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a b s t r a c t

Small fluctuations around homogeneous and isotropic expanding backgrounds are the main object of
study in cosmology. Their origin and evolution is sensitive to the physical processes that happen during
inflation and in the late Universe. As such, they hold the key to answering many of the major open
questions in cosmology. Given a large separation of relevant scales in many examples of interest, the
most natural description of these fluctuations is formulated in terms of effective field theories. This was
the main avenue for many of the important modern developments in theoretical cosmology, which
provided a unifying framework for a plethora of cosmological models and made a clear connection
between the fundamental cosmological parameters and observables. In this review we summarize
these results in the context of effective field theories of inflation, large-scale structure, and dark energy.

© 2023 Elsevier B.V. All rights reserved.
1. Executive summary

During the last decade we witnessed a large progress in ap-
lication of effective field theory (EFT) techniques in cosmology.
he main object of study of these EFTs are small cosmological
erturbations, their evolution and interactions on scales relevant
or cosmology. Examples of such perturbations include quantum-
echanical fluctuations of the inflaton which provide the seeds

or small density fluctuations in the late Universe, fluctuations
n temperature and polarization of the cosmic microwave back-
round (CMB), fluctuations in the number density of galaxies
n the cosmic web at low redshifts which forms the large-scale
tructure (LSS), and fluctuations in some hypothetical medium
hich drives the current accelerated expansion of the Universe
i.e. dark energy (DE)). Just like in any other generic EFT, in all
hese examples the action for the relevant degrees of freedom
an be expanded in powers of small fluctuations and derivatives
nd at every order its form is fixed by the symmetries up to
finite number of free coefficients. This description is valid up

o a cutoff, where the details of the UV physics become rele-
ant. However, below such cutoff (on large enough scales) the
FT predictions are universal. Different cosmological models or
ifferent UV completions differ only by different values of the EFT
arameters.

∗ Corresponding author.
E-mail address: gcabass@ias.edu (G. Cabass).
ttps://doi.org/10.1016/j.dark.2023.101193
212-6864/© 2023 Elsevier B.V. All rights reserved.
The EFT approach has two major advantages. First, the EFT
provides a unified description of many different particular mod-
els, keeping only their essential properties and identifying long-
wavelength degrees of freedom relevant for cosmology. At the
same time, it also allows for a clear separation of the theory
of small fluctuations around homogeneous background from the
evolution of the background itself. Second, EFTs in cosmology
are weakly coupled theories, hence they can be used to make
perturbative predictions for all relevant observables throughout
the entire history of the Universe, from the Bunch-Davies vacuum
in inflation to observed galaxy distribution at present times. More
precisely, at each order in perturbation theory and derivative
expansion, one can calculate a finite number of ‘‘shapes’’, i.e. mo-
menta dependence, of observable n-point correlation functions
whose amplitudes are proportional to the free EFT coefficients.
Importantly, such calculations can be always perturbatively im-
proved to match the precision required by the statistical errors of
a given experiment. These shapes can be then used for compari-
son to the data. In this way the EFT approach not only played an
important conceptual role of simplifying theoretical calculations
and unifying different cosmological models, but also made a large
impact on observational cosmology, inspiring templates used in
the data analysis and providing a way for robust measurements
of cosmological parameters, allowing for an easy marginalization
over the unknown UV physics.

Historically, the EFT methods in cosmology were first applied
to inflation [1,2]. We will mainly focus on the simplest incar-
nation, the effective field theory of single-field inflation (EFTI),
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here inflation is driven by a single medium whose quantum
luctuations produce the observable overdensities in the Uni-
erse. At the time when the EFTI appeared, it unified a rapidly
rowing number of inflationary models and provided a simple
agrangian for inflaton fluctuations. Using symmetry arguments,
he EFTI provided a clear connection between possibly small
peed of sound of inflaton perturbations and large primordial
on-Gaussianities (PNG) of equilateral and orthogonal shapes
3,4]. This result paved the road for observational constraints on
peed of propagation of inflaton fluctuations, which in turn can
ell us a lot about the physics of inflation [5,6]. Furthermore, the
xistence of new shapes of potentially large PNG in single-field
odels (the local shape was known to be absent in single-field

nflation [7,8]), gave an additional boost to the phenomenology of
NG. The EFTI was since then generalized to include multi-field
odels and other extensions of the basic single-field inflation,
laying the role of a common language in the field of primordial
osmology. Many of the recent developments, such as the study
f imprints of massive and higher spin particles on cosmological
orrelation functions or cosmological bootstrap, are motivated by
hat we have learned from the EFTI.
Another application of the EFT in cosmology, which is be-

oming increasingly more important in recent years, is to galaxy
lustering and the LSS of the Universe. With the ever growing
ata sets where the spectroscopic galaxy samples increase by a
actor of 10 every decade, ongoing and upcoming galaxy surveys
ave the potential to become one of the leading probes of cos-
ology, reaching and even surpassing the precision of the CMB
bservations. The effective field theory of large-scale structure
EFT of LSS) [9–11] is perfectly placed to face the challenge of in-
erpreting this large amount of data. Being an EFT of fluctuations
f the number density of galaxies (or other tracers of matter), it
llows for a systematic description of galaxy clustering on large
cales, regardless of complicated galaxy formation which strongly
epends on details of poorly understood baryonic physics. The
utoff of the theory is given by the scale where gravitational
onlinearities and feedback from astrophysical processes become
arge and it is typically of the order of a few megaparsecs. Dynam-
cs on larger scales is driven only by gravitational interactions
nd all UV physics can be captured in effective contributions
o the equations of motion that are organized as an expan-
ion in the number of fields and derivatives. Such description,
hich radically separates galaxy formation physics from the long-
avelength dynamics of fluctuations in the number density of
alaxies, proved to be extremely useful in practice. Even though a
ot of work still remains to be done, already the consistent lead-
ng EFT calculations, such as the one-loop power spectrum and
ree-level bispectrum, led to important advancements in the pro-
ram of obtaining cosmological information from the LSS galaxy
urveys. Those include the first inference of all fundamental cos-
ological parameters from the galaxy power spectrum [12–14]
nd the first constraints on primordial non-Gaussianity from the
alaxy bispectrum [15,16], two major milestones that were elu-
ive for a long time in the past. Further theoretical improvements
nd theory-inspired novel data analysis techniques can lead to
urther progress and this remains a very active area of research.

Finally, EFT methods were also applied in the context of DE.
ssuming that DE is a medium that drives the current accelerated
xpansion of the Universe, but that can also fluctuate, one can
ormulate the effective field theory of dark energy (EFT of DE) [17]
n a way similar to the EFTI. One important difference is that the
ouplings of the dark energy field to the matter fields have to
e carefully taken into account. As in the other two examples,
ithout the need to refer to any UV physics, one can produce
consistent EFT description that encapsulates all possible phe-

omenology of DE beyond the cosmological constant. This is very

2

important, since the EFT formulation allows us to consistently
parametrize any deviation from the ΛCDM cosmological model
which are compatible with all symmetries and general principles
of physics. This in turn is a crucial input for exploring and con-
straining dark energy properties through observations of galaxy
clustering on large scales, one of the key science goals for many
galaxy surveys in this decade. In parallel, the EFT of DE is for-
mulated in a way which allows for a straightforward connection
of its predictions to relevant astrophysical observations, such as
mergers of black holes and neutron stars. This led to a burst
of activity where the detection of gravitational waves was used
to put constraints on the EFT parameters [18–20]. Many other
interesting theoretical questions, such as constraints on the EFT
parameters from positivity bounds, will remain a playground for
fruitful collaborations of high-energy physicists and cosmologists
in the years to come.

In conclusion, EFT methods play the central role in theories
of cosmological perturbations and as such they are the key in
connecting theory and observations and pivotal for answering
all the biggest open questions in cosmology. These include the
physics of inflation, properties of dark matter and dark energy,
and possible discovery of new, additional energy components in
our Universe and new physical processes related to them. In this
review we summarize the current status of EFTs in cosmology,
focusing on three influential examples: effective field theory of
inflation, effective field theory of large-scale structure, and effec-
tive field theory of dark energy. We present the most important
results, connection to cosmological observables, some open prob-
lems and directions for future research as well as connections to
neighbouring fields of high-energy physics and astrophysics.

2. Effective field theory of inflation

The energy available to processes during inflation could have
been as high as 1014 GeV, far beyond what can be achieved in
article accelerators. Interactions between the degrees of free-
om active during inflation leave their imprints in the statis-
ics of cosmological perturbations, like anisotropies in the CMB
emperature and inhomogeneities in the distribution of galaxies,
herefore offering a privileged view on these energy scales (for
rospects of constraining inflation using these observations, see
lso the snowmass white paper on inflation [21] and references
herein).

What are the light degrees of freedom during inflation? We
now that at least one scalar degree of freedom must have been
resent. The epoch of accelerated expansion eventually ends, so
here must have been a ‘‘clock’’ that tracks the transition to a
ecelerated Universe. The fluctuations of this clock, together with
he fluctuations of the metric, are the degrees of freedom that are
uaranteed to be active during inflation. The simplest effective
ield theory of inflation is one for this degree of freedom: it
rovides a unified description of all inflationary models where
nflation is driven by a single clock. Additional light degrees
f freedom are included in the EFT following the same general
rinciples.

.1. Unitary-gauge action

How can we write an action that encompasses all the single-
lock inflationary models? Refs. [1,2] showed how to achieve
his. By using the freedom of changing coordinate system, the
luctuations of the clock can be absorbed by the metric. In models
here the clock is a scalar field φ, i.e. the inflaton, we can write

φ(t, x) = φ0(t)+δφ(t, x): the new coordinate system corresponds
to setting δφ = 0.
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In this ‘‘unitary gauge’’, the graviton has three degrees of
reedom: the scalar mode and two tensor helicities. Writing down
he action is now simply a matter of finding all operators that are
nvariant under time-dependent spatial diffeomorphisms, since
ime diffeomorphisms have been fixed.

The clock defines a preferred foliation of spacetime: the 3+ 1
ecomposition is therefore well-suited to find all operators that
re invariant under spatial diffeomorphisms, i.e. changes of coor-
inates on the hypersurfaces of constant time. This is summarized
n Fig. 1 and the accompanying table.

The second step is as follows. We are interested in con-
tructing an effective field theory for cosmological perturbations,
.e. fluctuations around a Friedmann–Lemaître-Robertson–Walker
FLRW) spacetime.1 This is a highly symmetric spacetime, whose
ine element is written as

s2 = −dt2 + a2(t)δijdxidxj . (1)

he Hubble rate is defined as

=
ȧ
a
. (2)

H is constant for a de Sitter metric, and the background stress
tensor is a cosmological constant. More generally, the background
stress tensor can be build from only two operators in this 3 + 1
decomposition of spacetime: a free function of time Λ(t) and
the operator c(t)g00, where c(t) is also a free function. The most
general action can then be written as

S =

∫
d4x

√
−g

[
M2

P

2
R − c(t)g00

−Λ(t)

+
M4

2 (t)
2

(g00
+ 1)2 +

M4
3 (t)
6

(g00
+ 1)3

−
M̄3

1 (t)
2

(g00
+ 1) δKµµ −

M̄2
2 (t)
2

(δKµµ)
2
+ · · ·

]
,

(3)

where δKµν = Kµν − H(t)hµν . All operators beyond the first
three have vanishing derivative with respect to gµν on a FLRW
metric. As a consequence, c(t) and Λ(t) are fixed in terms of the
expansion history:

c(t) = −M2
P Ḣ , (4a)

Λ(t) = M2
P (3H

2
+ Ḣ) . (4b)

1 We focus on the case of zero spatial curvature. See Appendix B of [2] for
ow to include it.
 d

3

The difference between different inflationary models is then en-
coded in the remaining operators, which from now on we will
call EFT operators.

The organizing principle in Eq. (3) is the expansion in per-
turbations and derivatives, central to all effective field theories.
We see that the EFT operators are organized by the number of
derivatives acting on the unitary-gauge metric and by the order
in perturbations around an FLRW metric to which they start. We
will discuss the EFT expansion and the relevant cutoff scales in
more detail once we reintroduce the scalar degree of freedom via
the Stueckelberg trick in Section 2.5.

The terms ‘‘· · · ’’ we have not explicitly written in the ac-
tion of Eq. (3) are built not only from g00 and the extrinsic
curvature. Besides these and many other time-diffeomorphisms-
breaking operators (see e.g. Ref. [22] for a comprehensive study),
we also have covariant operators built from the four-dimensional
Riemann tensor: these capture corrections to General Relativity.

2.2. Different models in the EFTI language

The simplest models are those where the clock is the inflaton
φ with minimal kinetic term and potential V (φ). In the unitary
gauge c(t) = φ̇2

0 (t)/2 and Λ(t) = V (φ0(t)), while all the other
terms in Eq. (3) are set to zero. This is the formulation of slow-roll
inflation in the EFTI [2,7].

Models where there is at most one derivative acting on φ, i.e.

Sφ =

∫
d4x

√
−g P(X, φ) with X = gµν∂µφ∂νφ , (5)

have

M4
n (t) = φ̇2n

0 (t)
∂nP
∂Xn

⏐⏐⏐⏐
φ=φ0(t)

, M̄n = 0 . (6)

This is K-inflation [23,23–26]. A particular example of P(X, φ)
heory is DBI inflation [27]. There the inflaton is the position
f a probe brane in 5-dimensional spacetime and its action is
onstructed from the induced metric on this brane. Examples of
heories that are described by operators involving δKµν are the
host Condensate [1,2,28], Galileons [29,30] and generalizations
f DBI Inflation [31].

.3. Slow-roll solution and approximate time-translation symmetry

The coefficients in the unitary gauge action can explicitly
epend on time. However, the first two coefficients, c(t) andΛ(t),
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ave a mild dependence if the background solution satisfies the
low-roll conditions ε ≪ 1, |η| ≪ 1, where

ε ≡ −
Ḣ
H2 , η ≡

ε̇

Hε
. (7)

It is natural to assume that the same holds for all the other coeffi-
cients. Namely, to impose an approximate time-translation sym-
metry, which in slow-roll models follows from the approximate
shift symmetry of the inflaton φ.

An exception to this rule comes from models where instead of
a softly broken continuous shift symmetry, one has a discrete one
[32,33]. Ref. [34] explored this in the context of the EFTI: at the
level of the unitary-gauge action the approximate discrete shift
symmetry corresponds to an expansion history H(t), and other
time-dependent coefficients, that are a superposition like

H(t) = Hsr(t) + Hosc(t) sinωt , (8)

where Hsr ≫ Hosc have a slow time dependence of order ε. See
Refs. [35,36] for CMB constraints on oscillating features predicted
by these models.

Another situation where time-translation symmetry is not a
good approximation is the ‘‘ultra-slow-roll’’ phase [37]. See [38]
and references therein for further discussion.

2.4. Observables and primordial non-Gaussianity

Let us now discuss what are the inflationary observables. In
single-clock inflation the Fourier modes of the comoving curva-
ture perturbation ζ and the graviton γij, defined by

hij = a2e2ζ (eγ )ij (9)

in the unitary gauge, are conserved as they exit the horizon,
i.e. for k ≪ aH [7,39–41]. They start evolving again only when
they re-enter the horizon long after the end of inflation, during
the Hot Big Bang phase (see Fig. 2). Knowing ζ and γij therefore
means we know the initial conditions for the growth of structure
in our Universe. Of course, given that what we can predict are
only the quantum fluctuations of ζ and γij, we cannot really know
the exact initial conditions. What we are interested in is instead
the probability distribution functional of ζ and γij. Observations
suggest that these distributions are close to Gaussian. Hence,
we are interested in the two-point correlation of ζ and γij, or
the power spectra in Fourier space, and the deviations of their

distribution from a Gaussian, i.e. in primordial non-Gaussianity.

4

Let us consider the correlation functions of curvature pertur-
bation ζ . Working in conformal time τ defined via dt = adτ ,
hich implies τ = −1/aH in exact de Sitter, we decompose ζ

n Fourier modes as

(τ , x) =

∫
d3k

(2π )3
ζk(τ ) eik·x . (10)

he observables in the scalar sector, then, are the polyspectra

lim
kτ→0

⟨ζk(τ )ζk′ (τ )⟩′ = Pζ (k)

lim
{kiτ→0}

⟨ζk1 (τ )ζk2 (τ )ζk3 (τ )⟩
′
= Bζ (k1, k2, k3)

lim
kiτ→0}

⟨ζk1 (τ )ζk2 (τ )ζk3 (τ )ζk4 (τ )⟩
′
= . . . ,

(11)

here Bζ (k1, k2, k3) is the bispectrum (which depends only on the
agnitude of the momenta due to rotational invariance), and the
rime denotes that we have stripped a Dirac delta of momentum
onservation.
The unitary-gauge action of Eq. (3) is everything we need to

ompute not only these observables, but also the mixed correla-
ion functions involving the graviton, and graviton non-Gaussianiti
hemselves.2 However, it is when we focus on scalar correlators
hat the true usefulness of the EFTI becomes manifest, as we will
ow illustrate.

.5. Stueckelberg trick and decoupling limit in the EFTI

The breaking of time diffeomorphisms in the EFTI is no differ-
nt in spirit from what happens in massive Yang–Mills theory, in
hich a gauge group G is explicitly broken by a mass term. Now

the longitudinal modes π a of the vector fields Aa
µ are dynamical

degrees of freedom, and one can make them explicit via the so-
called ‘‘Stueckelberg trick’’. The advantage is that at high energies
the π a are decoupled from the transverse modes of Aa

µ. This high-
energy limit is called the decoupling limit. Since in this limit the
action for the π a is the same as what we get from a broken global
symmetry group G, they are often denoted as ‘‘Goldstone bosons’’.
We will use the same terminology.

To perform the Stueckelberg trick in the EFTI we need to
do a broken time diffeomorphism t = t̃ + π̃ (x̃). The detailed
derivation is contained in Section 3 of Ref. [2]. After removing the

2 For a comprehensive study of graviton bispectra in the EFTI, see Ref. [43].
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ilde to simply the notation, the Stueckelberg trick boils down to
eplacing t → t + π in Eq. (3). For example, we have
00

→ g00
+ 2g0µ∂µπ + gµν∂µπ∂νπ . (12)

imilar relations are easily derived from the standard tensor
ransformation rules under the broken time diffeomorphism.

Diffeomorphism invariance is restored because π transforms
onlinearly under x = x̃ + ξ̃µ(x̃), namely

˜ (x̃) = π (x(x̃)) + ξ̃ 0(x̃) . (13)

hese transformation rules can be used to find the relation be-
ween π and ζ . The precise derivation is contained in Appendix A
of [7] and Appendix B of [44]: one finds that

ζ = −Hπ
(
1 + O(ε, η) + O(k2τ 2)

)
, (14)

hereO(ε, η) represents slow-roll-suppressed terms, andO(k2τ 2)
represents terms vanishing on superhorizon scales. It is this
relation that makes the Stueckelberg trick useful, as we will
discuss next.

Now that we have reintroduced π , we can discuss what is
the decoupling limit in the EFTI. Let us first write the metric in
a way suited to the 3 + 1 decomposition, i.e. using the ADM
formalism [45,46]:

ds2 = −N2dt2 + hij(dxi + N idt)(dxj + N jdt) . (15)

After reintroducing the Goldstone boson, the zero-helicity mode
ζ is absent from the metric. That is, the spatial metric hij contains
only the transverse and traceless graviton. The quadratic mixing
between π and the metric is then a mixing between π and the
non-dynamical variables N and N i.

The energy scale at which we can neglect this mixing depends
on which operators are present in Eq. (3), and which operators
dominate the quadratic action. For example, for slow-roll inflation
the mixing is ∼ M2

P Ḣπ̇δg
00. After canonical normalization (πc ∼

PḢ1/2 π̇ , δg00
c ∼ MPδg00) we see that Emix ∼ ε1/2H . Another

nteresting case is when the operator M4
2 gets large. The mixing

s now of the form ∼ M4
2 π̇δg

00, while the canonical normalization
f π is πc ∼ M2

2π , so that Emix ∼ M2
2/MP.

Whatever Emix is, once we are above such energy scale we can
eglect metric fluctuations and replace Eq. (15) with Eq. (1). The
ction for the Goldstone boson then simplifies to

π =

∫
d4x a3

[
−M2

P Ḣ
(
π̇2

−
(∂iπ )2

a2

)
+ 2M4

2

(
π̇2

+ π̇3
−
π̇ (∂iπ )2

a2

)
−

4
3
M4

3 π̇
3
+ · · ·

]
−

M̄2
2

2

{
(1 − 2π̇ )(∂2π )2

a4

−
∂2π

a2

(
H(∂iπ )2

a2
+

4∂iπ∂iπ̇
a2

)
+ · · ·

}]
.

(16)

The relation (14) between π and ζ makes this action useful be-
cause of the conservation of ζ after horizon crossing. Even though
the concept of the energy of a k-mode is not even approximately
defined after horizon crossing, as long as Emix ≪ H , we can use
the decoupling limit action to compute π correlators shortly after
horizon crossing. These can be used to determine ζ correlators, up
to O(ε, η) and O(k2τ 2) corrections.

From this discussion we see that for slow-roll inflation we
always have Emix/H ≪ 1, since ε1/2 ≪ 1. We also see that there
are no interactions in Eq. (16) if all EFT operators are switched
off. Hence, in this case primordial non-Gaussianities come from

the mixing with gravity [7].

5

Nevertheless, the decoupling-limit action is still enough to
predict the normalization of the dimensionless power spectrum
k3Pζ (k), which is proportional to H2/(M2

Pε), and its deviation from
exact scale-invariance. Combined with limits on (or a future de-
tection of) primordial tensor modes, whose dimensionless power
spectrum is instead controlled by H2/M2

P , we get a handle on H
and its time derivatives. With this we can constrain the inflaton
potential V (φ).

As another example, consider the operator M4
2 , which gives a

quadratic action∫
d4x a3

[
−

M2
P Ḣ
c2s

(
π̇2

− c2s
(∂iπ )2

a2

)]
, (17)

with speed of sound given by

1
c2s

= 1 −
2M4

2

ḢM2
P

. (18)

otice that Ḣ > 0, which implies a violation of the Null Energy
ondition (NEC), is no longer associated to a ghost-like instability
f M2 is sufficiently large. Here, the general connection between
he violation of the NEC and instabilities [47,48] persists because
here is a gradient instability in the model. However, from a
ottom-up point of view, it is possible to construct a stable EFT
called Ghost Condensate) that allows Ḣ > 0 [1].

It is not clear if NEC violating models can be UV completed,
nd indeed there are results that suggest otherwise [49]. Below,
e will focus on the Ḣ < 0 case, where one finds

k3Pζ (k) ∝
H2

M2
Pεcs

. (19)

Even if we detect primordial tensor modes, we still cannot disen-
tangle between ε and the speed of sound. To get a handle on cs
in this case, we need to look at interactions. Indeed, turning on
the operators M4

2 ,M
4
3 results in

S(3)π =

∫
d4x a3

[
M2

P Ḣ
c2s

(1 − c2s )
(
π̇ (∂iπ )2

a2
−

(
1 +

2
3
c̃3
c2s

)
π̇3
)]

,

(20)

here

4
3

M4
3

ḢM2
P

=
2
3
1 − c2s
c2s

c̃3
c2s
. (21)

speed of sound different from 1 means that there is a spe-
ific interaction π̇ (∂iπ )2 uniquely determined by c2s . Hence, by
constraining the non-Gaussianities generated by π̇ (∂iπ )2, we can
constrain the speed of propagation of the scalar mode in single-
clock inflation.

This relation between the quadratic action and interactions
is forced by the nonlinear realization of time diffeomorphisms.
In the decoupling limit, this symmetry is reduced to invariance
under de Sitter dilations and boosts, which are generate by

ξ
µ

0 = −H−1δ
µ

0 + xiδµi , (22a)

ξ
µ

i = δ
µ

i x
2
− 2xixjδµj + 2H−1xiδµ0 , (22b)

where x2 = −η2 + x2. Under these, π transforms nonlin-
early [50]: for infinitesimal transformation parameter λa, with
a ∈ {0, 1, 2, 3}, we have

δπ = λaξµa ∂µπ + λaξ 0a , (23)

where we used Eq. (13). The action is invariant under Eq. (22b)
only if the coefficient of the π̇ (∂iπ )2 operator in Eq. (20) has that
specific dependence on the speed of sound.
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Finally, let us discuss in more detail the decoupling limit for
he case where the operators M4

n are turned on. In the case of
2
s ≪ 1, we have Emix/H ∼ (ε/c2s )

1/2. So we see that at a fixed
the speed of sound cannot be too small if we want to use the
ecoupling-limit action of Eq. (16).3 Given that the mixing scale
epends on which operators one is considering, a similar analysis
ust be carried out depending on which kind of interactions of
one wants to constrain.

.6. EFT cutoff

One might wonder why we delayed the discussion of the cut-
ff scale, a crucial concept for any effective theory, up to now. The
eason is that the cutoff of the EFTI depends on what operators
ominate the action, so it was necessary to first introduce these
perators. In this paper we review only what happens in P(X, φ)
heories for c2s ≪ 1, referring to [2] for more details on other
ases.
We focus on the operator π̇ (∂iπ )2 in Eq. (20) whose coefficient

s fixed by cs. We can estimate the UV cutoff of the theory by
orking in the subhorizon limit and finding the maximum energy
t which the tree-level scattering of Goldstones is perturbative.
he calculation is straightforward, the only complication coming
rom the non-relativistic dispersion relation ω = csk. The cutoff
or ‘‘strong-coupling’’) scale Λ⋆ turns out to be

4
⋆ ≃

f 4π c
7
s

1 − c2s
, (24)

here f 4π is defined based on the kinetic term Eq. (17)

4
π =

2M2
P

⏐⏐Ḣ⏐⏐
c2s

. (25)

he scale Λ⋆ indicates the energy at which infinitely many EFT
operators become important. So the effective description breaks
down and new physics must come into the game [2,6].

In this example, our construction of the EFT for the fluctua-
ions was motivated by the P(X, φ) model. However, only when
⋆ ≫ fπ can we think of P(X, φ) as a UV completion of the
FTI: a weakly coupled ‘‘effective field theory for inflation’’ that
nterpolates between the trivial background X = 0 and the rolling
ackground X ̸= 0 [5,51]. When cs ≪ 1, or more generally
⋆ ≪ fπ , one needs an alternative since P(X, φ) is strongly
oupled around X = 0. In the next section, we will discuss
ow this observation provides a theoretically-motivated target
or primordial non-Gaussianity.

.7. Amplitude and shape of primordial non-Gaussianity

The chief observable that describes deviations from Gaussian-
ty is the bispectrum, that we introduced in Section 2.4. The
onservation of ζ at super-horizon scales implies that at leading
rder in slow-roll approximation Bζ (k1, k2, k3) is scale-invariant.
y momentum conservation the three momenta in the bispec-
rum form a triangle. It is useful to factor out an amplitude and
ntroduce a function that describes the dependence on the shape
f triangle:

ζ (k1, k2, k3) =
18
5

fNL∆4
ζ

S(k1, k2, k3)
k21k

2
2k

2
3

, (26)

3 The current bound on the speed of sound (which comes from constraints
n primordial non-Gaussianity, as we will discuss in a moment) and on ε (from
he absence of detection of primordial B-mode polarization of the CMB) are
2
s ≳ 4 × 10−4 [36] and ε ≲ 4 × 10−3 at 95% CL [35]. The region of parameter
space for which Emix/H ≪ 1 is still allowed: however, in case of a detection
of these two parameters it could prove necessary to go beyond the decoupling
limit to compute accurately the correlators of ζ .
6

Fig. 3. Range of momenta V for plotting a shape function S(x1, x2, 1) = S(x1, x2),
and for computing the cosine between two shapes. The equilateral configuration
is x1 → 1, x2 → 1, while the squeezed configuration is x1 → 0, x2 → 1, i.e. it is
the limit in which one of the modes (k1) becomes much longer than the other
two. The configuration x1 → 1/2, x2 → 1/2 is called folded, and it corresponds
to very squashed isosceles triangle.

where ∆2
ζ = k3Pζ (k), the factor of 18/5 is a historical convention,

and the dimensionless shape function S(k1, k2, k3) is normalized
o 1 in the equilateral configuration, S(k, k, k) = 1.

The amplitude ∆2
ζ of the primordial power spectrum is very

well measured by the Planck satellite (∆2
ζ ≈ 4.1 × 10−8). Hence

he overall level of primordial non-Gaussianity is controlled by
he parameter fNL. One can estimate fNL by comparing the quadratic
nd cubic Lagrangians of the Goldstone boson as [2]

L(3)
π

L(2)
π

∼ fNLζ , (27)

here derivatives are estimated by evaluating them at horizon
rossing. Let us look, for example, at Eq. (17) and the interactions
f Eq. (20). At crossing, we have ∂0 ∼ H , but ∂i/a ∼ H/cs.
herefore the operator with more spatial derivatives in Eq. (20)
s enhanced when c2s ≪ 1. We have

L(3)
π

L(2)
π

∼

Hπ
( H
c2s
π
)2

(Hπ )2
∼

Hπ
c2s

∼
ζ

c2s
. (28)

ence fNL ∼ 1/c2s . An exact computation gives [4,26,52]

π̇ (∂iπ )2

NL =
85
324

(
1 −

1
c2s

)
. (29)

his non-Gaussianity is peaked near the equilateral configuration.
his is because derivatives of π decay fast outside the horizon,
nd little contribution comes from the period when the modes
r deep inside the horizon due to their fast oscillations. So the
nteraction is maximal when all three modes cross the horizon
round the same time. From the point of view of data analysis
nd the actual detection of primordial non-Gaussianity it is useful
o find a template that is easy to manipulate while still being
good representation of the bispectrum shape of the π̇ (∂iπ )2

operator. For example, it is very useful to have a template that is
separable in k1, k2, k3. Finding such templates can be achieved by
the introduction of the cosine between two shapes. First, because
of scale invariance we can always rewrite the shape function as

S
(
k1
k3
,
k2
k3
, 1
)

≡ S(x1, x2, 1) ≡ S(x1, x2) . (30)

Organizing the momenta as k1 ≤ k2 ≤ k3, the conservation of
momentum amounts to requiring 0 ≤ x1 ≤ 1 and 1−x1 ≤ x2 ≤ 1:
this region V is shown in Fig. 3. Given two shapes S1, S2, one can
check that the integral

S1 · S2 =

∫
dx1dx2 S1(x1, x2) S2(x1, x2) (31)
V
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Fig. 4. Left panel – Equilateral template of Eq. (33), which peaks in the equilateral configuration. Right panel – Orthogonal template. We see that it peaks in the
folded configuration.
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I
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defines a scalar product. Then, the cosine
S1 · S2

√
(S1 · S1)(S2 · S2)

(32)

uantifies how much two shapes are similar [3,4]. It is possible
o check that the shape

equil(k1, k2, k3) ∝

(
k1
k2

+5 perms.
)

−

(
k21
k2k3

+2 perms.
)

−2 (33)

as strong overlap with the shape of π̇ (∂iπ )2. This is the equilat-
eral template, which we plot in Fig. 4.

The cosine was originally introduced to study how much two
different templates could be distinguished in CMB or large-scale
structure data. Given a bispectrum shape, one can build an opti-
mal estimator for its fNL. Then, if two shapes have a small scalar
product, the optimal estimator for one shape will be vary bad
in detecting non-Gaussianities coming from the other, and vice
versa (see Ref. [3] for more details). As such, one could modify the
definition of cosine to account for the noise and window function
of a given CMB or large-scale structure experiment.

For a comprehensive search, we need a basis of shapes onto
which one can project the bispectra of the EFTI [4]. For P(X, φ)
theories these are the bispectra from π̇ (∂iπ )2 and from π̇3, whose
fNL is

f π̇
3

NL =
10
243

(
1 −

1
c2s

)(
c̃3 +

3
2
c2s

)
. (34)

he orthogonal shape was introduced for the purpose of obtaining
his projection. We plot it in the right panel of Fig. 4.

The orthogonal template takes its name from the fact that it
as zero overlap with the equilateral one, Sequil ·Sortho = 0. So we

can think of it as a second basis vector in the infinite-dimensional
space of shapes. Via the cosine we can then obtain f π̇ (∂iπ )

2

NL and f π̇
3

NL
in terms of f equilNL and f orthoNL .

Constraints on f equilNL and f orthoNL can then be translated into
constraints on the speed of sound and the c̃3 parameter using
Eqs. (29), (34). This is what has been done with CMB data from the
WMAP and Planck satellites [36], and recently from large-scale
structure data from the BOSS galaxy survey (see discussion and
references in Section 3.12).

Before concluding this section, let us point out a theoretically
motivated target for f equilNL and f orthoNL , following Refs. [5,6,53]. These
observables are directly related to the cutoff of the EFT: larger fNL
means lower strong coupling scale. As discussed in Section 2.6,
the UV completion of the EFTI has a qualitatively different flavour
when Λ⋆ ≪ fπ , and in particular when cs ≪ 1. Given the
predictions Eq. (29) and Eq. (34) we see that a natural target
is f equilNL , f orthoNL ∼ 1. Much effort has been, and continues to be,
devoted to reaching this target.
7

Fig. 5. Local template. It diverges as 1/x1 in the squeezed limit.

.8. Local non-Gaussianity and consistency relations

There is another important type of non-Gaussianity, the so-
alled non-Gaussianity of the local type. Its template is

local(k1, k2, k3) =
1
3

k21
k2k3

+ 2 perms. (35)

t derives its name from the fact that it comes from a non-
inear local correction to a Gaussian variable: ζ (x) → ζ (x) +

ζ 2(x). Importantly, in Fig. 5 we see that it peaks in the squeezed
configuration, so it is very distinguishable from equilateral and
orthogonal non-Gaussianity.

Local non-Gaussianity vanishes in single-clock inflation. This
is a consequence of the fact that in single-clock inflation the
squeezed limit of the bispectrum is uniquely fixed in terms of
the power spectrum by the consistency relation [7,8,44]:

lim
k1→0

Bζ (k1, k2, k3) =

[
−

d ln k3SPζ (kS)
d ln kS

+ O
(
k2L
k2S

)]
Pζ (kL)Pζ (kS) ,

(36)

where we have defined

kL = k2 + k3 , kS =
k2 − k3

2
. (37)

This result can be derived in the following way. When the long
mode k1 goes outside the horizon, the associated perturbations
in ADM variables N and N i defined in ζ gauge go to zero. In this
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imit the metric becomes

s2 ≈ −dt2 + a2(t)e2ζ (x)δijdxidxj , (38)

here we used that ζ becomes a constant. The evolution of
hort-wavelength modes is then the same as in an unperturbed
LRW Universe, but with a local scale factor a2(t)e2ζ (x). Hence the
orrelation between the long mode and two short modes is given
y a scale transformation as in Eq. (36). Then, we can say that
ingle-clock inflation does not produce local non-Gaussianity: if
e measure the squeezed limit of a three-point function, we do
ot learn anything more than what we would learn from measur-
ng the two-point function. In other words, the long-wavelength
ield ζ (x) can be locally removed from the metric by a large
auge transformation given by Eq. (36), and therefore it is locally
nobservable.
Consistency relations for single-field inflation have been an

ctive area of study in the past decade. The main result given
n Eq. (36) has been generalized for higher-order correlation
unctions and including soft tensor modes [50,54–57], as well as
he case of multiple soft limits [58,59].

The same line of reasoning used to derive inflationary consis-
ency relations can be extended from the horizon exit to re-entry
f the long modes. This results in consistency relations for cos-
ological observables, that all take the form of Eq. (36). The more

amous are the so-called consistency relations for large-scale
tructure [60–66], but similar results have been obtained for CMB
nisotropies and CMB spectral distortions [67–69].
At phenomenological level, consistency relations play a very

mportant role. They imply that any detection of local non-
aussianity, i.e. a violation of the consistency relations, would
ule out all models described by the single-field EFTI. This is why
ost of the current experimental effort, as far as the physics
f the primordial Universe is concerned, is focused on local
on-Gaussianity.

.9. Beyond single-clock inflation

Presence of additional degrees of freedom can significantly
odify the predictions of inflation. For instance, inflationary
odels with extra massless fields (often called ‘‘multifield mod-
ls’’) can generate local non-Gaussianity [70–74]. Therefore, they
an violate the single-field consistency condition Eq. (36).
In fact, new degrees of freedom even if massive leave their

mprints in the squeezed limit of non-Gaussian correlators [75–
8]. For instance, the exchange of a scalar field of mass m leads
o a squeezed-limit behaviour proportional to

1
k3Lk

3
S

(
kL
kS

) 3
2 +iµ

+ c.c. with iµ =

√
9
4

−
m2

H2 . (39)

his becomes similar to the local non-Gaussianity as m2/H2
→ 0,

while there is a distinct oscillatory behaviour when m/H > 3/2.
If the exchanged particle had a nonzero spin s, then the squeezed
limit correlator would also have an angular dependence Ps(k̂L ·

k̂S). Hence by investigating the squeezed-limit of inflationary
correlators, we are effectively doing spectroscopy of that era.

Of course, these additional degrees of freedom can be included
in the EFTI to reproduce the known results, but more importantly
to explore the full range of possibilities that are consistent with
the symmetries. Some works along these lines are [79–84].

To highlight an example, let us recall the Higuchi bound:
massive unitary representations of de Sitter group with nonzero
spin cannot be arbitrarily light: m2 > s(s− 1)H2 [85]. This bound
suppresses the strength of the squeezed-limit signal coming from
spinning degrees of freedom (see Eq. (39)). However, even if
inflationary spacetime is very close to de Sitter, the Higuchi
8

bound can be strongly violated because dS isometries are broken
during inflation (there are preferred time slices). EFT of Inflation
helps systematically study this possibility, which indeed leads to
phenomenologically interesting signatures [84].

Constraints on primordial non-Gaussianity have been so far
driven by CMB experiments, but to improve these constraints
we should explore other probes. Chief among these probes is
large-scale structure. In order to obtain robust constraints on
primordial non-Gaussianity from large-scale structure, however,
we must have an accurate theoretical description of nonlinearities
from gravitational collapse, since these act as a ‘‘noise’’ for the
extraction of the primordial signal. This is where the EFT of
LSS, another success in the application of effective field theory
techniques to cosmology, comes into play.

3. Effective field theory of large-scale structure

The density fluctuations seeded during inflation can be ob-
served through perturbations of the CMB and large-scale struc-
ture. Large-scale structure is the distribution of matter on cos-
mological scales at low redshifts. This distribution is measured
through various channels: weak lensing of the CMB and galaxies,
spectroscopic galaxy surveys, Lyman-α intensity absorption pat-
terns etc. In order to get more information about our Universe one
has to establish the connection between these observables and
fundamental properties of the Universe. To that end, it is desirable
to analyse large-scale structure data just like the CMB, where
one uses linear cosmological perturbation theory to extract cos-
mological parameters from the observed spectra of temperature
and polarization fluctuations. However, the large-scale structure
observables are somewhat different from the CMB ones. The low-
redshift Universe is strongly affected by gravitational instability
and complex galaxy formation physics, neither of which can
be adequately modelled within linear cosmological perturbation
theory. On the other hand, the number of modes available for
measurements in large-scale structure experiments is nominally
much larger than that of the CMB because the matter distribution
is essentially three-dimensional. Potentially, this may lead to very
precise measurements of cosmological parameters provided that
large-scale structure can be accurately modelled.

The effective field theory of large scale structure [9,10] and
its spin-offs [86–88] are theoretical tools for accurate analytic
calculations of non-linear structure formation in our Universe.
The main object of this theory are small fluctuations in the num-
ber density of biased tracers, such as galaxies, expanded around
homogeneous and isotropic background given by a cosmological
model at hand. The cutoff of this theory is given by the scale
where the gravitational collapse become very nonlinear or where
the impact of astrophysical processes involving baryons is sig-
nificant. Below this cutoff, the evolution and interactions of the
long-wavelength density fluctuations are fixed by gravity as the
only long-range force and symmetries of the system. Remarkably,
this allows for the description of structure formation on large
scales in terms of a weakly-coupled theory, even when the details
of complicated baryonic physics governing galaxy formation are
unknown. In this way the EFT of LSS provides a direct link be-
tween the (non)-Gaussian initial conditions set by inflation and
the late Universe observables. In what follows we will review the
current state of this field.

3.1. Fluid description of the large-scale structure

In order to illustrate the main principles of the EFT of LSS, we
will focus on a simple example where the Universe is dominated
by collisionless non-relativistic particles. Such example is already

very generic. These particles can represent dark matter, small
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o

ark matter halos (as is often the case in numerical N-body
imulations) or they can be any other compact objects, such
s primordial black holes. Since the gravitation collapse takes
lace sufficiently inside the Hubble horizon, it essentially occurs
n the Newtonian non-relativistic regime. In this regime, the
xact description of a system of N identical particles of mass m

which interact only gravitationally is given by the Vlasov equation
for the total phase-space probability distribution function (PDF)
f (t, p, x),

∂ f
∂t

+
pi

ma2
∂ f
∂xi

− m
∑

a,b;a̸=b

∂φa

∂xi
∂ fb
∂pi

= 0 , (40)

here φa and fb are the single-particle gravitational potentials
and phase-space densities, and f =

∑N
a=1 fa. This setup allows us

to obtain the equation of motion for the long-wavelength degrees
of freedom by explicitly integrating out the UV modes. This is in
practice achieved by coarse-graining the Boltzmann equation by
means of a low-pass filter with some cutoff scale Λ and taking
he first two moments of the resulting filtered phase-space PDF,
hich yields [9,10]

τ δ + ∂i[(1 + δ)vi] = 0 ,

τv
i
+ Hvi + ∂ iΦ + vj∂jv

i
= −

1
aρ
∂jτ

ij ,

∆Φ =
3
2
H2Ωmδ .

(41)

In these equations we used conformal time dτ = dt/a, Ωm is the
time-dependent matter density fraction which enters the Fried-
mann equation, H = ∂τa/a is the conformal Hubble parameter,
Φ is the gravitational potential and δ ≡ δρ/ρ̄ and vi are the
filtered density contrast and peculiar velocity fields, constructed
by coarse-graining the density and momentum fields,

ρ ≡
m
a3

∫
d3p f (p, x) ,

vi

ρ
≡

1
a4

∫
d3p pif (p, x) . (42)

s argued in [9], consistent truncation of the infinite hierarchy
f moments of the Boltzmann equation is possible as long as the
cales of interest are larger than the effective mean free path of
ark matter particles. Crucially, on the right hand side of the Euler
quation in (41) we see the appearance of an effective stress-
ensor τ ij, which is generated by integrating out the short-scale
fluctuations. As we will argue shortly, this effective stress-tensor
can be expanded in the powers of spacial derivatives and long-
wavelength density fields on large scales. Therefore, the fluid
description of our Universe is possible as long as the following
condition is satisfied
k
kNL

≪ 1 , (43)

here k is a wavenumber of density perturbations and k−1
NL ∼

Mpc (at redshift zero) is the so-called nonlinear scale for
hich the variance of the density field becomes of order unity:
2π2)−1Plin(kNL)k3NL ≈ 1.

Eq. (41) is the equation of motion for the long-wavelength
egrees of freedom. We have obtained it starting from a sim-
le exact description of a self-gravitating system and explicitly
ntegrating out the UV modes. However, as in any other EFT,
he same equations of motion can be derived identifying the
elevant long-wavelength degrees of freedom and imposing all
ymmetries of the system [89], even when the UV model is
nknown. Therefore, the long-wavelength description given by
q. (41) is universal, i.e. by construction it covers all possible
icroscopic scenarios of structure formation. This description
llows one to capture effects of unspecified UV physics in a
ystematic and robust fashion. This is not surprising, given that
9

the EFT decoupling principle guarantees that the impact of any UV
physics can be captured by effective operators constructed from
the long-wavelength degrees of freedom only.

3.2. Stress tensor and (non–)locality in time

Filtering short-scale modes produces an effective stress–energy
tensor in the Euler equation Eq. (41). This tensor depends only
on the long-wavelength degrees of freedom, i.e. the smoothed
density contrast and peculiar velocity. These two fields contain
deterministic and stochastic components. The deterministic com-
ponent is correlated with the long-wavelength fields, while the
stochastic is not. However, its statistical properties are strongly
constrained by symmetries, i.e. the presence of the stochastic
component still allows the theory to be predictive.

On sufficiently large scales the non-linear evolution is negligi-
ble, and hence these quantities are small. Thus, the deterministic
part of the effective stress-tensor can be Taylor-expanded in
powers of the wavenumbers and the large scale fields and spa-
tial derivatives. The most general expression consistent with the
rotation invariance and the equivalence principle is given by [90]

1
aρ
∂jτ

ij
=

∫
dτ ′ K (τ , τ ′) ∂ iδ(xfl[x, τ ; τ ′

], τ ′) + · · · , (44)

here K (τ , τ ′) is a time propagator, xfl[x, τ ; τ ′
] is the position

f the fluid element (x, τ ) at time τ ′. We emphasize that the
ffective stress tensor depends on fields evaluated on the past
ight-cone, i.e. the EFT of LSS is in general nonlocal in time [91]. In
onventional effective field theories the time scale of short modes
s faster than the time scale of long-wavelength degrees of free-
om, in which case their evolution can be approximated as quasi-
nstantaneous, i.e. quasi-local in time. However, in the context of
SS both short and large scales evolve on the same characteristic
imescale H−1. Nevertheless, in perturbation theory the fields in
he right hand side of Eq. (44) can be Taylor-expanded around
he fluid trajectory such that the theory can be reformulated in
erms of local-in-time operators. Thus, the effective stress tensor
t next-to-leading order is given by [10,90,92–94]

1
aρ
∂jτ

ij
= −c2s ∂

iδ +
c2v
H
∂ i∂kv

k
− c1∂ iδ2

− c2∂ i(sklskl) − c3sij∂jδ −
1
aρ
∂jτ

ij
stoch. ,

(45)

here c2s , c
2
v , c1,2,3 are time-dependent Wilson coefficients, and

e have introduced the tidal tensor as

ij =
2

3ΩmH2

(
∂i∂jΦ −

1
3
δij∆Φ

)
. (46)

The general basis of counterterms at higher orders involves con-
vective derivatives [92,95,96], which come from expanding xfl in
Eq. (44). τ ijstoch. is the stochastic contribution which is uncorrelated
with δ. It is local and analytic in space and obeys the equivalence
principle, as well as the mass and momentum conservation. At
the lowest order it is given by

∂i

[
1
aρ
∂jτ

ij
stoch.

]
= J0 , ⟨J0(k)J0(k′)⟩ ∝

(
k
kNL

)4

. (47)

.3. Loop expansion

Plugging (45) into (41) we obtain effective equations of motion
f the matter fluid. At linear order in δ, vi it solved by the linear

growing mode

δ = −(Hf )−1∂ vi = D(τ )δ (k) , (48)
(1) i (1) 0
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here δ0(k) is the initial density field and D(τ ) is the linear
growth factor normalized to unity at zero redshift, f ≡ d lnD/d ln a
is the logarithmic growth factor. The initial conditions for struc-
ture formation are set after recombination, such that δ0(k) is a
nearly Gaussian random field, whose properties are encoded in
the linear power spectrum Plin:

⟨δ0(k)δ0(k′)⟩ = (2π )3δ(3)(k + k′)Plin(k) , (49)

such that at leading order (in linear theory) we have

⟨δ(1)(τ , k)δ(1)(τ , k′)⟩ = (2π )3δ(3)(k + k′)D2(τ )Plin(k).

To solve Eq. (41) it is convenient to work in the EdS approxima-
tion, and to split the fields of interest δ and θ ≡ −(Hf )−1∂iv

i

into two parts.4 One part is obtained upon formally setting the
effective stress tensor to zero, while the other part will include
corrections due to the presence of this tensor. This way the total
perturbative solution for the matter density can be written as

δ = [δ(1) + δ(2) + δ(3) + · · · ] + δc(1) + · · · , (50)

and similarly for the velocity divergence θ . The δ(n) corrections
are given by

δ(n)(τ , k)

= Dn(τ )
∫
q1...qn

Fn(q1, . . . , qn)δ(3)
(

n∑
i=1

qi − k

)
δ0(q1)...δ0(qn) ,

(51)

where Fn(q1, . . . , qn) are certain convolution kernels whose form
is dictated by the non-linear structure of the pressureless fluid
equations. Explicitly for the first three kernels we have:

F1(q) = 1 ,

F2(q1, q2) =
5
7

+
(q1 · q2)

2

(
1
q21

+
1
q22

)
+

2
7
(q1 · q2)2

q21q
2
2

.
(52)

he first correction generated by the stress-tensor is given by

c
(1) = −γ k2δ(1)(τ , k) , γ ≡ −

1
D(a)

∫
da′D(a′)Gδ(a, a′)(c2s + c2v ) ,

(53)

where Gδ(a, a′) is the density field Green’s function of the lin-
earized fluid equations [10]. The two-point function of the matter
field including leading order non-linearities (i.e. one-loop cor-
rections) is given by PNLO = D2(τ )Plin(k) + P1−loop(τ , k) with

P1−loop(τ , k) = 2D4(τ )
∫
q
F 2
2 (k − q, q)Plin(|k − q|)Plin(q)

+ 6D4(τ )Plin(k)
∫
q
F3(k,−q, q)Plin(q)

+ −2γ (τ )k2 D2(τ )Plin(k) + cstochk4 .

(54)

4 In cosmological perturbation theory only the longitudinal part of vi has a
growing mode. The transverse part decays in linear theory but gets excited at the
non-linear level. In principle, it can be taken into account, but its contribution
is negligible for most applications [89].
 o

10
This correction admits a representation in terms of Feynman
diagrams shown in Fig. 6.

The split of the perturbative solution (50) is useful for the
EFT power counting. On mildly-nonlinear scales the linear power
spectrum can be approximated as a power-law Plin = (k/kNL)n
with n ≈ −1.5 [89,98]. Using the approximate Lifshitz symmetry
the dimensionless power spectrum can be written as,

∆2(k) =

(
k
kNL

)n+3
(
1 +

(
k
kNL

)n+3 [
a1 + a2 ln

k
kNL

])

+ bc

(
k
kNL

)n+5

+ bstoch

(
k
kNL

)7

+ · · · ,

(55)

here the first line contains one-loop corrections produced by
he intrinsic non-linearity of the fluid equations, while the sec-
nd line displays the terms coming from the deterministic and
tochastic parts of the effective stress tensor. The two-loop cor-
ections scale as

2
2−loop(k) ∼

(
k
kNL

)2(n+3)

, (56)

hich indeed confirms that at NLO we only need to keep the
ffective operators with Wilson coefficients c2s and c2v . Note, how-
ver, that the actual power spectrum of our Universe is not a
ower-law. In particular, it has the BAO wiggles, which break the
aive power counting in k/kNL and require a special treatment
ithin a procedure called IR resummation.

.4. UV renormalization and IR resummation

The UV limit of the one-loop integral in Eq. (54) reads

1−loop(τ , k)
⏐⏐⏐
UV

= −
61

630π2D
4(τ )k2Plin(k)

∫
k≪q

q2dq
Plin(q)
q2

. (57)

At face value, UV modes couple to modes with mildly-nonlinear
wavenumbers k ∼ 0.1 h/Mpc through the variance of the short
mode displacement field. We see that this integral diverges for a
generic initial power spectrum. This divergence is exactly can-
celed by the Wilson coefficient γ (τ ), which ensures that the
physically observed quantities such as the density field n-point
correlation functions are finite. Their dependence on short-scale
physics is captured by the finite part of γ (τ ), which can been
accurately measured in N-body simulations [10,97,99,100] or can
be inferred from the data.

The IR limit of the one-loop integral reads [101,102]:

P1−loop(τ , k)
⏐⏐⏐
IR

= D4(τ )
∫
q: q≪k

Plin(q)
(k · q)2

q4
(
e−q·∇k′ − 1

)
Plin(k′)

⏐⏐⏐⏐
k′=k

.
(58)

If the linear power spectrum did not have any feature i.e. Plin =

smooth, such that ∂kPsmooth(k) ∼ (1/k)Psmooth(k), the differential
perator above could be Taylor-expanded and we would find that
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he IR modes couple to a mildly-nonlinear mode k though the
variance of the large-scale density field [64,103–106],

P1−loop, smooth(k)
⏐⏐⏐
IR

∼ Psmooth(k)
∫
q≪k

q2dq Psmooth(q) . (59)

This coupling is rather weak. However, Plin contains BAO wiggles,
whose coupling to IR modes is enhanced. Approximating Plin =

Psmooth + Pwiggly with Pwiggly ∝ cos(krBAO), (rBAO ≃ 110 h−1Mpc is
the comoving acoustic horizon at decoupling) we obtain

P1−loop, wiggly(τ , k)
⏐⏐⏐
IR

= −Σ2k2D2(τ )Pwiggly(k) (60)

≡ −

[
D2(τ )
6π2

∫
q≪k

dqPlin(q) (1 − j0(qrBAO) + 2j2(qrBAO))
]

× k2D2(τ )Pwiggly(k) .

he integralΣ2 receives contributions from modes all the way up
to k, and it is numerically close to the large-scale variance of the
displacement field, which turns out to be quite large, i.e. k2Σ2

∼

O(1) at z ∼ 0 for modes of interest k ∼ 0.1 h/Mpc. Hence,
the higher order soft loop corrections to (60) are not negligible
and must be resummed for the correct description of the BAO.
This procedure is called ‘‘IR resummation’’ [11,101,102,107–111].
It was originally formulated within the Lagrangian effective field
theory, but shortly it was shown that IR resummation can be
performed directly at the diagrammatic level within the Eulerian
EFT [102,110]. At zeroth order in hard loops (with q ≳ k) one has

PIR−res, wiggly(τ , k) = e−k2Σ2
(D2(τ )Pwiggly(k)) . (61)

3.5. Flavours of the EFTs

It is important to stress that at the technical level, there
are several different ways to realize the EFT of LSS ideas. The
original proposal of the EFT in Eulerian fluid variables that we
have discussed so far is plagued by the large IR contributions
that require IR resummation. IR resummation in terms of Eulerian
fluid variables is complicated by the presence of the spurious
IR enhancements in the loop diagrams. This motivated the de-
velopment of the Lagrangian EFT of LSS [86,88,108,112–115].
The Lagrangian EFT of LSS also partially resums some of the UV
contributions. From the computation efficiency point of view,
however, it is still beneficial to work in Eulerian space. In this
case it is still possible to perform a systematic IR resummation,
as discussed in Section 3.4, which is particularly manifest within
a path integral formulation of the EFT of LSS known as Time-
Sliced Perturbation Theory [87,102,110,116]. All these different
techniques agree within the overlapping domains. This reflects
the uniqueness property of the EFT: the predictions for physical
processes do not depend on a particular formulation, once the
results are compared to the same order in appropriate small
parameters. In other words, at a given order in relevant IR and UV
small parameters, the difference between the EFT formulations
appears only at higher orders.

3.6. Biased tracers

So far we have discussed the clustering of pure matter. The
galaxy density field observed in cosmological surveys is a biased
tracer of the underlying dark matter field. The relationship be-
tween them is given by a past light-cone integral over local long

wavelength perturbations of matter density, velocity, and tidal e

11
fields [95,117–121],

δg =

∫ τ

dτ ′H(τ ′)
[
β1(τ , τ ′)δ(τ ′, xfl) + β2(τ , τ ′)H−1∂iv

i(τ ′, xfl)

+ β3(τ , τ ′)δ2(τ ′, xfl)
+ β4(τ , τ ′)R2

∗
∂2xflδ(τ

′, xfl) + β5(τ , τ ′)H−4(∂i∂jφ)2(τ ′, xfl)

+ β6(τ , τ ′)ϵ(τ ′, xfl) + · · ·

]
,

(62)

where ϵ is a random field uncorrelated with δ, which captures
the stochasticity of the tracer, βi are time-dependent kernels
with characteristic timescale H−1 and order-one amplitudes,
i.e. ∂τβi ∼ H, R∗ is the typical length scale of the object. Just
like in the case of the effective stress-tensor of matter that we
discussed above, the apparent non-locality in time in Eq. (62) can
be removed in perturbation theory by Taylor-expanding around
the fluid trajectory, which allows one to rewrite the bias relation
as a local-in-time expression [118]5

δg = b1δ +
b2
2
δ2 + bG2G2 + b∇2δ∇

2δ + bΓ3Γ3 + ε + · · · , (63)

where ε is the stochastic field uncorrelated with the long-scale
perturbations, and we have introduced new Galileon operators

G2(Φ) ≡ (∂i∂jΦ)2 − (∆Φ)2 , Γ3 ≡ G2(Φ) − G2(Φv) , (64)

Φv is the velocity potential), and ‘‘...’’ denote both the operators
hich do not contribute to the one-loop power spectrum af-
er renormalization and higher order operators. Free parameters
1, b2, bG2 , b∇2δ, bΓ3 are time-dependent Wilson coefficients. In

the cases where the bias tracers are galaxies or dark matter halos,
these bias parameters, up to quartic order, have already been
detected in simulations, see e.g. [120,125–129].

Importantly, the bias expansion has a new UV scale R∗, which
can be associated with the typical size of the collapsed object
[95,117,120,128]. For halos this has the order of magnitude of
the Lagrangian radius of the overdensity clump that collapses
into a host halo. For the line emission this has the order of the
Jeans scale of the diffuse gas [120,130]. For galaxies R∗ depends
both on the host halo properties and on the details of galaxy
formation, e.g. the ambient radiation field and thermal heating
of intergalactic medium.

Another important difference compared to the dark matter
case is that the power spectrum of the stochastic field ϵ does not
fall off on large scales as in Eq. (47), but it is rather constant as
k goes to zero. This is a consequence of the fact that for biased
tracers mass and momentum are not conserved, given that each
galaxy is counted the same, regardless of the mass of the host
dark matter halo. This constant power spectrum of the stochastic
field is related to the well known Poisson noise for biased tracers.

3.7. Redshift-space distortions

When galaxy surveys map the Universe they assign the radial
position of galaxies according to their redshifts. The observed
galaxy redshift is contaminated by peculiar velocity projections
onto the line-of-sight, which gives rise to redshift-space distor-
tions (RSD). From the EFT point of view, RSD boil down to the

5 Strictly speaking, it is possible to rewrite the bias expansion in the local-
n-time form only in the so-called Einstein-de-Sitter approximation for the time
volution [120], which is O(0.1 ÷ 1)% accurate for redshifts relevant to current
nd future surveys. For works dealing with exact time dependence, see for
xample [122–124].
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E

Fig. 7. Caption edited for context: Ratio of the total baryon-plus-dark-matter and dark-matter-only lensing potential power spectra Cψ,Aℓ /Cψ,DM only

ℓ using the two-loop
FT predictions. The green band is the projected error for CMB-S4 [135], the gray band is the estimated theory error coming from the ‘high-k approximation’ described

in [134], and the teal band is the estimated error coming from the three-loop terms in the EFT. The dashed blue line is the result of direct numerical integration
of the outputs of the simulations. We see that CMB-S4 will be highly sensitive to the effects of baryons on the lensing potential, and that the two-loop EFT can
reliably capture these effects up to ℓ ≲ 2000, and actually even beyond.
Source: From [134].
following velocity-dependent coordinate transformation

δ(z)(τ , k) = δ(τ , k)

+

∫
d3x e−ik·x

(
exp

[
−i

kz
H
vz(τ , x)

]
− 1

)
(1 + δ(τ , x)) ,

(65)

where z denotes the line-of-sight direction and we have em-
ployed the plane-parallel approximation valid on short scales.
Taylor expanding the exponent in the RSD mapping and coarse
graining the resulting composite operators involving various in-
sertions of velocity fields one obtains a set of new Wilson co-
efficients which properly renormalize the UV sensitivity of the
redshift-space density. Thus, the redshift-space mapping is an
additional source of non-linearity which can be consistently taken
into account within the EFT [11,131,132].

3.8. Baryons in the EFT of LSS

One particularly compelling advantage of the EFT framework
for LSS is that it is possible to include analytically the effects
of small scale baryonic, or star-formation, physics on large-scale
clustering [133,134]. In this approach, one treats the CDM and
baryons as separate fluids coupled through gravity, each with its
own set of EFT parameters which capture the UV properties of
the system. The functional form of these effects on large scales,
i.e. as a function of k, is fixed by symmetries and organized in
a controlled derivative expansion, just like the pure CDM case
described above. For predictions on large scales, this can be a
significant advantage over relying on N-body simulations that
include baryonic processes. This is because, unlike the case for
pure CDM, we do not know a priori the short-scale baryonic
physics that should be included in the simulations.

As an example, [134] used this approach to compute the CMB
lensing potential and compare with a numerical simulation (see
Fig. 7), which shows quite good agreement up to ℓ ≈ 2000. This is
an important observable because it can be used to probe neutrino
masses in CMB-S4, and much of the constraining power for a mass
sum of less than 120 MeV comes from ℓ ≲ 2100 [135].

3.9. EFT of LSS at the field level

So far we have been focusing on calculation of correlation
functions. However, the EFT of LSS naturally predicts the full
non-linear density field, given some realization of the initial

conditions. This can be exploited in two ways.

12
First, the field-level predictions provide a natural way to com-
pare the theory to numerical simulations. If they share the same
initial conditions, the comparison can be done without paying the
price of cosmic variance. Furthermore, such comparison is much
more stringent since one has to fit all Fourier modes and not only
the summary statistics. This has been exploited in the past to
provide the first reliable measurements of the EFT parameters
and the nonlinear scale [136,137] as well as for the detailed
comparison of theory and simulations for biased tracers in real
and redshift space [138,139].

Second, these methods can be used to construct the field-
level EFT likelihood in the perturbative forward modelling. Such
approach aims at measuring cosmological parameters from the
full nonlinear field, without using summary statistics. A lot of
progress has been made recently towards achieving this goal, see
for instance [140–148].

Finally, some progress was made recently in fixing the form of
galaxy correlation functions using only symmetries of the system
and the equivalence principle, without explicitly relying on the
equations of motion. This is inspired by the similar cosmological
bootstrap approach to derive the form of inflationary correlators
from symmetries and general principles such as locality and
unitarity. The natural starting point for this ‘‘LSS bootstrap’’ is
at the field level, where various theoretical constraints can be
straightforwardly imposed [149,150].

3.10. Extensions

Other important extensions of the EFT include the incor-
poration of non-Gaussian initial conditions [119,132,151,152],
IR-resummation of primordial oscillating features [116,153,154],
and an accurate treatment of massive neutrinos. The later is
a conceptually challenging task, as the neutrino free-streaming
scale lfs is significantly longer than the non-linear scale k−1

NL .
However, massive neutrinos can be split into ‘‘fast’’ and ‘‘slow’’
ones, which allows to identify a small parameter in the regime
k > l−1

fs and systematically compute their effect on dark matter
clustering [155,156].

Another important task is to account for selection effects,
which may be present in realistic surveys. The effective operators
capturing these effects at leading orders are given in Ref. [157].
The extensions for CMB lensing, galaxy lensing, and intrinsic
alignments are worked out in Refs. [158,159]. The incorporation
of additional degrees of freedom associated with dark energy and
modified gravity was done in Refs. [160–165] and is described in

more detail in Section 4.
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Table 1
Available EFT calculations for the two-, three-, and four-point functions of various tracers.
Type Power spectrum Bispectrum Trispectrum

Matter in real space 3-loop 2-loop 1-loop
Biased tracers in real space 1-loop 1-loop –
Biased tracers in redshift space 1-loop 0-loop –
t

3.11. State-of-the-art computations

The state-of-the-art EFT calculations that have been
arried out up to now are listed in Table 1, see Refs. [90,94,
9,106,166–172]. These calculations must be extended to higher
oop orders and higher n-point functions in order to use more
bserved modes in cosmological data analyses. The consistent
nclusion of massive neutrinos has been done for the one-loop
ower spectrum and tree-level matter bispectrum [155,156]. The
esults of IR resummation formally exist for an arbitrary n-point
unction and for an arbitrary number of hard loops both in real
nd redshift spaces and for a generic biased tracer [110].
It is worth mentioning that the computation of EFT loop cor-

ections requires efficient numerical tools to evaluate perturba-
ion theory convolution integrals. These techniques are necessary
n order to apply the EFT calculations to observational data.
FTLog is one of such techniques [173–175]. It has been worked
ut to one-loop order for biased tracers in redshift space [176],
or the two-loop power spectrum and the one-loop bispectrum
or matter in real space [175], and for BAO resummation in [111].

Finally, combining all these efforts, a several independent
odes have been written with the aim at providing efficient and
eliable state-of-the-art EFT computations [14,176,177].

.12. Applications to current and future data

The EFT of LSS allows one to take advantage of the cosmo-
ogical information encoded in the full shape of the observed
alaxy power spectrum. This means a consistent analysis of the
arge-scale structure data that includes fitting fundamental cos-
ological parameters directly from the power spectrum shape,
s it is routinely done in cosmological analyses of the CMB.6
his analysis has been done for the first time in Refs. [12,13],
hich showed that galaxy power spectrum measurements from
he Baryon acoustic Oscillation Spectroscopic Survey (BOSS) data
elease 12 [179] is a powerful source of cosmological information.

EFT-based analyses of the BOSS data yield the CMB-independen
easurements of the parameters of the base ΛCDM model and

ts extensions [180]: the Hubble constant H0, the current matter
ensity fraction Ωm, the primordial power spectrum amplitude
s and tilt ns, the mass fluctuation amplitude σ8, as well as
onstraints on the spatial curvature of the Universe Ωk, and the
ark energy equation of state parameters [14,177,181–188]. Re-
arkably, many of these parameters are measured with precision
imilar to that of the Planck CMB data results, e.g. H0 and Ωm,
ee Fig. 8. Besides, combining the EFT-based full-shape BOSS
ikelihood with the CMB data has lead to new constraints on the
otal neutrino mass, effective number of relativistic degrees of
reedom [189]. Moreover, the new BOSS likelihood allowed one to
erive new constrains on certain models addressing the so-called
‘Hubble tension’’. The use of the EFT-based likelihood was crucial
n order to show that such models are ruled out by the current
arge-scale structure data [190,191].

In addition, another exciting development has been the appli-
ation of the EFT of LSS to constrain primordial non-Gaussianities

6 This can be contrasted with the nomenclature of some previous works,
hich used the term ‘‘full shape’’ for an analysis which studies how a par-
icular fixed power spectrum template gets distorted by the Alcock–Paczynski
ffect [178].
13
(see Section 2.7) [15,16], including the first-ever bounds on single-
field primordial non-Gaussianity from galaxy surveys. Local-type
non-Gaussianity, typical for multifield models, has been con-
strained using the scale-dependent bias of the power spectrum
in, for example, [192–194].

The sensitivity forecasts for ongoing experiments such as Eu-
clid and DESI suggest that the application of the EFT to these
surveys can lead to significant improvements in cosmological
parameter measurements [195]. This includes a 5σ -detection of
the sum of neutrino masses and 0.1% measurement of the Hubble
constant from the combination of the Planck CMB and Euclid/DESI
data. Also, recent constraints on non-Gaussianity suggest promis-
ing and competitive results in the future, given the volume of
ongoing state-of-the-art surveys and the ability of EFT formalism
to provide more precise computation of relevant observables.
These conclusions are based on a realistic analysis including
marginalization over all necessary Wilson coefficients and data
cuts consistent with the theoretical error [196], which is deter-
mined by calculations that are available at present. The results
are expected to improve with more precise calculations and with
better priors on Wilson coefficients, which can be obtained from
high fidelity numerical simulations [197]. Indeed, these types of
analyses, and their higher-precision versions of the future, were
one of the main motivations for the development of the EFT of
LSS.

Looking beyond this decade to the next generation of high-
redshift spectroscopic surveys, an increase by another order of
magnitude in the number of observed galaxies is expected (for
example, see the snowmass white paper on opportunities of high-
redshift and large-volume future surveys [198] and references
therein). In this coming era of the ultimate precision, the EFT
methods discussed here will be even more valuable.

4. Effective field theory of dark energy

Observationally speaking, Einstein’s theory of General Relativ-
ity (GR), as far as we can tell, successfully describes gravitational
and cosmological phenomena over an enormous range of length
and time scales. For example, GR describes small effects in our
Solar System, such as the precession of the perihelion of Mercury
and the bending of light around the Sun, it describes large effects
like the expansion of the Universe, both at early and late times, it
describes gravitational-wave emission by binary inspirals, and it
describes black holes. The broad applicability of GR, however, is
(most likely) not simply a convenient accident. GR is the unique
low-energy Lorentz invariant theory of an interacting massless
spin-2 particle (see e.g. [199,200]), and gauge invariance of the
action implies that all other fields couple to gravity with the same
strength (this is called the equivalence principle, see e.g. [201]).
These facts make the predictions of the universal, long-range
force quite robust.

The standard cosmological paradigm, describing the large-
scale evolution of the Universe from the moments after the Big
Bang until the current time, is GR with a cosmological constant Λ
coupled to a fluid-like system of cold dark matter (CDM) particles,
called ΛCDM. This model so far successfully describes cosmolog-
ical phenomena such as the cosmic microwave background, Big
Bang nucleosynthesis, the large-scale structure of the Universe,
and gravitational lensing of galaxies, to name a few.
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Fig. 8. Cosmological parameters of the base ΛCDM model as measured from the EFT-based full-shape (FS) BOSS DR12 and eBOSS ELG redshift-space galaxy power
spectrum likelihoods combined with final post-reconstruction BAO measurements from BOSS and eBOSS surveys and the BBN baryon density prior (FS+BAO+BBN, in
blue). The results of the Planck CMB 2018 baseline analysis [180] are shown for comparison in red. See Ref. [181] for more detail.
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A historically theoretically worrying critique of the ΛCDM
paradigm, though, is the cosmological constant problem. This
is the fact that the observed value of the background energy
density Λ4 is 60 to 120 orders of magnitude smaller than what is
expected from our understanding of particle physics, and seems
to represent a huge fine-tuning problem for the theory [202].
In response to this problem, Weinberg suggested the compelling
anthropic solution [203,204]. His argument roughly goes like this.
First of all, viewing GR as a low-energy effective field theory, the
cosmological constant Λ is the most relevant operator, and so
is generically expected to be present in the low-energy theory,
although its value is not known a priori. In order to estimate its
value, Weinberg pointed out that if it were much larger than the
current observed value, there would be no stars or planets (and
therefore no humans) in the Universe. Thus, if there are many
patches of the Universe with different values of Λ (for example,
in a multiverse scenario), then humans would only exist in the
patches with small values of Λ.

This then brings us to dark energy (DE) and modified gravity
theories,7 which are essentially attempts to change the low-
energy dynamics of gravitation. Historically speaking, these theo-
ries were considered, in part, as potential explanations for various
perceived theoretical shortcomings of GR, such as in the Brans–
Dicke theory [205] and early quintessence models [206]. Theories
of DE and modified gravity attempt, among other things, to solve
the cosmological constant problem8 or explain the acceleration

7 For the purposes of this review, we do not make a meaningful distinction
etween DE and modified gravity theories.
8 Although no compelling solution has yet been found.
 i

14
of the Universe without an explicit cosmological constant (so-
called self-accelerating solutions, see for example [207]). While
the history of motivations to study extensions to GR (see [208] for
example for a review) is important, we prefer to take a slightly
different perspective in this review, one more in line with the EFT
principles that we have been discussing. Here we simply ask what
are the possible observable deviations from ΛCDM? The question in
this form has the advantage that it points us towards systematic
ways in which we can test GR and look for deviations caused by
new physics, which is especially relevant in this era of precision
cosmological measurements.9

4.1. Unitary-gauge action in the presence of matter

In this review, we focus on modifications to ΛCDM arising
rom an extra scalar mode which is related to the breaking of
ime diffeomorphisms in the Universe (i.e. the presence of the
referred slicing of space–time where the CMB is nearly homoge-
eous and isotropic). As discussed above in Section 2.1, a general
ay of describing all such possible modifications is to write the
ction for the metric in unitary gauge. Instead of demanding that
he action be diffeomorphism invariant, we demand that it be
nvariant under time-dependent spatial diffeomorphisms. Since
he action has less symmetry, there is an extra scalar degree of

9 Upcoming observations range from galaxy surveys like the Rubin Obser-
atory (formally LSST), Euclid, and DESI, to CMB measurements with CMB-S4,
o 21 cm emission measurements with SKA, to measurements of gravitational
aves with LIGO/Virgo, together representing billions of dollars of international

nvestment.
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reedom in addition to the normal two degrees of freedom of the
raviton, and the scalar mode can be made manifest by perform-
ng the Stueckelberg trick. In fact, this procedure is exactly the
ame as the one discussed in Section 2.1 for the EFTI, with the
nly difference now being that, because we want to describe late-
niverse physics, we have to include the coupling of the metric
o matter.

The full action S is made up of a gravitational part SG, and a
matter part SM ,

S = SG + SM . (66)

n terms of covariant objects like the Riemann tensor Rµνρσ
nd the covariant derivative ∇µ, as well as time-diffeomorphism

breaking operators like g00 and the extrinsic curvature Kµν , the
ravitational action has the form [1,2,17]

G =

∫
d4x

√
−g FG

(
Rµνρσ , g00, Kµν,∇µ; t

)
. (67)

ere, the index ‘0’ refers to the time coordinate t which pa-
ameterizes equal-time surfaces. The matter action can also in
rinciple depend on all of the aforementioned fields and the
atter fields, χa, coupled in such a way that allows operators
hich break time diffeomorphisms. Thus, the generic form is
see [79] for example)

M =

∫
d4x

√
−g FM

(
Rµνρσ , g00, Kµν,∇µ, χa; t

)
, (68)

ith the same rule that for any covariant object, it is allowed to
ppear with an upper 0 index. Once the action is written in this
ay, the Stueckelberg trick can be used to introduce the scalar
ode π just as in Eq. (12), for example.
In this review, we assume the existence of a frame, called the

ordan frame, where each matter species is minimally coupled to
he same metric. Then, the action in the Jordan frame in unitary
auge reads

= SG[gµν] + SM [gµν, χa], (69)

here SG is as in Eq. (67), but SM is fully diffeomorphism invari-
nt. For the matter action, we can write

M = −
1
2

∫
d4x

√
−g T (m)

µν δg
µν (70)

here for pressureless CDM, we have
(m)
µν = ρmuµuν (71)

here ρm is the energy density in the rest frame of the fluid, and
µ is the fluid four-velocity. In the non-relativistic limit, we have

(m)0
0 = −ρm ≡ −ρ̄m(1 + δ) ,

T (m)0
i = ρmavi , T (m)i

j = ρmv
ivj ,

(72)

nd we have introduced the background energy density ρ̄m(t), the
verdensity δ and the fluid three-velocity vi.
Similar to Eq. (3), we can write the gravitational action as

G =

∫
d4x

√
−g
[
M2

∗

2
f (t)R −Λ(t) − c(t)g00

]
+ S(2)DE , (73)

where the explicit operators shown are the only ones that contain
linear perturbations, while S(2)DE contains terms that start quadratic
in the fields. Furthermore, M∗ is constant and is related to the
effective Planck mass by Eq. (79) below. The presence of the
function f (t) above differs from the inflationary case, where,
since there is no matter, one can always eliminate f (t) through a
redefinition of the metric. From Eq. (70) and Eq. (73), we can then
15
find the background equations (i.e. to cancel the tadpole terms)
which are given by [17]10

c = M2
∗
f
(

−Ḣ −
1
2
f̈
f

+
H
2
ḟ
f

)
−

1
2
ρ̄m ,

Λ = M2
∗
f
(
Ḣ + 3H2

+
1
2
f̈
f

+
5H
2

ḟ
f

)
−

1
2
ρ̄m ,

(74)

which reduce to the inflationary relations Eq. (4) when M∗ = MP,
f = 1, and ρ̄m = 0. Once the background equations have been
determined, the differences among DE theories is contained in
S(2)DE .

At this point, in order to generate the most general DE models,
one could simply write all of the possible terms in S(2)DE invariant
under time-dependent spatial diffeomorphisms, organized in a
derivative expansion, much like in Eq. (3). However, many DE
models in the literature focus on a specific subset of operators,
motivated by the following considerations. First of all, the scale
associated with the observed background expansion is

Λ2 ≡ (H0MP)1/2 ∼
1

10−7 km
. (75)

Then, because GR has been stringently tested on Solar System
scales, one typically tries to set up a screening mechanism (for
example Vainshtein screening [209,210]), so that GR is recovered
on smaller scales, but gravity is modified on larger cosmological
scales. The Vainshtein mechanism relies on large nonlinear terms
in the action which leads to a second scale Λ3 defined by

Λ3 ≡ (H2
0MP)1/3 ∼

1
103 km

, (76)

(which is roughly the Vainshtein radius for a Planck mass) and
leads to Galaxy size screening for the Sun, for example. Thus, we
will consider interactions in the EFT which are suppressed by this
much smaller scale Λ3.

While promoting these nonlinear interactions, higher-derivativ
terms can generically appear in the equations of motion, which
can lead to unstable Ostrogradski ghosts (see [211], for example).
To get around this, it is common to consider models which
explicitly only contain second derivatives in the equations of
motion (Horndeski theories [212,213]), or that contain higher
derivatives, but have a degenerate kinetic structure so that only
one extra, non-ghost, scalar mode propagates (beyond Horndeski,
Gleyzes-Langlois-Piazza-Vernizzi (GLPV), and degenerate higher-
order scalar-tensor (DHOST) theories [214–219]). The specific
choices of nonlinear terms in these theories is protected from
large quantum corrections by a weakly broken galileon invari-
ance [220,221]. Finally, for everything we discuss in this review,
we will be working in the Newtonian limit, where ∂/H ≫ 1, so
we will only consider the leading operators in this limit.

With these considerations in mind, a quite general EFT action
for the tensor and scalar modes is (for GLPV theories, see [18] and
references therein)

S(2)DE =

∫
d4x

√
−g

[
m4

2(t)
2

(δg00)2 −
m3

3(t)
2

δKδg00

− m2
4(t)δK2 +

m̃2
4(t)
2

δg00 (3)R

−
m2

5(t)
2

δg00δK2 −
m6(t)
3

δK3

− m̃6(t)δg00δG2 −
m7(t)
3

δg00δK3

]
, (77)

10 We assume zero spatial curvature of the background FLRW metric
throughout for simplicity.
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K2 ≡ δK 2
− δK νµδKµν , δG2 ≡ δK νµ (3)Rµν − δK (3)R/2 ,

K3 ≡ δK 3
− 3δKδK νµδKµν + 2δK νµδKµρδKρν ,

(78)

here (3)Rµν is the three-dimensional Ricci tensor of the equal-
ime hypersurfaces and the time-dependent effective Planck mass
s given by
2(t) ≡ M2

∗
f (t) + 2m2

4(t) . (79)

or example, Horndeski theories have m̃2
4 = m2

4 and m̃6 = m6. It
s sometimes convenient to express the above EFT parameters as
imensionless parameters that are expected to be O(1),

B ≡
M2

∗
ḟ − m3

3

2M2H
, αM ≡

M2
∗
ḟ + 2(m2

4)
·

M2H
, αT ≡ −

2m2
4

M2 ,

V1 ≡
2m2

5 + 2Hm6

M2 , αV2 ≡
2Hm6

M2 ,

V3 ≡
4Hm7 + 2Hm6

M2 , αH ≡
2
(
m̃2

4 − m2
4

)
M2 .

(80)

or example, αT changes the speed of tensors to [222]
2
T = 1 + αT . (81)

hese dimensionless parameters also allow us to easily estimate
he scales suppressing various interactions. One can show that, in
erms of the canonically normalized scalar field πc, we have for
xample

3
3δKδg

00
∼

1
Λ3

3
(∂πc)2∂2πc , (82)

o that this interaction is suppressed by Λ3, as desired. Because
3 is the scale suppressing the interactions, it is often referred to
s the unitarity cutoff of the EFT.
We would like to mention that a lot of work has been done

n scalar-tensor theories in the covariant formulation, where
ne starts with a covariant action and then expands around the
ackground [212,213,217–219,223,224],11 but in the spirit of this
eview, we would like to mention a few advantages of the EFT
ormulation. On the theoretical side, the EFT approach is agnostic
s to what kind of fundamental physics gives rise to the low-
nergy dynamics; the action Eq. (77) could indeed come from
fundamental scalar field, but it could also be the low-energy
ction of the longitudinal mode of a massive vector field, for
xample. On the practical side, once the background is fixed as in
q. (74), the EFT is directly an expansion in the perturbations, and
o the independent free parameters are more easily identified.

.2. Linear cosmology

Before matter starts to clump into structures, the Universe
s well approximated by a homogeneous expanding background
ith coupled linear perturbations of all of the relevant fields. In
he early Universe, this includes photons, neutrinos, baryons, and
ark matter, for example. As the Universe cools, non-relativistic
atter starts to dominate the dynamics, and the dark matter
tarts to fall into larger and larger potential wells. When the
ark-matter overdensity reaches O(1), the evolution enters the
on-linear regime.

11 For a relationship between the EFT parameters in Eq. (77) and a covariant
ormulation, see [225], for example.
 c
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The linear regime holds through the CMB until the early times
of matter domination. This means that both CMB observables
and the initial conditions for LSS can be computed with linear
theory. In this section, we discuss some modifications of CMB
and linear LSS observables that result from the EFT of DE, see for
example [226–244].

In Newtonian gauge, one can write the scalar part of the metric
as

ds2 = −(1 + 2Φ)dt2 + a(t)2(1 − 2Ψ )dx2 , (83)

where Φ and Ψ are the gravitational potentials. Some early
attempts to describe deviations from ΛCDM included the phe-
nomenological functions µ(t, k) and γ (t, k), which parameterize
changes in the Poisson equation

−a−2k2Ψ (t, k) =
3
2
H2Ωm(t)µ(t, k)δ(t, k) , (84)

nd the anisotropic stress

(t, k) =
Ψ (t, k)
Φ(t, k)

, (85)

here µ = γ = 1 in ΛCDM. The EFT of DE, however, provides
systematic way to compute relationships like these from a

onsistent theory in a controlled derivative expansion, specifically
llowing one to see if certain parameters enter multiple observ-
bles. For example, varying Eq. (73) with respect toΦ , Ψ , and π in
he quasi-static limit gives the equations relevant for large-scale
lustering, which has a solution like that shown in Eq. (95). These
quations, in addition to the evolution equations for the fluid, are
irectly relevant for the non-relativistic evolution of the matter
verdensity δ. An analogous relativistic set of equations can also
e found, which is relevant for CMB anisotropies [240].
As examples of DE effects, in Figs. 9 and 10, we show results

rom [240] for the modification of the matter power spectrum
nd the CMB, respectively, with αB = αM = αT = 0, for
arious values of αH,0, the present-day value of αH. The effect of
H is sometimes referred to as ‘kinetic matter mixing,’ or KMM,
ecause it results in a kinetic coupling between matter and the
E field π . In this case, we can see that larger values of αH tend
o suppress the matter power spectrum on small scales, suppress
he CMB lensing power spectrum, and increase CMB anisotropies
t small multipoles. A number of publicly available codes have
een developed to solve the linear Boltzmann equations with
E [227,234,243].

.3. Gravitational wave propagation

Given the explosion of measurements of GW signals coming
rom binary inspirals after [245], one important question is how
he DE action Eq. (77) affects GW propagation. As we have already
een in Eq. (81), the speed of the graviton is changed by the
perator δK2, proportional to m2

4. However, the observation of
W170817 and its electromagnetic counterpart GRB170817 A [246
onstrains the speed of gravitational waves to be the same as the
peed of light to within approximately 10−15, i.e.

clight − cGW| ≲ 10−15clight . (86)

ubsequent works used this fact to significantly constrain DE
odels [18–20,247]. In the language of this review, Eq. (86)
onstrains the EFT of DE to have αT ≲ 10−15, which for all intents
nd purposes means that
2
4 = 0 . (87)

s [18] also pointed out, in order for Eq. (86) to hold also for small

hanges in the cosmological background (i.e. if the matter fraction
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Fig. 9. Original caption, slightly edited for context: Effect of KMM on the matter power spectrum for four different values of αH today, i.e. αH,0 = 0.06, 0.12, 0.24 and
0.48, at redshift z = 0 (left panel) and z = 1 (right panel). The lower plots display the ratio of these power spectra with the respective spectra for αH = 0. For
comparison, the dashed and dotted lines in the left lower panel respectively show the quasi-static (dashed lines) approximation and a perturbative solution in αH
(dotted lines).
Source: From [240].

Fig. 10. Original caption: Effect of KMM (αH) on the CMB lensing potential (left panel) and on the CMB anisotropies (right panel) angular power spectra. The lower
plots display the ratio of these angular spectra with the respective spectra for αH = 0.
Source: From [240].
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Fig. 11. Left: Wiggly lines represent the graviton and solid lines represent the DE field π . When 0 < cs < 1, the graviton can decay into two scalar modes. Right:
iggly lines represent the graviton (through the extrinsic curvature Kij) and solid lines represent the DE field π . The DE field changes the graviton dispersion relation
y Eq. (93).
ource: From [225].
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p
p

I

w

m were slightly different in our Universe), the EFT of DE action
q. (77) must also have

˜
2
4 = m2

5 , and m6 = m̃6 = m7 = 0 . (88)

o we see that these kinds of cosmological observations can have
ramatic implications for the allowed operators in the EFT of DE.
Apart from the graviton speed, we can also use GW observa-

ions to constrain some other non-linear DE interactions. Assum-
ng the previously mentioned constraints Eq. (87) and Eq. (88),
he DE action Eq. (77) contains the term 1

2 m̃
2
4(t) δg

00
(
(3)R + δK νµ

δKµν − δK 2
)
, which leads to the interaction vertex

γππ =
1
Λ3

∗

γ̈ c
ij ∂iπc∂jπ

c , (89)

between the canonically normalized graviton γ c
ij and scalar field

πc [225], where the scale suppressing the interaction is given by

Λ3
∗

≡ MP
3m6

3 + 4M2
P (c + 2m4

2)

2
√
2 m̃2

4(M
2
P + 2m̃2

4)
∼

Λ3
3

αH(1 + αH)
. (90)

his cubic vertex allows the graviton to decay, through the dia-
ram in Fig. 11, into two scalar modes when 0 < cs < 1, where cs

is the speed of sound of the scalar.12 Calling Γγ→ππ the decay rate
of the graviton, and demanding that gravitons do not decay over
cosmological distances ∼ H−1 (since in fact we see gravitational
waves), we have Γγ→ππH−1

0 ≲ 1 and one obtains the strong
constraint [225]

Λ3
3

Λ3
∗

≲ 10−10 , (91)

which alternatively means

|αH| ≲ 10−10 , (92)

n GLPV theories.13

The interaction vertex Eq. (89) also modifies the dispersion
elation ω(k), i.e. the dependence of the energy on wavenumber,
hrough the Feynman diagram in Fig. 11, which is also con-
trained by GW measurements [245,248]. This interaction leads
o a modification of the graviton dispersion relation [225]

2
= k2 −

k8(1 − c2s )
2

480π2Λ6
∗
c7s

log
(

−(1 − c2s )
k2

µ2
0

− iϵ
)
, (93)

12 This decay is allowed for c2s ̸= 1 because Lorentz invariance is
pontaneously broken by the background evolution.
13 For DHOST theories which have the extra parameter β1 , the constraint
ecomes |α + 2β | ≲ 10−10 .
H 1

18
here µ0 is an arbitrary renormalization scale, and ϵ is a small
ositive parameter. The decay rate Γγ→ππ and the modified dis-
ersion above are indeed connected by the optical theorem

mω2
= Γγ→ππω , (94)

here the sign of ϵ is important to have the correct branch cut
of the log. Current observations limit the above deviation from
ω2

= k2 to a similar level as in Eq. (91) [225].
While the above discussion focused on the perturbative quan-

tum mechanical decay of the graviton, the GWs that we measure
are actually classical waves with large occupation numbers, a
fact that tends to further increase instabilities through Bose en-
hancement [249]. As discussed in [249], the regime of narrow
resonance, where the computation is under analytic control, is
able to probe 3 × 10−20 ≲ αH ≲ 10−18 for LIGO/Virgo type
measurements, and 10−16 ≲ αH ≲ 10−10 for a LISA type ex-
periment. Further study of classical effects [250] showed that
GWs can induce instabilities in the scalar field throughout the
Universe unless |αB| ≲ 10−2 and |αH| ≲ 10−20, thus providing
even stronger constraints on the EFT of DE.

Before closing this section, we should mention a few potential
caveats to the above discussion. First, since the momentum of
observed GWs is close to the unitary scale Λ3 of the EFT of DE
(whose actual UV cutoff could be lower), the EFT may not actually
be valid on those scales, and the above constraints would not ap-
ply [251]. Additionally, positivity arguments suggest that a theory
with an approximate Galilean symmetry (the αB term in the EFT
of DE) would have to break down at a cutoff of approximately
10−4Λ3 [252], and so again, the above constraints would not
apply. Exceptions to this conclusion in the above discussion could
be the constraints obtained in [250], which are relevant for GW
frequencies of approximately 10−7Λ3.

4.4. Large-scale structure

To study effects at much smaller energies, well below the
unitary cutoff Λ3, we can turn to LSS, where the inverse length
scale associated to the non-linear scale is kLSS ∼ (1 Mpc)−1

∼

10−17Λ3, well below even the scale of current GWmeasurements.
Thus, LSS constraints on DE would be much more relevant if for
some reason the EFT of DE breaks down near GW scales.

In this review, we focus on DE effects in LSS in the mildly
non-linear regime, and as always, we assume the Newtonian limit
(∂2/H2

≪ 1). To see how DE affects LSS, we start with a CDM fluid
Eq. (70) coupled to DE through Eq. (66). DE is then described by
the action Eq. (77), and in this section, we assume the Horndeski
limit. In this case, the form of the fluid equations is the same as
in Eq. (41), including the stress tensor τ ij.
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Fig. 12. Original caption, slightly edited for brevity: Effect of some of the modified gravity couplings on the one-loop matter power spectrum. The ratio between the
redicted up-to-one-loop power spectrum with dark energy and that for ΛCDM is shown for different current values of three modified gravity parameters, αB , αV1 ,

and αV2 , including LSS counterterms. Specifically, αB enters at quadratic and higher order in the action while αV1 and αV2 enter at cubic and higher order, so they
do not modify the linear spectrum. All of the modified gravity parameters which are not mentioned in the legend are set to zero. Moreover, the curves labelled as
‘‘Linear’’ (thin dashed-dot lines) are the linear predictions for the corresponding values of αB,0 . The bands around the dashed green and red curves are obtained by
varying the amplitude of the LSS counterterm over a reasonable range. Since a non-vanishing αB changes also the linear power spectrum with dark energy, large
modifications on mildly nonlinear scales due to this parameter also imply large changes in the linear spectrum. On the other hand, αV1 and αV2 have a direct effect
on mildly-nonlinear scales without affecting the linear predictions.

Source: From [162].
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The effects of DE in Eq. (41) come in through the modified
Poisson equation, and the terms relevant for the one-loop power
spectrum are (we use the scale factor a as the time variable)

−
k2

H2Φ(a, k) = µΦ
3Ωm,0

2
δ(a, k)

+ µΦ,2

(
3Ωm,0

2

)2 ∫ k

k1,k2
γ2(k1, k2)δ(a, k1)δ(a, k2)

+ µΦ,3

(
3Ωm,0

2

)3

×

∫ k

k1,k2,k3
γ3(k1, k2, k3)δ(a, k1)δ(a, k2)δ(a, k3)

+ µΦ,22

(
3Ωm,0

2

)3

×

∫ k

k1,k2

∫ k2

q1,q2
γ2(k1, k2)γ2(q1, q2)δ(a, k1)

× δ(a, q1)δ(a, q2) ,

(95)

here the µΦ are functions of time, and are explicitly given
n [161] in terms of the EFT of DE parameters in Eq. (80), and
e have used the notation
k

k1,...,kn
≡

∫
d3k1
(2π )3

· · ·

∫
d3kn
(2π )3

δD(k − k1 − · · · − kn) . (96)

urthermore, the momentum dependent interaction vertices de-
cribing the effects of DE are given by14

γ2(k1, k2) = 1 −

(
k1 · k2

)2
k21k

2
2

,

γ3(k1, k2, k3) =
1

k21k
2
2k

2
3

(
k21k

2
2k

2
3 + 2

(
k1 · k2

) (
k1 · k3

) (
k2 · k3

)
−
(
k1 · k3

)2k22 −
(
k2 · k3

)2k21 −
(
k1 · k2

)2k23 ) .

(98)

14 Notice that in terms of the standard mixing functions α and β , we have

(k1, k2) =
1
2
(α(k1, k2) + α(k2, k1))− β(k1, k2) . (97)
19
For example, the second-order solution for δ (which is relevant
or the one-loop power spectrum and the tree-level bispectrum,
or example) has the form [253–257]

(2)(a, k) =

∫ k

k1,k2
F2(k1, k2; a)δ(1)(a, k1)δ(1)(a, k2) (99)

here

2(k1, k2; a) = A1(a) + A3(a) +
k̂1 · k̂2

2

(
k1
k2

+
k2
k1

)
+ (A2(a) − A3(a))

(
k̂1 · k̂2

)2 (100)

nd the Ai(a) are functions of time which involve integrals over
reen’s functions of the linear equations of motion. As discussed
n [162], the function A3 depends on the non-linear modification
Φ,2, and A1 and A2 are changed from their ΛCDM values by the
inear modification µΦ .

At this point, a few comments are in order. First of all, we
tress the inclusion of the stress tensor τ ij from the EFT of LSS.
ince the fluid mass and momentum are conserved in Horndeski
heories, the counterterms in τ ij take the same form as in ΛCDM
Eq. (45), so that the term relevant for the computation of the
one-loop power spectrum is [162]

H−2
∫

d3x eik·x∂i
(
ρ−1
m ∂jτ

ij(a, x)
)

= −c2s,DE(a)
k2

k2NL
δ(1)(a, k) (101)

where c2s,DE(a) is an unknown function of time that depends on
the details of short-scale clustering. The scale kNL above is the
non-linear scale of structure formation, which in the presence of
DE can be different from the corresponding scale in ΛCDM [162].
The scale kNL is also different from the so-called Vainshtein scale
kV (discussed more in the next section), which is the scale at
which the non-linear terms in the equations for the scalar field π
become important [258]. In the limit that kV ≫ kNL, Vainshtein
screening takes place on scales much smaller than gravitational
non-linearities and we would expect to only see linear modi-
fications of gravity near kNL. On the other hand, if kV ≪ kNL,
then scalar field non-linearities become important on scales much
larger than those we typically use in LSS, causing the perturbative
expansion assumed in this section to break down on larger scales.
Thus, the regime kNL ≲ kV is the one in which we would expect
to see new features in non-linear clustering due to DE [161] (see
Fig. 12).
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Fig. 13. Original caption, slightly edited for brevity: We plot various bispectra in the configuration (q, k − q/2,−k − q/2) for q = 0.01 hMpc−1 and q̂ · k̂ = 0.9, for
various values of ∆Aα and ∆Aγ . Solid lines are the full bispectrum Eq. (103), while dashed lines are the dominant oscillatory contributions Eq. (107). We have also
plotted the associated smooth bispectra with thin lines. In the bottom panel, we plot the residual ϵoscBosc

t = Bt − Bs
t . In the bottom panel, we see that there are two

ifferent limiting behaviours, the purple and grey dashed lines, corresponding to Aα = 0 and Aα = 0.5 respectively. The red and blue solid curves have different
alues of Aγ , but they have the same limiting behaviour (the purple dashed line) because they have the same value of Aα . In all cases, the full bispectra approach
he correct limiting behaviour Eq. (107) for k/q ≫ 1. We note that the large value of ∆Aγ needed to produce a visible difference between the red and blue curves
n the plot is due to the fact that the contribution is proportional to Aγ (1 − (q̂ · k̂)2), and we have chosen q̂ · k̂ = 0.9 so that Eq. (107) would be the dominant
ontribution.
ource: From [165].
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As mentioned in Section 3, the advantage of the EFT of LSS is
hat one can perform precise, controllable, and improvable fits to
lustering data, and as we have seen in this section, it is also the
atural framework to include physics beyond the standardΛCDM
aradigm. Work using the EFT of LSS to compare to simulations
ncluding DE was started in [163]. For inclusion of a clustering
uintessence DE model in the EFT of LSS, see [123,160], and for
orks on structure formation with DE outside of the context of
he EFT of LSS, see for example [259–262].

.5. Violation of the consistency relations of LSS

The final topic that we will mention in this section con-
erns the consistency relations of LSS [60–66]. These are general,
on-perturbative relations satisfied by LSS observables in various
‘soft’’ limits (when some momentum is taken much smaller than
thers). For example, the consistency conditions are the reason
hat the coefficient of k̂1 · k̂2 is not modified in Eq. (100) for
orndeski theories [164] (a similar result holds for clustering
uintessence theories [123]). In GLPV and DHOST theories of
E, however, the consistency relations are violated [164,165]
see also [263,264]), essentially because the scalar field π intro-
uces a large-scale relative velocity vi + a−1∂iπ which cannot
e removed by a coordinate transformation. The violation of the
onsistency relations in DHOST theories is proportional to the
elative velocity, and is computable in terms of parameters of the
inear theory [165]. For example, the one-loop power spectrum
n DHOST theories has the form

1-loop(k)
⏐⏐⏐
IR

∼ λDλ
2
∆vP11(k)

∫
q≲k

d3q
(2π )3

(
q · k
q2

)2

P11(q) , (102)

where λD is a parameter proportional to the DHOST parameters
αH or β1, and λ∆v is proportional to the large-scale relative
elocity [165]. In ΛCDM, IR dominant terms like Eq. (102) are

not present in the loop expansion because of the consistency
relations, but they can appear in DHOST theories.

The violation of the consistency relations in DHOST theo-
ries also affects the BAO signal [165]. To see how this happens,
20
consider the tree-level bispectrum in DHOST theories

Bt (q, k1, k2) = 2F2(q, k1)P11(q)P11(k1) + 2 perms. , (103)

here

2(q, k) = Aααs(q, k) + Aγ γ (q, k) , (104)

nd to describe the deviations from ΛCDM, we write

α = 1 +∆Aα , and Aγ = AΛCDM
γ +∆Aγ . (105)

he fact that Aα = 1 in ΛCDM is due to the standard consistency
elations, but here we have an allowed deviation ∆Aα in DHOST
heories. The value AΛCDM

γ , on the other hand, is cosmology depen-
ent. We can then consider another observable which is sensitive
o IR physics, the squeezed limit of the oscillatory part of the
ispectrum, Bosc

t , which we define by

t = Bs
t + ϵoscBosc

t + O(ϵ2osc), (106)

or a small parameter ϵosc ∼ 0.06.15 The squeezed limit is given
y

lim
q→0

Bosc
t (q, k − q/2,−k − q/2)

Ps
11(q)

≈ −Aα
q · k
q2

q · k
k
∂Posc

11 (k)
∂k

+ O
(
Posc
11 (k)

)
,

(107)

here Ps
11 and Posc

11 are the smooth and oscillatory parts of the
linear power spectrum, respectively. Notice how, in this limit,
the signal is proportional to Aα , and not Aγ . In ΛCDM, where
Aα = 1, this is a universal contribution, fixed by the equivalence
principle [101]. However, in DHOST theories, we see that the size
of the oscillations can change due to the deviation ∆Aα . We show
the various limiting behaviours in Fig. 13.

4.6. Further topics

We close with a brief overview of some further topics in which
the EFT of DE has played an important role. One such arena is

15 Here, the superscripts ‘s’ stands for ‘smooth’ and ‘osc’ stands for ‘oscillatory.’
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n binary mergers. For example, the quasinormal modes in the
ingdown phase can be affected by extra degrees of freedom
see e.g. [265]), and a convenient way of parametrizing these
ffects is through the use of EFTs. If GR is modified by a heavy
egree of freedom, then the spectrum of quasinormal modes can
e described by an EFT expansion of higher derivatives of the
iemann tensor [266]. On the other hand, if there is an extra light
egree of freedom (i.e. dark energy), then there can be a more
eneral deviation from GR [267] (see also [268,269]). Addition-
lly, the waveform of the inspiral phase can be modified [270].
ossible observable effects include shifting of the quasinormal-
ode spectrum, scalar radiation, and different spectra for the
xial and polar modes, and the EFT approach provides a general
nd systematic way to search for these signatures in upcoming
ata.
The EFT of DE can also be used to study Vainshtein screening

nd astrophysical effects. Because GR has been so well tested
n the local solar system, there is not much room in the data
o modify gravity on these scales. Thus, if we have a theory of
E that modifies gravity on large scales, some mechanism in the
heory must restore GR on small scales. One such mechanism is
ainshtein screening [209,210], where the non-linear couplings
n the scalar field equations become large near massive sources
like the sun), and GR is restored inside of the so-called Vainshtein
adius rV . However, some theories of DE can break the Vainshtein
echanism in different ways [271–275], for example by having
̸= Ψ inside or outside of a massive object. One can then use

bservational constraints, such as the Hulse–Taylor pulsar [276]
nd the Cassini measurements [277] to constrain the parameters
f the EFT of DE. If DE changes the gravitational potentials in-
ide of massive objects, then astrophysical constraints related to
nternal star dynamics apply [275,278].

The final topic that we will discuss is related to theoretical con-
traints on the EFT of DE. A particularly interesting class of theo-
etical constraints comes from demanding positivity of the 2 → 2
scattering amplitudes (as a consequence of unitarity, analyticity,
and crossing symmetry). As mentioned in Section 4.3, arguments
of this kind suggest that a cosmological theory with approxi-
mate Galilean symmetry (which is generally used for Vainshtein
screening) would have to break down at approximately 10−4Λ3,
severely limiting the applicability of the EFT on scales of cosmo-
logical interest [252]. Additionally, [279] considered more general
theories with Vainshtein screening (using positivity bounds for
theories which break Lorentz invariance [280]) and showed that
a large number of them are inconsistent with a standard UV
completion. As another example, it was argued that EFT cor-
rections to GR from heavy fields can only enter such that they
make the graviton the fastest particle in the spectrum [281].
These kinds of theoretical constraints can shrink the allowable
parameter space used to analyse data and improve bounds on
EFT parameters [282], and are even stronger when including the
coupling to matter [283].

5. Conclusions

Rapid progress in applications of EFT methods in cosmology
over the last decade have shown the exciting potential that this
approach has in describing cosmological perturbations in various
stages in the history of the Universe, from inflation to the present
day. While a lot of progress has been made so far, exploration of
different EFTs remains one of the most active areas of research
in theoretical cosmology and related fields. In this review we
summarized the current status of the field and argued that its
continued development is of paramount importance for connect-
ing theory and observations and ultimately answering the biggest
open questions in cosmology.
21
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