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ARTICLE INFO ABSTRACT

Keywords: Investigation of the fungal communities in animal models of Inflammatory Bowel Diseases (IBD) showed a
M}’CObif’me controversial role of Saccharomyces cerevisiae and Candida spp. In health and disease. These conflicting obser-
Microbiome vations could be ascribed to immunogenic differences among co-specific strains. To assess the relevance of intra-
S. cerevisiae . . . e . . . .. .
Candida spp strains differences on yeast immunogenicity and impact on the microbiota, we screened S. cerevisiae and Candida

spp. Strains isolated from fecal samples of IBD patients. We compared the cytokine profiles, obtained upon
stimulation of Peripheral Blood Mononuclear Cells (PBMCs) and Dendritic Cells with different yeast strains, and
evaluated the relationship between strain’s cell wall sugar amount and immune response. Moreover, the gut
microbiota composition was explored in relation to fungal isolation from fecal samples by metabarcoding anal-
ysis. The comparison of cytokine profiles showed strain dependent rather than species-dependent differences in
immune responses. Differences in immunogenicity correlated with the cell wall composition of S. cerevisiae in-
testinal strains. Stimulation of human healthy PBMCs with different strains showed a pro-inflammatory IL-6
response counterbalanced by IL-10 production. Interestingly, Crohn’s (CD) patients responded differently to “self”
and “non-self” strains, eliciting pure Thl or Th17 cytokine patterns. The differences observed in vitro were
recapitulated in vivo, where different strains contributed in dramatically different ways to local epithelial activity
and to the inflammation of wild type and Interleukin-deficient mice. Furthermore, we observed that the gut
microbiota profiles significantly differentiated according to the presence of Saccharomyces or Candida spp. or the
absence of fungal isolates in fecal samples. Our results show the importance to deepen metagenomics and
immunophenotyping analyses to the strain level, to elucidate the role of fungal and bacterial communities in
health and disease.

Inflammatory bowel disease

1. Introduction an alteration of the microbiota in occurrence of these conditions [1-7].
Yet, despite the large quantity of metagenomics and clinical information,

Several studies have investigated the contribution of bacterial com- studies on gut microbiota have not led to discrimination of the
munities in the etiology of Inflammatory Bowel Disease (IBD), revealing cause-effect relationships between alterations of microbiota and IBD. The
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most advanced studies suggest that commensal fungi have a crucial role
in IBD pathogenesis and chronicity [8,13]. It is worth to consider that
first clues on the potential involvement of fungi in IBD came from the
observation of an abnormal response to Saccharomyces cerevisiae in
Crohn’s disease (CD) patients. Main and coworkers [9] described for the
first time in 1988 the presence of antibodies against S. cerevisiae in CD
patients’ blood, but not in Ulcerative Colitis (UC) patients, suggesting the
diagnostic role of these antibodies to discriminate the two IBDs. Anti--
Saccharomyces cerevisiae antibody (ASCA) recognizes cell wall peptido-
mannans of this yeast [10], although, later on, also Candida albicans was
proven a potent immunogen for ASCA [11,12]. The relevance of fungal
communities on human health has been further confirmed in recent
studies [14-16], which highlighted the role of gut fungi in shaping both
innate and adaptive immunity [17-20]. Studies in mouse models showed
that gut inflammation promotes fungal proliferation [21], and that
Dextran Sulphate Sodium (DSS)-induced gut inflammation is associated
with an increase in Candida species [22].

Furthermore, recent studies reported clear differences between adult
and pediatric IBD patients’ gut fungal communities [8] and more het-
erogeneous fungal communities in CD patients compared to healthy
subjects [23-26], suggesting a role of altered mycobiota in inflammatory
diseases and “leaky gut” syndrome. Sokol and collaborators [23]
observed a clear fungal dysbiosis in CD patients with an enrichment in
Candida spp. and a reduction of S. cerevisiae in disease versus remission,
thus proposing a beneficial effect of S. cerevisiae colonization on host
health. Liguori and co-workers [32], assessing the microbiota and
mycobiota composition in CD patients’ gut mucosa, observed that
S. cerevisiae was enriched in CD patients’ non-inflamed gut mucosa. On
the other hand, a recent study reported that S. cerevisiae is able to exac-
erbate DSS-induced colitis, and affects gut barrier permeability by
inducing overproduction of uric acid as a result of host purine meta-
bolism [33]. All these studies have highlighted the relevance of
S. cerevisiae in gut inflammation, but the association of different species
with flare or remission is controversial [34-36]. The wide genetic and
phenotypic variability observed for S. cerevisiae [38-41] could explain
the inconsistencies in the results of different studies.

Aiming to dissect the yeast-host relationship, we performed a
screening for immunomodulatory properties on different S. cerevisiae
strains isolated from fecal samples of IBD and healthy subjects, previ-
ously characterized for genotypic and phenotypic traits [41]. We then
compared immune responses to fecal S. cerevisiae strains to those elicited
by strains isolated from different sources [41] or by fecal Candida spp.
Strains, and correlated them with cell wall sugar amount. The immune
responses to selected strains were also tested in vivo. Finally, through
metabarcoding analysis, we also evaluated the inter-kingdom relation-
ships between fungal and bacterial gut communities in fecal samples of
CD patients.

2. Methods
2.1. Enrolment of patients and healthy subjects

A total of 93 pediatric subjects, encompassing 34 CD (age average:
15.1 years; range: 10.5-18.9 years), 27 UC patients (age average 12.4
years; range: 3.25-18.9 years), and 32 healthy children (HC, age average:
12.8 years; range: 4.5-19 years), were enrolled at the Meyer Children’s
Hospital (Florence, Italy). Clinical data of IBD patients including locali-
zation, disease activity, inflammation indexes and ongoing treatment are
reported in Table 1. The inflammatory status was assessed routinely in all
IBD patients through clinical parameters, such as blood erythrocyte
sedimentation rate (ESR), C Reactive Protein (CRP), fecal calprotectin
[42] and endoscopy. For CD patients, disease activity was scored using
the Pediatric Crohn’s Disease Activity Index (PCDAI). For UC patients,
the Pediatric Ulcerative Colitis Activity Index (PUCAI) was used. Posi-
tivity for Anti-Saccharomyces cerevisiae Antibodies, measured as IgA and
IgG levels, was also assessed (Table 1). All enrolled patients and healthy
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Table 1
Clinical data of IBD patients investigated in this study.
CD ucC
Number of patients 34 27
Gender: M/F ratio 20/14 13/14

Age average (range) 15.1 (10.5-18.9)
LOCALIZATION OF DISEASE (number of patients; %)

12.4 (3.25-18.9)

Tleum 14 (41.1%) 0 (0%)
Colon 0 (0%) 19 (70.3%)
Ileum-colon 20 (58%) 0 (0%)
Sigma-rectum 0 (0%) 8 (29.6%)

DISEASE ACTIVITY (number of patients; %)

PCDAI <10 20 (58.8%)

PCDAI >10 14 (41.1%)

PUCAI <10 23 (85.2%)
PUCAI>10 4 (14.8%)
Anti S. cerevisiae antibody (number of patients; %)

ASCA+ 27 (79.4%) 3(11.1%)
ASCA- 7 (20.6%) 24 (88.9%)

INFLAMMATION INDICES (number of patients; %)

Calprotectin >100 18 (53%) 17 (62.9%)
Calprotectin <100 16 (47%) 10 (37%)
ESR>31 12 (35.3%) 6 (22.2%)
ESR<31 19 (55.9%) 19 (0%)
ESR (NA) 3 (8.8%) 2 (7.4%)
CRP >0.5 mg/L 16 (47%) 6 (22.2%)
CRP <0.5 mg/L 15 (44.2%) 19 (70.3%)
CRP (NA) 3 (8.8%) 2 (7.4%)
THERAPY AT SAMPLING (number of patients; %)

Enteral Nutrition + azathioprine 10 (29.4%)

Enteral Nutrition + 6-MP 2 (5.9%)

Methotrexate 2 (5.9%)

Infliximab 16 (47%)

Talidomide 4 (11.7%)

5-ASA (mesalazine) 3(11.1%)
5-ASA + steroids 2 (7.4%)
5-ASA + azathioprine 11 (40.7%)
5-ASA+ 6 MP 2 (7.4%)
5-ASA + methotrexate 1 (3.7%)
5-ASA + Infliximab 8 (29.6%)

children were Italian and had a Mediterranean diet (generally eating
bread and dairy products). Patients did not take yeast-based probiotics
over the three months prior the stool sampling.

All parents and caregivers of the enrolled patients were made aware
of the nature of the experiment conducted in accordance with The Code
of Ethics of the World Medical Association (Declaration of Helsinki), and
gave written informed consent for stool and blood sample collection in
accordance with the sampling protocol approved by the Ethical Com-
mittees of the Azienda Ospedaliera Universitaria (AOU) Careggi and
AOU Meyer Children’s Hospital, Florence, Italy (Ref. n. 87/10).

2.2. Isolation and identification of yeast species from fecal samples

Feces were collected from all pediatric subjects. A 1 ml feces aliquot
was plated on Yeast Extract-Peptone-Dextrose (YPD) agar medium sup-
plemented with chloramphenicol (1 mg/ml) and incubated at 28 °C.
After 2-3 days, fungal colonies were observed. Yeast genomic DNA was
extracted as previously described by Sebastiani and collaborators [43].
Fungal isolates were identified by Sanger sequencing of the ITS1-5.8-
S-ITS2 regions (ribosomal Internal Transcribed Spacer, ITS), using ITS1
(5'-GTTTCCGTAGGTGAACTTGC-3') and ITS4 (5'-TCCTCCGCTTATTGA-
TATGC -3') primers, compared to the sequenced deposited in the NCBI
database using megaBLAST algorithm. Long-term storage of the isolates
was carried out in 20% glycerol at —80 °C.

Each isolate was named with a three characters-code: the first letter
(Y) identified the isolate as a yeast, the second character (a letter) cor-
responded to the ID of the patient from whose feces the strain was iso-
lated, the third character (a number) was specific of the isolate, in an
arbitrarily numbering of the isolates found in the given fecal sample.

For host-fungal interaction studies, isolates were cultured overnight
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at 37 °C in Sabouraud dextrose agar (SDA, Oxoid, Hampshire, UK). Then,
yeast cells were washed twice with sterile Phosphate Buffered Saline
(PBS, EuroClone, Wetherby, UK), counted and suspended in Roswell Park
Memorial Institute (RPMI) 1640 medium at the desired concentration.

2.3. Human peripheral blood mononuclear cells and dendritic cells
preparation, fungal challenge and cytokine assays

Peripheral Blood Mononuclear Cells (PBMCs) were isolated from
fresh blood obtained from 5 pediatric CD patients and 6 healthy donors,
as controls (from Meyer Children Hospital and the Transfusion Unit of
the Careggi Hospital, Florence, Italy, respectively), by Ficoll-Hypaque
density gradient centrifugation (Biochrom AG). Monocytes were iso-
lated from low density PBMCs by magnetic enrichment with anti-CD14
beads (Milteny Biotec). Cells were cultured in the presence of GM-CSF
(800 U/ml) and recombinant Interleukin [IL-4] (1000 U/ml) for 6 days
to allow Dendritic Cells (DC) differentiation as previously described[44].

All stimulations were carried out by challenging PBMCs with live
fungi at 10° cell/ml concentration. After 24 h or 7 days of incubation,
supernatants were collected and stored at —20 °C until assayed by means
of cytokine detection. Human Milliplex® assay for Tumor Necrosis Factor
alpha [TNF-a], Interferon [IFN]-y IL-16, IL-6, IL-10, IL-23, IL-12p70 and
IL-17A production was performed according to the manufacturer’s in-
structions using Luminex technology.

2.4. Cell wall extraction and quantification of sugars by HPAEC-PAD

The sugar composition of S. cerevisiae and C. albicans cell walls was
analyzed as previously described [45] applying the following modifica-
tions. Briefly, about 200 mg of cell cultures at the stationary phase were
harvested and washed with deionized water. Cells were suspended in 1
ml of 10 mM Tris-HCl (pH 8.5) and subsequently disrupted by three
rounds of vortex at maximum speed (30 s) and chilling on ice (1 min)
using glass beads (0.45-0.55 mm). Cell pellets were subjected to
extraction with 100 pl of 72% H,SO4 (w/w) for 1 h at room temperature.
The resulting slurry was diluted with MilliQ water, to a final volume of 1
ml and heated for 4 h at 100 °C. The hydrolysate was then diluted to 9 ml
with MilliQ water, neutralized with saturated Ba(OH); and left overnight
at 4 °C to allow the precipitation of sulphate ions. After centrifugation at
3800g for 5 min, the supernatant was subjected to monosaccharide
analysis with High-Performance Anion-Exchange Chromatography
coupled with Pulsed Amperometric Detector (HPAEC-PAD). All samples
were filtered through a 0.2 mm Spartan 13 filter (Schleicher & Schuell
Microscience, Dassel, Germany) prior to analysis on a Dionex HPAEC
equipped with a CarboPac PA10 (4 x 50 mm) guard column and a Car-
boPac PA10 (4 x 250 mm) analytical column. Separation was performed
as previously described[45]. Sugars were quantified with a pulsed
amperometric detector (PAD) with gold electrode. Glucosamine, galac-
tose, glucose and mannose (for chitin, glucan and mannan content
determination, respectively) were identified by comparison with refer-
ence compounds and quantified according to calibration curves obtained
for each sugar.

2.5. Mice infection and cytokine detection

C57BL/6 female mice (6-8 weeks old) were purchased from Charles
River (Calco, Milan) and maintained under specific pathogen-free con-
ditions at the Animal Facility of the University of Perugia (Perugia, Italy).
Experiments were performed according to the Italian Approved Animal
Welfare Assurance A 245/2011-B. Homozygous II-17a—/—, Ifng—/— and
1I-10—/— mice on a C57BL/6 background, were bred under specific
pathogen-free conditions.

2.5.1. Fungal infection and histology
For gastrointestinal infection, 10% yeast cells were injected intra-
gastrically. Mice were monitored for fungal growth [colony forming units
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(log1o CFU), per organ, + standard error of the mean (SEM) obtained by
serially diluting homogenates on Sabouraud dextrose agar plates incu-
bated at 35 °C for 48 h] and histology.

For histology, paraffin-embedded tissue sections (3-4 pm) were
stained with periodic acid-Schiff (PAS) reagent. Sections of frozen tis-
sues, cut at 4 pm, were fixed for 60 s in methanol. Photographs were
taken using the Olympus BX51 microscope at 10 or 40 (insets) x
objective.

2.5.2. ELISA assay

Cytokine content was assessed by enzyme-linked immunosorbent
assays (R&D Systems) on stomach homogenates or supernatants of
cultured stomachs.

The double-tailed Student’s t-test was used to compare the signifi-
cance of differences between groups. Comparison with a p-value < 0.05
were considered significant. The data reported are representative of four
independent experiments, with similar results. The in vivo groups con-
sisted of six mice/group.

2.6. Statistical analysis

To evaluate variables that might influence the presence of yeast in
fecal samples, such as clinical parameters, sex, age and location of the
inflammation and treatment, we performed logistic regression using
automated model selection. To observe correlations between yeast iso-
lates from IBD, clinical features and ASCA, we used the Wald test. Chi
Square statistics were applied to associate significant correlations with
the variables mentioned above. Yates correction was applied in the case
of expected frequencies less than 5. G test was applied to evaluate sig-
nificant correlation between fungal isolates and mucosal indices.

Spearman’s correlations among sugar cell wall and cytokine release
upon fungal stimulation were performed using the R software through
the stats R package (version 3.1.2). P-values were corrected for multiple
test comparison by using the false discovery rate correction.

2.7. Bacterial DNA extraction from fecal samples and pyrosequencing

Fecal samples were preserved in RNAlater (Qiagen) at 4 °C for the
first 48 h, and kept at —80 °C until DNA extraction. Bacterial genomic
DNA extraction and quality control were carried out following our pre-
vious protocol [46]. For each sample, we amplified the 16S rRNA gene
using the special fusion primer set specific for V5-V6 hypervariable re-
gions and corresponding to primers 784F and 1061R described by
Andersson et al. [47], and using the FastStart High Fidelity PCR system
(Roche Life Science, Milano, Italy). The 454 pyrosequencing was carried
out on the GS FLX + system using the Titanium chemistry following the
manufacturer recommendations.

2.8. Metabarcoding data analysis

Raw 454 files were demultiplexed using Roche’s.sff file software.
Reads were pre-processed using the MICCA pipeline (version 1.5, http://
compmetagen.github.io/micca/)[48]. Pyrosequencing resulted in a total
of 212,614 16S rDNA reads with a mean of 13,288 sequences per sample.
Average sequence lengths were 273 nt (+SD 4) and 256 nt (+SD 1) for
the first and second run, respectively. Raw 454 files were made available
at the European Nucleotide Archive (http://www.ebi.ac.uk/ena/data/
view) under the accession study PRJEB22036 and PRJEB22343. For-
ward and reverse primer trimming and quality filtering were performed
using micca-preproc truncating reads shorter than 250 nt (quality
threshold = 18). Denovo sequence clustering, chimera filtering and tax-
onomy assignment were performed by micca-otu-denovo (parameters -s
0.97 -c). Operational Taxonomic Units (OTUs) were assigned by clus-
tering the sequences with a threshold of 97% pairwise identity, and their
representative sequences were classified using the RDP software version
2.7 [49]. Template-guided multiple sequence alignment was performed
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using PyNAST57 (version 0.1)[50] against the multiple alignment of the
Greengenes 13_8 16S rRNA gene database [51] filtered at 97% similarity.
Rarefaction was performed in order to reduce the sampling heteroge-
neity. A total of 8500 sequences per sample was obtained.

For diversity analysis, OTU table was summarized at three different
phylogenetic levels: Phylum, Family, and Genus. Alpha diversity was
evaluated using the genus-level OTUs table, measuring richness (S), as
the number of observed OTUs (using specnumber function in the Vegan R
package), and Shannon-Wiener index (H) (using diversity function in the
Vegan R package). Considering the presence of S. cerevisiae (Sc group),
other yeasts, such as Candida (group Other Y), or absence of yeast (group
Y-) in the feces, pairwise Wilcoxon rank sum test (using pairwise. wil-
cox.test function in the Stats R package) was used to assess significant
differences between samples.

Beta diversity of gut microbiota was evaluated at genus-level using
beta dispersion (calculated on the Bray-Curtis dissimilarity matrix) as a
measure of within-group heterogeneity (using function betadisper in the
Vegan R package). To test if bacterial community in the feces of different
groups (i.e. groups of samples Sc, Other Y, and Y-) had a different het-
erogeneity, a permutational test with 999 permutations, was used (using
permutest function in the Vegan R package). To compare the relative
abundances of OTUs among the three groups of subjects, the two-sided
unpaired Wilcoxon test was performed, removing taxa not having a
relative abundance of at least 0.1% in at least 20% of the samples, and
using the function mt () in the phyloseq library. The p-values were
adjusted for multiple comparison controlling the family-wise Type I error
rate (minP procedure). Ternary plots were drawn using R package
(ggtern) to depict the distribution of bacterial communities among the
three different groups of fecal samples: (i) Sc group, in which S. cerevisiae
was isolated; (ii) Other Y group, in which other yeasts, such as Candida,
were isolated; (iii) Y- group, in which no yeasts were isolated.

Based on relative abundances, the metagenomic biomarker discovery
and related statistical significance were assessed using the linear
discriminant analysis (LDA) effect size (LEfSe) method[52]. LEfSe uses
the Kruskal-Wallis rank-sum test to identify features with significantly
different abundances between assigned taxa compared to the groups, and
LDA to estimate the size effect of each feature. An alpha significance level
of 0.05, either for the factorial Kruskal-Wallis test among classes or for
the pairwise Wilcoxon test between subclasses, was used. A size-effect

Table 2
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threshold of 2.0 on the logarithmic LDA score was used for discrimina-
tive microbial biomarkers.

3. Results
3.1. The mycobiota of CD patients is enriched for S. cerevisiae strains

We used selective media with bacterial growth inhibitors to charac-
terize the cultivable gut mycobiota present in feces from 34 pediatric CD,
27 pediatric UC, and 32 healthy children (HC). Sequencing of the rDNA
ITS1-5.8S-ITS4 region allowed us to classify a total of 112 yeast isolates
as belonging to 20 different species (Table 2). The CD group showed the
highest number of isolates (N = 78), belonging to 12 different species,
compared to UC and HC (N = 12 and N = 22 isolates, respectively;
Table 1). S. cerevisiae, C. albicans and C. parapsilosis composed the largest
part of the CD cultivable mycobiota (Table 2). Considering the most
abundant fungal species, we isolated 27 S. cerevisiae strains, 22 C. albicans
strains and 16 C. parapsilosis strains in 26.4% (9 out of 34), 14.7% (5 out
of 34) and 17.6% (6 out of 34) of CD patients, respectively. We observed
a significantly higher fungal richness in CD compared to UC and HC (p <
0.0001 Kruskal-Wallis test FDR correction; figure S1). By stratifying CD
patients according to clinical markers useful for monitoring mucosal
disease activity (e.g. fecal calprotectin dosage, Table 1), we observed that
52.9% (18 out of 34) of patients showed high mucosal inflammation
indices. We found fungal isolates in 61% (11 out of 18) of CD patients
with mucosal inflammation, 45% of which (5 out of 11) were S. cerevisiae.
Yeasts were isolated in 44.4% (12/27) of UC patients, and in only 7.4%
(2 out of 27) of UC patients with no mucosal inflammation we were able
to identify S. cerevisiae strains. To evaluate variables that might influence
the presence of yeasts in fecal samples, we evaluated potential correla-
tions among presence/absence of yeasts and clinical parameters, sex, age
or location of the inflammation and treatment. We observed that, in CD
patients, the presence of yeasts significantly correlated only with mucosal
inflammation indices (G test, G adj. 6.280; p = 0.012), in agreement with
previous observations [26].

3.2. Immunophenotypic screening of S. cerevisiae and Candida spp.

To investigate the host immune reactivity to different yeast strains

Yeast species isolated and identified by sequencing of the ITS1-5.8S-ITS2 region. For each yeast species, the number of isolates and the number of subjects from which
the corresponding yeast species was isolated are reported. For each donor group, the total number of isolated strains for each species, as well as the overall number of
isolates, are indicated. CD= Crohn’s Disease patients, UC=Ulcerative Colitis patients, HC= Healthy Children.

N° of yeast isolates

N° of subjects with yeast isolates

Phylum Yeast Species CD uc HC Total CD uc HC

Ascomycetes Saccharomyces cerevisiae 27 2 2 31 9 2 2
S. delbrueckii 2 0 0 2 1 0 0
Candida albicans 22 7 10 39 5 6 10
C. ernobii 0 1 0 1 0 1 0
C. glabrata 0 1 0 1 0 1 0
C. pararugosa 1 0 0 1 1 0 0
C. parapsilosis 16 1 1 18 6 1 1
C. tropicalis 0 0 1 1 0 0 1
C.zeylanoides 0 0 1 1 0 0 1
Clavispora lusitaniae 2 0 2 4 2 0 2
Issatchenkia orientalis 1 0 0 1 1 0 0
Pichia caribbica 0 0 1 1 0 0 1
P. kluyveri 0 0 1 1 0 0 1
P. membranifaciens 1 0 0 1 1 0 0
Yarrowia lipolytica 0 0 1 1 0 0 1

Basidiomycetes Cryptococcus adeliensis 1 0 0 1 1 0 0
C. liquefaciens 1 0 0 1 1 0 0
C. saitoi 0 0 1 1 0 0 1
Rhodotorula mucilaginosa 3 0 1 4 3 0 1
Trichosporon faecale 1 0 0 1 1 0 0

Total isolates 78 12 22 112

Total species 12 5 11 20
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isolated from gut samples, we screened a large set of S. cerevisiae and
Candida spp. Strains, isolated from IBD and HC feces. Aiming at this, we
measured the cytokine profiles produced in vitro by PBMCs from healthy
donors and CD patients (Figs. 1 and 2 and figures S2-S3-S4), and by

A

Journal of Translational Autoimmunity 3 (2020) 100036

human healthy DCs (Fig. 3 and figures S5-S6) when challenged with
fungal cells. In particular, we compared the immunomodulatory prop-
erties of a set of 23 S. cerevisiae strains isolated from human gut of IBD
and HC and strains from other sources (Table S1).
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Fig. 1. Innate and adaptive immune response of PBMCs from healthy donors to different yeasts strains. Selected S. cerevisiae (light grey) and Candida spp. (grey
scales) strains were tested for the ability to induce inflammatory (IL-6, IL-1p, TNF-a, IFN-y, IL-17A) and inflammatory responses (IL-10), and specifically cytokines
deriving by Th1 (IFN-y), Th17 (IL-17) and Treg (IL-10) priming. Healthy PBMCs from 5 donors were stimulated with live yeast cells for 24 h or 5 days, and cytokine
levels were measured. (A) Principal component Analysis of cytokines profiles of yeast strains according to the different species and sources. Boxplots recapitulate the
coordinates (horizontal boxplots show PC1, vertical box plots show PC2) of strains grouped according to their species or isolation source (Lab = laboratory strains,
Gut, Grape, and Nat = natural environment, such as soil, tree). * and # indicate p-values< 0.05, fdr corrected, calculated with Wilcoxon and Levene tests respectively.
(B) Cytokines produced by PBMCs from healthy donors in response to the challenge with the selected yeast isolates. Bars indicate the average; error bars indicate the

standard error.
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Fig. 2. Stimulation of cytokine production upon challenge of PBMCs from healthy donors to different yeasts strains. (A-B) Individual cytokine patterns for
S. cerevisiae strains isolated from IBD patients (n = 7) and healthy donors (n = 6). PBMC T-polarizing (A) and pro-inflammatory (B) cytokine release from HS (white
boxplots) and CD patients (black boxplots), upon stimulation with 9 selected S. cerevisiae strains (indicated in horizontal axis). In each scatter-plot, red points represent
CD patient PBMC cytokine release after stimulation with their own isolate. +mi and -mi indicate the yeast was isolated when the corresponding patients had mucosal
inflammation or not mucosal inflammation, respectively. * indicate significant differences between the cytokine levels expressed by healthy subjects’ or CD’ PBMCs
(Wilcoxon p < 0.05). (C-D) Statistics of Spearman correlations among levels of cytokines produced by (C) PBMCs from healthy donors and (D) patients in response to
S. cerevisiae isolates. (E) Correlations among cytokine levels by CD patients and healthy donors. The color in each square indicates the Spearman correlation r among
the variables reported in the two coordinates, as indicated by colored scale bar. Crossed squares lack of statistical significance (p > 0.05). (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version of this article.)

A set of S. cerevisiae and Candida spp. Strains was preliminarily tested
for the ability to induce inflammatory (IL-1p, IL-6, TNF-a, [FN-y, IL-17A)
and anti-inflammatory (IL-10) cytokines upon challenge of PBMCs iso-
lated from healthy donors (Fig. 1). By comparing the general profile of
cytokine production by healthy PBMCs in response to the tested strains
through PCA (Fig. 1A), we observed that the vast majority of the samples
variance was explained in the first component (66.6%), which was driven
by IFN-y levels. The cytokines profiles induced by S. cerevisiae strains
were significantly different from those induced by C. glabrata strains
(Wilcoxon p < 0.05) and the responses induced by C. albicans isolates
were more variable than those induced by S. cerevisiae (Levene p < 0.05)

(Fig. 1A). S. cerevisiae strains isolated from human gut induced a more
variable response than co-specific strains isolated from natural sources
(Levene p < 0.05, Fig. 1A). In many cases, the pro-inflammatory re-
sponses (IFN-y, IL-1f, IL-6, and IL-17) were counterbalanced by anti-
inflammatory IL-10 induction to a different extent (Fig. 1B). As
observed for S. cerevisiae, cytokines production differed among strains
upon stimulation with different Candida spp. Strains, except for a general
low level of IL-6 and a tendency of high level of TNF-a (Fig. 1B and
Table S3). Generalizing at species level, S. cerevisiae strains induced
higher amounts of IL-6 compared to C. glabrata and C. parapsilosis, and of
IFN-y compared to C. parapsilosis strains (Wilcoxon p < 0.05, figure S2).
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Regarding stimulation with different Candida spp., other differences at
the species level included higher IFN-y and IL-17 in response to
C. parapsilosis compared to C. glabrata, higher IL-6 in response to
C. albicans compared to C. glabrata and C. parapsilosis, and higher TNF-a
in response to C. albicans compared to C. glabrata (Wilcoxon p < 0.05,
figure S2). Interestingly, the differences in IL-1f, IL-6, IL-17, and TNF-«
levels produced by PBMCs were higher among co-specific strains than
among strains of different species (Wilcoxon p < 0.05, Fig. 1B and figure
S3).

Considering that the inflammatory status of CD patients may induce
different immune responses to fungi compared to healthy subjects, we
evaluated the cytokine profiles elicited by fungal isolates in a set of CD
patients’ PBMCs and compared them with that of healthy donors (Fig. 2).
In general, we observed a tendency for strain-specific pattern in immune
response, and a trend of higher level of the pro-inflammatory cytokines
IFN-y IL-17 and IL-6 secreted by healthy PBMCs than patients’ ones
(Fig. 2A; Wilcoxon p-value <0.05). To note, the response of PBMCs from
5 CD patients to S. cerevisiae strains isolated from the corresponding fecal
samples (“self”) showed different cytokine profiles compared to the
response to strains isolated from other patients (“non-self’; Fig. 2, red
dots). For example, PBMCs of the CD patient E, in clinical remission and
without mucosal inflammation (Fig. 2; Table S3), expressed more I[FN-y,
IL-1p and TNF-o, and less IL-17A and IL-10 in response to the “self”
strains (YE5) compared to other CD patients in response to the same
strain (Fig. 2A and B, red dot). In addition, PBMCs from the CD patient H,
in clinical remission but with active mucosal inflammation (Table S3),
released lower IL-17A, IFN-y, IL-6 and IL-1f and higher IL-10 upon
challenge with the “self” (YH1) compared to other patients’ PBMCs in
response to the same isolate (Fig. 2A and B, red dot). YB8 and YD1
strains, isolated from CD patients’ B and D in active disease and mucosal
inflammation, induced the production of high levels of IL-17A and low
levels of IFN-y and IL-10 by PBMCs of donors B and D, respectively
(Fig. 2A, red dots). The cytokine pattern observed in response to
S. cerevisiae strains differed, and in some cases showed an opposite trend,
when we compared healthy subjects and patients. Spearman correlation
analysis between the different cytokine responses showed that, unlike for
healthy donors, the inflammatory and clinical status of the patient
differently affect the immune response against yeast strains (Fig. 2C and
D). IL-10 produced by healthy PBMCs upon challenge with S. cerevisiae
strains positively correlated with IL-6 and negatively with IL-17, while
the latter positively correlated with TNF-a. On the other hand, IL-17
secreted by CD patients PBMCs (Fig. 2D) negatively correlated with
IFN-y, TNF-a and IL-10, and TNF-a correlated positively with IFN-y.
When comparing cytokine profiles induced by healthy and CD PBMCs,
positive correlations were found among levels of IL-1p and TNF-a pro-
duced by healthy PBMCs and the same cytokines secreted by CD patients
PBMCs, respectively (Fig. 2E). A negative correlation was found between
TNF-a produced by patients” PBMCs and IFN-y expressed by healthy
subjects’ PBMCs, and a positive correlation between IL-1f expressed by
patients’ PBMCs and IL-17 by healthy PBMCs (Fig. 2E).

We also assessed the response of DCs to different strains and species.
TNF-a, IL-6, IL-1f, IL-10, IL-12p70 and IL-23 cytokines levels were
measured from the supernatant of DC challenged with a larger set of
different fungal strains (Fig. 3 and figs. S5-S6). By comparing the general
profile of cytokine production through PCA (Fig. 3A), we observed that
the vast majority of samples variance was explained in the first compo-
nent (65.7%). According to this component, the cytokine profiles
induced by S. cerevisiae strains were significantly different from those
induced by all Candida spp. Strains (Wilcoxon p < 0.01 S. cerevisiae strains
vs C. albicans strains; p < 0.001 S. cerevisiae vs C. glabrata and S. cerevisiae
and C. parapsilosis, Table S2). Considering the different sources of the
strains, the cytokine profiles of S. cerevisiae strains resulted significantly
different from strains collected in natural environments (such as soil,
tree) (Wilcoxon p < 0.05) and grape (Wilcoxon p < 0.001, Table S1)
(Fig. 3A). At species level, we observed higher levels of IL-6, IL-12p70,
and anti-inflammatory IL-10 upon stimulation with S. cerevisiae
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compared to the three tested Candida species (figure S4, Wilcoxon
signed-rank test fdr corrected p < 0.05 complete results in Table S2).
These findings were in accordance with the previous observations on
tolerogenic response (high IL-10 levels) upon stimulation of DCs with
S. cerevisiae compared to C. albicans, as observed by Sokol and co-workers
[23]. Contrarily, IL-1p levels were higher upon stimulation with Candida
spp. compared with S. cerevisiae strains (Fig. 4, Wilcoxon Student’s t
signed-rank test fdr corrected, Table S2). Both when considering the
cytokine profiles and individual cytokines, greater differences were
observed at the strain-level than at the species level (figure S5). As
observed for cytokine profiles (Fig. 3A), the production of individual
cytokines varied according to the isolation source of the tested strain
(Fig. 3C and Table S2). The levels of IL-6 and IL-1p were lower in
response to S. cerevisiae strains isolated from CD patients than from HC
donors or from grapes (Fig. 3C). In general, Spearman correlation anal-
ysis showed a positive correlation between IL-6 and IL-1f (Fig. 3B). IL-10
was lower in DCs challenged with S. cerevisiae strains from CD patients
than with lab, grape, or UC strains, while S. cerevisiae grape strains
induced more IL-10 than HC and strains from natural environment
(Fig. 3C, Table S2). This suggests that S. cerevisiae strains from CD pa-
tients are in general less immunogenic than the other strains. The levels
of IL-12p70 were higher in DCs challenged with S. cerevisiae strains iso-
lated from CD patients compared to strains isolated from any other
source, while CD Candida spp. Strains induced a higher expression of
IL-12p70 compared to C. albicans strains isolated from HC donors
(Fig. 3C, Table S2). IL-23 was higher in DC challenged with S. cerevisiae
grape isolates and lower in DCs challenged with laboratory and natural
compared to CD co-specific strains (Fig. 3C, Table S2). On the other hand,
Candida spp. Strains isolated from CD patients induced a lower expres-
sion of IL-23 in contrast with Candida spp. Strains isolated from HC do-
nors (Fig. 3C, Table S2). Similar amounts of TNF-a were quantified from
DCs cells challenged with different S. cerevisiae or Candida spp. Isolates,
except for two S. cerevisiae gut isolates (Y13EU and YAS5), which showed
a markedly low induction of this cytokine (Fig. 3C).

3.3. Cell wall composition of S. cerevisiae and Candida spp. Strains

The sugar moieties of fungal cell wall are the principal antigens
sensed by the host immune system during host-fungal interaction. In-
vestigations on the importance of fungal cell wall in promoting immune
response indicated that a multilayered cell wall controls the exposure of
pathogen-associated molecular patterns to immune cells [53]. Given the
different cytokine profiles among the screened strains, we compared the
cell wall sugar composition of a selection of 10 IBD S. cerevisiae strains,
with a set of 7 strains isolated from other sources (laboratory, natural
environment, and grapes), and 4 Candida spp. Stains isolated from fecal
samples of CD patients and the SC5314 C. albicans reference strain
(Fig. 4A and Table S1).

HPAEC-PAD analysis (see Methods) revealed that S. cerevisiae gut
isolates showed inverse mannose/galactose ratio, with a significantly
lower percentage of mannose (measured as mannan moieties) compared
to all the other strains (Fig. 4A; Kruskal-Wallis test, FDR correction p <
0.05). Gut strains showed a higher amount of glucosamine (chitin moi-
eties), and a significantly higher galactose content compared to strains
isolated from other sources (Kruskal-Wallis test, FDR correction p < 0.05,
Fig. 4A). When compared with gut Candida spp. Strains, we observed a
higher amount of galactose and glucosamine, and lower amount of
glucose (glucan moieties) in S. cerevisiae gut strains (Fig. 4; Mann-
Whitney test p = 0.048 for galactose, p = 0.01 for glucosamine, and p
=0.0016 for glucose). Spearman correlation analysis (Fig. 4B) confirmed
that in S. cerevisiae strains, the amount of galactose positively correlated
with glucosamine (Spearman r = 0.7, fdr<0.05), and that mannose and
glucose negatively correlated with galactose and glucosamine (Spearman
r = 0.7 and r = 0.4, fdr<0.05). Thus, the cell wall composition of
S. cerevisiae strains isolated from human intestinal tract appears to be
peculiar for this set of strains compared to co-specific strains isolated
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Fig. 4. Cell wall sugar components of S. cerevisiae and Candida spp. Strains and correlation with cytokine induction. (A) Percentage of mannan (measured as
mannose moieties), glucan (glucose), galactose and chitin (glucosamine) amounts in S. cerevisiae and of Candida spp strains. S. cerevisiae strains isolated from human
gut in comparison with strains from other sources (laboratory, natural environment, wine, and wasp’s gut). Candida spp. Strains isolated from CD patients in com-
parison with SC5314 reference strain. Ca= C. albicans and Cp = C. parapsilosis. (B) Statistics of Spearman correlations among the amount of cell wall components of
S. cerevisiae gut isolates. (C-E) Statistics of Spearman correlations among the amount of cell wall components of S. cerevisiae gut isolates and cytokine production by (C)
PBMCs from healthy donors, (D) PBMCs from DC patients, and (E) DCs from healthy donors upon challenge with yeast strains. The color in each square indicates the
Spearman correlation r among the variables reported in the two coordinates, as indicated by colored scale bar. Crossed squares lack of statistical significance (p >
0.05). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

from other sources and to other yeast species.

We then investigated potential correlations among the yeast cell wall
sugar components and the levels of cytokines produced by PBMCs (either
of healthy donors’ or CD patients’), and by healthy DCs upon strain’s
challenge (Spearman correlation; Fig. 4CE). Interestingly, we found
correlations with IL-6, produced by healthy PBMCs, which negatively
correlated with the amount of glucosamine and galactose and positively
with mannose (Spearman r = —0.47, r = —0.48 and r = 0.40, fdr<0.05;
Fig. 4C). Despite below the statistical significance threshold, it is worthy
to note that in CD patients IL-17 responses were anti-correlated with
galactose and correlated with mannose levels.

3.4. Invivo challenge of S. cerevisiae strains

To corroborate the in vitro results, we assessed the susceptibility of
C57BL/6 mice to gastrointestinal colonization and/or infection with
different gut S. cerevisiae strains (Fig. 5) found to elicit distinct cytokine
patterns in human healthy DCs and PBMCs. At 3 and 7 days after intra-
gastric inoculation, we evaluated the fungal growth, the patterns of
cytokine production in the colon, and the local inflammatory pathology.
We found that the tested S. cerevisiae strains differed in their ability to

grow and colonize the colon at 3 days after inoculation (figure S6).

To correlate the fungal growth with local cytokine production in the
colon, we measured the levels of cytokines known to afford colonization
resistance (IL-17A and IFN-y) or immune tolerance (IL-10) in mice. The
cytokine profiles were measured in wild type C57BL/6 mice after inoc-
ulation with a set of S. cerevisiae strains chosen to recapitulate the di-
versity in immune responses observed in patients and HC, such as gut
strains (YH3, YUC22 and YP4), natural strains (BT2240, BB1533) or the
laboratory strain SK1. The relative levels of each cytokine differed
significantly among isolates (Fig. 5A). IL-17A was the cytokine most
highly produced in response to the YUC22 and YP4 strains, IFN-y in
response to BB1533 or BT2240 natural strains, and IL-10 with the SK1
reference strain (Fig. 5A). These results corroborated the hypothesis that
fungal immune-reactivity is strain-dependent. To define the functional
role, if any, of these cytokines in yeast colonization and/or infection, we
comparatively evaluated parameters of inflammatory pathology in the
colon of wild-type C57BL/6 or cytokine-deficient mice inoculated with
the different strains. The histology analysis on tissues of wild type mice
infected with different S. cerevisiae strains revealed that colonization was
associated with inflammatory influx of the mucosa and positive mucin
staining. Interestingly, inflammation and hypertrophy of the colon
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Fig. 5. S. cerevisiae infection in mice. (A) Cytokine release (pg/ml) upon challenge with selected S. cerevisiae strains at 3 days post-inoculation with SK1 reference
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mucosa was drastically reduced in I1-17a—/—mice inoculated with the IL-
17A-producing strains (YUC22 and YP4), and similarly in Ifny—/— mice
inoculated with the IFN-y-producing isolates (YH3, BB1533 and BT2240)
(Fig. 5B). As expected, increased inflammation was observed in I1-10—/—
mice, as opposed to wild type mice, inoculated with the IL-10-inducing
SK1. Thus, S. cerevisiae strains contributed differently to local epithelial
activity and inflammation in the colon, corroborating the hypothesis of a
strain-specific rather than a species-specific immune reactivity.

10

3.5. Fungal interaction with gut bacterial communities

In order to evaluate potential inter-microbial kingdom relationships
in the gut environment, we explored the gut microbiota composition in
relation with fungal isolation from fecal samples. We performed meta-
barcoding analysis on a selection of 19 fecal samples from CD patients
(Table S4) from which we isolated S. cerevisiae (n = 7 fecal samples, Sc +
group) or other yeasts (Candida spp.; n = 5 samples, other Y group)
(figure S8). We compared microbial profiles with those of CD fecal
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samples (n = 7) from which we did not isolate any yeasts (Y- group;
figure S8). Alpha- and beta-diversities were computed in order to esti-
mate within-sample richness and between-sample dissimilarity, respec-
tively. We found higher bacterial richness (alpha diversity) and diversity
(beta diversity) in samples from which neither Candida spp. nor
S. cerevisiae strains were isolated (Y- group) compared to the other fecal
samples (figure S8A-C), although differences were not statistically sig-
nificant. The taxa distribution in the three groups of samples (Other Y, Sc
and Y-) showed variations in gut microbiota composition associated with
presence/absence of fungal isolates (figure S8). Ternary plot (Fig. 6A and
B) showed generalist or sample-specific bacterial taxa among the three
sample groups (circles in the middle of the triangle, and circles in the
vertices, respectively). At the phylum level, we observed that the Bac-
teroidetes phylum was generally present in all sample groups, but one
OTU (grey circle in Fig. 6A) was more abundant in fecal samples in which
S. cerevisiae was isolated. Two OTUs identified as Bacteroidetes and
Firmicutes had specific distributions for samples in which other yeasts
were isolated (grey and pink circles in the vertex of the triangle indicated
as Other Y, Fig. 6A). Three OTUs belonging to Proteobacteria were spe-
cific for samples in which no yeast were isolated (fuchsia circles near or
in the vertex of the triangles indicated in Y-). At the genus level, we
observed that the abundance of Faecalibacterium, a well-known bacte-
rium with immunoregulatory properties, discriminated samples in which
S. cerevisiae was isolated; while Clostridium, Collinsella and Prevotella were
associated with samples from which we isolated other yeasts. Finally, in
samples from which we did not isolate any yeast, we observed typically
high levels of Haemophilus and Plesiomonas, the latter a genus very close
to a known species named as Aeromonas shigelloides, which was found to
be responsible for diarrhea and gastroenteritis in humans [54].

By linear discriminant analysis effect size (LEfSe) confirmed that,
when S. cerevisiae was isolated from fecal samples (Sc group), the Bac-
teroidetes phylum and in particular Bacteroides genus were significantly
enriched (Fig. 6C). Gammaproteobacteria, including Erwinia and Plesio-
monas, and Mogibacteriaceae were associated with the absence of fungal
isolates in fecal samples (Y- group). When we isolated Candida spp.
(Other Y group), we found an enrichment of the Clostridiaceae, including
Clostridium genus (Fig. 6C). Interestingly, an enrichment of the Porphyr-
omonadaceaeand of the Faecalibacterium genus was observed in samples
with S. cerevisiae isolation compared to samples positive for other yeasts,
while in the presence of other yeasts an enrichment of Clostridiaceae
(Clostridium), Plesiomonas, and Erwinia was confirmed (figure S9).

Overall, these results highlight that the presence of S. cerevisiae is
associated with a favorable gut environment for beneficial bacterial
genera, such as Faecalibacterium. On the other hand, the absence of yeasts
or the presence of other yeast species is associated with potential path-
ogenic bacteria.

4. Discussion

Our analysis of cultivable fungi shows that S. cerevisiae and Candida
spp. are relevant components of the gut mycobiota, in agreement with
previous studies [8,55]. We found that S. cerevisiae is enriched in
gastrointestinal tract of pediatric CD patients compared to UC and HC,
and this result suggests that a CD-specific gut environment may favor
expansion of fungi, through the onset of peculiar features that are likely
to affect the yeasts fitness and the interaction with the host. Hence,
similarly to diagnostic ASCA marker, it is possible to infer a differentia-
tion of the role of the fungi in CD versus UC pathogenesis. Our recent
study [41] provided evidence of genetic and phenotypic differences be-
tween strains isolated from gut and non-gut environments (e.g. natural
sources, fermentation, grapes). Here, we show how genetic differences
among strains may reflect the strain-specific differences in eliciting host
immune reactivity. We observed a strain-specific pattern of pro- and
anti-inflammatory cytokines (T-polarizing cytokines and T-regulatory
IL-10, respectively) upon stimulation of human PBMCs and DCs. The
majority of S. cerevisiae strain elicited IL-10 production to counterbalance
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IL-6 induction in PBMCs. This anti-inflammatory effect of S. cerevisiae
was supported by Spearman correlation and was in agreement with
previous results obtained in mice DCs showing an immunoregulatory
response of S. cerevisiae compared with C. albicans [23]. The levels of
cytokines produced in response to yeast strains varied significantly
among healthy subjects and CD patients, possibly because of an effect of
the inflammatory and clinical status of the patient on the immune
response to yeasts. In DCs, the levels of IL-6, IL-1p, and IL-10 were lower
in response to S. cerevisiae strains isolated from CD patients than from HC
donors or from grapes. This is in agreement with the finding that
S. cerevisiae strains from CD patients induce higher level of IL-12p70 and
IFN-y, suggesting that these strains are able to train the immune system
properly tuning innate and adaptive immunity [56]. We also observed
negative correlations between induction of IL-17 and IFN-y secreted by
healthy PBMCs, and IL-18 and TNF-a produced by CD patient PBMCs.
Contrarily, the production of IL-1p and TNF-a was positively correlated
between healthy donors’ and CD patients’ PBMCs. Interestingly, some CD
patients showed a particular immune response to proprietary strain,
suggesting that recognition of a yeast strain previously encountered,
contributes in shaping a patient-specific immune response. This result
could be affected by several variables, such as disease status, therapy, etc.
that have not been controlled in the present study.

Sugar components of yeast cell wall are the main antigens of the host-
immune recognition, and differences in cell wall components may sub-
tend differences in cytokine profiles. We confirmed our previous finding
[41] of the peculiar composition of the gut strains cell wall, characterized
by high levels of galactose and glucosamine (chitin moieties) and low
levels of glucose (beta-glucan) and mannose (mannans). The different
cell wall composition in human gut S. cerevisiae isolates is partially
associated with strain-specific differences in the cytokine patterns
induced in healthy donors, with the amount of galactose and glucos-
amine in S. cerevisiae strains being negatively correlated with the levels of
IL-6 expressed in challenged healthy PBMCs. We also noticed a trend
indicating that IL-17 production in patients were anti-correlated with
galactose and correlated with mannose levels. This finding is also in
agreement with the result indicating that S. cerevisiae strains from CD
patients induce higher level of IL12p70 and IFN-y.

The results of the in vitro screening were corroborated by in vivo ex-
periments in which S. cerevisiae strains differently contributed to local
epithelial activity and inflammation on wild type C57BL/6 mice and in
Interleukin (11)-17A-, Ifny- and I1-10- deficient mice.

In agreement with our previous study [41], our results underline the
importance to investigate the interplay between fungal cell wall and gut
immune function. These considerations are particularly relevant to un-
derstand the role of these strains in health and disease, since the mo-
lecular mechanisms used by yeasts to colonize the host as a harmless
commensal appear as a continuum with the strategies used for evading
immune surveillance and can thus potentially turn a friend into a foe.

It is noteworthy that in this study strains from CD patients were less
prone to colonize the mouse gut than strains from natural sources.
However, despite S. cerevisiae is rare in the human gut, present in less
than 2% of healthy subjects [57], yet we report S. cerevisiae in 26.4% of
the patients, a ten-fold increase compared to HC. We acknowledge that
our results are limited to single time points and further studies should be
aimed at assessing the persistence over time of specific yeast species or
strains. Based on our results, we could hypothesize that some CD
S. cerevisiae strains may be passenger, introduced with the diet, and could
be capable of colonizing the host in the presence of a leaky gut like the
one of CD patients. Archetypical opportunistic fungal pathogens, such as
the yeast C. albicans, commonly occur as commensals on mucosal sur-
faces of humans, but invade the host when epithelial barriers are
disturbed or the host immune system is impaired. Pathogenicity possibly
evolved from commensalism, by acquisition of traits suited to colonize
and then invade the host.

In the gut environment, yeast survival is difficult and competition is
intense if we consider coexistence with bacteria. Therefore, we explored
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the equilibrium between fungal and bacterial communities and the
mutual influence between gut microbiota and presence/absence of
commensal fungi in the context of IBD. Our results show that beneficial
bacterial genera, such as Bacteroides and Faecalibacterium, are associated
with the presence of S. cerevisiae. On the contrary, the gut microbiota of
CD patients lacking of fungi is enriched in potential pathogenic bacteria,
especially Proteobacteria including the Enterobacteriaceae family, or, in
some cases, the presence of Candida spp. Is associated to an enrichment in
potentially pathogenic bacteria involved in colitis. Furthermore, our
observation of drastic changes in the gut microbiota in the presence of
S. cerevisiae strains suggests that in certain cases the yeast strains could
interfere with the gut microbiota and mycobiota, by priming the immune
system against potential pathogens possibly by inducing a trained im-
munity [58].

Altogether, these results encourage for in-depth, strain-level exten-
sive studies on human gut mycobiota and integration of metagenomic
data with culturomics and immunology to further establish the relevance
of fungi in host physiology and host-microbe interaction, as well as the
interaction with microbial communities. Understanding the impact of

different fungal strains on the host’s immune system provides useful
insights on how the modulation of intestinal mycobiome could influence
the microbiome in health and disease, the results on the variability in the
response to “self” versus “not-self” strains suggest the importance of
performing these analyses on PBMCs from the patients. This finding may
be particularly relevant when evaluating the possibility to use
S. cerevisiae strains in probiotic interventions or when planning protocols
for fecal transplantation.
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