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A B S T R A C T

Masonry arches and vaults are common historic structural elements that frequently experience asymmetric
loading due to seismic action or abutment settlements. Over the past few decades, numerous studies have
sought to enhance our understanding of the structural behavior of these elements for the purpose of
preventive conservation. The assessment of the structural performance of existing constructions typically
relies on effective numerical models guided by a set of unknown input parameters, including geometry,
mechanical characteristics, physical properties, and boundary conditions. These parameters can be estimated
through deterministic optimization functions aimed at minimizing the discrepancy between the output of
a numerical model and the measured dynamic and/or static structural response. However, deterministic
approaches overlook uncertainties associated with both input parameters and measurements. In this context,
the Bayesian approach proves valuable for estimating unknown numerical model parameters and their
associated uncertainties (posterior distributions). This involves updating prior knowledge of model parameters
(prior distributions) based on current measurements and explicitly considering all sources of uncertainties
affecting observed quantities through likelihood functions. However, two significant challenges arise: the
likelihood function may be unknown or too complex to evaluate, and the computational costs for approximating
the posterior distribution can be prohibitive. This study addresses these challenges by employing Approximate
Bayesian Computation (ABC) to handle the intractable likelihood function. Additionally, the computational
burden is mitigated through the use of accurate surrogate models such as Polynomial Chaos Expansions
(PCE) and Artificial Neural Networks (ANN). The research focuses on setting up numerical models for simple
structural systems (tie-rods) and inferring unknown input parameters, such as mechanical properties and
boundary conditions, through Bayesian updating based on observed structural responses (modal data, strains,
displacements). The main novelties of this research regard, on the one hand, the proposal of a methodology for
obtaining a reliable estimate of the axial force in ancient tie-rods accounting for different sources of uncertainty
and, on the other hand, the application of ABC to obtain the structural identification inverse problem solution.
1. Introduction

The structural identification of ancient tie-rods is still an open issue
in the scientific community due to the inherent uncertainties associated
with the geometrical configuration and the mechanical properties of the
material, as well as the difficulties in the acquisition of experimental
data. In this class of problem, the definition of a proper Bayesian frame-
work could be crucial to account for all the sources of uncertainties
and clarify their role both in the data generative process and in the
structural identification analysis. Moreover, the integration of prior
knowledge is of paramount importance when the lack of experimental
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data, or their non-informative features, threatens parameter identifi-
ability and, consequently, the reliability of the results. However, the
Bayesian approach is not yet widely used in this field, or it is not always
well formalized.

In order to predict the structural behavior of existing tie-rods,
numerical models are commonly applied. The main parameters charac-
terizing these numerical models are the transversal cross-section shape
and dimension, the effective length, the bending stiffness, and the
boundary conditions used to reproduce the tie-rod insertion length
into the lateral walls, as well as the tensile axial force. However,
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as direct measurements of these quantities are not feasible, indirect
methods have been developed on the base of in-situ non-destructive
tests, such as dynamic monitoring systems. In particular, the dynamic
monitoring systems of the structural modal parameter under environ-
mental vibration loading are widely recognized as an effective method
for investigating the evolution of structural health over time [1–3].
This approach applied to the tie-rods could provide useful information
about the entire structure; indeed, changes in the structural behavior
of tie-rods could reveal some changes in the structural configuration
of the historical construction where they are placed. However, the
experimental data, as well as the output of the numerical model, cannot
provide the exact representation of the system output. Despite this
consideration, usually, indirect methods rely on calibration strategies
that disregard either measurement errors or any other source of uncer-
tainty, since they are based on the mere minimization of the difference
between numerical response and experimental data acquired from dy-
namic monitoring systems. In [4], the authors include an evaluation
of the measurement error as the discrepancy, given in percentage,
between the experimental data and the analytical results provided
by the numerical modeling. Other research, see [5,6], proposes the
well-established method of minimization of the error in frequency in
order to update the numerical model. The issue of the development
of a structural health monitoring system of tie-rods under uncertain
environmental conditions is studied in [7], where the authors proposed
an approach to separate the effect of environmental conditions on
the variation of modal parameters from structural damage. Eventually,
in other studies, experimental methods are exploited for estimating
in situ tensile force in tie-rods through static, mixed static/dynamic,
and fully dynamic methods in a deterministic framework [4–6,8–13].
However, to the best of our knowledge, all the existing works disregard
uncertainties both in the model parameters and in the measurement
errors, that are considered fixed quantities to be computed. Indeed,
the discrepancy between the experimental data and the results of the
numerical model is quantified without defining any likelihood function
and the model parameters are not considered random variables. In
other words, any effect of the inherent uncertainties in the physical and
mechanical properties of tie-rods is overlooked. Therefore, it becomes
crucial to define a procedure that formally quantifies the uncertainty
and updates knowledge on unobserved quantities as experimental data
are gathered. Even though proper uncertainty quantification is essen-
tial, the comprehensive formalization of this aspect is still an open
issue and the implementation of uncertainty quantification strategies is
promising to improve the reliability of the structural identification re-
sults and of the parameters themselves [14]. In this scenario, Bayesian
inference emerges as a feasible solution; widely recognized in civil
engineering, its application to existing buildings for model updating
is driven by the need to solve inverse problems, and some attempts
are provided in scientific literature, see [15–17]. Indeed, an inverse
problem involves inferring the unobserved parameters governing a spe-
cific observed physics, especially when various sources of uncertainty
contribute to collecting noisy and incomplete data. In such cases, due to
measurement errors and other sources of uncertainties, the same input
parameter can lead to observing different quantities. Bayes’ theorem
becomes of paramount importance in this scenario: it allows the use of
pieces of evidence to update the probability of each unknown quantity.
As a result, the inferential procedure provides a probabilistic solution
that accounts both the uncertainty in the data generating process and
the uncertainty around model parameters [18,19]. This paper proposes
and formalizes a full Bayesian approach to estimate posterior distri-
butions that quantify the uncertainty about the parameters accounting
both for the prior uncertainty and the variability of the observable
quantities. In particular, the variability around observed data is in-
cluded by considering both measurement errors and the uncertainty
driven by the lack of information about some quantities that interact
with structural identification parameters and affect the value of exper-

imental data. This is allowed by the definition of a statistical model, 𝑦

2 
rather than a deterministic one, that expresses observable quantities as
a function of the unknown parameters and measurement errors but in-
cludes also latent variables. It is worth noting that, while measurement
errors are often considered in the scientific literature, the introduction
of latent variables is a novelty in this context. Indeed, commonly, the
numerical model that links the uncertain parameters to the observable
quantities is defined as a deterministic model where all quantities
that are not parameters to be inferred are fixed to values arbitrarily
chosen. However, as an effect of the introduction of latent variables,
the likelihood function associated with the proposed statistical model is
complex, thus making the computation of the posterior distribution in-
feasible. This paper shows two computational solutions to approximate
posterior distributions. The first solution is a well-known Markov Chain
Monte Carlo (MCMC) algorithm that introduces a data argumentation
step to address the uncertainty about latent variables. A second solution
is a likelihood-free approach known as Approximate Bayesian Compu-
tation (ABC). The two methods are compared at work on the same
experiment, in order to assess the reliability of ABC methods, which
are a less consolidated practice in this framework, and to highlight
their flexibility that would allow relaxing some of the assumptions
needed to implement MCMC algorithms. Furthermore, building upon
the recent attempt to employ General Polynomial Chaos Expansion
(PCE) method in [20] in the estimation of axial load in ancient tie-rods,
we investigate the potential use of high-fidelity surrogate models within
the framework of ABC. In particular, we evaluate the efficacy and
feasibility of using such surrogate models to enhance the computational
efficiency and accuracy of ABC-based solutions for structural problems
by means of a direct comparison of the results obtained from the exact
and the surrogate model. Furthermore, we propose a strategy based on
preliminary sensitivity analyses to select inferring parameters and the
latent variables among all the unknown quantities. The case at hand in
this paper is a real-world case study. Finally, the choice of the optimal
dimension of the observed data is discussed through a simulation study.

2. Bayesian inference and uncertainty quantification

The problem of structural identification can be seen as an inferen-
ial problem, meaning that we want to learn some characteristics of

structure relying on observed dynamics. In particular, one should
ely on statistical inference when the relationship that links unknown
uantities – i.e. the structure – with the observed dynamics includes
ome sources of randomness. In other words, even if the characteristics
f the structure were known, we do not expect to always observe the
ame behavior of the system and collect the same data. This sampling
ariability can arise from the measurement process and/or from the
ay other variables, which are not the main target of the inferential
rocess, interact with the considered system.

Let us denote by 𝜃 the vector of variables object of our inference,
nd by 𝑦0 some observed data. In the framework of structural iden-
ification, 𝜃 are the characteristics of the structure that we want to
dentify (e.g. mechanical properties of the structure), while 𝑦0 are data
egarding the observed dynamic of the system (e.g., natural frequen-
ies). To learn 𝜃 starting from 𝑦0, there exist at least two different
pproaches. The frequentist approach considers 𝜃 as a vector of pa-
ameters – i.e. fixed but unknown quantities – while 𝑦0 is just one
f the possible realizations of a random variable 𝑌 defined over 
nd whose probability distribution is governed by 𝜃. In the Bayesian
ramework, the vector 𝜃 is in turn considered a random vector because
t includes unknown quantities that are unobserved and unobservable.
hus, Bayesian methods aim at deriving a probability distribution for 𝜃,

n order to formalize and quantify the uncertainty about it. This output
omes up as the result of a learning process. Usually, we are able to
licit a prior probability distribution 𝜋(⋅) over the space on which 𝜃
s defined, say 𝛩. This distribution formalizes the experts’ prior belief
bout possible values for 𝜃 and their associated probabilities, while

0 drives information that can be exploited to update our knowledge
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about 𝜃. Given a certain value of 𝜃, different realizations of 𝑌 in 
re plausible. Thus, 𝑦0 is just one of them and the probability function
(𝑦0 ∣ 𝜃), when seen as a function of 𝜃, is called likelihood function, as
t expresses how likely is a configuration of the system described by 𝜃,
n the light of observed data 𝑦0.1 Bayesian inference aims to update the
rior knowledge after having observed data, and compute the posterior
istribution relying on the Bayes’ formula

(𝜃 ∣ 𝑦0) =
𝜋(𝜃)𝑝(𝑦0 ∣ 𝜃)

∫𝛩 𝜋(𝜃)𝑝(𝑦0 ∣ 𝜃)𝑑𝜃
. (1)

he denominator in Eq. (1) is equal to 𝑝(𝑦0), known as the marginal
likelihood, and acts as a normalizing constant. Except for the case of
conjugacy [21], its computation requires numerical solutions usually
based on Monte Carlo methods (see next section for further details).

In this work, the choice of relying on Bayesian approaches is to
exploit the expert knowledge in the inferential process. Furthermore,
we want to take into account all the sources of uncertainty and provide
a posterior distribution to avoid the false sense of confidence given
by point estimates. Finally, a formal quantification of the uncertainty
is particularly relevant when one is interested in making predictions
about the future behavior of the system: the uncertainty described
through posterior distributions can be straightforwardly propagated to
future dynamics of the system. However, the likelihood function is a
key ingredient both in frequentist and Bayesian inference. It follows
that a formal definition of all the unobserved quantities that interact
with 𝜃 in the determination of the observed data, as well as their
probability distributions, is needed in both the inferential frameworks.
To this end, we adopt the formalization given in [22] to define all the
relevant quantities.

Let 𝑋 be a vector of latent variables, and 𝜉 = (𝜃,𝑋) the vector of all
the unknown quantities. We can suppose that there exists a function
𝑦𝑅(𝜃) that maps the mechanical properties of interest to observable
dynamics and describes the real process (indicated by the apex 𝑅).
However, data are always collected with some random measurement
errors, thus 𝑦0 = 𝑦𝑅(𝜃) + 𝑒. Usually, the function that describes the real
process is unknown and the best we can do is to define a mathematical
model that tries to reproduce it. This is often based on systems of
partial differential equations whose solutions are approximated using
a simulator based on a Finite Element Model (FEM). This latter can be
thought of as a computer program that takes all the unknown quanti-
ties, i.e. the vector 𝜉, as input and outputs a simulated dynamic 𝑦𝑀 (𝜉).
Unfortunately, no model is perfect and there is always a discrepancy
between the model and the reality, here called bias and denoted by
𝑏(𝜉) = 𝑦𝑅(𝜃) − 𝑦𝑀 (𝜉). It may come from incorrect or missing physical
characteristics, as well as the simplification of the problem needed to
put it in a digital framework (e.g. space discretization in FEM). To sum
up we can state the following equation

𝑦0 = 𝑦𝑅(𝜃) + 𝑒 = 𝑦𝑀 (𝜉) + 𝑏(𝜉) + 𝑒.

A common practice in this field is to consider observed data just as
the output of the mathematical model. This means that all the sources
of uncertainty – i.e. measurement errors, latent variables, and the bias
of the model – are ignored or considered equal to fixed quantities.
Under this assumption, the probability of the observed data is a Dirac
function, 𝑝(𝑦0 ∣ 𝑏, 𝑒, 𝑥, 𝜃) = 𝛿𝑦0{𝑦

𝑀 (𝜃, 𝑥)+𝑏+𝑒}, such that the probability
of observing 𝑦0 is 1 when the output of the mathematical model leads
to 𝑦𝑀 (𝜃, 𝑥) + 𝑏 + 𝑒 = 𝑦0, and 0 otherwise.

Here, we consider the case in which, 𝑥, 𝑒 and 𝑏 are unknown and
specific probability distributions are assumed for each of them. In such

1 For the sake of simplicity, our notation does not discriminate between
robability density functions and mass functions, both denoted by 𝑝(⋅ ∣ 𝜃) that

can be distinguished from the context.
3 
a case, the evaluation of the likelihood function requires the following
marginalization:

𝑝(𝑦0 ∣ 𝜃) =∭ 𝑝(𝑦0, 𝑒, 𝑏, 𝑥, ∣ 𝜃)𝑑𝑒 𝑑𝑏 𝑑𝑥

=∭ 𝑝(𝑦0 ∣ 𝑒, 𝑏, 𝑥, 𝜃) 𝑝(𝑒, 𝑏, 𝑥 ∣ 𝜃)𝑑𝑒 𝑑𝑏 𝑑𝑥

=∭ 𝛿𝑦0{𝑦
𝑀 (𝜃, 𝑥) + 𝑏 + 𝑒} 𝑝(𝑒, 𝑏, 𝑥 ∣ 𝜃)𝑑𝑒 𝑑𝑏 𝑑𝑥. (2)

Looking at Eq. (2) it is apparent that point-wise evaluations of the like-
lihood function require numerical approximations of multiple integrals.
Depending on the analytical form of 𝑝(𝑒, 𝑏, 𝑥 ∣ 𝜃) and the structure
of dependence assumed among the random quantities involved in the
model, the solution of those integrals may be more or less complex,
but in any case, requires several calls to the simulator to evaluate the
Dirac function. Note that, both frequentist and Bayesian methods use
several computations of the likelihood function that lead to a high
computational cost. A possible escape is to introduce an emulator, which
is a surrogate model that mimics the mathematical model but is less
expansive in computational terms.

The emulator. To understand what an emulator represents, we should
start by considering the mathematical model as a function that maps
each pair 𝜉 = (𝜃, 𝑥) to a dynamic: 𝑦𝑀 ∶ (𝛩,) →  . Sometimes,
the computational cost of computing 𝑦𝑀 (𝜉) is high, thus one can take
advantage of the use of a function that approximates the model but
has a lower computational cost. This function, here denoted by 𝑦𝑀em, is
called emulator and still is a map from (𝛩,) to  .

In practice, the definition of an emulator is based on three steps:
(1) choose a strategy to select 𝐷 evaluation points onto 𝛩 ×  : 𝜉1 =
(𝜃1, 𝑥1),… , 𝜉𝐷 = (𝜃𝐷, 𝑥𝐷); (2) compute 𝑦𝑀 (𝜉𝑑 ) for each 𝑑 ∈ {1,… , 𝐷};
(3) fit a mathematical/statistical model (e.g. neural networks, regres-
sion models) by estimating its coefficients 𝜙 (e.g. weights and bases
of the neural network or the regression coefficients) relying on the
dataset {𝑦𝑀𝑑 , 𝜉𝑑}𝐷𝑑=1 where 𝑦𝑀𝑑 and 𝜉𝑑 are the response and explanatory
variables, respectively. The estimated coefficients 𝜙̂ will be used to
compute predictions 𝑦𝑀em(𝜉) = 𝑓 (𝜉; 𝜙̂).

3. Bayesian simulated inference: MCMC vs ABC

To evaluate the posterior distribution, Bayesian inference often
relies on methods based on simulations, such as Monte Carlo methods.
The main reason is that the marginal likelihood – i.e. the normalizing
constant in Eq. (1) – cannot be computed analytically and requires
numerical approximations. Moreover, models used to describe complex
phenomena, often include several latent variables and nuisance pa-
rameters. In such cases, Bayesian methods involve further challenging
integrals or summations over high dimensional spaces, such as those
in Eq. (2). To solve this problem, at least two alternative solutions are
available:

• MCMC for getting samples from a posterior distribution defined
on an augmented space: 𝜋(𝜃, 𝑥 ∣ 𝑦0);

• ABC algorithms for drawing samples from an approximate poste-
rior distribution 𝜋𝜖(𝜃 ∣ 𝑦0).

While MCMC methods are a well-established strategy, also in the
structural identification framework, ABC methods are still less inves-
tigated. In this work, we test the use of ABC for structural identifica-
tion and provide a comparison with a MCMC approach to assess the
reliability of ABC and show its potential and flexibility.

Markov chain Monte Carlo. To overcome the problem of evaluating the
intractable normalizing constant, one can resort to MCMC methods.
These algorithms usually form a Markov Chain 𝜃(0),… , 𝜃(𝑆) whose
limiting distribution is the target 𝜋(𝜃 ∣ 𝑦0). Thus, after the check of the
convergence of the chain, samples drawn using MCMC methods can be

considered as samples from the true posterior distribution and can be
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Algorithm 1. Metropolis-Hastings

1: Inizialize 𝜉(0) = (𝜃(0), 𝑥(0))
2: for 𝑠 in 1 ∶ 𝑆 do
3: Draw 𝜉∗ ∼ 𝑞(⋅ ∣ 𝜉(𝑠−1))
4: Solve the deterministic FE model to compute 𝑦𝑀 (𝜉∗)

5: Compute 𝛼 = min

{

1,
𝜋(𝜉∗)𝑝(𝑦0 − 𝑦𝑀 (𝜉∗) ∣ 𝜉∗)𝑞(𝜉(𝑠−1) ∣ 𝜉∗)

𝜋(𝜉(𝑠−1))𝑝(𝑦0 − 𝑦𝑀 (𝜉(𝑠−1)) ∣ 𝜉(𝑠−1))𝑞(𝜉∗ ∣ 𝜉(𝑠−1))

}

6: Sample 𝑢 ∼ 𝑈 (0, 1)
7: if 𝑢 < 𝛼 then
8: Set 𝜉(𝑠) = 𝜉∗

9: else
10: set 𝜉(𝑠) = 𝜉(𝑠−1)

11: end if
12: end for
t
p

𝜋

w
P

used to approximate posterior quantities, such as mean, quantiles, and
densities. However, MCMC algorithms require a point-wise evaluation
of the likelihood function 𝑝(𝑦0 ∣ 𝜃) at each step. Looking at Eq. (2),
it is apparent that these computations, in the structural identification
framework, have a high computational cost due to the presence of
multiple integrals and the need to call the mathematical model at each
evaluation of the Dirac function.

A possible strategy is to define a posterior distribution on the
augmented space 𝛩 ×  :

𝜋(𝜃, 𝑥 ∣ 𝑦0) ∝ 𝜋(𝜃, 𝑥)𝑝(𝑦0 ∣ 𝑥, 𝜃), (3)

where the likelihood function is 𝑝(𝑦0 ∣ 𝑥, 𝜃) = 𝑝(𝑦0 ∣ 𝜉). Similar to what
has been derived in (2) we have that

𝑝(𝑦0 ∣ 𝜉) =∬ 𝑝(𝑦0 ∣ 𝑒, 𝑏, 𝜉) 𝑝(𝑒, 𝑏 ∣ 𝜉)𝑑𝑒 𝑑𝑏

=∬ 𝛿𝑦0 (𝑦
𝑀 + 𝑏 + 𝑒) 𝑝(𝑒, 𝑏 ∣ 𝜉)𝑑𝑒 𝑑𝑏.

This function still involves multiple integrals but, under the assumption
that (a) there is no bias in the model (or it is known); (b) measurement
errors have a simple distribution, e.g. Standard Normal distribution; it
can be evaluated as follows

𝑝(𝑦0 ∣ 𝜉) = ∫ 𝛿𝑦0 (𝑦
𝑀 + 𝑒) 𝑝(𝑒 ∣ 𝜉)𝑑𝑒 = 𝑝(𝑦0 − 𝑦𝑀 ∣ 𝜉)

where 𝑝(⋅ ∣ 𝜉) is the Standard Normal density. In such a case, the
widespread Metropolis–Hastings (MH) algorithm [23] can be imple-
mented, as displayed in Alg 1.

The algorithm produces a Markov chain whose limiting distribution
is 𝑝(𝜉 ∣ 𝑦0). The speed of convergence to the target distribution depends
also on the choice of the proposal distribution 𝑞(⋅ ∣ ⋅) and the induced
autocorrelation in the chain. However, after the check of the conver-
gence, we can disregard samples 𝑥(1),… , 𝑥(𝑆) and take 𝜃(1),… , 𝜃(𝑆) as an
Independent and Identically Distributed (i.i.d.) sample from the poste-
rior distribution 𝑝(𝜃 ∣ 𝑦0). For further details about MCMC methods, we
refer the reader to [24].

Note that to reduce the computational cost of evaluating the accep-
tance probability 𝛼, one can replace the FE model with the emulator
to compute the prediction 𝑦𝑀em(𝜉∗) at step 4 in Alg 1. In such a case,
also the acceptance probability at step 5 would be based on 𝑦𝑀em(𝜉∗)
and 𝑦𝑀em(𝜉(𝑠−1)) rather than 𝑦𝑀 (𝜉∗) and 𝑦𝑀 (𝜉(𝑠−1)).

Approximate Bayesian computation. ABC is a class of likelihood-free
methods. They allow Bayesian simulated inference without exact like-
lihood computation and only require the availability of a generative
model – i.e. a computer program that takes the parameters object of the
inference as inputs, performs stochastic calculations that reproduce the
data generative process, and outputs pseudo data 𝑦. The key idea can be
traced back to [25–27] and consists of replacing the evaluation of the

likelihood function with a Monte Carlo (MC) estimate. The basic ABC

4 
algorithm follows a rejection scheme made of the three steps displayed
in Alg 2.
Algorithm 2 Rejection ABC

1: Draw 𝜃(1), ..., 𝜃(𝑆) as an i.i.d. sample from the prior distribution 𝜋(⋅)
2: Run the generative model to draw 𝑦(𝑠) ∼ 𝑝(⋅ ∣ 𝜃(𝑠)) for each 𝑠 ∈

{1, ..., 𝑆}
3: Retain 𝜃(𝑠) such that 𝑑(𝑦0; 𝑦(𝑠)) ≤ 𝜖

Algorithm 3 Generative Model
1: Take 𝜃 as an input
2: Sample 𝑥 from its prior distribution
3: Compute 𝑦𝑀 (𝜃, 𝑥) using the simulator (FEM) – or the emulator
4: Sample 𝑒 and 𝑏 from their distributions
5: Return 𝑦 = 𝑦𝑀 (𝜉) + 𝑏 + 𝑒

The algorithm is based on a positive tolerance threshold 𝜖 and a dis-
ance function 𝑑(⋅; ⋅). The output is an i.i.d. sample from an approximate
osterior distribution:

𝜖(𝜃 ∣ 𝑦0) ∝ 𝜋(𝜃)∫ 1{𝑑(𝑦0; 𝑦) ≤ 𝜖}𝑝(𝑦 ∣ 𝜃)𝑑𝑦

= 𝜋(𝜃) Pr(𝑑(𝑦0; 𝑦) ≤ 𝜖 ∣ 𝜃)

here the likelihood function is replaced by the probability that
r(𝑑(𝑦0; 𝑦) ≤ 𝜖 ∣ 𝜃) – i.e., the expected value of the indicator function

which can be easily approximated using an MC estimate. Let us consider
the case of discrete data and impose an equality constraint with 𝜖 = 0
– i.e. accept only if 𝑦0 = 𝑦. The probability Pr(𝑑(𝑦0; 𝑦) ≤ 𝜖 ∣ 𝜃) would
be Pr(𝑌 = 𝑦0 ∣ 𝜃) and the output of the algorithm would be a sample
from the exact posterior distribution. Generally speaking, the smaller
is 𝜖, the smaller is the approximation and as 𝜖 → 0 the approximate
posterior converges to the true posterior.

This algorithm has several drawbacks. First of all, sampling pa-
rameter proposals from the prior distribution can be highly inefficient
when the posterior is far from the prior. Furthermore, the choice of
the tolerance threshold establishes a trade-off: the smaller is 𝜖, the
lower the approximation but also the acceptance rate. In the statis-
tical literature, many methodological advances have been made to
overcome these problems. Most of them rely on sequential sampling
schemes that adapt, at each iteration, both the proposal distribution
and the tolerance threshold (see [28] for further details on the method).
However, all of them still require several samples from the simulator
that is often computationally expansive. Alg 3 summarizes how the
generative model produces pseudo-data. Looking at the algorithm it
is apparent that most of the computational effort is attributable to
the mathematical model. Thus, also in ABC methods, one can take
advantage by replacing the mathematical model with the emulator at
step 3 in Alg 3.

Note that ABC does not require the assumptions formulated for

the MCMC method described in the previous section. In fact, 𝑏 is
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Fig. 1. Santa Maria della Consolazione Temple (a) and tie-rods (b).

straightforwardly included via simulation in Alg 3. Furthermore, more
complex distributions can be assumed for the measurement errors since
the method only requires the ability to simulate them. In summary,
ABC in contrast with MCMC, produces an approximated version of the
posterior distribution but offers a more flexible method, suitable under
milder distributional assumptions.

As a general comment, MCMC methods should be preferred when
dealing with models whose likelihood function is available, since they
do not introduce sources of approximation and avoid calls to the gen-
erative model to evaluate the likelihood. However, in this framework,
also MCMC algorithms require calls to the generative model. This
suggests that ABC, in this scenario, may outperform likelihood-based
methods. In addition, it is worth comparing the framework of ABC
method with the calibration method commonly used in model opti-
mization. The presented Rejection ABC is indeed based on a tolerance
threshold and a distance function in accordance with the deterministic
optimization functions for the minimization of the discrepancy between
the observed data and the numerical output. The novelty herein intro-
duced with the ABC framework is the possibility of taking into account
the different sources of uncertainties involved in the identification
process.

4. Case study

4.1. Experimental activities

One of the four tie-rods of the Santa Maria della Consolazione
Temple in Umbria Region, Central Italy, was used as a case study
to assess the capability of the ABC approach to identify the tensile
axial force and other unknowns that govern the problem and allow
the structural identification (Fig. 1 - a). The contactless measurements
on these inaccessible tie-rods are proposed in [29]. The church follows
a Greek cross plan having dimensions of 42 m by 48 m. It includes
a prominent central dome reaching a 50 m height from the temple
floor. Additionally, there are four semi-shells on the lateral sides of
the structure. The central dome is constructed as a single shell with an
ogival shape supported by a circular drum, further enhanced with ribs
for reinforcement. At its pinnacle, the dome is crowned with a lantern.
Further details about the architectural and structural characteristics of
this Temple can be found in [30,31].

Four tie-rods attached to the spring line of the vaults by bolts and
plates were installed at the end of 1800s as reinforcement (Fig. 1 -
b). Currently, the four tie-rods geometrical and mechanical proper-
ties are uncertain. Consequently, numerical analyses need to account
for uncertainties related to various variables including cross-sectional
dimensions, mass density, elastic properties, and support boundary
conditions.

Experimental activities were carried out in order to determine the
tie-rods dynamic properties (i.e. natural frequencies). Two different
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contactless sensors were used for vibration measurements: laser vi-
brometer and radar interferometer. This choice was due to the fact
that these tie-rods are located at 16 m height from the ground making
challenging to install contact sensors such as accelerometers. For the
same reason, free vibrations were induced giving a force pulse with
a thin rope suitably connected to a drone using a special equipment.
The drone was used to overpass the thin rope over the four tie-rods.
Displacement time histories were recorded using the laser vibrometer
and the radar interferometer. Natural frequencies were obtained from
the power spectral density spectrum using peak picking technique.
Further details about this topic can be found in a previous work [32].

In this work, the structural identification problem of the ancient
tie-rods is solved for just one of the four tie-rods. Displacement time
histories and associated power spectral density spectrum are shown in
Fig. 2-a,b, respectively. Natural frequencies were obtained using the
Pick Picking technique.

The first three natural frequencies, used as observed data, were
equal to 𝑦0 = {4.492, 9.288, 13.252}. They are considered as a realiza-
tion of a random vector whose probability density function is defined
according to the statistical model described in Section 2.

4.2. Statistical model

To identify the structure, we exploit information driven by 𝑦0
to infer the following quantities: (1) 𝑁 , the axial load; (2) 𝐸, the
Young’s modulus; (3) 𝜌, the mass density; (4) 𝑎, the square cross-section
transversal dimension. Thus, 𝜃 = (𝑁,𝐸, 𝜌, 𝑎), is a four-dimensional
vector. Its prior distribution has been defined by assuming four in-
dependent Zero left-truncated Gaussian distributions (see Table 1 for
further details). As regards measurement errors we assume the fol-
lowing Multivariate Normal distribution: 𝑒 = (𝑒1, 𝑒2, 𝑒3) ∼ MVN

(

𝜇 =
(0, 0, 0);𝛴 = 10−3 ⋅ 𝟏3

)

, where 𝟏3 denotes the identity matrix of size
3. Note that both the assumption of normality and independence
simplify the evaluation of the likelihood function and allow a straight-
forward implementation of the MCMC strategy. For the same reason,
we ignore the bias of the model 𝑏(𝜉). Despite it can be easily taken
into account when implementing an ABC algorithm, for the sake of
comparison, we consider the same statistical model in the MCMC and
ABC implementation.

To describe the mathematical model that relates 𝜃 to 𝑦0, we relied
on the computational model described in the following section.

4.3. Computational model

The structural identification problem for tie-rods is addressed using
the computational model 𝑦𝑀 (𝜉), as depicted in Fig. 3. The model con-
sists of an Euler–Bernoulli beam with a uniform square cross-section,
hinged at both ends and subject to two rotational springs. A constant
axial load 𝑁 is applied to the beam. The rotational springs account for
the influence of the anchorage length of tie-rods on the lateral walls.
In addition to the axial load, the input parameters governing the free
transversal vibration problem in Fig. 3 include Young’s modulus 𝐸,
mass density 𝜌, square cross-section transversal dimension 𝑎 of the tie-
rod, the stiffness of the left and right rotational springs 𝑘𝑙 and 𝑘𝑟, and
the length 𝑙 (distance between lateral walls). Three other variables,
namely 𝑘𝑙, 𝑘𝑟, and 𝑙, contribute to determining the frequency values
alongside the parameters that are the target of inference. The tie-rod
length 𝑙 is assumed to be a fixed and known quantity, equal to the
distance between the two lateral walls. This choice is due to the fact
that the effect of the embedding length of the rod within the lateral
walls is reproduced by the computational model through the use of
the two rotational springs at the ends of the axially loaded beam like
structure in Fig. 3. Indeed, the uncertainties about the stiffnesses of the
two rotational springs, i.e. 𝑘𝑙 and 𝑘𝑟, were addressed by introducing
into the model the vector of latent variables 𝑥 = (𝑘𝑙 , 𝑘𝑟), characterized
by two independent Zero left-truncated Normal distributions (refer to
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Fig. 2. Displacement time history recorded by laser vibrometer on the tie-rod (a) and associated power spectral density spectrum (b).
.

Table 1). The choice of setting the two rotational spring stiffnesses 𝑘𝑙
and 𝑘𝑟 as latent random variables was based on the outcomes of a
preliminary sensitivity analysis aimed at identifying the computational
model input parameters influencing the natural frequencies of the tie-
rod. This analysis was carried out using the Sobol index decomposition
method [33]. The computed Sobol indices showed that the computa-
tional model responses (i.e. first three natural frequencies) were mainly
influenced by the elastic modulus, the mass density, the cross section
transversal dimension and the axial force in the tie-rod. It further
turned out that the computational model output has a low sensitivity
to the stiffnesses of the two rotational springs. As an example, Fig. 4
depicts the variation of the first three natural frequencies obtained
from the computational model using as input parameters for the elastic
modulus, the mass density, the cross section transversal dimension
and the axial force equal to the mean values of the distributions in
Table 1 for a 14 m length beam. Meanwhile, the stiffnesses of the
rotational springs assume variable values between the two conditions
corresponding to hinged and fixed boundary conditions. Further details
about this topic can be found in [34]. This behavior suggests that the
values of the two spring stiffnesses cannot be learned as a result of
the inference; however, 𝑘𝑙 and 𝑘𝑟 do have an impact, albeit small, on
the variability of the frequencies. It is noteworthy that in the existing
literature on this subject, in order to have an easy-to-handle mathemat-
ical (non-stochastic) model, these kinds of quantities are usually fixed
to arbitrary values based on strong assumptions, such as symmetry in
the stiffness of lateral rotational springs describing unknown boundary
conditions. The framework proposed in the present work allows us to
overcome all these limitations by considering non-symmetric boundary
conditions and introducing a greater number of random variables than
typically used in the literature for addressing the same problem.

As it is typically done, the mathematical model has been approx-
imated through a finite element (FE) numerical model. In this study,
we employ two-dimensional beam elements with two Degrees of Free-
dom (DoFs) at each node, representing deflection and rotation. Modal
analyses are performed with a total of 50 beam elements. The eigen-
value problem is solved modifying the local stiffness matrix of the
Euler Bernoulli beam elements introducing an additional matrix able
to consider the additional stiffness due to the axial load. The boundary
conditions, including rotational springs, are incorporated by adjusting
the global stiffness matrix to the corresponding degrees of freedom
accordingly.
6 
Fig. 3. Computational model reproducing the dynamic behavior of the tie-rod and
uncertain model parameters 𝜃.

Table 1
Summary of the probability density functions assumed for all the variables in the model

Model Parameters 𝜃

Variable Distribution Mean CV
𝐸 Left-truncated Normal 2.0 × 1011 [Pa] 0.30
𝑎 Left-truncated Normal 0.07 [m] 0.10
𝑁 Left-truncated Normal 800000 N 0.20
𝜌 Left-truncated Normal 7500 [Kg/m3] 0.10

Latent variables 𝑋

Variable Distribution Mean CV
𝑘𝑙 Left-truncated Normal 400000 [N × m] 0.30
𝑘𝑟 Left-truncated Normal 400000 [N × m] 0.30

Fixed quantities

Variable Value
𝑙 14 [m]

4.4. PCE emulator

In this work we also want to test whether the use of an emulator
allows us to obtain an accurate representation of all the uncertain-
ties characterizing the simulator, even simplifying the problem and
making Bayesian updating more feasible and practical in structural
identification applications. Indeed, Bayesian methods may resort to
physics-based or emulator-based models to solve associated inverse
problems. These latter can replicate the actual behavior of the struc-
tural system with a significant reduction of computational costs mak-
ing Bayesian updating feasible in structural identification applications.
Since emulator-based models are introduced when physics-based mod-
els become impractical due to the significant computational costs,
there is a noticeable gap in the literature comparing the results of the
Bayesian updating procedures obtained with emulator-based models
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Fig. 4. Natural frequencies variation due to variation in the rotational spring stiffnesses
𝑘𝑙 and 𝑘𝑟.

versus physics-based models, particularly with reference to ABC meth-
ods. To address this gap, we have selected a case study characterized
by reduced computational costs. This choice allows us to compare the
two approaches in the same updating procedure. To this end, we inves-
tigate the use of a PCE emulator in comparison with the physic-based
method described in the previous section, both in the MCMC and ABC
approach. While the use of PCE emulators in MCMC procedures is well
established in the literature, no contributions can be found regarding
the comparison between its use in MCMC and ABC procedures [35–38].

In this section, the PCE emulator mathematical setting is defined
and the PCE emulator calibration procedure is discussed. It involves
decomposing the response of the simulator 𝑦𝑀 (𝜉) into orthogonal poly-
nomial terms in order to replace the simulator dynamic response [39–
43]. Let us consider the multivariate input 𝜉 characterized by proba-
bility distribution 𝜋(𝜉) and the univariate output 𝑦𝑀 (𝜉). Assuming that
the model response has a finite variance, the emulator is represented
in terms of the input random variables as:

𝑦𝑀em(𝜉) =
∑

𝛼
𝑐𝛼 ⋅𝛷𝛼(𝜉) (4)

where 𝛼 = {𝛼1, ⋅, 𝛼𝑁} is a multi-index denoting the degree of each
polynomial term, 𝑐𝛼 are the expansion coefficients to be determined and
𝛷𝛼 are multivariate orthogonal polynomials. The basis functions 𝛷𝛼 can
be expressed as a product of univariate polynomials corresponding to
each of the J components of the multivariate input 𝜉:

𝛷𝛼(𝜉) = 𝜙𝛼1 (𝜉1) ⋅ 𝜙𝛼2 (𝜉2) ⋅… ⋅ 𝜙𝛼𝐽 (𝜉𝐽 ) (5)

The coefficients 𝑐𝛼 are determined using the regression technique (least
square estimation), ensuring an accurate approximation of the model
response. The data training set is built using the physics model. Further
details about this topic can be found in [36,37].

In this case study, since no direct information (e.g. measures of the
mechanical characteristics) are available for the input model random
variables, a set of four statistically independent truncated Gaussian
random variables are set as uncertain computational model input
parameters (𝜉𝑗 , 𝑗 = 1, . . . ,4). The mean values and the CV of these PDFs
are reported in Table 1. Therefore, Hermite polynomials were selected
ensuring the orthogonality condition with respect to the probability
distribution of each input variable.

The first three natural frequencies 𝑦0 identified from the experimen-
tal tests (see Section 5.2) are set as the output of the model. Therefore,
the corresponding first three numerical frequencies estimated from the
simulator 𝑦𝑀 are set as Quantity of Interest (QoIs). The PC expansion in
Eq. (5) is used to build a surrogate model for each of the selected QoIs.
Each of the three surrogate models is built using a procedure based

on (i) selection of the polynomial order (ii) selection of the regression
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points using the Gaussian quadrature rule method (iii) evaluation of
deterministic coefficients using regression (iv) validation of the surro-
gate models. This validation is carried out using the twofold procedure
discussed in [36,37] in order to ensure the accuracy of the emulator.
Polynomial order 5 is found to be the best selection.

In particular, the difference between the response vectors 𝑦𝑀em(𝜉)
and 𝑦𝑀 (𝜉), i.e. the error vector, 𝑒, is evaluated on the 46656 sample
ombinations, used for calibrating the emulator. The mean and the vari-
nce of the error vector is estimated for polynomial order 5, obtaining
perfect matching between numerical and surrogate models with the
ean and variance of the error vector 𝑒 lower than 1.8127 × 10−5 and
.364 × 10−5, respectively. Furthermore, the accuracy of the emulator
s performed also estimating the error vector outside the grid used to
alibrate the proxy model, driving the simulation of the parameters in
he tail values of the joint PDF of the random variables (𝜉𝑗 , 𝑗 = 1, . . . ,4)

obtaining maximum errors equal to 5 × 10−3, 5 × 10−2 and 4 × 10−2,
for each of the first three natural frequencies.

5. Results

5.1. Real noisy modal data

Using 𝑦0 = {4.492, 9.288, 13.252} as observed data, the posterior
marginal probability density functions of the four-dimensional random
vector 𝜉 are estimated using both MCMC and ABC following the proce-
ures discussed in Section 3, in order to compare the accuracy of the
btained results. The results of the two Bayesian updating procedures
re reported in Fig. 5. Convergence of MCMC-MH was assessed using
isual inspections on the trace plots (i.e. plots showing the sampled
alues of parameters over iterations), autocorrelation plots and estimat-
ng the Gelman–Rubin diagnostic [44]. A total of 𝑆 = 450.000 runs of

the algorithm are required to ensure convergence. ABC is carried out
using 𝑆 = 10.000 runs of the algorithm. The proposal distribution is
the prior as displayed in Alg 2 and observed and simulated data have
been compared using the Euclidean distance. The threshold 𝜖 has been
selected using the method of the 𝛼th quantile (𝛼 = 0.01) [45]. It is worth
noting that while the MCMC-MH algorithm necessitates 450.000 runs
and 2 h of computing time, the ABC algorithm accomplishes the task
with only 10.000 runs, taking just 5 min. This comparison underscores
the efficiency and computational advantage of the ABC algorithm in
handling large-scale simulations.

The updating framework carried out using the two different algo-
rithms is able to modify the probability distributions of the updating
parameters 𝐸, 𝜌 and 𝑎 and 𝑁 . The obtained posterior mean values and
coefficients of variations (CV) are reported in Table 2. Fig. 6 shows the
comparison between the posterior mean value and CV obtained using
MCMC-MH and ABC algorithm for the updated parameters.

Fig. 6 - (a) shows the Kullback–Leibler divergence [46] between
posterior distributions approximated using MCMC and ABC samples
(i.e. Case C) for all the updated distributions. It is worth recalling
that Kullback–Leibler divergence is used to measure the difference
between two probability distributions, with values approaching zero
meaning a high level of fidelity. The divergences derived from the
probability distributions of all the updated parameters are remarkably
close to zero. Notably, only the posterior distributions of 𝑁 exhibit a
divergence exceeding 0.2. Furthermore, Fig. 6 - (b) and (c) illustrate
the ratio between the posterior mean and the posterior coefficient
of variation (CV) obtained using the two different algorithms. Values
equal to 1 indicate that the posterior mean values and the posterior
CV are identical. Posterior mean ratio values close to 1 are obtained
for all the updated distributions. In contrast, posterior CV ratio values
between 0.8 and 1.2 are observed. This suggests that while the posterior
mean values are consistent between the two algorithms, there may
be slight differences in the estimation of the posterior uncertainty.

Overall, these observations suggest that ABC algorithms are capable of
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Table 2
Posterior distributions characteristics of the updating parameters.
Parameter MCMC-MH ABC MCMC-MH PCE ABC PCE

Mean CV Mean CV Mean CV Mean CV

E [Pa] 1.58 × 1011 0.318 1.59 × 1011 0.350 1.53 × 1011 0.349 1.53 × 1011 0.347
𝜌 [Kg/m3] 7520 0.096 7580 0.082 7299 0.086 7540 0.084
a[m] 0.076 0.074 0.075 0.082 0.074 0.087 0.075 0.081
N [N] 605 000 0.168 558 000 0.206 573 000 0.206 564 000 0.194
producing reliable results that closely resemble those obtained via the
well-established likelihood-based MCMC algorithms.

The effectiveness of the PCE based emulator within ABC context
is assessed by a direct comparison between the results (i.e. Kullback–
Leibler divergence, posterior mean value ratio and posterior CV ratio)
obtained from ABC algorithm using the true and the emulator solution
(i.e. Case B in Fig. 6). For all the updated parameters, Kullback–
Leibler divergence values lower than 0.016 are obtained. Additionally,
posterior mean ratio values between 0.98 and 1.04 and posterior CV
ratio values between 0.97 and 1.06 are observed for all the updated
parameters. This assessment highlights the effectiveness of the PCE-
based emulator integrated within the ABC framework, as it accurately
captures the key characteristics and statistical properties of the true
solution, showcasing its reliability and utility within the ABC context.

In order to compare the effect of employing the PCE-based emulator
in the ABC and MCMC-MH algorithms, a direct comparison is carried
out between the results obtained from the MCMC-MH algorithm using
the true solution and the emulator solution (i.e., Case A in Fig. 6),
focusing on the same metrics of previous case. For all the updated
parameters, Kullback–Leibler divergence values lower than 0.15 are
obtained. Additionally, posterior mean ratio values between 1.02 and
1.06 and posterior CV ratio values between 0.81 and 1.11 are observed
for all the updated parameters.

It is worth to observe that the Kullback–Leibler divergence values
are generally lower in Case B compared to Case A; the posterior mean
ratio values in Case B are closer to 1, compared to Case A, indicating
a slightly better agreement between the emulator and true solution in
Case B. However, the posterior CV ratio values show a wider range in
Case B compared to Case A, suggesting that the variability captured by
the posterior CVs may vary more in Case B. Overall, these comparisons
provide insights into the performance and accuracy of the PCE-based
emulator in both ABC and MCMC-MH algorithms. These comparisons
suggest two significant conclusions: firstly, the PCE emulator is capable
of providing accurate solutions even in the MCMC-MH algorithm case,
and secondly, the ABC algorithm appears to be less sensitive to the use
of the surrogate model while still maintaining a good approximation
ability compared to the true solution.

Finally, the same metrics are utilized to compare the posterior
distributions obtained for the updating parameters using the emulator
solutions in both the ABC and MCMC-MH algorithms (i.e. Case D
in Fig. 6). Kullback–Leibler divergence values lower than 0.12 are
observed, indicating a close match between the distributions. Addition-
ally, the posterior mean value ratio values are in between 0.97 and
1.02, suggesting consistency in the mean values of the distributions.
The posterior CV ratio values indicate variability in the coefficient of
variation of the distributions, with values ranging between 1 and 1.07.

5.2. Simulation study

In this section, the ABC algorithm is used to tackle the structural
identification problem associated with tie-rods, aiming to assess the
efficacy of the updating procedure by varying the number of natural
frequencies employed as observed data 𝑦0. This evaluation is of utmost
importance due to the considerable challenges involved in identifying
numerous natural frequencies through in-situ experimental activities
on tie-rods. In historical masonry structures, tie-rods are often lo-

cated at considerable heights above the ground, making the use of
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contact dynamic measurements impractical. Moreover, the restricted
access points inherent in historical masonry structures present obstacles
in the installation of dynamic measurement devices, thereby adding
complexity to the structural identification process. This indicates that
identifying a large number of frequencies is frequently unfeasible using
non contact measurement devices. Hence, the reliability of the results
obtained using varying numbers of natural frequencies becomes crucial,
and it is of utmost importance to assess the reliability of the struc-
tural identification of the ancient tie-rod, as discussed in the previous
section. For this reason, five simulated natural frequencies 𝑦0 are ob-
tained from the computational model driven by values of the uncertain
parameters 𝜉 denoted as true values in Table 3. Zero left truncated
Gaussian distributions are selected for all the uncertain parameters
whose mean values are reported in Table 3. A different number of
natural frequencies 𝑛𝑓 ranging from 1 to 5 are set as reference dataset
for the Bayesian updating procedures. Having assessed the accuracy of
the ABC algorithm to solve the structural identification problem, only
ABC is implemented for subsequent analyses.

The outcomes of the ABC framework (i.e. posterior distributions of
the updating parameters 𝜉) are reported in Fig. 7. As it was expected,
the posterior distributions mean values of the updated parameters 𝜉
move towards the true values (i.e. actual values used as to simulate
the reference data set 𝑦0) augmenting the dimension of the reference
dataset vector. This further highlights the accuracy of the Bayesian
updating framework in providing useful information on the single point
solution of the structural identification problem.

The posterior mean value obtained for the five considered cases
are reported in Table 3 and compared in terms of ratio (i.e. posterior
mean/true value) in Fig. 8-(a). As it was expected, using only the first
natural frequency give unreliable single point solutions for the updated
parameters, with maximum differences occurring for the 𝐸 and 𝑁
parameters. Conversely, reliable results are obtained when number of
natural frequencies greater than 2 are used as a reference.

Finally, we computed the Bayesian Mean Absolute Percentage Error
(BMAPE) as follows:

𝐵𝑀𝐴𝑃𝐸 = 𝐸𝜃

[

|𝜃 − 𝜃true
|

𝜃true ∣ 𝑦0

]

≈ 1
𝑆

𝑆
∑

𝑠=1

|𝜃(𝑠) − 𝜃true
|

𝜃true

where 𝜃true are true values used to generate data. This quantity evalu-
ates parameter posterior estimates accounting also for posterior uncer-
tainty and preferring more concentrated distributions. Since posterior
distributions become less dispersed as the number of frequencies in-
creases, BMPAE slightly decreases moving from 3 to 4 or 5 frequencies,
despite posterior means being closer to true values in the case of three
observed frequencies. Overall, from these results, it seems that three
frequencies are enough to get good point estimates even taking into
account the posterior uncertainty.

6. Discussion and conclusion

In this paper, we have developed a robust framework aimed at tack-
ling the identification problem from a statistical perspective, marking a
notable advancement by integrating various sources of uncertainty into
our model. Through the incorporation of latent variables, in addition to
conventional measurement errors, we have achieved a more exhaustive
representation of uncertainty, despite the ensuing statistical complexity
with an intractable likelihood.
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Fig. 5. Posterior PDF of the updated parameters using ABC, MCMC and PCE based ABC and MCMC: (a) Young modulus 𝐸, (b) mass density 𝜌, (c) cross section transversal
dimension 𝑎 and (d) axial load 𝑁 .
Fig. 6. Kullback-Leibler distances (a) posterior mean value ratio (b) and posterior CV ratio (c). Case A: comparison between the results obtained from MCMC-MH and MCMC-MH
PCE; Case B: comparison between the results obtained from ABC and ABC-PCE; Case C: Comparison between the results obtained from MCMC-MH vs ABC; Case D: Comparison
between the results obtained from MCMC-MH PCE and ABC PCE.
Table 3
True values, prior distribution mean values, and posterior distribution mean values
augmenting the number of frequencies.

𝐸 (N/mm2) 𝜌 (kg/m3) 𝑎 (m) 𝑁 (N)

True Value 1.8 × 1011 7500 0.07 700 000
Prior Mean 2.0 × 1011 7000 0.07 800 000
Posterior Mean (nf = 1) 1.29 × 1011 7550 0.0736 582 910
Posterior Mean (nf = 2) 1.86 × 1011 7270 0.0724 713 170
Posterior Mean (nf = 3) 1.75 × 1011 7363 0.0719 716 660
Posterior Mean (nf = 4) 1.72 × 1011 7349 0.0716 712 490
Posterior Mean (nf = 5) 1.70 × 1011 7347 0.0718 714 490

Our study presents a meticulous comparative assessment of two
prominent inference methodologies: data augmentation MCMC-MH and
ABC, both enhanced with emulator-based approximations, with refer-
ence to a simple structural system consisting in an axial load beam like
structure.

In particular, an ancient tie-rod was object of an extensive experi-
mental campaign aimed at identifying its modal characteristics in terms
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of natural frequencies. Three experimental natural frequencies were
identified and used as target in the updating framework using both
algorithms. A computational and a PCE based emulator model were
also set up and used to reproduce the dynamic response.

The efficacy of the ABC algorithm, even in its simplest form, was
evaluated through a direct comparison of the posterior distributions of
the updating parameters obtained from ABC and the well-established
standard MCMC-MH. This comparison was conducted using various
metrics capable of assessing probability distribution shape and mo-
ments, such as mean and coefficients of variation. Through this compre-
hensive analysis, we sought to gauge the performance and reliability of
ABC in capturing the underlying parameter distributions and to assess
its effectiveness relative to the widely used MCMC-MH approach.

The effectiveness of high fidelity surrogate models based on PCE
method within the framework of ABC is demonstrated and analyzed
through a direct comparison of the posterior distributions of the up-
dating parameters obtained from the ABC algorithm using both the
true model solutions and the emulator model solutions. Furthermore,
the comparison between the posterior distributions of the updating
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Fig. 7. Posterior PDF of the updated parameters using ABC and different number of natural frequencies 𝑦0, 𝑖 = 1,..,5: (a) Young modulus 𝐸, (b) mass density 𝜌, (c) cross section
transversal dimension 𝑎 and (d) axial load 𝑁 .
Fig. 8. Ratio between the ABC posterior mean of the updated parameters using
different numbers of natural frequencies, from 1 to 5, and the true value (a); BMAPE
values (b).

parameters obtained from the MCMC-MH algorithm using the true
model solutions and the emulator model solutions revealed that the
ABC algorithm exhibited less sensitivity to the utilization of emulators
compared to MCMC-MH. This observation underscores the robustness
of ABC in accommodating model approximations, thereby enhancing
its applicability in scenarios where computational efficiency or model
complexity necessitates the use of surrogate models.

Finally, our investigation into frequency estimation sheds light on
the practicality of our proposed approach, revealing that merely three
frequencies are sufficient for yielding reliable posterior inference.
10 
In summary, our contribution lies in advancing statistical method-
ologies tailored for addressing intricate identification problems, empha-
sizing the importance of comprehensive uncertainty modeling and the
exploration of alternative inference strategies. Note that the proposed
statistical framework is flexible enough to tackle the problem regardless
of the defined physics and emulator models. However, note that defin-
ing a complex physical model will necessarily require the use of the
emulator-based approximation to make the procedure computationally
feasible. Furthermore, the implementation of the MCMC procedure
would become infeasible in cases where the number of components to
be identified is too high. In such cases, since the algorithm must explore
a high dimensional parameter space, the resulting Markov chain would
suffer from auto-correlation problems. Moreover, the procedure can
be applied to other structural dynamic characteristics, meaning that
the type of observed data 𝑦0 changes. This may require a different
definition of the probabilistic assumptions about the error and bias
components of the model. However, once the appropriate probability
distributions for these quantities are specified, proposed procedures
are still applicable. Moreover, ABC algorithms are also well-suited for
addressing cases where multiple types of data are used simultaneously.
In such a case, it would be necessary to summarize observed data
through proper summary statistics and adapt the ABC distance function
to compare all simulated and observed quantities simultaneously.
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