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The objects and motions of geometrical modelling, graph- 
ics and robotics are most often described by rational (or close 
to rational) data in R s. This leads naturally to a notion of ra- 
tional geometry (as opposed to the classical notion of Euclidean 
geometry) where two objects are considered equal if there exists 
a rational rigid motion from one to the other. 

We show here that although the notion of equality in ra- 
tiortal geometry differs from that of Euclidean geometry for 
lines and planes, the two notions coincide on collections of llne 
segments, in particular for polyhedra. Next, by an explicit sym- 
bolic calculation and the use of a simple technique of classical 
number theory, we obtain a rational parameterization of the 
subgroup of all rational linear movements of the space which 
keep a given point fixed. Finally we study the equivalence re- 
lation of Q-equality among segments in the space Qa, and give 
a representation of the space of equivalence classes, i.e. of the 
quotient space Qa / O(3, Q). 
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1. I n t r o d u c t i o n  

Many algorithms and techniques of geometrical modelling, graphics, 
robotics and other areas are based on Euclidean geometry (see, e.g., [Cox- 
eter (1969)]) .  Euclidean geometry, in turn, is based on point sets and 
t ransformations of vector spaces over the real numbers. Currently avail- 
able implementat ions of these tools utilize floating point calculations, which 
yield values in a fixed subset of the rational numbers. Certain experimen- 
tal systems and research efforts propose the use of infinite precision ratio- 
nal calculations or calculations involving simple real extensions [Godement 
(1963), w 26.4] of the rational numbers.[Ocken et a/.(1983)]. Either the ra- 
t ional numbers or any simple real extension of the rationals is of course a 
restriction of the real numbers, so that an implementation based on these 
existent or proposed schemes must then restrict the available point sets 
and t ransformations of Euclidean geometry to those describable by ratio- 
nal data  or by a simple extension of rational data. However, this restriction 
can call into question the correctness of a geometric algorithm dependent 
on facts gleaned from Euclidean geometry or even the possibility of the so- 
lution of a problem. For example, consider the classic problem of placing a 
block on a table. From a purely geometric perspective the solution is triv- 
ial: map the plane containing a face of the block to the plane of the table 
by a rigid motion and translate the block along the plane to the table. The 
foundations of Euclidean geometry assure the existence of the rigid motion. 
If, however, the algorithm is to be implemented in an existent geometrical 
modeller, then the block and the table will be described by rational data  
and the rigid motion must also be rational, and a subtle question remains: 
does such a rat ional  rigid motion always exist? More generally, we could 
ask what happens to Euclidean geometry when the data is rational, or close 
to rational.  In this paper the authors try to explain in what sense a geome- 
try over the rat ional  numbers in the space R 3 can be constructed involving 
simple rat ional  objects such as planes, lines, polygons, polyhedra and their 
Boolean combinations. 

An immediate  motivation for this work follows from the results contained 
in a previous paper,[O'Connor & Gentili(1987)], in which the following 
problem is completely discussed: given a non-zero rational vector v (i.e. a 
vector whose entries are all rationals) in the space Ra ,  when is it possible 
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to find two other vectors u and u ~, orthogonal with respect to each other 
and to v,  having unitary norm, with entries as "simple" as possible and 
belonging to Q, the field of rational numbers, or to some simple extension 
of Q. 

This problem often appears in situations in which it is most advantageous 
to find (when possible) exact, rational u and u r and naturally suggests the 
definition of Q-equality (see Definition 2.1) and the study of a rational 
geometry in the space R s (See Section 2). 

It  is somewhat surprising that Q-equality and classical Euclidean equal- 
i ty do not coincide for rational objects: the two rational planes rr : z = 0 
and  7r ~ : ~ q- y + z - 0 are not Q-equal, i.e. there does not exist any 
rat ional  rigid motion mapping 7r onto 7d, (see Proposition 2.2). 

The results contained in this paper show that Euclidean equality and 
Q-equali ty coincide for rational segments, polygons, polyhedra and their 
combinations,  (see Proposition 3.1 and corollaries), and hence provide a 
basis for the discussion of "rational" geometry of Section 3. This property 
of the space is especially interesting in view of the contrasting situation for 
the two rational planes 7r and 7r ~. It implies, for example, that a rational 
triangle lying on the plane Ir can never be equal to a rational triangle lying 
on the plane 7d. 

Actually, our at tention towards these geometric questions began with a 
s tudy of rational movements and related exact computation experiments in 
the  Scratchpad II computer algebra system [Jenks et aL (1988)]. Certain 
of these computations allowed us to reduce the problem of determining 
the rat ional  isotropy subgroup [Berger (1977), Ch.1 sec.6] of a given ra- 
t ional  vector (i.e . the subgroup consisting of all the rational orthogonal 
transformations of the space which fix the given vector) to where a simple 
technique from classical number theory yields an injective parameterization 
of the subgroup itself. This result provides a means to obtain the set of 
all rat ional  orthogonal matrices which transform a rational vector vl into 
a ra t ional  vector v2 having the same length. These results are discussed in 
Section 5. 

The quotient space [Godement (1963), w 4.2] of Q a with respect to the 
action of the group 0(3, Q) of all rational orthogonal linear transforma- 
tions (briefly Q~/O(3, Q)) is the space whose elements are the equivalence 
classes of points of Q a with respect to the following equivalence relation 
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.--: u ~  v if there exists n C  0(3, Q) such that  u = n v .  In Section 6 the 
quotient space Qa/O(3, Q) is studied, to further elucidate the difference 
between classical Euclidean equality and Q-equallty. A representation of 
this quotient is exhibited. 

Lastly, it should be noted that  Sections 2 through 5 easily generalize 
to any subfield K of R.  In fact, if we replace Q by K in the definitions 
of ra t ional  objects to obtain definitions of K-objects,  then we can restate 
all results in terms of K.  The proofs that  we present here also suffice in 
the more general setting. In this paper Q has been used for the sake 
of simplicity and homogeneity and to make clear its connections with ex- 
act computat ional  questions. Only Section 6 makes use of results linked 
intrinsically to the rational numbers . 

The authors want to thank the T.J. Watson Research Center of IBM 
and the International  School for Advanced Studies of Trieste for their kind 
support.  

2. Q - E q u a l i t y  a n d  r a t i o n a l  g e o m e t r y  

Geometry transforms the theory of sets into something dynamical, by 
generalizing the idea of equality. In the theory of sets one says that two 
sets are equal if they contain exactly the same elements. In geometry two 
sets are said to be equal if there exists a "movement" of the "space" which 
carries one onto the other. 

For example in the case of Euclidean geometry in R a two subsets A 
and B are equal if there exists a rigid motion g (i.e. a translation plus a 
rotat ion) of the  space such that  g(A) = B.  

Clearly the idea of equality among objects in a geometrical space depends 
on the group of movements we want to consider on the space. For example, 
in R ~, let T(2, R) be the group of all translations and let 

{E o } 
= : a, b, c, dE  R such that  ab-cdTs  

C 

be the group of all invertible linear transformations. Denote by T(2, R) 
the semidirect product of GL(2, R) �9 T(2, R). If one considers the group 
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of movements r(2,  R) acting on R 2, then all the triangles of the plane are 
equal. In fact the transformation 

carries the triangle with vertices (0,0),  (a,c), (b,d) onto the triangle with 
vertices (0,0), (e,g), (f,h) 

If one considers instead w'(2, R) = SL(2, R). T(2, R),where 

SL(2, R) = {u E GL(2,R)  : detu = i} 

then  only the triangles having the same area are equal. This last assertion 
depends on the fact that  if (a, c) ---- z, (b, d) = y, then 

det [ ac : ] =- l~'ly'sinO 

with 0 the angle between x and y. 
Finally, if one considers v"(2, R ) =  O(2, R ) .  T(2, R) ,  where O(2, R ) i s  

the  orthogonal group in R 2, then the equality is the classical Euclidean 
equality. 

Let us denote by O(3, Q) = O(Q) the group of all orthogonal 3 • 3 
matrices with rational entries, and by T(3, Q) = T(Q) the group of all 
translations by vectors with rational entries in R ~. If M(3,  Q) = M(Q) 
denotes the semidirect product O(Q). T(Q), then 

Definition 2.1 Two subsets A and B of R s are said to be Q-equal if there 
ezista a movement m E M(Q) such that m(A)= B. 

The geometry obtained from the Euclidean geometry in R 3 by restrict- 
ing the group of movements to M ( Q  ) will be referred to as the Rational 
Geometry of R3. Since the group of motions is now M( Q ), some "ratio- 
nal"  subsets become of natural interest. The rational pointa (or rational 
vectors ) of R a will of course be the points of Q~ c R s. Rational lines 
will be the lines of R "~ containing a rational point and parallel to a rational 
vector. Rational planes will be the planes containing a rational point and 
orthogonal to a rational vector. A rational segment will be a segment whose 
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endpoints  are rational.  In the same way one can define rational polygons, 
polyhedra and so on. 

Ra t iona l  planes and lines can be described by means of (parametr ic  or 
implicit) equations with rat ional  coefficients. For example, the plane ~" 
containing the rational point X0 and perpendicular to the rat ional  vector 
P can be described as the set of points X E / / a  for which P ( X  - Xo)  = 0 
or parameterical ly as 

(u ,v)  ~ u . ( P  • W)  §  x ( P  x W ) ) +  Xo 

for u~ v E R and W any non-zero rational vector not parallel to P .  
The  set of rat ional  points, lines and planes is closed under intersection, 

and consti tutes a first natural  environment on which to investigate the 
meaning of the rational geometry of the space. A natural  first question is 
to ask whether  all rational planes (and all rational lines) are Q-equal:  the 
answer is surprisingly negative as the following proposition points out: 

Proposi t ion 2.2 The two rational planes with equations z = 0 and z + y + 
z = 0 are not Q-equal, The two rational lines t ~ (0, 0, t) and t ~ (t, t, t) 
are not Q-equal. 

For a proof, see [O'Connor & Gentili(1987)]. 
Since not all rational lines are Q-equal and not all rational planes are Q- 

equal in R a, it becomes of immediate interest to investigate what happens 
for Q-equali ty among rational objects such as rational segments, polygons, 
polyhedra  of the space. This will be considered in the next section. 

3. Q - e q u a l i t y  a m o n g  r a t i o n a l  o b j e c t s  

A natural  reason to start with the study of Q-equality among rat ional  
triangles of the space is the clear fact that  Q-equality among rat ional  seg- 
ments, polygons, polyhedra, planes and so on depends upon Q-equality 
among rat ional  triangles. 

First  note that ,  given any two rational triangles, to require that  they 
be Q-equal  is meaningless if they are not equal in the Euclidean sense. So 
tha t  we can expect at most what is stated in the following 
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Proposition 3.1 Euclidean equality and Q.equality coincide for rational 
triangles in .qpace. 

Proof. 
Consider any two rational triangles V and V',  equal in the Euclidean 

sense, in the space R 3. We can suppose, up to a rational translation, that  
the two equal triangles have two corresponding vertices at the origin. Let 
a and a t, b and b' be corresponding sides of V and V t respectively, with 
one end-point being the origin and the other being, respectively, A, B, A t, 
B t. Now, the two tetrahedra W aad W t with vertices ( O , A , B , A  x B} 
and (0, A t, B' ,  A t • B'} are equal and rational. Therefore there exists one 
and only one linear transformation g E GL(3, R) such that 

g ( A ) -  A', g(B) = B '  aad g(W) = W' 

and obviously g E 0(3,  R) .  If h and h' are the matrices whose columns are 
respectively [A, B,  A x B] and [A', B ~, A t • Bt], then h -~ , h' and k = h'. h -1 
have rational entries and 

k ( A ) =  A', k ( B ) =  B t, k (W)  = W'  

By uniqueness, g = k and hence V and V t are Q-equal. 

Notice that  the  proof above is constructive in the sense that if one is 
given the vertices of two equal rational triangles, then by following the proof 
one computes in an  exact fashion the rational entries of a transformation 
m E M(3,  Q) which maps one triangle onto the other. 

Proposition 3.1 directly implies the following 

Corollary 3.2 I-f g is a rigid Euclidean motion o-f R 3 which maps a rational 
triangle onto a rational triangle, then g is a rational rigid motion and maps 
all rational triangles onto rational triangles. 

Corollary 3.3 Euclidean equality and Q-equality coincide for rational seg- 
ments, polygons and polyhedra of fl a. 
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Proof 
The  claims for polygons and polyhedra follow directly from Corollary 

3.2. Suppose v~ and v2 are two ratloaal points of R a with II  ll = I1~!I. 
If vl = ~v~ then the claim is obvious, so assume tha t  v~ r d:v~.The two 
triangles with vertices {O,v~,v~ x v~} and {O, v2,v~ • v2} are equal, and 
Proposi t ion 3.1 now implies the assertion concerning segments. 

It is worthwile noticing that  any rational triangle contained in the plane 
vr : z = 0 cannot be equal to any rational triangle contained in the plane 
~'~ : x + y + z = 0. In fact if this were the case, by Proposition 3.1 and 
Corollary 3.2, the two planes rc and ~'~ would be Q-equal, contradicting 
Proposi t ion 2.2. 

Since equali ty between sets in geometry is intrinsically linked to the exis- 
tence of t ransformations which map one set onto the other, it is worthwhile 
and customary to study the set of all such transformations. In fact it is of- 
ten of importance to determine which motions of the space leave an object 
fixed. 

In  Q-equality,  by definition, if two objects axe not equal, there can be 
no ra t ional  t ransformation between them. For the case of polyhedra or 
the case of polygons, it is easy to see tha t  there can exist at most finitely 
many  rat ional  transformations. For the case of two Q-equal segments, the 
si tuat ion is much more interesting. In Section 5 we will see that  there are 
always infinitely many such transformations. 

Before proceeding to this study, we present in the next section some 
prel iminary facts on the structure of the real orthogonal group O(R)  = 
O(3, R) .  

4. S i m p l e  fac ts  on  the  o r t h o g o n a l  g r o u p  

For v l ,  v~ E R a, let O(R)~l,~2be the subset of the orthogonal group 
O ( R )  whose elements carry vl into the half line through the origin and 
v2. If q e O(R),I,,~ ~ then for any other p E O(R),~I,,~ the matrix c = 
pq-1 belongs to 0(R),~2,.2 . Thus p E O(R),,,~2 .q  so that  O(R),1.,2 C 
O( R ) ~ , ~  �9 q, and since the opposite inclusion is obvious, it follows that 

= o(R) 2,,2 .q (4.1) 
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If p' e O ( R ) , , . , ,  then qp'q-Z e O(R), , , . ,  so that O(n) , , ,~ ,  
O(R).~,~ .q, and since the opposite inclusion is obvious 

C q -  

O(R).,,., =q-'.O(R).,,~ -q (4.2) 

i.e. the isotropy subgroups of any two points in the same orbit [see, e.g.,  
[Berger (1977), Ch.1 sec.6] are conjugate [Godement (1963), w 7.13]. W h a t  
we need in the sequel is the following 

Proposition 4.1 Let z be the vector E R 3. For any m E O(R)~n ,  ~ 

and any n C O( R)~.~ the following equality holds: 

o(R)~, ,~ ,  = ~ .  O(R) , , ,  . ,~ .  ( 4 .3 )  

P~oof. 
By (4.t) 

o(n)o,,~. : o(R)v~,.~ . ~ . ~  

and by (4.2) 

O(R)~.,~ 
Therefore (4.3) follows. 

= n .  O ( R ) ~ , ,  . n  -~  

Equality (4.3) gives the possibility of decomposing any orthogonal ma t r ix  
carring the vector v 1 to the vector v2 in the form 

where 

7 n  

T& �9 O �9 Tf/, 

V l  

~' ~" Ilvlll 

- 1  

(4.4) 
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and 

n = [ v2] 
Ilv211 

(4.5) 

o 6 0 ( R ) , , ,  = - y  m 0 :m, y E  R,m 2+yz  = 1  
0 0 1 

(4.6) 

with {u, u', Ii~lli} and {~, u', IIv211} orthonormal bases in R a 
The above decomposition and the structure of O( R)~,~ gives a simple 

parameterization of the set O(R).l,,~2in terms of m, y E R, which will be 
used in the explicit calculations of the following section. 

5. C o m p u t a t i o n  of  the  r a t i ona l  i so t ropy subg roup  

Our study of rational geometry began with computational experiments 
concerning Q-equality of rational segments that where performed in the 
Scratchpad II computer algebra system. Certain of these experiments led us 
to at tempt to find the set of rational transformations mapping a vector, vl ,  
to another vector, v2, by solving a related system of Diophantine equations. 
When v~ = v2, that is when the set of transformations being investigated is 
the subgroup consisting of all the elements of 0(3, Q) which fix the vector 
vl -- v2 (the so called isotropy subgroup of Vl in O(3, Q)), the system 
of equations assume a particularly simple form: simple enough, in fact, to 
yield an explicit rational parameterization of the subgroup. 

Proposition 5.1 For a fized, non-zero rational vector v = (v~,vu, v~), let 
2 +v~ The rational isotropy subgroup of v is composed q = Ilvll a, d p = v ,  . 

of the identity and the set S which can be injeetively parametevized as 

| qTn2+ I q~n2 + I  
: | 2rn~/~ qrn 2 ---1 71, - 1  

qrn 2 +1 71 l ~ . ~ +  1 0 :TFg ~ Q 

0 1 

(5.1) 
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whe?'e: 

if p r 0 then 

pv/q 
pv~ -pry 

vo. 1 PVu ] 
pv. 3 

(5.2) 

otherwise n i8 the identity. 
Proof 

By Section 2 of [O'Connor & Gentili(1987)], n C O(R)  
vector (0,0, []v]]) to v , s o  that  by Proposition 4.1 

and maps the 

o(n)o,~ = nO(R)~,~n -~ 

If, for x, y E  R , w i t h  ~ 2 + y 2 = 1  we let 

then (4.6) implies that  

t ( ~ , y ) =  - v  �9 (5.3) 
0 0 

t(~,y; v) = ,u(~, u)n -1 (5.4) 

describes the general matrix belonging to O(R),.~. If  ~ is rational, then 
by (5.2), n is rational. Thus t(~,y;v) is rational if, and only if, t(~,y) is 
rational. Since in this case the paxameterization of t(~, y) in (5.1) is nothing 
but  a rational reparameterization of the standard rationaJ, parameterization 
of the sine and cosine, the claims follow trivially. 

Hence hereafter we assume that ~ is not rational. Let Q be the field 

of rational functions in v~, vu, v~ With coefficients in Q, and let Q ( v ~ )  be 
the extension of Q by v/~. By (5.4) it is rmw easy to see that  each entry 

of t(~,y;v) is a linear function in ~ and y with coefficients in Q(v/q).  For 
k - - - -3 ( i -  1 ) §  j let ak~ + ~ky + ~'~ be the ( i , j ) -en t ry  of t(~,y;v).  Matrix 
t(x, y; v) is rational if and only if 
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�9 . .  (5.~) 
ag~ + flgy + 7o E 
~2 + y~ = 1 

Since a j  and flj E Q(v~) ,  a j  and flj can be represented in a unique 
way as 

where a;, a}, ~ ,  fl} belong to Q. 
Explicit symbolic calculations yield that the linear part of (5.5) is equiv- 

alent to 

where 

M +-yE (5.6) 

M = 

�9 2 + 2  0 'Vy V z 

--VxV z Vy.V/~ 
--V~Vy v z v f  ~ 
2 2 0 V~ § "U z 

--V~Vz --V~t ~ 

--VyVz V~,V/~ 
p 0 

(5.7) 
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so that, since 7 C 

2 
V x 

V~?.)y 

V~Vz 

V~Vy 
2 7 = vu 

VyVz 

Vx.Vz 

VyVz 
2 

V z 

~ ,  (5.6) is eq~vale.t to 

(5.8) 

M e (5.9) 

The matrix M has rank two because p • 0, therefore, by the standard 
Rouch~-Capelli method (See e.g. [Fekete(1985)], page 189), every solution 
(~,v) of (5.5) belo=gs to ( Q ( v ~ ) )  2. If �9 and y belo=g to Q ( ~ ) ,  we can 
uniquely decompose them as 

y = y" 4- ylv/q 

where x ' ,  ~i, yr yl belong to Q. 
In terms of this decomposition and in view of (5.6), (5.5) is equivalent to 

M [y, = 0  
(~,)~ + (y,)2 + r + q(y,)~ = 1 (5.10) 

~ , ~  + y~yi = 0 

Now, because M has rank two it follows immediately thut x i 0 y" "-- ~ , S O  

that (5.5) reduces to the following system: 

xi=O 
y" -= O 
(~,)2 + q(y,)2 - 1  

(5.11) 
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Thus only a:" and  yi can vary in Q, so that  we need only find all rational 
solutions of the quadratic equation. Clearly, a~" = 1 and yi = 0 solve (5.11). 
Using this one solution, we can apply a classical technique from number 
theory, the method of lines, to find all other solutions. 

Any line that passes through two rational solutions has a rational slope. 
Thus if ~ve parameterize the lines through (1,0) with rat ional  slope as 
y'  = rn(z ~ - 1), then the second intersection with (z ')  2 + q(yi)2 = 1 is 

qm +1 (5.12) yl 2m 

Given two Q-equal vectors u and v, the proofs of Proposit ion 3.1 and 
Corollary 3.3 explicitly provide a rational transformation T carrying u to 
v. Formula (4.1) implies ~hat the set O(Q)~,.  is obtained by composing 
O(Q)~,,~, and  T,  so that  the previous result, in fact, can be used to obtain 

a parameter lzat ion of O(Q ) ~,,~. 
In passing we note that  the form of the parameterization of O(Q)~,,,~ 

shows that  it  is dense in O(R)~,,~, and hence the same is true for O(Q)~,~ 

a n d  

6. T h e  q u o t i e n t  space  Q3/0(3, Q) 

In the Euclidean geometry of R a all lines are equal and hence the quo- 
tient space _Ra/O(R) can be viewed as nothing but a single half-line. How- 
ever since not all rational lines of the space are Q-equal (see Proposition 
2.2), it  becomes of interest to try to represent the quotient space of Q 3 
with respect to the action of the orthogonal rational group O(Q) (see the 
Preface). 

In view of Corollary 3.3 (or Proposition 5.1), all the" rational points (if 
any) belonging to a given sphere of the space are equivalent. In addition, 
two ra t ional  points with different norms cannot be equivalent and 

Proposi t ion 6.1 For any vl and v2 C Q3, there ezists T E O( Q ) carrying 
i,., the  ame di,'e Uo,  o/ 2 i/, a, d o, Zy i/, EI, II -- kll  ll /or  ome 

k e Q .  

We are now ready to prove tha t  
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Theo r em 6.2 The quotient 8pace Qa/O(Q) can be represented by the set 

Q . A = { r a : r E  Q, a E A }  

where A consist8 of  all triples (at, a2, a3) of non-negative integers such that 

i) I f  a~ + ag + a~ -- q then q is aquare free and not equal to 7 mod 8. 
i 0 I f  bl, b2 and b~ are non-negative integer8 such that b~ + b~ + b~ = q, 
then al < bt, and ira1 = bl then a2 <_ b2. 

Proof 
Let a E Q a We can obviously suppose that the three components of 

a are non-negative,  since a change of the sign of coordinates maintains the 
equivalence. 

Consider the smallest  rational multiple b of a whose components are all 
non-negative integers. If ~ and b are the equivalence classes of a and b 
respectively, then ~ E Q "b. 

It  is well known from classical number theory ([Hardy & Wright(t938), 
Ch.20], [O'Connor & Gentili(1987)]) that  a positive integer k is the sum of 
three  integers squared, if and only if k r 4n(Sm+7) for m and n being non- 
negat ive  integers. The  necessity of this somewhat strange looking result can 
be seen by a simple case analysis using the easily demonstrated facts that  
the  square of an even integer must equal 0 or 4 rood 8, while the square 
of an  odd integer must  equai 1 rood 8; the sufficiency, however, is much 
more difficult to obtain.  

Let us now consider the positive integer p = Ilbl] ~. Since p is the sum 
of three squares it  cannot be of the form 4'~(8m + 7), therefore its square- 
free par t  s cannot  be equal to 7 rood 8. Hence 8 can be writ ten as the 
sum of three squares, i.e. there exists c C Qa with non-negative integer 
components  such t ha t  s = ]lc]] 2. By Proposition 6.1, the point b can be 
mappe d  on the same direction as c by means of a rational motion, therefore, 
if ~" is the  equlvalence class of c, then b E Q ' c a n d  t E A .  

Finally,  condit ion ii) guarantees that there is only one representative for 
each equivalence class. 

Let  u and u t be non-zero rational vectors. If u and u ~ are orthogonal 
to the rat ional  planes p and p~, respectively, then Proposition 6.1 implies 
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that  p and p' are Q-equal if and only if there exists a rat ional  number k 
such tha t  Ilull = kllu'll. The same conclusion holds for the two lines I and 
l ~ whose direction vectors are u and u ~. Moreover, the set A described 
in Theorem 6.2 represents the set of equivalence classes of rational lines 
and hence the equivalence classes of rational planes. These facts and the 
structure of A itself explain in detail the distinction between Q-equality 
and Euclidean equality for lines and planes, a distinction exemplified by 
Proposi t ion 2.2. 

It  is easy to see that  Q-equality and classical Euclidean equality do not 
coincide in general for rational, non-linear, algebraic subsets of R z, i.e. for 
the zero-sets of a finite number of not all linear, algebraic equations with 
rat ional  coefficients. Take, for example, in R 2 the rational equation of the 
ellipse e : ~2 q_ ~. _ 1 If one rotates it by an angle of 4 one obtains 

4 
5 2 s 2 _ ~xy = 1 which clearly cannot be Q-equal to the given d : ~ + ~y 

one. On the other hand one can recover a sort of "Q-equali ty" among 
e and e' if one allows orthogonal transformations with entries in Q (v~) .  
This last fact seems to be a general fact and the investigation of Q-equality 
in this generalized sense, for rational algebraic subsets of R 3  should be of 
interest.  
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