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Abstract Investigation into glucosinolates (GLs)

therapeutic effects boasts a long history, which began

with the evidence that their hydrolysis-derived isoth-

iocyanates (ITCs) could exert cytoprotective effects

through the modulation of both the inflammatory

response (NF-kB pathway) and the oxidative stress

(Nrf2/ARE pathway), two processes largely involved

in the pathogenesis of chronic pain syndromes. GLs

and ITCs are also able to modulate the activity and the

expression of several targets involved in pain regula-

tion, like opioid receptors. Recently, ITCs turned out

to be slow-H2S donors in vivo, able to directly

modulate the activity of a subtype of KV7 potassium

channels involved in the transmission of painful

stimuli, providing a further incentive to their employ-

ment in pain management. Nevertheless, some con-

troversies exist in the use of ITCs for pain relief

considering their ability to positively modulate the

activity of TRPA1 receptors. This review focuses on

the preclinical and clinical evidence attesting the

beneficial effects of GLs and their derivatives ITCs in

chronic inflammatory and neuropathic conditions. In

this context, the mechanisms underlying the ability of

GLs and ITCs to modulate pain perception and,

besides, to prevent the establishment of chronic pain

will be described along with their pharmacokinetics

and toxicological profile. Finally, other possible

mechanisms hidden behind GLs efficacy on pain will

be discussed.
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Chronic pain

‘‘Divinum opus est sedare dolorem’’ (Hippocrates).

Pain represents a clinical burden, considering its

high prevalence among patients and the lack of

adequate therapies in most cases (Mäntyselkä et al.

2001). Although pain itself is not life-threatening, the

development of chronic pain has a strong impact on

quality of life, therefore its management represents a

health priority in patients (Goldberg and McGee

2011). Chronic pain can manifest in two different

forms, namely as a primary or secondary syndrome.

Primary chronic pain is considered a proper disease

whereas, chronic secondary pain arises as a symptom

of another disease (cancer, diabetic neuropathy,

inflammatory bowel disease, or arthritis), though it

continues after the healing of the underlying disease

(Treede et al. 2019). It has been estimated that the

development of chronic pain occurs in * 20% of the

adults in Europe (Breivik et al. 2006) as well as in US
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(Dahlhamer et al. 2018) and it is accompanied by a

huge health and economic burden (Barham 2012;

Gaskin and Richard 2012).

Chronic pain syndromes can differ in the aetiology,

modes of manifestations, and response to pain med-

ication (Treede et al. 2019). Chronic musculoskeletal

pain, affecting bones, joint or muscles (Perrot et al.

2019) can result from inflammatory processes,

autoimmune, or metabolic diseases, or can be sec-

ondary to motor nervous system diseases (e.g.,

Parkinson’s disease) (Nicholas et al. 2019). Besides,

neuropathic pain is due to a direct damage to the

nervous system, like that caused by tissue injury,

metabolic disorders (diabetes), infections (HIV, her-

pes zoster), chemotherapeutic agents (platinum drugs,

taxanes, vinca alkaloids) or alcohol abuse (Jensen

et al. 2011). The etiopathogenesis of neuropathic pain

makes it unresponsive to almost all the painkiller

drugs (Treede et al. 2008). Finally, chronic pain can

also originate from the viscera (e.g., intestine or

uterus) as a consequence of mechanical factors

(obstruction), vascular mechanisms (ischemia), or

persistent inflammation (Aziz et al. 2019; Häuser

et al. 2020). Visceral pain can also be relate to a

disruption of the microbiota homeostasis (O’Mahony

et al. 2017; Vila et al. 2018) or to the presence of

cancer in internal organs (Bennett et al. 2019).

The treatment of chronic pain depends on pain

subtype. Conditions primarily associated with inflam-

mation (e.g., osteoarthritis) are preferably treated with

acetaminophen and non-steroidal anti-inflammatory

drugs, whereas pain with a neuropathic base is treated

with tricyclic antidepressants, selective-serotonin/no-

radrenaline reuptake inhibitors, and Alpha 2 Delta

(a2d) ligands, namely gabapentin and pregabalin

(Hylands-White et al. 2017). Despite the large number

of medications available for the treatment of pain,

their limited efficacy in chronic conditions and several

side effects, particularly in the elderly (Crofford

2013), led to investigate novel strategies to safely

employ in long-term therapies. Among them, many

natural products have been investigated with the aim

of combining different mechanisms of action to

achieve greater efficacy. The broad range of beneficial

effects (anti-inflammatory, antioxidant, neuroprotec-

tive, and anti-hyperalgesic) endowed by glucosino-

lates (GLs), make them the ideal natural tool in the

management of chronic pain syndromes, which in

most cases have a complex aetiology.

Glucosinolates and isothiocyanates

Glucosinolates (S-b-thioglucoside N-hydroxysulfate;

GLs) are sulfur-containing phytochemicals mainly

found in cruciferous (Brassicaceae), most of which

are edible plants (Holst and Williamson 2004a). GLs

content in these vegetables depends on several factors

including the cultivation region and conditions, the

plant part, the degree of development, as well as

genetic and environmental factors. In foliage GLs

content range from 1000 to 3000 ppm (Brussels

sprouts), while the concentrations of GLs in roots

and seeds can be higher (30,000–60,000 ppm) (Ager-

birk and Olsen 2012). Starting from sinalbin (Robiquet

and Boutron 1831), hundreds of different GL struc-

tures were discovered in nature (Sønderby et al. 2010),

which differ each other for the precursor as well as for

the secondary modifications occurring on their sugar

moieties (e.g.oxidation, methoxylation, sulfation, glu-

cosylation) (Agerbirk and Olsen 2012; Radojčić

Redovniković et al. 2008). In plants, the b-thioglu-
cosidase enzyme myrosinases (EC 3.2.1.147) is

responsible for GLs metabolism. This enzyme, which

is physically segregated from GLs in plants, once

released after mastication, cutting or cooking, leads to

the hydrolysis of GLs into glucose and the unsta-

ble aglycones, which then turn into isothiocyanates

(ITCs) or indoles, based on their side chain. In mam-

malian tissues conversion of GLs to ITCs is possible

thanks to the gastrointestinal bacteria (Shapiro et al.

1998). Besides, several physico-chemical factors (e.g.,

pH, the number of double bonds in the side chains, the

presence of ferrous ions, the epithiospecifier protein),

instead determine the conversion of ITCs and indoles

into other compounds, such as epthionitriles, nitriles

and thiocyanates. Nevertheless, ITCs have been

recognized as the active compounds responsible for

the effects of GLs on human health, which are likely

the results of a plurality of molecular mechanisms,

(modulation of xenobiotic metabolism and inflamma-

tion, the regulation of cell cycle and oxidative stress,

as well as the regulation of epigenetic events), many of

which participate to chronic pain development and

persistence (Capuano et al. 2017). Moreover, recent

evidence attested the ability of GLs and ITCs to

modulate the activity of channels and receptors

involved in pain transmission (Lucarini et al.

2018b, 2019a). In the next paragraphs we describe in

detail the beneficial effects of these phytocompounds
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and their positive implications in the treatment of

chronic pain.

GLs, ITCs and pain

Brassicaceae family encloses several plants which

have been employed in medicine as analgesics.

Among the Brassicaceae-derived phytochemicals,

the most studied in the context of pain are gluco-

raphanin and its derived ITC, sulforaphane, whose

effects on pain involve the activation of Nrf2, as well

as the inhibition of the NF-jB signalling pathway (as

described in details in the following sections), and

therefore the downregulation of cytokines expression

(Guerrero-Beltrán et al. 2012b). Sulforaphane has

been observed to relieve pain associated with diabetes

or osteoarthritis in preclinical models, in part, by

modulating the inflammatory response (Davidson

et al. 2013; Negi et al. 2011). Sulforaphane has been

also reported to upregulate the expression of opioid-l
receptor (Wang and Wang 2017) and enhance mor-

phine analgesic effect (Ferreira-Chamorro et al. 2018;

Redondo et al. 2017). In a similar manner, broccoli

sprouts and sulforaphane were able to reduce abdom-

inal pain by the activation of l opioid receptors, as

proven by naltrexone-mediated inhibition (Distrutti

et al. 2010). The same compounds demonstrated to

have further modulatory activity on visceral motor

functions in vitro where they showed a spasmolytic

activity on pig ileum similar to papaverine (Guadar-

rama-Enrı́quez et al. 2018). Accordingly, sul-

foraphane has been reported to alleviate bone pain

and enhance morphine potency in rats with cancer.

Interestingly, also in this case, the anti-hyperalgesic

effects of sulforaphane were partially blocked by

opioid receptor antagonists (Fu et al. 2021). ITC

moiety might influence opioid receptors activity by

irreversibly binding the sulfhydryl groups on their

constituent amino acids (cysteine or lysine), which

may control receptors conformation and functionality.

Anyway, it has been observed that the introduction of

the ITC-group into 1-position of fentanyl analogues,

increased their selectivity for d opioid receptor but

decreased their analgesic activity (Bi-Yi et al. 1999).

Di Cesare Mannelli et al. (2017) and Lucarini et al.

(2018a, b) observed that synthetic (allyl-, phenyl- and

3-carboxyphenyl-ITC) and natural (sulforaphane)

ITC-based compounds, were able to counteract

chemotherapy-induced neuropathic pain, showing a

similar efficacy and a tenfold greater potency (10-

times) than duloxetine and pregabalin, the reference

drug in the management of neuropathies associated

with chemotherapy (Hershman et al. 2014). Notewor-

thy, morphine is ineffective against oxaliplatin-de-

pendent pain (Mannelli et al. 2017), thus excluding

opioid receptors from the mechanisms underlying

ITCs-mediated effects. Interestingly, these com-

pounds have been described as slow H2S donors (Citi

et al. 2014; Martelli et al. 2014). The involvement of

H2S release in the antinociceptive effects of ITCs has

been proven by the fact that co-administering two H2S

scavengers, like haemoglobin and glutathione,

strongly reduced their pain-relieving efficacy (Man-

nelli et al. 2017). At the same time, the antinociceptive

effects of ITCs was almost completely reverted by

XE991 (a selective blocker of Kv7 channels). Taken

together this evidence suggest that the activation of

Kv7 potassium channels might account for the H2S-

mediated anti-hyperalgesic effects of ITCs. Subse-

quently, the efficacy of ITCs against chronic pain has

been confirmed in other preclinical models of neu-

ropathy induced by ligation of sciatic nerve or

diabetes, respectively, as well in the experimental

model of osteoarthritis induced by injecting

monoiodoacetate into joint space (Lucarini et al.

2018a, 2019b). Moringin, a natural ITC present in M.

oleifera Lam., effectively reduced the typical neuro-

pathic pain associated to multiple sclerosis in mice

(Giacoppo et al. 2017a). Likewise, a series of semi-

synthetic derivatives ofMoringa ITCs showed a dose-

dependent antinociception in a model of formalin-

induced joint inflammation (Dos Santos et al. 2018).

Some natural ITCs (such as allyl-ITC, AITC) were

reported to modulate the activity of TRPA1 channels

which are known to be involved in the pathophysiol-

ogy of several painful conditions (Logashina et al.

2019). Anyway, high micromolar concentrations of

AITC are employed to reproduce animal models of

pain, and itch (Andersen et al. 2017; Martelli et al.

2020a). This implies that AITC concentrations need to

be increased further to induce TRPA1 desensitization

and analgesia, thus excluding the possibility that

TRPA1 activation is the main mechanisms of action

by which ITCs can relieve pain. The activation of

TRPA1 channels, as well as the opening of voltage-

dependent calcium channels, also fuels the contro-

versy about the role played by H2S on pain regulation
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(Roa-Coria et al. 2019; Tsubota-Matsunami et al.

2012), though the gasotransmitter has been reported to

activate TRPA1 channels at concentrations much

higher than the physiological one (Logashina et al.

2019).

In addition to exert an acute antihyperalgesic effect,

the repeated treatment with glucoraphanin and sul-

foraphane was able to counteract the development of

neuropathic pain caused by the administration of a

chemotherapeutic agent in mice (Lucarini et al.

2018b). As well, sulforaphane intrathecally adminis-

tered resulted able to counteract inflammation and

oxidative stress caused by spinal nerve transection,

concomitantly blocking the development of neuro-

pathic pain (Kim et al. 2010). These properties can be

attributed to the well-known neuroprotective effects of

GLs. In another work, a defatted seed meal of Eruca

sativa, enriched in GLs (mainly glucoerucin), resulted

effective in relieving neuropathic pain caused by

diabetes in mice after an acute administration, without

reverting neuropathic pain after a repeated treatment

(Lucarini et al. 2019b). This evidence confirms that

administering GLs can counteract the pathophysio-

logical mechanisms underlying neuropathy develop-

ment, but it is much less effective in reverting

neuropathy when it is already established, highlighting

the importance of using these compounds from the

earliest stages of the disease. Moreover, the animals

developed no tolerance to the anti-hyperalgesic effect

of Eruca sativa meal after the repeated treatment

(Lucarini et al. 2019b). This represents an great

advantage over treatment with others pain-relieving

drugs, such us opioids (Christie 2008). In the next

paragraphs we will deepen the mechanism which have

been proven to be involved in the anti-hyperalgesic

effect of GLs, as well as the mechanisms which might

participate in it.

GLs as anti-inflammatory/antioxidants agents

Pain is a cardinal feature of inflammation and,

conversely, the persistence of pain is often caused by

a chronic neuroinflammation.Non-neuronal cells, such

as immune cells and glial cells, actively involved in the

regulation of inflammatory responses, participates in

the pathogenesis and persistence of chronic pain (Ji

et al. 2016). On this base, there appears to be clear

therapeutic potential for chronic pain management of

compounds endowed with strong anti-inflammatory

and antioxidant activities, like GLs and ITCs, which

effectively counteracted inflammatory processes in

different in vitro and in vivo models of disease. GLs

and their metabolites, ITCs and indoles, have been

shown to exert multiple chemopreventive effects

(Table 1). Indeed, ITCs and indoles regulate the

activity of both Nuclear erythroid 2-related factor 2

(Nrf2) and Nuclear factor-jB (NF-jB) which have a

main role in oxidative stress and inflammation,

respectively (Esteve 2020; Guerrero-Beltrán et al.

2012a; Wu et al. 2004). These phytochemicals can

inhibit nuclear factor NF-kB translocation, preventing

proinflammatory cytokine production (IL-1ß andTNF-

a) and andoxidative species generation (i-NOS,

nitrotyrosine and PARP) (Saleh et al. 2021). Oxidative

stress and inflammation are tightly connected, one of

which can be triggered by the other (Biswas 2016),

they thus occur togheter in a large number of diseases.

Moreover, redox imbalance contributes to consolidate

pain by exacerbating inflammatory responses (Gunn

et al. 2020; Kaushik et al. 2020; Marchev et al. 2017;

Sánchez-Domı́nguez et al. 2015). Anyway, increasing

evidence in litterature attests that oxidative stress has a

key role in the pathogenesis of neuropathic pain in

which inflammatory processes are not necessarily

involved (Areti et al. 2014; Hosseini and Abdollahi

2013; Mannelli et al. 2012; Naik et al. 2006). ITCs can

either directly interact with sulfhydryl residues on

Keap1, the cytoplasmatic repressor of Nrf2, determin-

ing the release of the factor and its translocation into the

nucleus, or activate the MAPK pathway, indirectly

causing the phosphorylation of Keap1 and release of

Nrf2 (Hu et al. 2004). Once translocated into the

nucleus, Nrf2 activates ARE-responsive genes and

induces the phase II response (Dinkova-Kostova et al.

2002). However, the sole anti-inflammatory or antiox-

idant activity displayed by these phytochemicals can

not entirely explain their pain-relieving efficacy, and

this led to the search for additional mechanisms.

GLs as neuroprotective agents

Oxidative stress and chronic inflammation are com-

monly partners in the pathogenesis of central nervous

system diseases, against which both GLs and ITCs

exerted protective effects (Table 2). Among GLs and
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Table 1 Antioxidants and anti-inflammatory effects of the sources of GLs and ITCs

Source of GLs Effects Subjects References

Raphanus sativus (Radish)

extracts from the aerial and

underground parts

Disease recovery or improvement Folk medicine-based management

of stomach disorders, urinary

infections, hepatic inflammation,

cardiac disorders, and ulcers

Manivannan

et al.

(2019)

Moringa oleifera (Moringa)

water extract from leaves

Attenuated expression of iNOS and

IL-1b and production of nitric oxide

and TNFa

Macrophages Waterman

et al.

(2014)

Armoracia rusticana (Horseradish)

extracts from roots

Anti-inflammatory properties LPS-stimulated macrophages Marzocco

et al.

(2015)

Nasturtium officinale R. Br
(Watercress) extract containing

standardized GLs

Decrease of lipid peroxidation,

protein carbonyl, catalase,

superoxide dismutase, and

C-reactive protein levels

People with physical disabilities Clemente

et al.

(2020)

Matthiola arabica ITCs rich fraction Reduction of oxidative stress,

inflammatory and fibrosis markers

Rat model of liver fibrosis Mohammed

et al.

(2017)

Magliasa

traditional Iranian formula from

seeds of Lepidium sativum, Linum
usitatissimum, and Allium
ampeloprasum cv. Porrum, the fruit

of Bunium persicum and

Terminalia chebula, and the gum

resin of Pistacia lentiscus

Improvement of the colonic

histopathological score with a

reduction of TNF-a, IL-1b, MPO

and lipid peroxidation in the gut

Rat model of colitis Rahimi et al.

(2013)

Lactic acid bacteria broth enriched

with Eruca sativa (Rocket) extract

from seeds

Pathogen-induced intestinal

inflammation (CXCL8) and barrier

dysfunction

Caco-2 cells infected with

Escherichia coli
Bonvicini

et al.

(2020)

GLs-rich diet Up-regulation of the expression of

typical Nrf2 target genes like Nqo1,

Gstm1, Srxn1, and GPx2 in the

colon

Mice with inflammatory damage and

tumour genesis

Lippmann

et al.

(2014)

3,3’-Diindolylmethane,

GL naturally occurring

in Brassicaceae

Anti-inflammatory properties Adipocytes co-cultured with

macrophages

Lopez-

Vazquez

et al.

(2017)

Phenethyl ITC,

hydrolysis product of gluconasturtiin

Anti-inflammatory properties Psoriasis-like skin lesions in mice Lee et al.

(2011)

Allicin Improvement of the colonic

histopathological score with a

reduction of IL-1b and TNF-a

Rats with colitis Li et al.

(2015)

Block of the activation of p-38 and

JNK pathway

Caco-2 cells stimulated by IL-1b

Sinigrin Suppression of NF-jB/MAPK

pathways

Block of NLRP3 inflammasome

activation

Macrophages Lee et al.

(2017)

Allyl nitrile Upregulation of antioxidant/phase II

enzymes in various tissues

Tanii

(2017a, b)

Sulforaphane-rich broccoli sprouts Nrf2-dependent antioxidant and anti-

inflammatory protection

C57BL/6 female mice infected with

H. pylori

Yanaka et al.

(2009)
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their hydrolyticproducts, glucoraphanin, sulforaphane,

moringin, phenethyl ITC, 6-(methylsulfinyl) hexyl

ITC, and erucin (Jaafaru et al. 2018) showed interesting

properties as modulators of oxidative stress, inflamma-

tion, and apoptosis, resulting in neuroprotective effects

in different animal models (Table 2).

The most studied ITCs in neurodegenerative dis-

eases are sulforaphane and moringin (4-(a-l-rhamno-

syloxy)-benzyl ITC), derived from the hydrolysis of

the GLs glucoraphanin and glucomoringin, which

showed neuroprotective activity in preclinical models

of neurodegeneration due to their capacity to modulate

neuronal functions (Dinkova-Kostova and Kostov

2012; Tarozzi et al. 2013).

The neuroprotective effects mediated by ITCs have

been mainly attributed to Nrf2/ARE pathway positive

modulation (Mein et al. 2012). Nevertheless, several

recent studies reported multiple other mechanisms,

including inhibition of cytochrome P450 enzymes,

induction of apoptosis and cell cycle arrest, and anti-

inflammatory effects. These mechanisms have been

proposed to work synergistically to provide the

observed neuroprotective effects of ITCs (Giacoppo

et al. 2015b).

In several studies carried out in vivo and in vitro on

models of nervous system diseases, the treatment with

GLs and ITCs have been reported to modulate the

activity not only of neurons but also of glial cells,

mainly astrocytes and microglia (Galuppo et al. 2013;

Latronico et al. 2021; Venditti and Bianco 2020). Glial

cells are resident in the periphery as well as in the

central nervous system accompanying the path of pain

signaling. Noteworthy, it has been demonstrated that

these cells play a key role in chronic pain pathophys-

iology, irrespective to their location (Ji et al. 2013;

Lucarini et al. 2020, 2021b; Milligan and Watkins

2009). In the periphery, also enteric glia is emerging as

a key regulator of visceral sensitivity (Lucarini et al.

2021b;Morales-Soto and Gulbransen 2019). Although

the effect of GLs and ITCs on enteric nervous system

has not been investigated yet, the dietary intake of

these phytochemicals might improve gastrointestinal

sensory functions, like pain, by modulating glia

activation. Indeed, we cannot exclude that GLs and

ITCs might act via a yet undiscovered pathway to

influence pain signalling and protect neuronal

functions.

GLs and H2S-releasing properties

In the last years great importance has been attributed

to the hydrogen sulfide (H2S) releasing capacity of

GLs-derived natural and synthetic ITCs (Lucarini

et al. 2018b; Mannelli et al. 2017; Martelli et al.

2020b). As a gas transmitter, H2S, freely crosses cell

membranes and interact with different cellular and

molecular targets by three main mechanisms: interac-

tion with metal center scavenging of reactive oxygen

species and reactive nitrogen species, or proteins

S-persulfidation (Filipovic 2015; Ono et al. 2014;

Pietri et al. 2011; Spassov et al. 2017).

H2S is endowed of important physiological func-

tions in the cardiovascular system as well as in nervous

system, which fuelled the scientific community inter-

est in the possibility to exploit H2S for therapeutic

purposes (Xiao et al. 2018). Nevertheless, H2S is

difficult to directly handle because it is a toxic and

flammable gas. This problem pushed the research to

the identification of moieties that would allow to

control the dose, duration, timing, and site of H2S

release (Martelli et al. 2020b). Among them, the ITC

moiety is one of the most promising. Notably, a close

overlap between numerous biological effects (antiox-

idant, anti-inflammatory, potassium channels activity

Table 1 continued

Source of GLs Effects Subjects References

Sulforaphane-rich broccoli sprouts

juice

Increased trans-epithelial electrical

resistance, a parameter reflecting

the functionality of the tight

junctions and the integrity of the

cell monolayer

In vitro model of inflamed human

intestinal epithelium

Ferruzza

et al.

(2016)
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Table 2 Neuroprotective effects of the sources of GLs and ITCs

Source of GLs Effects Subjects References

RS-glucoraphanin

bioactivated with

myrosinase

Decreased nuclear factor (NF)-kB translocation, pro-

inflammatory cytokine (IL-1b) production, and
apoptosis (Bax and caspase 3 expression)

Mouse model of multiple

sclerosis (EAE)

Giacoppo et al.

(2013)

RS-glucoraphanin

bioactivated with

myrosinase

Reduced inducible nitric oxide synthase expression

(iNOS), intercellular adhesion molecule 1 (ICAM-

1), nuclear factor (NF)-kB translocation and

apoptotic pathway triggering

Rat model of cerebral ischemia/

reperfusion injury

Giacoppo et al.

(2014b)

RS-glucoraphanin

bioactivated with

myrosinase

Decreased histological damage

Decreased astrocytes (GFAP-positive cells) activation

Mouse model of spinal cord

injury

Galuppo et al.

(2013)

RS- glucoraphanin Counteraction of Blood Brain Barrier alteration by

preserving tight junctions integrity

Mouse model of multiple

sclerosis (EAE)

Giacoppo et al.

(2014a)

Sulforaphane and

glucoraphanin

containing- food

Prevention of depression-like phenotype development Rat undergoing repeated social

defeat stress

Yao et al.

(2016)

2-Phenethyl ITC

and sulforaphane

Reduced ROS production induced by H2O2

Inhibition of MMP-2 and MMP-9 expression and

activity induced by LPS. Inhibition of ERK activity

Primary cultures of rat

astrocytes

Latronico et al.

(2021)

Sulforaphane Reduced ROS formation SH-SY5Y cells treated with

6-OHDA

Tarozzi et al.

(2013)

Sulforaphane Activation of ERK1/2 and Nrf-2 pathway 5-S-cysteinyl-dopamine-

induced toxicity in cortical

neurons

Vauzour et al.

(2010)

Sulforaphane Improvement of motor nerve conduction velocity,

nerve blood flow, and pain

Increased expression of Nrf2

Lowered NF-jB expression and IKK phosphorylation

Abrogation of (iNOS) and COX-2 expression.

Reduced TNF-a and IL-6 levels

Neuro2a cells and sciatic nerve

of diabetic animals

Negi et al.

(2011)

Sulforaphane Enhanced aquaporin-4 expression and decreases

cerebral oedema

Rodent model of traumatic

brain injury

Dash et al.

(2009, Zhao

et al. (2005a)

Sulforaphane Protection of retinal function Retinal ischemic injury Ambrecht et al.

(2015)

Sulforaphane Reduced number of apoptotic cells in the retina

epithelial cell layer, enlarged a- and b-wave

amplitudes and delayed photoreceptor degeneration

Light-induced damage of the

retina

Kong et al.

(2007), Tanito

et al. (2005)

Sulforaphane Augmented levels of heme oxygenase 1 and reduced

density of microglial cells in the hippocampus

Attenuated production of iNOS, IL-6, and TNF-a

Mice model of

neuroinflammation induced

by LPS

Innamorato

et al. (2008)

Nrf2-dependent induction of the phase II antioxidant

enzyme heme oxygenase-1

BV2 microglial cell line

Sulforaphane Protection of nigral dopaminergic neurons against cell

death

Reduction of astrocytes and microglia activation and

decrease of proinflammatory mediators release in

basal ganglia

MPTP mouse model of

Parkinson’s disease

Jazwa et al.

(2011)
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modulation and chemoprevention) attributed to natu-

ral ITCs and those of the gas transmitter H2S can be

clearly observed (Martelli et al. 2020b). Naturally

occurring H2S donors, like ITCs, are widely investi-

gated since their safety profile is usually greater than

many synthetic donors. The limitations to their use can

be the structurally amenability to chemical transfor-

mations (e.g., during the isolation of these compounds

from the plants), the poor water solubility, and the

generation of by-products after H2S release. Thus, in

recent years, ITCs have been used as scaffold for the

synthesis of new stable compounds or have been

combined with other drugs to obtain multitarget

molecules with improved anti-inflammatory, antioxi-

dant, and neuroprotective effects (Sestito et al. 2019).

In the context of pain pharmacology, it is important

to point out the dual role of H2S, which essentially

depend upon the doses: a low dose contributes to

reduce pain, while a high dose elicits pain. Consis-

tently, it has been observed that, by employing slow

releasing H2S agents or low dose of H2S, attenuation

of pain can be achieved. Several mechanisms account

for this pharmacological effect of H2S, such as the

reduction of inflammation, CGRP and oxidative stress

(Guo et al. 2020), as well as the activation of KATP

and Kv7 channels (Mannelli et al. 2017; Martelli et al.

2013). Indeed, Kv7 voltage-gated potassium channel

subunits have been demonstrated to be responsible for

most of the H2S-mediated effects of ITCs (Martelli

et al. 2014; Schleifenbaum et al. 2010). Selectively

blocking Kv7 channels with XE-991 (Wang et al.

1998) has been shown to cause primary sensory

neurons hyperexcitability (Zhang et al. 2019). Accord-

ingly, the activation of Kv7 channels (Miceli et al.

2008) exerted neuroprotective effects against

chemotherapy-induced neuropathy (Abd-Elsayed

et al. 2015; Nodera et al. 2011) and decreased

osteoarticular and neuropathic pain (Brown and Pass-

more 2009; Li et al. 2008a). In 2018, Di Cesare

Mannelli et al. reported that XE991 pre-treatment

fully counteracted the pain-relieving effects of ITCs

and NaHS, administered by either the systemic or

intracerebroventricular route, in a mouse model of

oxaliplatin-induced neuropathy. Accordingly,

Table 2 continued

Source of GLs Effects Subjects References

Nano-Sulforaphane Prevention of developmental defects of nervous

system induced by PhIP, heterocyclic aromatic

amines (HAA) formed by cooking meat at high

temperatures

Animal embryonies Zhang et al.

(2021)

4(a-l-rhamnosyloxy)-

benzyl ITC

(glucomoringin ITC)

Regulation of reticular fibers distribution in

connective tissue, nuclear factor (NF)-jB
translocation, IjB-a degradation, expression of

iNOS, and apoptosis

Mouse model of spinal cord

injury

Giacoppo et al.

(2015a)

4(a-L-rhamnosyloxy)-

benzyl ITC

(Glucomoringin ITC)

Reduced TNF-alpha release, IjB-alpha cytosolic

degradation/NFjBp65 nuclear translocation

Decreased markers of inflammation (phospho-ERK

p42/44, p-selectin) and oxidative stress (inducible

Nitric Oxide Synthase (iNOS), MMP-9)

Rat model of cerebral ischemia/

reperfusion damage

Galuppo et al.

(2015)

4(a-L-rhamnosyloxy)-

benzyl ITC

(glucomoringin ITC)

Potent anti-inflammatory activity Murine Subacute Parkinson’s

Disease

Giacoppo et al.

(2017b)

Allyl-ITC (In lower

micromolar range)

Reduced NF-jB expression

Inhibition of c-Jun N-terminal kinase

Murine microglial cells treated

with LPS

Subedi et al.

(2017)

Eruca sativa seed

extract

Reduced apoptosis and production of pro-

inflammatory cytokines

Reduced COX2 and TLR4/NLRP3 inflammasome

expression

Restauration of interleukin 10 expression

NSC-34 motor neurons treated

with the medium of LPS-

treated RAW 264.7

Gugliandolo

et al. (2018)
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electrophysiological in vitro experiments revealed that

Kv7.2/3 heteromeric currents, involved in the regula-

tion of pain transmission through the spinothalamic

pathway (Wang et al. 1998), can be concentration-

dependently activated by H2S-releasing ITCs. In the

same animal model of neuropathy, the dose-depen-

dent rise of pain threshold mediated by both gluco-

raphanin (GL) and sulforaphane (ITC) was fully

prevented by the simultaneous administration of

haemoglobin and XE991(Lucarini et al. 2018b).

Likewise, in a model of diabetic neuropathy induced

by streptozotocin, the administration of a bio-acti-

vated Eruca sativa defatted meal or its main GL,

glucoerucin, caused a dose-dependent pain-relief

dependent upon H2S release and Kv7 activation

(Lucarini et al. 2019b). Kv7 channel thus emerged

as the main targets responsible for the antinociceptive

activity of GLs and ITCs.

H2S pronociceptive effect, which occurs in the case

of a massive bioavailability of this gas transmitter,

seems instead mediated by the positive modulation of

T-type calcium channels, voltage-gated sodium chan-

nels, as well as TRPA1, TRPV1 and TRPC6 channels,

the upregulation of spinal NMDA receptors and the

sensitization of purinergic receptors (Guo et al. 2020).

A series of mechanisms which are likely less sensitive

to H2S, needing a great stimulus to be activated. The

bell-shaped dose-dependence showed by ITCs (Man-

nelli et al. 2017) likely reflect the complex pharma-

cokinetics and pharmacodynamics of H2S-releasing

molecules (Ahmad et al. 2016; Szabo et al. 2014).

Slow H2S-donors, long-lasting generating low

concentrations of H2S, such as GYY4137, are pre-

ferred choice in the treatment of disorders like chronic

pain (Li et al. 2008b). GLs, being hydrolysable in vivo

(Fahey et al. 2015, 2019), can be assimilated to a slow

H2S-donor and effectively employed for pain man-

agement. Indeed, though ITCs are considered respon-

sible for the pain relief, GLs show a better kinetic

profile since they are usually more stable than ITCs,

especially in solution (Fahey et al. 2017), while in vivo

they can mediate a slow release of ITCs and conse-

quently an even slower and longer release of H2S.

Although the role played by H2S in the acute

antinociceptive effect of GLs and ITCs appear to be

clear, the involvement of H2S in the neuroprotective

efficacy of these phytochemicals has not been ascer-

tained yet. Anyway, sulphur-containing natural com-

pounds, proved to be neuroprotective because of their

direct and indirect anti-inflammatory and antioxidant

properties, including the scavenging of radicals, the

down-regulation of microglial-derived inflammatory

mediators and cytotrophic effects in astrocytes (Ven-

ditti and Bianco 2020). Altogether these findings

support the hypothesis that a controlled release of H2S

can contribute also to the neuroprotective efficacy

showed by GLs and ITCs against chronic pain.

Other possible mechanisms involved in GLs-

mediated anti-hyperalgesic effects

Increasing evidence attested the effectiveness of GLs

and ITCs intake in preventing cognitive deficits

induced by chemical agents, such as phencyclidine

(Shirai et al. 2015), by traumatic brain injury or by

stressful stimuli (Zhao et al. 2005b). In a mouse model

of irritable bowel syndrome, the administration of an

extract of Camelina sativa var. Madalina defatted

seeds, rich in sinapine, GLs, and flavonol glycosides,

resulted able to counteract oxidative stress in both

brain and bowel tissues, as well as the concomitant

behavioural alterations (Cojocariu et al. 2020). Sul-

foraphane, the ITC derived from glucoraphanin, has

been reported to be able to counteract the damage

caused by traumatic brain injury and enhanching cell

survival by simultaneously reducing lipid peroxida-

tion, decreasing blood brain barrier permeability, and

increasing the expression of aquaporin 4 channels

(Dash et al. 2009; Sajja et al. 2018; Zhao et al. 2005c).

The latter effect appears particularly interesting in the

context of glymphatic system, highly active during

sleep, which is responsible for clearing away waste

from the brain and essential for maintaining brain im-

mune homeostasis across the lifespan (Eugene and

Masiak 2015; Plog and Nedergaard 2018). A recent

review suggested GLs and the potential modulation of

aquaporins activity as new approach to improve the

quality of life in women suffering from endometriosis

(Garcı́a-Ibañez et al. 2020). Thus, though the role of

aquaporins in pain need to be further investigated, the

positive effect of ITCs on aquaporins might empower

their anti-inflammatory and neuroprotective profile,

strengthening the rational of their use for chronic pain

management.

Yet, recently, cGMP-dependent protein kinase I,

already known to contribute to H2S-mediated vasore-

laxation (Bucci et al. 2012) and localized also in

nociceptors, was found to be critically involved in the
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mechanisms of central sensitization and neuropathic

pain establishment (Wang et al. 2021). Albeit prelim-

inary, these observations pave the way for new studies

aimed at understanding if cGMP system modulation

might be another hidden mechanisms behind the

beneficial effects of natural occurring H2S donors, like

GLs, on pain.

Finally, it is important to mention the role played by

GLs and ITCs in the maintaing of intestinal microbial

homeostasis. Indeed, GLs can be metabolised in vivo

into ITCs by members of the human gut microbiome

that regulate host epigenetics (Li et al. 2011; Shock

et al. 2021). Vice versa, these phytochemicals are

active modifiers of gut microbial communities (Din-

geo et al. 2020; Kaczmarek et al. 2019b). Broccoli

consumption in humans has been shown to increase

intestinal Firmicutes and decrease of Bacteroidetes,

respectively (Kaczmarek et al. 2019a). These bacterial

phyla togheter represent more than 90% of the total gut

microbiota (Qin et al. 2010) and the alteration of

Firmicutes/Bacteroidetes ratio, has been associated

with several pathologic conditions (Guo et al. 2019; Li

et al. 2020; Minerbi et al. 2019b; Pittayanon et al.

2019; Zeber-Lubecka et al. 2016). At the same time,

human gut microbiota conditionated by a Brassi-

caceae enriched diet contributes to increase GLs

bioavailability (Sikorska-Zimny and Beneduce 2020).

GLs hydrolysis products, like sulforaphane and benzyl

ITC, have significant antimicrobial activity against

Gram-positive and Gram-negative bacteria isolated

from the human intestinal tract, and might help in

preventing pathoges overgrowth once administered in

patients (Aires et al. 2009). Moreover, in vitro it has

been observed that broccoli leachate media can favour

the growth of lactic acid bacteria, which implies an

increased production of lactate and short-chain fatty

acids, demonstrating a prebiotic effect for GLs and

ITCs (Kellingray et al. 2021). Interestingly, intestinal

dysbiosis co-occurs with the development of several

painful diseases. Among them there are either gas-

trointestinal disorders, namely irritable bowel syn-

drome (IBS) and inflammatory bowel diseases (IBDs),

or extra-intestinal diseases such as fibromyalgia,

metabolic syndrome, rheumatic diseases, allergic

and atopic disease, and neuropsychiatric disorders

(D’Amato et al. 2020; Defaye et al. 2020). Accord-

ingly, gut microbiota has been reported to regulates

not only visceral sensitivity, but also musculoskeletal

and neuropathic pain (Boer et al. 2019; Dekker Nitert

et al. 2020; Ding et al. 2021; Minerbi et al. 2019a).

Considering that changes in the composition and

metabolism of microbiota almost inevitably cause

alterations in the mechanisms mediating pain sig-

nalling (Lucarini et al. 2021a; O’Mahony et al. 2017;

Pusceddu and Gareau 2018), the role played by GLs

and ITCs in maintaining the microbial homeostasis

might represent an additional mechanism in the

regulation of pain disorders.

GLs bioavailability

The bioavailability of GLs or their active metabolites

depends on several parameters grouped as follows: (1)

the concentration of GLs in the plant; (2) the

conditions of storage and processing of the raw

material and the stability of myrosinase; (3) GLs and

derivatives peculiar physico-chemical properties; 4)

gastrointestinal transit and microbiota fermentation

(Banerjee et al. 2014; Fernández-León et al. 2017;

Holst and Williamson 2004a; Jones et al. 2006).

GLs and ITCs found in Brassica-vegetables are

subject to a variety of changes during food processing

and the analysis of degradation products is often

challenging (Barba et al. 2016). During the fermen-

tation, commonly used for white cabbage in Germany

(‘‘Sauerkraut’’), the major breakdown products are

aliphatic ITCs, and ascorbigen (Hanschen et al. 2014).

In general, thermal degradation leads to the transfor-

mation of GLs predominantly to nitriles through

several chemical mechanisms. ITCs are instead se-

verely affected by thermal treatment, and decompose

further to a variety of volatile and non-volatile

compounds. Anyway, GLs can be differently

degraded according to the heat treatment which is

employed. For example, mild heat treatment inacti-

vates the epithiospecifier protein, without altering

myrosinase activity, thus increasing ITCs formation

(Jones et al. 2010). Longer or high temperature

(80 �C) heat treatment also inactivate myrosinase,

(Björkman and Lönnerdal 1973; Ghawi et al. 2012),

resulting in a higher content of GLs and a consequent

decrease amount of free ITCs (Barba et al. 2016).

Boiling can severely affect the levels of GLs (Nugra-

hedi et al. 2015; Verkerk et al. 2009), causing GLs

losses of 5–75%, varying as a function of each GL

structure (indole GLs are thermally less stable than

aliphatic ones) (Hanschen et al. 2012) and the context

in which it is found. Indeed, besides heat, several other
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conditions, such as pH value, plant matrix, Fe2? ions,

vitamin C, other antioxidants, or the water content,

strongly affect the susceptibility and the pathway of

the reaction, leading to a wide range of metabolites,

whom biological activities are mostly unknown

(Hanschen et al. 2014). Hence, the evaluation of the

most appropriate cooking method should be consid-

ered an important factor to preserve the beneficial

effects of Brassicaceae, which are mainly due to GLs

and ITCs content (Baenas et al. 2019).

When raw cruciferous are consumed, GLs are

hydrolysed bymyrosinase in the upper gastrointestinal

tract to different metabolites (ITCs, nitriles, oxazo-

lidine-2-thiones, and indole-3-carbinols) while, when

cooked cruciferous are ingested, GLs can transit to the

colon where they are hydrolysed by the resident

microflora (Dinkova-Kostova and Kostov 2012). At

this level, based on inter-individual microbial diver-

sity, a wide range of metabolites can be generated

(Barba et al. 2016). Interestingly, the frequent intake

of Brassica sp. vegetables favours the growth of GLs-

hydrolysing bacteria within the gut (Angelino and

Jeffery 2014). Although the largest fraction of GLs is

metabolized in the gut lumen after ingestion, their

absorption mostly occur in the small intestine, where,

a percentage is absorbed by the epithelium (Angelino

and Jeffery 2014). Although several studies demon-

strated that GLs can be absorbed in their intact form,

few research were carried out to study the absorption

mechanism of intact GLs and the fate of their major

degradation products (Budnowski et al. 2015). Overall

considering their chemical features, unmodified GLs

can scarcely reach the human tissues, whereas their

breakdown products, such as ITCs, are more easily

distributed throughout the body (Holst and Wil-

liamson 2004b), since they can cross the intestinal

epithelial barrier by passive diffusion. After they are

absorbed, GLs metabolites can have very different

fates, they can be metabolized further in the enterocyte

or secreted back into the gut lumen, alternatively, they

can pass into the plasma (Angelino and Jeffery 2014).

Before passing into the plasma, ITC can be also

conjugate with the thiol group of the glutathione

system. The resulting GSH-ITC conjugate can disas-

sociate again at low glutathione plasma concentration

or get enzymatically cleaved to release the free, and

biologically active ITC (Shakour et al. 2021) which

can passively cross cell membranes either as free

compounds or as cysteine-bound derivatives (Holst

and Williamson 2004b). Ye et al. demonstrated that

broccoli sprouts-contained ITCs are quickly dis-

tributed in the organism, from which they are elim-

inated following a first-order kinetics (Holst and

Williamson 2004b; Ye et al. 2002). These chemical

and pharmacokinetic properties, combined with evi-

dence about the acute pain relief mediated by GLs and

ITCs (effect peaking between 15 and 45 min), indi-

cates that through the systemic blood circuit most of

the ingested ITCs can adequately reach the different

districts sites of pain regulation in the body where they

can exert their beneficial effects. Moreover, the above-

mentioned binding to plasmatic GSH might contribute

to the slow and sustained release of ITCs, and

consequently H2S, at the target sites, supporting their

protective effects on tissue physiology.

Other important discriminants in com-

pounds bioavailability are the inter-individual vari-

ability which can occur in the response to the

xenobiotics (Cartea and Velasco 2008) and the

peculiar features of the GLs employed. For instance,

the activity of GLs-metabolizing microbiota can vary

a lot from individual to individual and not all the

glucosynolates can be effectively hydrolysed by the

same gut bacteria (Lucarini et al. 2018b, 2019a). It is

thus clear the importance to guarantee an adequate

intake of these phytochemicals by a correct manipu-

lation of raw materials and an optimized formulation

of final preparations.

GLs-analgesic drugs interactions

Little is known about the positive or negative

relationships occurring between GLs, their metabo-

lites, and analgesic drugs, though it is an important

aspect to consider when developing therapeutic plans.

ITCs can potentially interfere with the pharmacoki-

netics of several molecules which are substrate of the

ATP-binding cassette transporters, including most

multidrug resistance proteins (Telang et al. 2009).

Sulforaphane can also compete with the metabolism of

other drugs, since it is a substrate of phases I, II, III

enzymes. Moreover, sulforaphane turned out to be a

potent inducer of phase II enzymes and regulator of

cytochrome P-450 expression and function (Zhou

et al. 2007). These mechanisms support the preventive

effects which were attributed to this natural ITC in

degenerative diseases. On the other hand, the modi-

fication of the above-mentioned detoxification
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systems might alter the bioavailability and bioactivity

of concomitantly administered drugs (Fimognari et al.

2008; La Marca et al. 2012; Telang et al. 2009).

The in vivo pharmacodynamic interactions between

GLs and other analgesic drugs are almost unknown.

Allyl-ITC has been reported to prevent the hepatotoxic

effects caused by acetaminophen (Kim et al. 2020;

Lim et al. 2015), while sulforaphane resulted able to

improve H. pylori- and NSAID-induced gastrointesti-

nal symptoms in mice and humans (Yanaka 2017;

Yanaka et al. 2009). Likewise, also nonsteroidal anti-

inflammatory drugs formulated to release H2S in vivo

demonstrated to be less gastro-harmful than the parent

drugs due to the positive effects showed by this

gaseous mediator on the gastrointestinal tract (Dief

et al. 2015; Fiorucci et al. 2007).

Noteworthy, sulforaphane can cause an augmented

expression of opioid-l receptor (Wang and Wang

2017), enhancing morphine analgesic efficacy (Fer-

reira-Chamorro et al. 2018; Fu et al. 2021; Redondo

et al. 2017) and therefore reducing the dose required to

maintain the analgesic effect during long-term thera-

pies. Moreover, H2S released by ITCs has been

reported to inhibit opioid withdrawal-induced pain

sensitization and to attenuate opioid dependence

(Yang et al. 2014a, b).

Although the positive or negative implications of

administering GLs together with other drugs need to

be further investigated, the association with GLsmight

not only empower the efficacy of classical analgesics,

but also prevent some of their side effects, improving

the adherence of patients to the therapy.

GLs toxicity

Ruminants and horses which ingested high levels of

allyl-ITC displayed an irritation of the gastrointestinal

mucosa accompanied by abdominal pain and cramps

(Taljaard 1993). Anaemia is another possible adverse

effect resulting from an excessive consume of Bras-

sicaceae (Herr and Büchler 2010). An exaggerated

intake of vegetables and/or seeds from the Brassi-

caceae family, as well as of high doses of GLs, can

affect the functioning of thyroid, liver and kidney, can

reduce the growth as well as the reproductive perfor-

mance, but very rarely cause death (Tripathi and

Mishra 2007). Nitriles originating from an alternative

metabolism of GLs instead turned out to be hepato-

toxic. However, no significant or consistent

abnormalities in liver and thyroid function have been

observed supplementing mice diet with different

sprout extracts in therapeutic quantities. Supporting

GLs safety, it has been demonstrated that broccoli

sprout intake ameliorates cholesterol metabolism and

reduces multiple oxidative biomarkers without caus-

ing side effects (Herr and Büchler 2010).

Conclusions

The wide spectrum of benefits, accompanied by a good

bioavailability and very limited side effects, gives a

high degree of clinical translatability to GLs-based

products. Moreover, the efficacy and versatility shown

by these phytochemicals in the treatment of different

painful conditions, together with the possibility of

administering them as food supplements, encourages

their use for the treatment of chronic pain in patients.
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Flohé R, Kipp AP (2014) Glucosinolates from pak choi and

broccoli induce enzymes and inhibit inflammation and

colon cancer differently. Food Funct 5:1073–1081

Logashina YA, Korolkova YV, Kozlov S, Andreev YA (2019)

TRPA1 channel as a regulator of neurogenic inflammation

and pain: structure, function, role in pathophysiology, and

therapeutic potential of ligands. Biochem Mosc

84:101–118

Lopez-Vazquez A, Garcia-Banuelos JJ, Gonzalez-Garibay AS,

Urzua-Lozano PE, Del Toro-Arreola S, Bueno-TopeteMR,

Sanchez-Enriquez S, Munoz-Valle JF, Jave-Suarez LF,

Armendariz-Borunda J, Bastidas-Ramirez BE (2017) IRS-

1 pY612 and Akt-1/PKB pT308 phosphorylation and

antiinflammatory effect of diindolylmethane in adipocytes

cocultured with macrophages. Med Chem 13:727–733

Lucarini E, Di Pilato V, Parisio C, Micheli L, Toti A, Pacini A,

Bartolucci G, Baldi S, Niccolai E, Amedei A, Rossolini

GM, Nicoletti C, Cryan JF, O’Mahony SM, Ghelardini C,

Di Cesare Mannelli L (2021a) Visceral sensitivity modu-

lation by faecal microbiota transplantation: the active role

of gut bacteria in pain persistence. Pain 5:1–8

Lucarini E, Micheli L, Martelli A, Testai L, Calderone V,

Ghelardini C, Mannelli LDC (2018a) Efficacy of isothio-

cyanate-based compounds on different forms of persistent

pain. J Pain Res 11:2905

Lucarini E, Micheli L, Trallori E, Citi V, Martelli A, Testai L,

De Nicola GR, Iori R, Calderone V, Ghelardini C (2018b)

Effect of glucoraphanin and sulforaphane against

123

662 Phytochem Rev (2022) 21:647–665



chemotherapy-induced neuropathic pain: Kv7 potassium

channels modulation by H2S release in vivo. Phytother Res

32:2226–2234

Lucarini E, Pagnotta E, Micheli L, Parisio C, Testai L, Martelli

A, Calderone V, Matteo R, Lazzeri L, Di Cesare Mannelli

L (2019a) Eruca sativa meal against diabetic neuropathic

pain: an H2S-mediated effect of glucoerucin. Molecules

24:3006

Lucarini E, Pagnotta E, Micheli L, Parisio C, Testai L, Martelli

A, Calderone V, Matteo R, Lazzeri L, Di Cesare Mannelli

L, Ghelardini C (2019b) Eruca sativa meal against diabetic

neuropathic pain: an H2S-mediated effect of glucoerucin.

Molecules 24:3006

Lucarini E, Parisio C, Branca JJ, Segnani C, Ippolito C, Pelle-

grini C, Antonioli L, Fornai M, Micheli L, Pacini A (2020)

Deepening the mechanisms of visceral pain persistence: an

evaluation of the gut-spinal cord relationship. Cells 9:1772

Lucarini E, Seguella L, Vincenzi M, Parisio C, Micheli L, Toti

A, Corpetti C, Del Re A, Squillace S, Maftei D, Lattanzi R,

Ghelardini C, Di Cesare Mannelli L, Esposito G (2021b)

Role of enteric glia as bridging element between gut

inflammation and visceral pain consolidation during acute

colitis in rats. Biomedicines 9:1671

Manivannan A, Kim JH, Kim DS, Lee ES, Lee HE (2019)

Deciphering the nutraceutical potential of raphanus sati-

vus-a comprehensive overview. Nutrients 11:402

Mannelli LDC, Lucarini E, Micheli L, Mosca I, Ambrosino P,

Soldovieri MV, Martelli A, Testai L, Taglialatela M, Cal-

derone V (2017) Effects of natural and synthetic isothio-

cyanate-based H2S-releasers against chemotherapy-

induced neuropathic pain: role of Kv7 potassium channels.

Neuropharmacology 121:49–59

Mannelli LDC, Zanardelli M, Failli P, Ghelardini C (2012)

Oxaliplatin-induced neuropathy: oxidative stress as

pathological mechanism. Protective effect of silibinin.

J Pain 13:276–284
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Bastidas GN, Zúñiga-Romero Á, Huerta-Cruz JC, Reyes-
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