturated CO2 solutions in water at 25 �C were used as substrate.
Stock solutions of inhibitors were prepared at a concentration of
10mM (in DMSO-water 1:1, v/v) and dilutions up to 0.01 nM done
with the assay buffer mentioned above. At least 7 different inhibi-
tor concentrations have been used for measuring the inhibition
constant. Inhibitor and enzyme solutions were pre-incubated
together for 10min at room temperature prior to assay, in order
to allow for the formation of the E-I complex. Triplicate experi-
ments were done for each inhibitor concentration, and the values
reported throughout the paper is the mean of such results. The
inhibition constants were obtained by nonlinear least-squares
methods using the Cheng-Prusoff equation, as reported ear-
lier32–37, and represent the mean from at least three different
determinations38–45. All CA isozymes used here were recombinant
proteins obtained as reported earlier by our group and their con-
centrations were in the range of 6–14 nM38–45.

Results and discussion

General synthesis and design strategy of the compounds

In recent studies, CAIs having bifunctional pharmacophores in
their structures were reported, in order to improve biological
activity and selectivity of compounds by ditopic interactions on
the active site of the same or different enzyme(s)46–50. In the con-
text of the bis-substituted CAI design approach, we focussed on
the development of a new bis-ureido-substituted benzenesulfona-
mides. Our aim was to produce molecules which have two bind-
ing groups in their structure and the ureido linker in between
them to investigate isoform selectivity and potency of compounds
by a potentially synergistic/multivalent effect. On the other hand,
we aimed to find the relationship between the effect of the zinc
binding group (primary sulphonamide part) and the linker pos-
ition and length (ureido part) against various CA isozyme of
pharmacologic relevance. To achieve this, we have used three
well known primary benzenesulfonamide pharmacophores
namely, sulphanilamide, metanilamide and 4-(2-aminoethyl)benze-
nesulfonamide which have been converted to aromatic bis-ureido
derivatives (8-19). Hence, these primary benzenesulfonamide
derivatives were condensed with four different aromatic bis-iso-
cyanate moieties under mild conditions to produce twelve novel
bis-ureido-substituted benzenesulfonamides derivatives. The gen-
eral synthetic route is shown in the Scheme 1. Briefly, acetonitrile
was used as a solvent and the reaction temperature was from
room temperature to 50�C, overnight.
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Table 1. Inhibition data of human CA isoforms hCA I, hCA II, hCA IX and hCA XII with bis-ureido-substituted primary benzenesulfonamide derivatives (8–19) reported
here and standard sulphonamide inhibitor Acetazolamide (AAZ) by a stopped flow CO2 hydrase assay.

KI
a (nM)

Cmp X Y hCA I hCA II hCA IX hCA XII

8 7279 680 57.5 37.3

9 6282 484 835 429

10 947 302 86.4 52.3

11 68.1 4.4 6.73 7.39

12 6519 550 63.8 63.2

13 9174 306 78.7 27.7

14 688 637 578 67.9

15 5002 80.8 81.1 67.1

16 2915 424 68.7 82.8

17 5351 792 91.9 33.6

18 8313 604 93.7 60.3

19 95.4 25.8 8.92 5.0

AAZ – – 250 12 2.5 25
aErrors in the range of 6 standart error, from 3 different assays, by a stopped flow technique.
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Carbonic anhydrase inhibition

All the newly synthesised bis-ureido-substituted primary benzene-
sulfonamide derivatives were evaluated for their CA inhibition
properties against two cytosolic off-target isoforms (hCA I and II)
and two membrane-bound isoforms (hCA IX and XII) by using a
stopped-flow assay.The well-known CAI drug acetazolamide (AAZ)
was used as a standard for comparison, and all the obtained
results are summarised in Table 1. The following structure-activity
relationship (SAR) can be drawn from obtained carbonic anhy-
drase inhibition studies as shown in the Table 1.

i. In general, our designed compounds were less prone to
inhibit the cytosolic off-target isoform hCA I, having Ki values
of 68.1 to 9174 nM. The most potent compound was 11,
which is structurally different from other linkers by having
substitution on 1,3- position in the phenyl ring although
other ones have 1,4-substitution. Compound 19 showed
good inhibition which is also have same linker with com-
pound 11 by having Ki value of 95.4 nM. The other off-target
isoform hCA II was effectively to moderately inhibited by the
synthesised bis-ureido-substituted primary benzenesulfona-
mides. Interestingly, the most potent compound against hCA
II was also compound 11 and 19, as in hCA I inhibition, with
a Ki values of 4.4 and 25.8 nM, respectively. Compound 11
showed the best inhibition value that observed in the pre-
sent study against hCA II with Ki value of 4.4 nM.

ii. The tumour-overexpressed isoforms hCA IX and XII were effi-
ciently inhibited, in general, by our novel compounds. More
specifically, compound 11 showed a great affinity against
these isoforms with Ki values of 6.73 and 7.39 nM, respect-
ively. On the other hand, another compound from the same
linker series compound 19, was also shown great inhibition
potency with Ki values of 8.92 and 5.02 nM, respectively.
However, a better selectivity was observed for compound 19
against off target isoforms hCA I and hCA II. The remaining
compounds in the present series also displayed great inhib-
ition properties with Ki values ranging from 57.5 to 835 nM
for hCA IX, and 27.7 to 429 nM for hCA XII.

iii. Overall, the SAR results demonstrate that 4-aminobenzene-
sulfonamide scaffold is a better primary sulphonamide as
compared to other counterparts in combination with the bis-
isocyanate (Y4) which has 1,3-substitution among others.

Conclusions

A series of novel primary benzenesulfonamides incorporating bis-
ureido moieties were synthesised through the conjugation of sul-
phonamides with aromatic bis-isocyanates under mild conditions
using SLC-0111 as lead compound. These bifunctional CAI design
strategy was applied to obtain potent and possibly selective inhib-
itors incorporating the ureido linker. The inhibition properties of
the obtained compounds were evaluated against four selected CA
isoforms, including cytosolic ones (hCA I and II), as well as the
tumour-associated membrane-bound isoforms (hCA IX and XII). In
general, these compounds showed weak hCA I inhibition with Kis
ranging from 68.1 to 9174 nM and effective to moderate inhibition
against another cytosolic isoform hCA II with Kis of 4.4 to 792 nM.
The tumour-associated membrane-bound isoforms hCA IX and XII
were effectively inhibited by some of these compounds with Kis
in the range of 6.73–835 and 5.02–429 nM, respectively.
Interestingly, compounds 11 and 19 were found to be potent
derivatives against these isoforms in which both of them have the

same ureido linker (1,3-substituted phenyl ring) in their structure.
However, compound 19 was more selective against the off-target
isoforms hCA I and II. As a result, the potent inhibition properties
of these novel compounds against tumour-associated isoforms
hCA IX and XII making these bis-ureido substituted compounds of
interest for antimetastatic drug design research.
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