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Characterization of F -concavity preserved

by the Dirichlet heat flow

Kazuhiro Ishige, Paolo Salani, and Asuka Takatsu

Abstract

F -concavity is a generalization of power concavity and, actually, the largest available
generalization of the notion of concavity. We characterize the F -concavities preserved by
the Dirichlet heat flow in convex domains on Rn, and complete the study of preservation of
concavity properties by the Dirichlet heat flow, started by Brascamp and Lieb in 1976 and
developed in some recent papers. More precisely:

(1) we discover hot-concavity, which is the strongest F -concavity preserved by the Dirichlet
heat flow;

(2) we show that log-concavity is the weakest F -concavity preserved by the Dirichlet heat
flow; quasi-concavity is also preserved only for n = 1;

(3) we prove that if F -concavity does not coincide with log-concavity and it is not stronger
than log-concavity and n ≥ 2, then there exists an F -concave initial datum such that
the corresponding solution to the Dirichlet heat flow is not even quasi-concave, hence
losing any reminiscence of concavity.

Furthermore, we find a sufficient and necessary condition for F -concavity to be preserved by
the Dirichlet heat flow. We also study the preservation of concavity properties by solutions
of the Cauchy–Dirichlet problem for linear parabolic equations with variable coefficients and
for nonlinear parabolic equations such as semilinear heat equations, the porous medium
equation, and the parabolic p-Laplace equation.
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1 Introduction

Let Ω be a (non-empty) convex domain in Rn with n ≥ 1 and α ∈ [−∞,∞], throughout this
paper. A nonnegative function f in Ω is said α-concave in Ω if

f((1− λ)x+ λy) ≥Mα(f(x), f(y);λ)

for x, y ∈ Ω and λ ∈ (0, 1), whereMα(a, b;λ) indicates the α-mean of two nonnegative numbers
a and b with weight λ ∈ (0, 1), defined as follows:

Mα(a, b;λ) :=





max{a, b} if α =∞,

((1− λ)aα + λbα)
1
α if α ∈ R \ {0},

a1−λbλ if α = 0,

min{a, b} if α = −∞,

for a, b > 0 and Mα(a, b;λ) := 0 for a, b ≥ 0 with ab = 0. Roughly speaking, we can say
that a nonnegative function f is α-concave if αfα is concave for α 6= 0 and if log f is concave
for α = 0; moreover, it is ∞-concave if it is a positive constant in a convex set and vanishes
elsewhere, while it is (−∞)-concave if all the superlevel sets of f are convex. The case α = 1
clearly corresponds to the usual concavity and α = 0 corresponds to log-concavity, while the
case α = −∞ is usually referred to as quasi-concavity. Power concavity is a generic term for
α-concavity with α ∈ [−∞,∞].

Due to Jensen’s inequality, power concavity has the following nice property:

• if f is α-concave in Ω and β ≤ α, then f is β-concave in Ω.

This property establishes a hierarchy among power concavities, so that quasi-concavity is the
weakest one while ∞-concavity is the strongest one.
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Power concavity is a useful variation of the usual concavity and it has been largely studied
in the framework of elliptic and parabolic equations (see later for some literature). Here we are
mainly concerned with a classical result by Brascamp and Lieb: log-concavity is preserved by the

Dirichlet heat flow in Rn. Indeed, in the celebrated paper [7], they proved that if f is α-concave
in Rm+n for some α ∈ [−1/m,∞], where m ≥ 1, then the function

x 7→

∫

Rm

f(x, y) dy

is γ-concave in Rn with γ = α/(1 +mα) if α > −1/m and γ = −∞ if α = −1/m. This implies
that the solution of

∂tu = ∆u in Rn × (0,∞), u(·, 0) = φ in Rn,

given by

u(x, t) = (et∆Rnφ)(x) := (4πt)−
n
2

∫

Rn

e−
|x−y|2

4t φ(y) dy, (1.1)

is log-concave in Rn for all t > 0 if φ is log-concave in Rn. More generally, from the argument of
Brascamp and Lieb (see also [36] for a different proof), it can be retrieved that log-concavity is
pushed forward by the Dirichlet heat flow (which is abbreviated as DHF) in any convex domain Ω
(not only in the whole Rn). More precisely,

• if u is a (nonnegative and bounded) solution of





∂tu = ∆u in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞) if ∂Ω 6= ∅,

u(·, 0) = φ in Ω,

(H)

where φ ∈ L∞(Ω), then u(·, t) is log-concave in Ω for all t > 0 provided that φ is log-concave
in Ω.

Throughout the paper we denote by et∆Ωφ the unique (nonnegative and bounded) solution of
problem (H) (see also the beginning of Section 3).

The preservation of concavity properties by parabolic equations is an interesting subject of
investigation with connections and applications to different fields like economy and physics and
to other important mathematical questions in the study of the eigenvalue problems, curvature
flows, localization of hot spots, and functional and geometric inequalities such as Prékopa–
Leindler and Borell–Brascamp–Lieb inequalities. Then, in view of the richness of the realm of
power concavities, after the result by Brascamp and Lieb, it is first of all natural to ask the
following question:

(Q) Are there any power concavities preserved by DHF other than log-concavity?

Question (Q) is open in its full generality; there are however partial results, which we recall
hereafter.

Proposition 1.1 Let Ω be a convex domain in Rn.

(1) Let n = 1. Then et∆Ωφ is quasi-concave in Ω for all t > 0 if φ is quasi-concave in Ω, i.e.
quasi-concavity is preserved in dimension 1.
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(2) Quasi-concavity is in general not preserved in dimension n ≥ 2: indeed, there exists φ ∈
C0(Ω) such that φ is α-concave in Ω for some α ∈ (−∞, 0) and et∆Ωφ is not quasi-concave

in Ω for some t > 0.

(3) Log-concavity is the strongest power concavity which DHF transmits from the initial time

to any t > 0.

See [2] and [23] for assertion (1); see [23, Theorem 1.1] and [24, Theorem 4.1] for assertion (2);
see [27, Theorem 1.1] for assertion (3).

Proposition 1.1 implies that log-concavity is the strongest power concavity preserved by
DHF and that quasi-concavity is the weakest power concavity preserved by DHF when n = 1,
while it is not preserved for n ≥ 2. Thus Proposition 1.1 of course tells us much, but it is far
from a thorough answer to question (Q). Furthermore, power concavity is not the only nor the
best generalization of concavity. Indeed, power concavity is just a particular case of the more
general notion of F -concavity (or concavifiability) and α-log-concavity (see Example 2.2 for the
definition), which is a kind of F -concavity and not a power concavity, is preserved by DHF in
Ω if α ∈ [1/2, 1] (see [25, Theorem 3.1]).

Definition 1.2 Let I = [0, a) and int I = (0, a) with a ∈ (0,∞], throughout this paper.

(i) A function F : I → [−∞,∞) is said admissible on I if F ∈ C(int I), F is strictly increasing

on I, and F (0) = −∞. Throughout the paper, we denote by fF the inverse function of F
in JF := F (int I) and set F (a) := limr→a−0 F (r).

(ii) Let F be admissible on I. Set

AΩ(I) := {f : Ω→ R | f(Ω) ⊂ I}.

Given f ∈ AΩ(I), we say that f is F -concave in Ω if

F (f((1− λ)x+ λy)) ≥ (1− λ)F (f(x)) + λF (f(y))

for all x, y ∈ Ω and λ ∈ (0, 1). We denote by CΩ[F ] the set of F -concave functions in Ω.

In the above definition and throughout this paper, we adhere to the convention that

−∞ ≤ −∞, ∞ ≤∞, −∞+ b = b−∞ = −∞, κ · (±∞) = ±∞,

e−∞ = 0, log 0 = −∞, − log 0 =∞, log∞ =∞,

where b ∈ [−∞,∞) and κ ∈ (0,∞). We retrieve power concavity by considering, for α ∈ R, the
admissible function Φα on I = [0,∞) defined

Φα(r) :=

∫ r

1
sα−1 ds =





rα − 1

α
if α 6= 0,

log r if α = 0,

for r ∈ (0,∞) and Φα(0) := −∞. (See also Example 2.2.)
Clearly, if F is admissible on [0, a), then it is admissible on [0, a′) for every a′ ∈ (0, a].

Furthermore, for any rigid motion T on Rn and ℓ ∈ (0,∞), we have

f ∈ CℓT (Ω)[F ] if and only if f ◦ (ℓT ) ∈ CΩ[F ]. (1.2)

In the universe of F -concavities, it is possible to introduce a hierarchy, which generalizes the
one established among power concavities.
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Definition 1.3 Let a1, a2, a ∈ (0,∞] and a ≤ min{a1, a2}. Set I1 = [0, a1), I2 = [0, a2), and
I = [0, a). Let F1 and F2 be admissible on I1 and I2, respectively. We say that F1-concavity
is weaker (resp. strictly weaker) than F2-concavity, or equivalently that F2-concavity is stronger
(resp. strictly stronger) than F1-concavity, in AΩ(I) if

CΩ[F2] ∩ AΩ(I) ⊂ CΩ[F1] (resp. CΩ[F2] ∩AΩ(I) ( CΩ[F1]).

We remark that, in our definition, any F -concavity is both stronger and weaker than itself (we
use ”strictly” when a strong comparison applies). Notice also that, although quasi-concavity
does not posses any corresponding admissible function (see e.g. [27, Remark 2.2] and [12]),
due to the monotonicity of admissible functions, an F -concave function is always quasi-concave.
Similarly, a ∞-concave function is F -concave for every admissible F . Then quasi-concavity
remains the weakest conceivable concavity property and ∞-concavity is the strongest one. We
use the expression F -concavity when we want to consider all the F -concave functions jointly
with quasi-concave and ∞-concave functions.

The main aims of this paper are to strengthen the result by Brascamp and Lieb and to
investigate its sharpness in the framework of F -concavity, asking the following questions.

(Q1) What is the strongest F -concavity preserved by DHF?

(Q2) What is the weakest F -concavity preserved by DHF?

(Q3) When starting with an F -concave initial datum and F -concavity is not preserved by DHF,
can we at least hope in maintaining quasi-concavity?

For the sake of clarity, let us state explicitly that by saying “F -concavity is preserved by DHF

in Ω” we mean that,

if φ ∈ L∞(Ω) is F -concave in Ω, then the solution et∆Ωφ of problem (H)

is F -concave in Ω for every t > 0.

Due to Proposition 1.1 (1), in the one-dimensional case the answers to questions (Q2) and (Q3)
are ”Quasi-concavity” and “Yes”, respectively.

We give here complete answers to the above three questions for every n. In order to do it,
especially for question (Q1), we need to introduce a family of new admissible functions.

Definition 1.4 Let

h(z) :=
(
e∆R1[0,∞)

)
(z) = (4π)−

1
2

∫ ∞

0
e−

|z−w|2

4 dw for z ∈ R. (1.3)

Then the function h is smooth in R, limz→−∞ h(z) = 0, limz→∞ h(z) = 1, and h′ > 0 in R

(see Lemma 2.9). Denote by H the inverse function of h. For any a ∈ (0,∞], we define an

admissible function Ha on [0, a) by

Ha(r) :=





H(r/a) for r ∈ (0, a) if a > 0,

log r for r ∈ (0, a) if a =∞,

−∞ for r = 0 and a ∈ (0,∞].

(See Lemma 2.10 for the coherence of this definition). We call Ha-concavity hot-concavity.
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Hot-concavity and the other already named F -concavities can be ordered, and, in particular,
Ha-concavity is strictly stronger than log-concavity for a ∈ (0,∞) (while they clearly coincide
for a =∞).

Now we are ready to give our answers to questions (Q1)-(Q3).

Theorem 1.5 Let I = [0, a) with a ∈ (0,∞] and Ω a convex domain in Rn with n ≥ 1. Then

the following properties hold.

(A1) Ha-concavity is the strongest F -concavity preserved by DHF in AΩ(I).

(A2) Log-concavity is the weakest F -concavity preserved by DHF in AΩ(I) for n ≥ 2; when

n = 1, the same is true under C2-regularity assumption on F (moreover, quasi-concavity

is preserved, too).

(A3) If F -concavity is not stronger than log-concavity in AΩ(I) and n ≥ 2, then there exists an

F -concave initial datum such that the corresponding solution to the Dirichlet heat flow is

not even quasi-concave, hence losing any reminiscence of concavity.

With the exception of quasi-concavity for n = 1, the situation depicted by the above theorem
can be nicely summarized by the following picture:

∞-concavity ⊂ · · · ⊂

stronger ← Preserved by DHF → weaker
︷ ︸︸ ︷
Ha-concavity ⊂ · · · ⊂ log-concavity = H∞-concavity ⊂ · · · ⊂ quasi-concavity

Let Π is the half-space [0,∞)× Rn−1 of Rn. Since

h(z) = e∆Rn1Π(ze1) for z ∈ R

and the characteristic function 1Π is ∞-concave in Rn, if F is admissible in I = [0, 1) and
F -concavity is preserved by DHF in Rn, then h must be F -concave in R. This implies that
H1-concavity is stronger than F -concavity in AR(I) (see Lemma 2.4). Then H1-concavity is
the possible strongest F -concavity preserved by DHF and hot-concavity naturally appears in
the study of the preservation of concavity properties by DHF. Fortunately, hot-concavity is
preserved by DHF, and thus (A1) holds. Notice also that answer (A1) depends on the interval
I, precisely on a. The dependance on a can be interpreted as dependance on the L∞ norm of
the initial datum. In the case of a = ∞, it has already been shown in [27, Theorem 1.1] that
log-concavity (i.e. H∞-concavity) is the strongest F -concavity preserved by DHF in AΩ(I). In
fact, by coupling (A1) and (A2), we get that in the case a = ∞ the only F -concavity surely
preserved by DHF is log-concavity.

We will split Theorem 1.5 in several steps, see Section 5. Let us notice here that one of the
key ingredients in the proof of one of these steps is a result concerning a sufficient condition for
the preservation of F -concavity by DHF (see Proposition 4.4 and Theorem 5.1). Surprisingly, the
sufficient condition, under a C2-regularity assumption on admissible functions, is also necessary!
This takes to another main result of this paper.

Theorem 1.6 Let I = [0, a) with a ∈ (0,∞] and Ω a convex domain in Rn with n ≥ 1. Let F
be admissible on I such that F ∈ C2(int I). Then F -concavity is preserved by DHF in Ω if and

only if

lim
r→+0

F (r) = −∞, F ′ > 0 in int I, and (log f ′F )
′ is concave in JF .
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The latter theorem (together with Proposition 1.1 (1)) gives the one-dimensional part of (A2),
and it also yields that only log-concavity and quasi-concavity are preserved by DHF with n = 1
among power concavities.

Let us remark that, to our knowledge, Theorem 1.6 is the first result regarding a necessary

and sufficient condition for concavity properties of solutions to partial differential equations.

Further than in the case of DHF, the preservation of log-concavity has already been studied
in the case of the Cauchy–Dirichlet problem for various nonlinear parabolic equations (see e.g.
[20, 22,33–36,39,40]). See also [30–32] for related topics. Moreover, similar investigation about
the preservation or disruption of power concavity along parabolic flows have been pursued in the
following cases too: the heat equation with a potential [1]; the one-phase Stefan problem [10],
where not even log-concavity is in general preserved; porous medium equation [11] and [24]
(with sharp results in some cases); DHF in ring shaped domains [9]. In this paper, as an
application and a generalization of our arguments, we study the preservation and the disruption
of F -concavity by solutions of linear parabolic equations with variable coefficients and nonlinear
parabolic equations such as semilinear heat equations, the porous medium equation, and the
parabolic p-Laplace equation, and also resolve some related open questions (see Sections 4 and 6).

The rest of this paper is organized as follows. In Section 2 we discuss the notion of F -
concavity, giving examples and collecting some preliminary properties. In Section 3 we first
study the disruption of quasi-concavity in Rn with n ≥ 2, proving that starting with a non
log-concave initial datum even quasi-concavity can go immediately lost (see Proposition 3.2).
Next, we show that the disruption of F -concavity by DHF in Rn implies the disruption of F -
concavity by the Dirichlet parabolic flow in any convex domain Ω. In Section 4 we investigate the
preservation of F -concavity by generic parabolic flows, finding sufficient (see Proposition 4.2)
and necessary (see Proposition 4.4) conditions. Furthermore, we characterize F -concavities
preserved by DHF. In Section 5 we complete the proof of Theorem 1.5, which will be in fact
the product of other main theorems stated and proved in this section. In Section 6 we develop
the arguments of Sections 3–5, and we explore the F -concavities preserved by solutions of linear
parabolic equations with variable coefficients and nonlinear parabolic equations.

Acknowledgements. K. I. and A. T. were supported in part by JSPS KAKENHI Grant
Number 19H05599. P. S. was supported in part by INdAM through a GNAMPA Project. A. T.
was supported in part by JSPS KAKENHI Grant Number 19K03494.

2 Preliminaries

Throughout this paper, for any x ∈ Rn and R > 0, we denote by B(x,R) the open ball in Rn

centered at x of radius R. Let 〈·, ·〉 denote the standard inner product on Rn. For any set E,
let 1E be the characteristic function of E. We denote by Sym(n) the space of n × n real
symmetric matrices. As already said, unless otherwise stated, we denote by Ω a (non-empty)
convex domain in Rn. Let

BC(Ω) := C(Ω) ∩ L∞(Ω), BC0(Ω) := {f ∈ C(Ω) ∩ L∞(Ω) | f = 0 on ∂Ω if ∂Ω 6= ∅}.
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For any T ∈ (0,∞], we define

BC(Ω× (0, T )) := C(Ω× (0, T )) ∩ L∞(Ω× (0, T )),

C2;1(Ω× (0, T ))

:= {f ∈ C(Ω× (0, T )) | ∂xif, ∂xi∂xjf, ∂tf ∈ C(Ω× (0, T )) for i, j = 1, . . . , n},

BC2;1(Ω× (0, T ))

:= {f ∈ BC(Ω× (0, T )) | ∂xif, ∂xi∂xjf, ∂tf ∈ BC(Ω× (0, T )) for i, j = 1, . . . , n}.

For any T ∈ (0,∞] and σ ∈ [0, 1), we set

BC0,σ;0,σ/2(Ω× (0, T )) := {f ∈ BC(Ω× (0, T )) | ‖f‖C0,σ;0,σ/2(Ω×(0,T )) <∞},

BC2,σ;1,σ/2(Ω× (0, T ))

:= {f ∈ BC2;1(Ω× (0, T )) | ∂xi∂xjf, ∂tf ∈ BC
0,σ;0,σ/2(Ω× (0, T )) <∞ for i, j = 1, . . . , n},

where

‖f‖C0,σ; 0,σ/2(Ω×(0,T )) := sup
(x,t)∈Ω×(0,T )

|f(x, t)|+ sup
(x,t),(y,s)∈Ω×(0,T )

(x,t)6=(y,s)

|f(x, t)− f(y, s)|

|x− y|σ + |t− s|σ/2
<∞.

Similarly, we define the function spaces Ck,σ(Ω), BCk,σ(Ω), BCk,σ(Ω), and Ck,σ;k,σ/2(Ω×(0, T )),
where k = 0, 1, 2 and σ ∈ [0, 1). We use C to denote generic positive constants, which may take
different values within a calculation.

Let us first give three relevant examples of F -concavity. As we said, power concavity is just
a particular case of F -concavity, hence this is our first example.

Example 2.1 (Power concavity) Let I = [0,∞) and α ∈ R. Define an admissible function Φα

on I by

Φα(r) :=

∫ r

1
sα−1 ds =





rα − 1

α
if α 6= 0,

log r if α = 0,

for r ∈ (0,∞) and Φα(0) := −∞. Then Φα-concavity corresponds to α-concavity, as introduced

at the beginning of this paper, and it possesses the following properties.

(1) If α < β, then α-concavity is strictly weaker than β-concavity in AΩ(I).

(2) Power concavity is closed under positive scalar multiplication, that is, if f is α-concave
in Ω, then so is κf for κ ∈ (0,∞). (See also Lemma 2.8.)

The second example is a sort of hybrid between log-concavity and power concavity, introduced
in [25].

Example 2.2 (Power log-concavity) Let I = [0, 1) and α ∈ R. Define an admissible function Lα

on I by

Lα(r) := −Φα(− log r) =




−
1

α
[(− log r)α − 1] if α 6= 0,

− log(− log r) if α = 0,

for r ∈ (0, 1) and Lα(0) := −∞. We also refer to Lα-concavity as α-log-concavity and, generi-

cally, as power log-concavity. The following properties hold (see [25, 27]).
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(1) A function f ∈ AΩ(I) is log-concave in Ω if and only if f is 1-log-concave in Ω.

(2) If α < β, then β-log-concavity is strictly weaker than α-log-concavity in AΩ(I).

(3) If α ≤ 1 and f is α-log-concave in Ω, then so is κf for κ ∈ (0, 1].

Also notice that, for any κ ∈ (0, 1), the function κ exp(−|x|2) is α-log-concave in Rn if and only

if α ≥ 1/2.

Power log-concavity plays an important role in the study of DHF. Indeed, in [25, Theorem 3.1],
the authors of this paper proved that α-log-concavity is preserved by DHF if α ∈ [1/2, 1] and
this result is optimal in some suitable sense (see and [27, Section 4.2] for more details). Notice
that the domain of α-log-concavity is different from that of log-concavity and α-log-concavity
is strictly stronger than log-concavity in AΩ([0, 1)) if α < 1. These suggest that the domains
of admissible functions are important in the study for questions (Q1)–(Q3) and this makes the
study complex and delicate.

The third example is Ha-concavity introduced in Definition 1.4 and it is crucial to this paper.

Example 2.3 (Ha-concavity) Let I = [0, a) with a ∈ (0,∞]. Ha-concavity possesses the follow-

ing properties.

(1) For any b ∈ (a,∞], Hb-concavity is strictly weaker than Ha-concavity in AΩ(I).

(2) H1-concavity is stronger than α-log-concavity in AΩ(I) if α ≥ 1/2.

Assertion (1) follows from Theorem 5.1. Assertion (2) also follows from Theorem 5.1 and

[25, Theorem 3.1].

In the case I = [0, 1), as a result of Theorem 1.5 with Example 2.2 (see also Theorems 5.1
and 5.2), we can deduce the following picture of the hierarchy of F -concavities preserved by
DHF.

· · · ⊂

stronger ← Preserved by DHF → weaker
︷ ︸︸ ︷
H1-concavity ⊂ 1/2-log-concavity⊂ · · · ⊂ 1-log-concavity︸ ︷︷ ︸

α-log-concavity (1/2 ≤ α ≤ 1)

⊂ log-concavity = H∞-concavity ⊂ · · ·

Next, we collect and prove some lemmas on F -concavity. The first lemma concerns the
hierarchy of F -concavities (see also [4, Lemma 3.2]).

Lemma 2.4 Let F1 and F2 be admissible on I = [0, a) with a ∈ (0,∞]. Then F1-concavity is

weaker than F2-concavity in AΩ(I) if and only if F1 ◦ fF2 is concave in JF2 (or, equivalently,
F2 ◦ fF1 is convex in JF1).

Proof. For i = 1, 2, we write fi := fFi and Ji := JFi = Fi(int I) for simplicity. Assume that
F1 ◦ f2 is concave in J2. Let f ∈ CΩ[F2]. Since F2 ◦ f is concave in Ω and F1 ◦ f2 is increasing
on J2, we have

(F1 ◦ f) ((1− λ)x+ λy) = (F1 ◦ f2 ◦ F2 ◦ f) ((1− λ)x+ λy)

≥ (F1 ◦ f2) ((1− λ)(F2 ◦ f)(x) + λ(F2 ◦ f)(y))

≥ (1− λ) (F1 ◦ f2) ((F2 ◦ f) (x)) + λ (F1 ◦ f2) ((F2 ◦ f) (y))

= (1− λ) (F1 ◦ f) (x) + λ (F1 ◦ f) (y)
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for x, y ∈ Ω and λ ∈ (0, 1) if f(x)f(y) > 0. This relation also holds even if f(x)f(y) = 0 since
F1(0) = −∞ (see Definition 1.2 (i)). These imply that f is F1-concave in Ω, that is, F1-concavity
is weaker than F2-concavity in AΩ(I).

Next, we assume that F1-concavity is weaker than F2-concavity in AΩ(I). If F1 ◦ f2 is not
concave in J2, then there exist z, w ∈ J2 and λ ∈ (0, 1) such that

(F1 ◦ f2) ((1− λ)z + λw)) < (1− λ)(F1 ◦ f2)(z) + λ(F1 ◦ f2)(w). (2.1)

Thanks to (1.2), we can assume, without loss of generality, that B(0, R) ⊂ Ω for some R > 0.
Let ε ∈ (0, 1) be such that εz, εw ∈ (−R,R). Set

f(x) := f2(ε
−1〈x, e1〉)1J2(ε

−1〈x, e1〉) for x ∈ Ω,

where e1 := (1, 0, . . . , 0) ∈ Rn. We observe from F2-concavity of f2 that f is F2-concave in Ω.
Since εze1, εwe1 ∈ Ω, by (2.1) we have

(F1 ◦ f) ((1− λ)εze1 + λεwe1) = (F1 ◦ f2) ((1− λ)z + λw)

< (1− λ)(F1 ◦ f2)(z) + λ(F1 ◦ f2)(w)

= (1− λ)(F1 ◦ f) (εze1) + λ(F1 ◦ f) (εwe1) .

This means that f is not F1-concave in Ω, which contradicts CΩ[F2] ⊂ CΩ[F1]. Thus F1 ◦ f2 is
concave in J2. The proof is complete. ✷

As a corollary of Lemma 2.4, we have (see also [27, Theorem 3.2]):

Lemma 2.5 Let F1 and F2 be admissible on I = [0, a) with a ∈ (0,∞]. Then the relation

CΩ[F1] = CΩ[F2] holds if and only if there exists a pair (A,B) ∈ (0,∞)× R such that

F1(r) = AF2(r) +B for r ∈ int I.

Lemma 2.4 also implies that the hierarchy of F -concavities is independent of Ω and the dimen-
sion n.

Lemma 2.6 Let F1 and F2 be admissible on I = [0, a) with a ∈ (0,∞]. Then

CΩ[F2] ⊂ CΩ[F1] if and only if CR[F2] ⊂ CR[F1],

CΩ[F2] ( CΩ[F1] if and only if CR[F2] ( CR[F1].

Furthermore, by Lemma 2.4 we have:

Lemma 2.7 Let F1 and F2 be admissible on I = [0, a) with a ∈ (0,∞]. If F1-concavity is weaker

than F2-concavity in AΩ(I) and limr→+0 F2(r) = −∞, then limr→+0 F1(r) = −∞.

Proof. It follows from the admissibility of F2 and limr→+0 F2(r) = −∞ that JF2 = (−∞, F2(a)).
Lemma 2.4 implies that F1◦fF2 is concave in JF2 . Since F1 and fF2 are strictly increasing, F1◦fF2

is strictly increasing in JF2 . Then we conclude that

lim
r→+0

F1(r) = lim
z→−∞

F1(fF2(z)) = −∞.

The proof is complete. ✷

Next, we modify the argument in the proof of [41, Theorem 2] in order to investigate the
closedness under positive scalar multiplication of F -concavity. (See also [27, Theorem 3.3].)
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Lemma 2.8 Let F be admissible on I = [0, a) with a ∈ (0,∞]. Assume that there exists ε∗ > 0
such that the following holds for every ε ∈ (0, ε∗]: if f ∈ CΩ[F ] and (1 + ε)f ∈ AΩ(I), then

κf ∈ CΩ[F ] holds for κ ∈ [(1 + ε)−1, 1 + ε]. Then CΩ[F ] = CΩ[Φα] ∩ AΩ(I) for some α ∈ R.

Proof. For κ > 0, set Fκ(r) := F (κ−1r) for r ∈ Iκ := [0, κa). Let ε ∈ (0, ε∗]. Then the
assumption implies that

CΩ[Fκ] ∩ AΩ(Iκ/(1+ε)) ⊂ CΩ[F ] for all κ ∈ [(1 + ε)−1, 1 + ε].

Let κ ∈ [(1 + ε)−1/2, (1 + ε)1/2]. If f ∈ CΩ[F ] ∩ AΩ(Iκ2/(1+ε)), then the assumption yields
κ−1f ∈ CΩ[F ] ∩ AΩ(Iκ/(1+ε)), that is, f ∈ CΩ[Fκ] ∩ AΩ(Iκ2/(1+ε)). Consequently, we have

CΩ[F ] ∩ AΩ(Iκ2/(1+ε)) ⊂ CΩ[Fκ] ∩ AΩ(Iκ2/(1+ε)) ⊂ CΩ[F ] ∩ AΩ(Iκ2/(1+ε)).

By Lemma 2.5 we see that F ◦ fFκ is affine. Therefore there exist c(κ), d(κ) ∈ R such that

F (fFκ(z)) = c(κ)z + d(κ) for z ∈ Fκ(int Iκ2/(1+ε)).

In particular, c(1) = 1, c(κ) > 0, and d(1) = 0. Notice that

Jε :=
⋂

κ∈[(1+ε)−1/2,(1+ε)1/2]

Fκ(int Iκ2/(1+ε)) = F ((0, (1 + ε)−3/2a)).

Given z ∈ Jε, F ◦ fFκ is continuous with respect to κ ∈ [(1 + ε)−1/2, (1 + ε)1/2], hence c and d
are continuous in [(1 + ε)−1/2, (1 + ε)1/2]. Since fF is the inverse function of F and fFκ = κfF ,
we observe that

κfF (z) = fFκ(z) = fF (F (fFκ(z))) = fF (c(κ)z + d(κ))

for all κ ∈ [(1 + ε)−1/2, (1 + ε)1/2].
Let κ1, κ2 ∈ [(1 + ε)−1/4, (1 + ε)1/4]. Then κ1κ2 ∈ [(1 + ε)−1/2, (1 + ε)1/2] and

κ1κ2fF (z) = fF (c(κ1κ2)z + d(κ1κ2)),

κ1κ2fF (z) = κ1fF (c(κ2)z + d(κ2)) = fF (c(κ1) (c(κ2)z + d(κ2)) + d(κ1)) .

These yield
c(κ1κ2) = c(κ1)c(κ2), d(κ1κ2) = c(κ1)d(κ2) + d(κ1). (2.2)

Setting C(Z) := log c(eZ), we have

C(Z1 + Z2) = log |c(eZ1eZ2)| = log |c(eZ1)c(eZ2)| = C(Z1) + C(Z2)

for Z1, Z2 ∈ [log(1 + ε)−1/4, log(1 + ε)1/4]. Thus we find α ∈ R such that C(Z) = αZ, that is,

c(κ) = κα for κ ∈ [(1 + ε)−1/4, (1 + ε)1/4].

Consider the case of α 6= 0. Thanks to (2.2), for any κ1, κ2 ∈ [(1 + ε)−1/4, (1 + ε)1/4] \ {1},
we have

d(κ1κ2) = κα1 d(κ2) + d(κ1) = κα2 d(κ1) + d(κ2),

hence
d(κ1)

κα1 − 1
=

d(κ2)

κα2 − 1
.
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Combining this with the continuity of d, we find β ∈ R such that

d(κ) = βΦα(κ) for κ ∈ [(1 + ε)−1/4, (1 + ε)1/4].

Let z ∈ Jε, and set

Iε(z) :=
{
κfF (z)

∣∣∣ κ ∈ [(1 + ε)−1/4, (1 + ε)1/4]
}
.

For any r = κfF (z) ∈ Iε(z), we have

F (r) = F (κfF (z)) = F (fFκ(z)) = c(κ)z + d(κ) = καz + βΦα(κ)

=

(
r

fF (z)

)α

z + βΦα

(
r

fF (z)

)
=

z

fF (z)α
rα +

β

α

(
1

fF (z)α
rα − 1

)
.

This together with the admissibility of F ensures the existence of (A,B) ∈ (0,∞)×R such that
F = AΦα + B on Iε(z). This relation implies that A and B are independent of the choice of
z ∈ Jε, that is,

F = AΦα +B on Iε :=
⋃

z∈Jε

Iε(z).

Since Jε → F ((0, a)) as ε → +0, we see that Iε → (0, a) as ε → +0. Then we deduce that
F = AΦα + B on (0, a). This together with Lemma 2.5 completes the proof of Lemma 2.8 in
the case α 6= 0.

Consider the case of α = 0. It follows from (2.2) that d(κ1κ2) = d(κ1) + d(κ2) for κ ∈
[(1+ε)−1/4, (1+ε)1/4]. Then we find γ ∈ R such that d(κ) = γ log κ for κ ∈ [(1+ε)−1/4, (1+ε)1/4],
that is,

F (r) = c(κ)z + d(κ) = z + γ log κ = γ log r + z − log fF (z)

for z ∈ Jε and r = κfF (z) ∈ Iε(z). By a similar argument in the case α 6= 0 we obtain the
desired conclusion in the case α = 0. Thus Lemma 2.8 follows. ✷

At the end of this section we prove two lemmas related with Ha-concavity. In Lemma 2.10
we show that log-concave functions are approximated by Ha-concave functions, so justifying the
definition of H∞(r) = log r.

Lemma 2.9 Let h be as in (1.3). Then

(
et∆R1[0,∞)

)
(z) = h(t−

1
2 z) for (z, t) ∈ R× (0,∞). (2.3)

Furthermore,

lim
z→−∞

h(z) = 0, lim
z→∞

h(z) = 1, (2.4)

h′(z) = (4π)−
1
2 e−

|z|2

4 > 0, h′′(z) = −
1

2
zh′(z), for z ∈ R, (2.5)

h′(z) = −

(
1

2
+ o(1)

)
zh(z) as z → −∞. (2.6)

Proof. Let z ∈ R. It follows from (1.1) that

(
et∆R1[0,∞)

)
(z) = (4πt)−

1
2

∫

R

e−
|z−w|2

4t 1[0,∞)(w) dw = (4πt)−
1
2

∫ ∞

0
e−

|z−w|2

4t dw

= (4π)−
1
2

∫ ∞

0
e−

|t
− 1

2 z−w|2

4 dw = h(t−
1
2 z) for t > 0.
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Then (2.3) holds. Furthermore,

lim
t→+0

h(t−
1
2 z) = 0 if z < 0, lim

t→+0
h(t−

1
2 z) = 1 if z > 0,

which yield (2.4). In addition, we have

t−
1
2h′(t−

1
2 z) = ∂zh(t

− 1
2 z) = (4πt)−

1
2

∫ ∞

0
∂z

(
e−

|z−w|2

4t

)
dw

= −(4πt)−
1
2

∫ ∞

0
∂w

(
e−

|z−w|2

4t

)
dw = (4πt)−

1
2 e−

|z|2

4t

for t > 0. This implies that

h′(z) = (4π)−
1
2 e−

|z|2

4 > 0, h′′(z) = −
1

2
z(4π)−

1
2 e−

|z|2

4 = −
1

2
zh′(z).

Thus (2.5) holds.
It follows from (1.3) that

h′(z) = −
(4π)−

1
2

2

∫ ∞

0
(z − w)e−

|z−w|2

4 dw

= −
(4π)−

1
2

2
z

∫ ∞

0
e−

|z−w|2

4 dw +
(4π)−

1
2

2

( ∫ |z|
1
2

0
+

∫ ∞

|z|
1
2

)
we−

|z−w|2

4 dw

= −
1

2
zh(z) +

(4π)−
1
2

2

( ∫ |z|
1
2

0
+

∫ ∞

|z|
1
2

)
we−

|z−w|2

4 dw.

(2.7)

We have∣∣∣∣∣∣
(4π)−

1
2

2

∫ |z|
1
2

0
we−

|z−w|2

4 dw

∣∣∣∣∣∣
≤

(4π)−
1
2

2
|z|

1
2

∫ ∞

0
e−

|z−w|2

4 dw =
1

2
|z|

1
2h(z) = o(|z|h(z)) (2.8)

as z → −∞. Furthermore, we find C > 1 such that
∣∣∣∣∣

∫ ∞

|z|
1
2

we−
|z−w|2

4 dw

∣∣∣∣∣ = e−
z2

4

∫ ∞

|z|
1
2

we
zw
2
−w2

4 dw ≤ Ce−
z2

4

∫ ∞

|z|
1
2

e
zw
2 dw

= Ce−
z2

4

[
2

z
e

zw
2

]w=∞

w=|z|
1
2

= 2C|z|−1e−
z2+2|z|

3
2

4 if z < 0.

(2.9)

Since

h(z) ≥ (4π)−
1
2

∫ 1

0
e−

|z−w|2

4 dw = (4π)−
1
2 e−

z2

4

∫ 1

0
e

zw
2
−w2

4 dw

≥ (4π)−
1
2 e−

1
4 e−

z2

4

∫ 1

0
e

zw
2 dw = (4π)−

1
2 e−

1
4 e−

z2

4

[
2

z
e

zw
2

]w=1

w=0

= (4π)−
1
2 e−

1
4 e−

z2

4

(
2

z
e

z
2 −

2

z

)
= 2(4π)−

1
2 e−

1
4 |z|−1e−

z2

4 (1 + o(1))

as z → −∞, by (2.9) we see that
∣∣∣∣∣

∫ ∞

|z|
1
2

we−
|z−w|2

4 dw

∣∣∣∣∣ = o(|z|h(z)) as z → −∞.

This together with (2.7) and (2.8) implies (2.6). Thus Lemma 2.9 follows. ✷
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Lemma 2.10 For any f ∈ CΩ[Φ0]∩L
∞(Ω), there exists a sequence {fa}a>0 such that fa ∈ CΩ[Ha]

and

lim
a→∞

fa(x) = f(x)

uniformly on Ω.

Proof. The proof is a variation of the arguments in [27, Section 4.2]. It suffices to treat large
enough a. By (2.5) we find εa ∈ (0, 1) such that

εah
′(−2ε−1

a ) = a−1 and εa → 0 as a→∞.

Set
ha(z) := ah(εaz − 2ε−1

a ) for z ∈ R, ha(−∞) := 0.

We observe from Lemma 2.9 that

h′a(z) = aεah
′(εaz − 2ε−1

a ) = aεa · (4π)
− 1

2 e−
(εaz−2ε−1

a )2

4 = aεah
′(−2ε−1

a )ez−
1
4
ε2az

2
= ez−

1
4
ε2az

2

for z ∈ R, which together with limz→−∞ ha(z) = 0 yields

ha(z) =

∫ z

−∞
ew− 1

4
ε2aw

2
dw.

Then we see that

lim
a→∞

ha(z) =

∫ z

−∞
ew dw = ez (2.10)

uniformly on (−∞, R) for any R ∈ R.
Let f ∈ CΩ[Φ0] ∩ L

∞(Ω), and set

fa(x) := ha(Φ0(f(x))) = ha(log f(x)) for x ∈ Ω.

Then, by (2.10) we see that lima→∞ fa(x) = lima→∞ ha(log f(x)) = f(x) uniformly on Ω. Let
H̃a be the inverse function of ha in [0, a). Then H̃a is admissble on [0, a) and it follows from
f ∈ CΩ[Φ0] that H̃a(fa) = log(f) is concave in Ω. These imply that

fa ∈ CΩ[H̃a].

On the other hand, since ha(ε
−1
a H(a−1z) + 2ε−2

a ) = ah(H(a−1z)) = z for z ∈ (0, a), we see that

H̃a(z) = ε−1
a H(a−1z) + 2ε−2

a = ε−1
a Ha(z) + 2ε−2

a for z ∈ (0, a).

Then Lemma 2.5 implies that CΩ[H̃a] = CΩ[Ha]. Thus fa ∈ CΩ[H̃a] = CΩ[Ha]. The proof is
complete. ✷

3 Disruption of F -concavity

We consider the Cauchy–Dirichlet problem





∂tu = Lu in Ω× (0,∞),

u = 0 in ∂Ω× (0,∞) if ∂Ω 6= ∅,

u(·, 0) = φ ≥ 0 in Ω,

(P)
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where φ ∈ L∞(Ω). Here L is an elliptic operator of the form

L :=

n∑

i,j=1

aij(x, t)∂xi∂xj +

n∑

i=1

bi(x, t)∂xi − c(x, t),

and the coefficients satisfy the following conditions:

(L1) there exists σ ∈ (0, 1) such that

aij , bi ∈ C0,σ;0,σ/2(Ω× [0,∞)), c ∈ BC0,σ;0,σ/2(Ω× [0,∞)),

where i, j = 1, . . . , n;

(L2) A(x, t) := (aij(x, t)) ∈ Sym (n) for (x, t) ∈ Ω× [0,∞) and there exists Λ > 0 such that

Λ−1|ξ|2 ≤ 〈A(x, t)ξ, ξ〉 ≤ Λ|ξ|2 for all ξ ∈ Rn and (x, t) ∈ Ω× [0,∞).

Then, for any nonnegative initial datum φ ∈ L∞(Ω), problem (P) possesses a (unique) minimal
nonnegative solution etLΩφ such that

etLΩφ ∈ L∞((0,∞) : L2
loc(Ω)) ∩ L

2((0,∞) : H1
loc(Ω)),

lim
t→+0

‖etLΩφ− φ‖L2(Ω∩B(0,R)) = 0 for R > 0. (3.1)

(See e.g. [38, Chapter III] and [21, Lemma 5.3].) The solution etLΩφ is represented by the
minimal Dirichlet heat kernel GLΩ

associated with the operator L in Ω as follows:

(etLΩφ)(x) =

∫

Ω
GLΩ

(x, y, t)φ(y) dy, (x, t) ∈ Ω× (0,∞).

Then, under conditions (L1) and (L2), parabolic regularity theorems (see e.g. [38, Chapter IV,
Theorem 16.3]) imply that GLΩ

∈ C2,σ;1,σ/2(Ω×Ω× (0,∞)). Furthermore, we observe from the
maximum principle and the comparison principle that

GLΩ
(x, y, t) > 0,

∫

Ω
GLΩ

(x, y, t) dy ≤ e
∫ t
0 ‖c(s)‖L∞(Ω) ds, (3.2)

for x, y ∈ Ω and t > 0.

Definition 3.1 Let F be admissible on I = [0, a) with a ∈ (0,∞] and Ω a convex domain in Rn.

Consider problem (P) under conditions (L1) and (L2). We say that F -concavity is preserved
by the Dirichlet parabolic flow associated with L in Ω if

etLΩφ ∈ CΩ[F ] for t > 0 holds for all φ ∈ CΩ[F ] ∩ L
∞(Ω).

In this section we study the disruption of F -concavity by the Dirichlet parabolic flow, in partic-
ular, by DHF.
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3.1 Disruption of quasi-concavity by DHF in Rn

We first prove that, when starting with a non-log-concave initial datum φ in Rn with n ≥ 2,
then the solution et∆Rnφ may not be quasi-concave for all small enough t > 0, hence losing any
reminiscence of concavity. Proposition 3.2 is one of the main ingredients of this paper.

Proposition 3.2 Let F be admissible on I = [0, a) with a ∈ (0,∞]. Let n ≥ 2 and assume that

F -concavity is not stronger than log-concavity in ARn(I), that is,

CRn [F ] \ CRn [Φ0] 6= ∅. (3.3)

Then there exists φ ∈ CRn [F ]∩L∞(Rn) such that et∆Rnφ is not quasi-concave in Rn for all small

enough t > 0.

Proof. The proof heavily depends on the following nice property of the heat flow:

• for any φ1, φ2 ∈ L
∞(R),

(et∆R2φ)(z) = (et∆Rφ1)(z1)(e
t∆Rφ2)(z2)

for z = (z1, z2) ∈ R2 and t > 0, where φ(z) = φ1(z1)φ2(z2).

Setting φ1 = 1[0,∞) and letting φ2 a suitable modification of the inverse of F , we see that

φ = φ1φ2 is F -concave in R2. Then we prove the non-convexity of a superlevel set of et∆R2φ for
all small enough t > 0. The proof is divided into three steps.
Step 1: Assume (3.3). It follows from Lemma 2.7 that limr→+0 F (r) = −∞. We write f := fF
and J := JF for simplicity. The admissibility of F together with limr→+0 F (r) = −∞ implies
that J = (−∞, F (a)). Furthermore, f is positive, continuous, and strictly increasing in J . By
Lemma 2.4 we see that log f is not concave in J , that is,

f((1− λ)ζ + λω) < f(ζ)1−λf(ω)λ (3.4)

for some ζ, ω ∈ J with ζ < ω and λ ∈ (0, 1). Let c ∈ J be such that c > ω. Set

ϕ(z) :=

{
f(z + c) for z ∈ (−∞, 0],

f(−z + c) for z ∈ (0,∞).

Then

• ϕ is strictly increasing in (−∞, 0] and ϕ(z)→ 0 as z → −∞;

• ϕ is positive and continuous in R such that ϕ(z) = ϕ(−z) and ϕ(z) ≤ ϕ(0) = f(c) < a for
z ∈ R;

• ϕ is F -concave in R and it is not log-concave in (−∞, 0].

Let
v(z, t) := (et∆Rϕ)(z) for (z, t) ∈ R× (0,∞). (3.5)

Then v ∈ C∞(R× (0,∞)), v(z, t) = v(−z, t) for (z, t) ∈ R× (0,∞), and

{
∂zv > 0 in (−∞, 0)× (0,∞),

∂zv < 0 in (0,∞)× (0,∞).
(3.6)
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(See also [2].) Furthermore, it follows from the continuity of ϕ that

lim
t→+0

sup
z∈K
|v(z, t) − ϕ(z)| = 0 (3.7)

for any bounded interval K ⊂ R. This together with (3.4) yields

v((1− λ)(ζ − c) + λ(ω − c), t) < v(ζ − c, t)1−λv(ω − c, t)λ

for all small enough t > 0. This means that, for any small enough t > 0, v(·, t) is not log-concave
in [ζ − c, ω − c], that is, there exists zt ∈ [ζ − c, ω − c] such that

0 < (∂2z log v)(zt, t) =
v(zt, t)(∂

2
zv)(zt, t)− ((∂zv)(zt, t))

2

((∂zv)(zt, t))2
. (3.8)

Since ϕ > 0 on [ζ − c, ω − c], by (3.7) we find C ∈ [1,∞) such that

C−1 ≤ v(zt, t) ≤ C (3.9)

for small enough t > 0.
Let t > 0 be small enough such that (3.8) holds. By (3.6) we find the inverse function Γt of

the function (−∞, 0) ∋ z 7→ v(z, t). Then Γt is smooth and Γ′
t > 0 in (0, v(0, t)) and

Γt(v(z, t)) = z for z ∈ (−∞, 0),

which implies that

Γ′′
t (v(z, t))((∂zv)(z, t))

2 + Γ′
t(v(z, t))(∂

2
z v)(z, t) = 0 for z ∈ (−∞, 0).

This together with (3.8) yields

v(zt, t)Γ
′′
t (v(zt, t)) = −v(zt, t)

Γ′
t(v(zt, t))(∂

2
zv)(zt, t)

((∂zv)(zt, t))2

= −Γ′
t(v(zt, t))

v(zt, t)(∂
2
zv)(zt, t)− ((∂zv)(zt, t))

2

((∂zv)(zt, t))2
− Γ′

t(v(zt, t))

< −Γ′
t(v(zt, t)).

(3.10)

Step 2: Set
φ(w, z) := 1[0,∞)(w)ϕ(z) for (w, z) ∈ R2.

Then φ is F -concave in R2. It follows from (2.3) and (3.5) that

u(w, z, t) := (et∆R2φ)(w, z) = h(t−
1
2w)v(z, t) for (w, z, t) ∈ R2 × (0,∞).

Here h is as in (1.3).
Let t > 0 be small enough. Since h′ > 0 in R and limw→−∞ h(w) = 0, by (3.9), for any small

enough ε > 0, we find a unique wε ∈ (−∞, 0) such that

u(wε, zt, t) = h(t−
1
2wε)v(zt, t) = ε.

Then

v(zt, t) =
ε

h(t−
1
2wε)

for small enough ε > 0, t−
1
2wε → −∞ as ε→ +0. (3.11)
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By (3.6), applying the implicit function theorem, we find a smooth function gε in a neighbor-
hood Nε of wε and δε > 0 such that

ε = u(w, gε(w), t) = h(t−
1
2w)v(gε(w), t) for w ∈ Nε,

gε(wε) = zt = Γt(v(zt, t)),

u(w, z, t) < ε if w ∈ Nε and gε(w) − δε < z < gε(w),

u(w, z, t) > ε if w ∈ Nε and gε(w) < z < gε(w) + δε.

(3.12)

Furthermore, it follows from (3.12) that

gε(w) = Γt

(
ε

h(t−
1
2w)

)
for w ∈ Nε.

Step 3: Assume that u(·, t) is quasi-concave in Rn for some small t > 0. Then it follows
from (3.12) that gε is convex in Nε, so that

g′′ε (wε) ≥ 0. (3.13)

A direct computation provides

g′ε(w) = −εt
− 1

2Γ′
t

(
ε

h(t−
1
2w)

)
h′(t−

1
2w)

h(t−
1
2w)2

,

g′′ε (w) = ε2t−1Γ′′
t

(
ε

h(t−
1
2w)

)
h′(t−

1
2w)2

h(t−
1
2w)4

+ 2εt−1Γ′
t

(
ε

h(t−
1
2w)

)
h′(t−

1
2w)2

h(t−
1
2w)3

− εt−1Γ′
t

(
ε

h(t−
1
2w)

)
h′′(t−

1
2w)

h(t−
1
2w)2

.

This together with (2.5) and (3.11) leads to

g′′ε (wε)

= εt−1Γ
′
t(v(zt, t))

h(t−
1
2wε)3

[(
v(zt, t)

Γ′′
t (v(zt, t))

Γ′
t(v(zt, t))

+ 2

)
h′(t−

1
2wε)

2 − h(t−
1
2wε)h

′′(t−
1
2wε)

]

= εt−1Γ
′
t(v(zt, t))

h(t−
1
2wε)3

×

[(
v(zt, t)

Γ′′
t (v(zt, t))

Γ′
t(v(zt, t))

+ 2

)
h′(t−

1
2wε)

2 +
1

2
t−

1
2wεh(t

− 1
2wε)h

′(t−
1
2wε)

]
.

(3.14)

We observe from (2.6) and (3.11) that

h′(t−
1
2wε) = −

(
1

2
+ o(1)

)
t−

1
2wεh(t

− 1
2wε) as ε→ +0,

hence

1

2
t−

1
2wεh(t

− 1
2wε)h

′(t−
1
2wε) = −(1 + o(1))−1h′(t−

1
2wε)

2 = −(1 + o(1))h′(t−
1
2wε)

2
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as ε→ +0. This together with (3.10) and (3.14) implies that

g′′ε (wε) = εt−1Γ
′
t(v(zt, t))

h(t−
1
2wε)3

h′(t−
1
2wε)

2

(
v(zt, t)

Γ′′
t (v(zt, t))

Γ′
t(v(zt, t))

+ 1 + o(1)

)

= εt−1h
′(t−

1
2wε)

2

h(t−
1
2wε)3

(
v(zt, t)Γ

′′
t (v(zt, t)) + (1 + o(1))Γ′

t(v(zt, t))
)
< 0

for all small enough ε > 0. This contradicts (3.13). We deduce that u(·, t) is not quasi-concave
in R2 for all small enough t > 0. Then Proposition 3.2 follows in the case n = 2. If n ≥ 3, then
we set

U(w, z, x′, t) := u(w, z, t) for (w, z, x′, t) ∈ R2 × Rn−2 × (0,∞). (3.15)

Then U(·, t) is not quasi-concave in Rn for all small enough t > 0 and U(·, 0) is F -concave in Rn.
Thus Proposition 3.2 follows in the case n ≥ 3, and the proof of Proposition 3.2 is complete. ✷

3.2 Disruption of F -concavity by the Dirichlet parabolic flow

We show that the disruption of F -concavity (resp. quasi-concavity) by DHF in Rn implies the
disruption of F -concavity (resp. quasi-concavity) by the Dirichlet parabolic flow in Ω.

Proposition 3.3 Let F be admissible on I = [0, a) with a ∈ (0,∞] and Ω a convex domain

in Rn. Assume that F -concavity is not preserved by DHF in Rn. Then, under conditions (L1)
and (L2), there exists φ ∈ CΩ[F ]∩BC0(Ω) such that etLΩφ is not F -concave in Ω for some t > 0.

Proposition 3.3 is proved by the following lemma and the similar transformation of DHF.

Lemma 3.4 Let F be admissible on I = [0, a) with a ∈ (0,∞] and φ ∈ CΩ[F ]∩L
∞(Ω). Assume

conditions (L1) and (L2). Then there exists a sequence of {φj} ⊂ CΩ[F ] ∩BC0(Ω) such that

lim
j→∞

(
etLΩφj

)
(x) =

(
etLΩφ

)
(x) for (x, t) ∈ Ω× (0,∞).

Proof. For any ε > 0 and δ ∈ (0, a), we set

ψε,δ(x) :=
(
eε∆ΩeF (min{φ,a−δ})

)
(x) for x ∈ Ω.

By (3.2) we have

‖ψε,δ‖L∞(Ω) ≤
∥∥∥eF (min{φ,a−δ})

∥∥∥
L∞(Ω)

≤ eF (min{‖φ‖L∞(Ω),a−δ}). (3.16)

By parabolic regularity theorems (see e.g. [38, Chapter III, Theorem 10.1]) we see that ψε,δ ∈
BC0(Ω). Since e

F (min{φ,a−δ}) is log-concave in Ω, thanks to the preservation of log-concavity by
DHF in Ω, we observe that ψε,δ is log-concave in Ω, which implies that the set

Eε,δ :=
{
x ∈ Ω | ψε,δ(x) > lim

r→+0
eF (r)

}

is convex. Since the function ψε,δ1Eε,δ
is log-concave in Ω and

log (ψε,δ(x)) ∈ F ((0,min{‖φ‖L∞(Ω), a− δ}]) for x ∈ Eε,δ,
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we define an F -concave function φε,δ ∈ BC0(Ω) by

φε,δ(x) :=

{
fF (log (ψε,δ(x))) if x ∈ Eε,δ,

0 otherwise.

Then, by (3.16) we have

‖φε,δ‖L∞(Ω) ≤ min{‖φ‖L∞(Ω), a− δ} ≤ ‖φ‖L∞(Ω). (3.17)

Furthermore, by (3.1), for any δ ∈ (0, a), we find a sequence {εj} with limj→∞ εj = 0 such that

lim
j→∞

ψεj ,δ(x) = eF (min{φ(x),a−δ})

for almost all x ∈ Ω. This implies that

lim
j→∞

φεj ,δ(x) = min{φ(x), a − δ}

for almost all x ∈ Ω. By (3.2) and (3.17) we apply Lebesgue’s dominated convergence theorem
to obtain

lim
δ→+0

lim
j→∞

(
etLΩφεj ,δ

)
(x) = lim

δ→+0
lim
j→∞

∫

Ω
GLΩ

(x, y, t)φεj ,δ(y) dy

= lim
δ→+0

∫

Ω
GLΩ

(x, y, t)min{φ(y), a− δ} dy =
(
etLΩφ

)
(x)

for (x, t) ∈ Ω× (0,∞). Then we obtain the desired conclusion, and the proof is complete. ✷

Proof of Proposition 3.3. Assume that F -concavity is not preserved by DHF in Rn. Then
we find φ ∈ CRn [F ] ∩ L∞(Rn) such that eτ∆Rnφ is not F -concave in Rn for some τ > 0, that is,
there exist ξ, η ∈ Rn and λ ∈ (0, 1) such that

F
((
eτ∆Rnφ

)
((1− λ)ξ + λη)

)
< (1− λ)F

((
eτ∆Rnφ

)
(ξ)
)
+ λF

((
eτ∆Rnφ

)
(η)
)
. (3.18)

Thanks to (1.2), we can assume, without loss of generality, that

0 ∈ Ω, aij(0, 0) = δij for i, j = 1, . . . , n, (3.19)

where δij = 1 if i = j and δij = 0 if i 6= j. For any ℓ = 1, 2, . . . , set

φℓ(x) := φ(ℓx), uℓ(x, t) := (etLΩφℓ)(x), for x ∈ Ω and t > 0,

Uℓ(x, t) := uℓ(ℓ
−1x, ℓ−2t) for x ∈ Ωℓ := ℓΩ and t > 0.

It follows from (3.2) that

‖Uℓ‖L∞(Ωℓ×(0,ℓ2T )) = ‖uℓ‖L∞(Ω×(0,T )) ≤ e
T‖c‖L∞(Ω×(0,T ))‖φℓ‖L∞(Ω) <∞ (3.20)

for any T > 0. Furthermore, Uℓ satisfies





∂tUℓ = LℓUℓ in Ωℓ × (0,∞),

Uℓ = 0 in ∂Ωℓ × (0,∞) if ∂Ωℓ 6= ∅,

Uℓ(x, 0) = φ(x) in Ωℓ,
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where

Lℓ :=
n∑

i,j=1

aijℓ (x, t)∂xi∂xj +
n∑

i=1

biℓ(x, t)∂xi − cℓ(x, t),

aijℓ (x, t) := aij(ℓ−1x, ℓ−2t), biℓ(x, t) := ℓ−1bi(ℓ−1x, ℓ−2t), cℓ(x, t) := ℓ−2c(ℓ−1x, ℓ−2t),

for (x, t) ∈ Ωℓ × (0,∞) and i, j = 1, . . . , n. Furthermore, by (3.19) and condition (L1) we see
that Ωℓ → Rn as ℓ→∞ and

• the coefficients aijℓ , b
i
ℓ, cℓ are bounded in C0,σ; 0,σ/2(K),

• aijℓ (x, t)→ δij , biℓ(x, t)→ 0, and cℓ(x, t)→ 0, as ℓ→∞ uniformly on K,

for all compact sets K ⊂ Rn × [0,∞), where i, j = 1, . . . , n. Applying parabolic regularity
theorems to {Uℓ} (see e.g. [38, Chapters III, Theorem 10.1 and Chapter IV, Theorem 10.1])
with (3.20), we have:

• {Uℓ} are uniformly bounded and equicontinuous for all compact sets in Rn × [0,∞);

• sup
ℓ
‖Uℓ‖C2,σ; 1,σ(K) <∞ for all compact sets K ⊂ Rn × (0,∞).

Applying the Arzelà–Ascoli theorem and the diagonal argument, we find a subsequence {Uℓj}
of {Uℓ} such that

Uℓj(x, t)→ (et∆Rnφ)(x) as j →∞

uniformly for all compact sets in Rn × (0,∞). This together with (3.18) implies that

F (Uℓj ((1− λ)ξ + λη, τ)) < (1− λ)F (Uℓj (ξ, τ)) + λF (Uℓj (η, τ)),

that is,

F (uℓj ((1− λ)ℓ
−1
j ξ + λℓ−1

j η, ℓ−2
j τ))

< (1− λ)F (uℓj (ℓ
−1
j ξ, ℓ−2

j τ)) + λF (uℓj (ℓ
−1
j η, ℓ−2

j τ))
(3.21)

for all large enough j. Since ℓ−1ξ, ℓ−1η ∈ Ω for large enough ℓ, this means that uℓj (·, ℓ
−2
j τ) is

not F -concave in Ω for large enough j. Taking into account that φℓj is F -concave in Ω, thanks

to Lemma 3.4, we approximate φℓj by F -concave functions belonging to BC0(Ω) to obtain the
desired conclusion. Thus Proposition 3.3 follows. ✷

Proposition 3.5 Let F be admissible on I = [0, a) with a ∈ (0,∞] and Ω a convex domain

in Rn. Assume that there exists φ ∈ CRn [F ] ∩ L∞(Rn) such that eτ∆Rnφ is not quasi-concave

in Rn for some τ > 0. Then, under conditions (L1) and (L2), there exists ψ ∈ CΩ[F ] ∩BC0(Ω)
such that etLΩψ is not quasi-concave in Ω for some t > 0.

Proof. The proof is similar to that of Proposition 3.3. Indeed, under the assumption of
Proposition 3.5, we find ξ, η ∈ Rn, λ ∈ (0, 1), and τ > 0 such that

(
eτ∆Rnφ

)
((1− λ)ξ + λη) < min

{(
eτ∆Rnφ

)
(ξ),

(
eτ∆Rnφ

)
(η)
}
,

instead of (3.18). The same argument as in the proof of Proposition 3.3 implies that

uℓj((1 − λ)ℓ
−1
j ξ + λℓ−1

j η, ℓ−2
j τ) < min{uℓj (ℓ

−1
j ξ, ℓ−2

j τ), uℓj (ℓ
−1
j η, ℓ−2

j τ)},

for some large enough j, instead of (3.21). Thus quasi-concavity is not preserved by the Dirichlet
parabolic flow associated with L in Ω. Consequently, by Lemma 3.4 we obtain the desired
conclusion. The proof is complete. ✷
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4 Preservation of F -concavity

The preservation of log-concavity by solutions of the Cauchy–Dirichlet problem for parabolic
equations has been studied in several papers (see e.g. [20,22,26,34,36,40] and references therein).
In this section we investigate sufficient conditions and necessary conditions for the preservation
of F -concavity by classical solutions of the Cauchy–Dirichlet problem





∂tu =

n∑

i,j=1

aij(x, t)∂xi∂xju+ G(x, t, u,∇u) in Ω× (0, T ),

u(x, t) > 0 in Ω× (0, T ),

u(x, t) = 0 on ∂Ω× [0, T ) if ∂Ω 6= ∅,

u(x, 0) = φ(x) ≥ 0 in Ω,

(N)

where T ∈ (0,∞], φ ∈ BC(Ω), aij ∈ BC(Ω× [0, T )) with condition (L2), and G ∈ C(Ω× [0, T )×
(0,∞) × Rn). A function

u ∈ C((Ω× (0, T )) ∪ (Ω × [0, T ))

is called a classical solution of problem (N) if u ∈ C2;1(Ω × (0, T )) and u satisfies problem (N)
pointwisely. See e.g. [38, Chapter V] for the existence of classical solutions of problem (N).

4.1 Sufficient conditions

In this subsection we develop the arguments of [22, 25] to obtain sufficient conditions for the
preservation of F -concavity by classical solutions of problem (N). Following the strategy in the
proof of [25, Theorem 3.1], we will reduce the F -concavity of the solution u to the log-concavity
of the function v := eF (u).

Let

λ ∈ Λn+1 :=

{
λ = (λ1, . . . , λn+1)

∣∣∣∣ 0 < λi < 1 for i = 1, . . . , n + 1,
n+1∑

i=1

λi = 1

}
.

Let F be admissible on I such that limr→+0 F (r) = −∞, and Ω a smooth, bounded, and convex
domain in Rn. Let φ ∈ BC0(Ω). Assume that a classical solution u of problem (N) satisfies
u(·, t) ∈ AΩ(I) for all t ∈ [0, T ). Then we can define the spatially F -concave envelope uF of u
by

uF (x, t) := sup
λ∈Λn+1

uF,λ(x, t) for (x, t) ∈ Ω× [0, T ), (4.1)

where

uF,λ(x, t) := sup

{
fF

(
n+1∑

i=1

λiF (u(xi, t))

) ∣∣∣∣ {xi}
n+1
i=1 ⊂ Ω, x =

n+1∑

i=1

λixi

}
.

Notice that uF ≥ uF,λ ≥ u for every λ ∈ Λn+1 and that, for any t ∈ [0, T ), u(·, t) is F -concave
in Ω if and only if u(·, t) = uF (·, t) in Ω, since the function uF (·, t) is the smallest F -concave
function greater than or equal to u(·, t) in Ω (see e.g. [43, Theorem 1.1.4]). It follows from the
convexity of Ω and F (0) = −∞ that

uF,λ ∈ C(Ω× [0, T )), uF,λ > 0 in Ω× (0, T ), uF,λ = 0 on ∂Ω× [0, T ). (4.2)
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We recall the notion of viscosity subsolution, supersolution, and solution of problem (N). An
upper semicontinuous function U in Ω × (0, T ) is called a viscosity subsolution of problem (N)
if, for any (ξ, τ) ∈ Ω× (0, T ), the inequality

∂tψ(ξ, τ) ≤
n∑

i,j=1

aij(ξ, τ)(∂xi∂xjψ)(ξ, τ) + G(ξ, τ, ψ(ξ, τ),∇ψ(ξ, τ))

holds for every C2;1(Ω× (0, T )) test function ψ touching U from above at (ξ, τ), i.e. satisfying

ψ(ξ, τ) = U(ξ, τ) and ψ ≥ U in a neighborhood of (ξ, τ).

Analogously, a lower semicontinuous function U in Ω× (0, T ) is called a viscosity supersolution

of problem (N) if, for any (ξ, τ) ∈ Ω× (0, T ), the inequality

∂tψ(ξ, τ) ≥
n∑

i,j=1

aij(ξ, τ)(∂xi∂xjψ)(ξ, τ) + G(ξ, τ, ψ(ξ, τ),∇ψ(ξ, τ))

holds for every C2;1(Ω× (0, T )) test function ψ touching U from below at (ξ, τ), i.e. satisfying

ψ(ξ, τ) = U(ξ, τ) and ψ ≤ U in a neighborhood of (ξ, τ).

A continuous function U in Ω × (0, T ) is called a viscosity solution of problem (N) if it is
a viscosity subsolution and supersolution of problem (N) at the same time. The main issue of
this subsection is to prove that, under suitable assumptions, uF,λ is a viscosity subsolution of
problem (N).

Proposition 4.1 Let F be admissible on I = [0, a) with a ∈ (0,∞], Ω a smooth, bounded, and

convex domain in Rn, and T ∈ (0,∞]. Let u be a classical solution of problem (N) such that

u(·, t) ∈ AΩ(I) for t ∈ [0, T ) and φ ∈ BC0(Ω). Assume that limr→+0 F (r) = −∞, F ∈ C2(int I),
F ′ > 0 in int I, and the following condition holds:

(I) for any θ ∈ Rn and t ∈ (0, T ), the function Hθ,t defined by

Hθ,t(x, z,M) := trace (A(x, t)M) +
G (x, t, fF (z), f

′
F (z)θ)

f ′F (z)
+

(
f ′′F (z)

f ′F (z)
− 1

)
〈A(x, t)θ, θ〉

is concave with respect to (x, z,M) ∈ Ω× JF × Sym (n), where A(x, t) := (aij(x, t)).

Then uF,λ defined by (4.1) is a viscosity subsolution of problem (N) for all λ ∈ Λn+1.

Proof. It follows from the admissibility of F and limr→+0 F (r) = −∞ that JF = (−∞, F (a)).
Let v = eF (u). It turns out that

∂tv −
n∑

i,j=1

aij(x, t)∂xi∂xjv

= eF (u)F ′(u)

(
∂tu−

n∑

i,j=1

aij(x, t)∂xi∂xju

)
− (eF (u)F ′′(u) + eF (u)F ′(u)2)〈A(x, t)∇u,∇u〉

= eF (u)F ′(u)G(x, t, u,∇u) − (eF (u)F ′′(u) + eF (u)F ′(u)2)〈A(x, t)∇u,∇u〉

= eF (u) 1

f ′F (F (u))
G(x, t, u,∇u) −

(
F ′′(u)

F ′(u)2
+ 1

)
1

v
〈A(x, t)∇v,∇v〉

= GF (x, t, v,∇v)
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in Ω× (0, T ), where

GF (x, t, z, θ) :=
z

f ′F (log z)
G

(
x, t, fF (log z),

f ′F (log z)θ

z

)

+

(
f ′′F (log z)

f ′F (log z)
− 1

)
1

z
〈A(x, t)θ, θ〉

for (x, t, z, θ) ∈ Ω× (0, T ) × eJF × Rn.
For any θ ∈ Rn and t ∈ (0, T ), it follows that

Hθ,t(x, z,M) = trace (A(x, t)M) + e−zGF (x, t, e
z , ezθ)

for (x, z,M) ∈ Ω × JF × Sym (n). By condition (I) we apply [22, Theorem 4.3] to see that, for
any λ ∈ Λn+1, the function vΦ0,λ defined by

vΦ0,λ(x, t) = sup

{
n+1∏

i=1

v(xi, t)
λi

∣∣∣∣ {xi}
n+1
i=1 ⊂ Ω, x =

n+1∑

i=1

λixi

}

is a viscosity subsolution of problem (N) with G replaced by GF . This implies that uF,λ is a
viscosity subsolution of problem (N), and the proof is complete. ✷

Assume that the following comparison principle holds:




Let v, w ∈ C(Ω× [0, T )) be a classical solution and a viscosity

subsolution of problem (N), respectively, such that v ≥ w on Ω× {0}

and v = w = 0 on ∂Ω× [0, T ). Then v ≥ w in Ω× [0, T ).

(WCP)

See e.g. [13, Section 8] for sufficient conditions of (WCP). Let u be a classical solution of
problem (N) such that φ ∈ CΩ[F ] ∩BC0(Ω). Then

uF,λ(·, 0) = φ in Ω for all λ ∈ Λn+1.

Thanks to (4.2), by Proposition 4.1 and (WCP) we see that

u ≥ uF,λ in Ω× [0, T ) for all λ ∈ Λn+1.

This yields u ≥ uF in Ω × [0, T ). Since u ≤ uF in Ω× [0, T ) (see the definition of uF ), we find
that u = uF in Ω× [0, T ), that is, u(·, t) is F -concave in Ω for all t ∈ [0, T ). Then we have:

Proposition 4.2 Assume the same assumptions as in Proposition 4.1 and that (WCP) holds.

Let u be a classical solution of problem (N) with the initial datum φ ∈ CΩ[F ] ∩BC0(Ω). Then

u(·, t) ∈ CΩ[F ] for all t ∈ [0, T ).

4.2 Necessary conditions

First, we give a necessary condition for the preservation of F -concavity by DHF in Rn with n ≥ 2.
The proof of Proposition 4.3 is a modification of the proof of Proposition 3.2.

Proposition 4.3 Let F be admissible on I = [0, a) with a ∈ (0,∞] and n ≥ 2. If F -concavity
is preserved by DHF in Rn, then

κ CRn [F ] ⊂ CRn [F ] for every κ ∈ (0, 1) .
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Proof. The statement is a consequence of the following slightly stronger property.

(A) Assume that there exist f ∈ CRn [F ] and κ ∈ (0, 1) such that κf 6∈ CRn [F ]. Then there
exists φ ∈ CRn [F ] ∩ L∞(Rn) such that et∆Rnφ is not F -concave in Rn for all small enough
t > 0.

Let f ∈ CRn [F ] and κ ∈ (0, 1) such that κf 6∈ CRn [F ]. We find ξ, η ∈ Rn and λ ∈ (0, 1) such that

F (κf((1− λ)ξ + λη)) < (1− λ)F (κf(ξ)) + λF (κf(η)). (4.3)

Since F (0) = −∞, it follows that f(ξ) > 0 and f(η) > 0. By the concavity of F (f) we see that

F (f((1− z)ξ + zη)) ≥ (1− z)F (f(ξ)) + zF (f(η)) > −∞ for z ∈ [0, 1].

It follows from f ∈ CRn [F ] that f is continuous in the set {x ∈ Rn | f(x) > 0}. Then we
find δ > 0 such that

f((1− z)ξ + zη) > 0 for z ∈ (−δ, 1 + δ).

Set

ϕ(z) :=

{
f((1− z)ξ + zη) for z ∈ (−δ, 1 + δ),

0 for z ∈ R \ (−δ, 1 + δ).

Then ϕ is F -concave in R. Furthermore, ϕ is continuous in (−δ, 1 + δ), and

lim
t→+0

(et∆Rϕ)(z) = ϕ(z) for z ∈ (−δ, 1 + δ). (4.4)

It follows from (4.3) that

F (κϕ(λ)) = F (κf((1 − λ)ξ + λη))

< (1− λ)F (κf(ξ)) + λF (κf(η)) = (1− λ)F (κϕ(0)) + λF (κϕ(1)).
(4.5)

Combining (4.4) and (4.5), we have

F (κ(et∆Rϕ)(λ)) < (1− λ)F (κ(et∆Rϕ)(0)) + λF (κ(et∆Rϕ)(1)) (4.6)

for all small enough t > 0.
Set

φ(w, z) := 1[0,∞)(w)ϕ(z) for (w, z) ∈ R2.

Since ϕ is F -concave in R, we see that φ ∈ CR2 [F ]. Furthermore, by (2.3) we have

(et∆R2φ)(w, z) = (et∆R1[0,∞))(w)(e
t∆Rϕ)(z) = h(t−

1
2w)(et∆Rϕ)(z)

for (w, z, t) ∈ R2 × (0,∞). In addition, by (2.4) and (2.5) we find a unique ω ∈ R such that
h(ω) = κ. Then

(et∆R2φ)(t
1
2ω, z) = κ(et∆Rϕ)(z) for z ∈ R. (4.7)

We deduce from (4.6) and (4.7) that

F
(
(et∆R2φ)((1 − λ)(t

1
2ω, 0) + λ(t

1
2ω, 1))

)

= F
(
(et∆R2φ)(t

1
2ω, λ)

)
= F

(
κ(et∆Rϕ)(λ)

)

< (1− λ)F (κ(et∆Rϕ)(0)) + λF (κ(et∆Rϕ)(1))

= (1− λ)F
(
(et∆R2φ)(t

1
2ω, 0)

)
+ λF

(
(et∆R2φ)(t

1
2ω, 1)

)
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for all small enough t > 0. This means that et∆R2φ is not F -concave in R2 for all small
enough t > 0. Thus property (A) follows in the case n = 2. Similarly to (3.15), property (A)
also follows in the case n ≥ 3. The proof is complete. ✷

Now let us consider problem (N). In [35, Theorem 1.2] Kolesnikov obtained necessary con-
ditions for log-concavity to be preserved by classical solutions of the Cauchy problem for linear
parabolic equations under high regularity assumptions on the coefficients (see also Section 6.1).
Hereafter, we improve and develop the argument in the proof of [35, Theorem 1.2] to obtain
a necessary condition for the preservation of F -concavity by classical solutions of the Cauchy–
Dirichlet problem (N).

Proposition 4.4 Let F be admissible on I = [0, a) with a ∈ (0,∞] such that F ∈ C2,σ(int I)
for some σ ∈ [0, 1), limr→+0 F (r) = −∞, and F ′ > 0 in int I with lim infr→+0 F

′(r) > 0. Let Ω
be a convex domain in Rn. Assume that the following condition holds.

(II) For any initial datum φ ∈ CΩ[F ]∩C
2,σ(Ω)∩BC1(Ω) with φ 6≡ 0 in Ω, there exist T ∈ (0,∞]

and a classical solution u ∈ C2;1(Ω × [0, T )) of problem (N) such that u(·, t) ∈ CΩ[F ] for
all t ∈ (0, T ).

Then, for any θ ∈ Rn and ℓ ∈ R, the function H̃ defined by

H̃(x) :=
G (x, 0, fF (〈θ, x〉+ ℓ), f ′F (〈θ, x〉+ ℓ)θ)

f ′F (〈θ, x〉+ ℓ)
+
f ′′F (〈θ, x〉+ ℓ)

f ′F (〈θ, x〉+ ℓ)
〈A(x, 0)θ, θ〉

must be concave in {x ∈ Ω | 〈θ, x〉+ ℓ ∈ JF }, where A(x, 0) := (aij(x, 0)).

Proof. It follows from the admissibility of F and limr→+0 F (r) = −∞ that JF = (−∞, F (a)).
For any b, c ∈ JF with b < c, let ψ ∈ C3(R) be concave in R such that

ψ(ξ) = ξ for ξ ∈ (−∞, b], sup
ξ∈R

ψ ≤ c, sup
ξ∈R
|ψ′| <∞.

Let B be an open ball in Ω, θ ∈ Rn, and ℓ ∈ R such that 〈θ, x〉+ ℓ ∈ (−∞, b] for x ∈ B. Set

φ(x) := fF (ψ(〈θ, x〉 + ℓ)) for x ∈ Ω.

Since F ∈ C2,σ(int I) and F ′ > 0 in int I with lim infr→+0 F
′(r) > 0, we see that fF ∈ C

2,σ(JF )
and fF ∈ BC

1((−∞, c]). Then we observe that φ ∈ CΩ[F ] ∩ C
2,σ(Ω) ∩BC1(Ω) and

φ(x) = fF (〈θ, x〉+ ℓ) for x ∈ B.

By condition (II) we find a unique classical solution u ∈ C2;1(Ω × [0, T )) of problem (N) for
some T ∈ (0,∞] such that u(·, t) ∈ CΩ[F ] for all t ∈ (0, T ). Then

(∂tu)(x, 0) = f ′′F (〈θ, x〉+ ℓ)〈A(x, 0)θ, θ〉+ G(x, 0, fF (〈θ, x〉+ ℓ), f ′F (〈θ, x〉+ ℓ)θ)

= f ′F (〈θ, x〉+ ℓ)H̃(x)

for x ∈ B. Furthermore,

Ψλ(ξ, η, t) := F (u((1 − λ)ξ + λη, t)) − (1− λ)F (u(ξ, t)) − λF (u(η, t)) ≥ 0

for ξ, η ∈ Ω, t ∈ [0, T ), and λ ∈ (0, 1). Since F (φ(x)) = 〈θ, x〉+ ℓ for x ∈ B, we see that

Ψλ(ξ, η, 0) = 0 for ξ, η ∈ B and λ ∈ (0, 1).
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These imply that

0 ≤ (∂tΨλ)(x, y, 0) = H̃((1− λ)x+ λy)− (1− λ)H̃(x)− λH̃(y) (4.8)

for x, y ∈ B. Since b, c, and B are arbitrary, we see that H̃ is concave in {x ∈ Ω | 〈θ, x〉+ℓ ∈ JF }.
Thus Proposition 4.4 follows. ✷

In the proof of Proposition 4.4, the assumption that lim infr→+0 F
′(r) > 0 is used only for proving

that φ ∈ BC1(Ω). Then we can remove it at the price of strengthening slightly condition (II)
to obtain the following result, whose proof is similar to that of Proposition 4.4.

Proposition 4.5 Let F be admissible on I = [0, a) with a ∈ (0,∞] such that F ∈ C2,σ(int I)
for some σ ∈ [0, 1), limr→+0 F (r) = −∞, and F ′ > 0 in int I. Let Ω be a convex domain in Rn.

Assume that the following condition holds.

(II’) For any initial datum φ ∈ CΩ[F ]∩C
2,σ(Ω)∩BC(Ω) with φ 6≡ 0 in Ω, there exist T ∈ (0,∞]

and a classical solution u ∈ C2;1(Ω × [0, T )) of problem (N) such that u(·, t) ∈ CΩ[F ] for
all t ∈ (0, T ).

Then, for any θ ∈ Rn and ℓ ∈ R, the function H̃ given in Proposition 4.4 is concave in {x ∈
Ω | 〈θ, x〉+ ℓ ∈ JF }.

As a corollary of Proposition 4.4, we obtain a necessary condition for the preservation of
log-concavity by classical solutions of problem (N) with (aij) = (δij).

Corollary 4.6 Let Ω be a convex domain in Rn. Assume that condition (II) in Proposition 4.4
holds for the parabolic equation

∂tu = ∆u+ G(x, u,∇u),

where G ∈ C(Ω× (0,∞) × Rn), with I = [0,∞) and F = Φ0. Then, for any θ ∈ Rn and ℓ ∈ R,

the function

e−(〈θ,x〉+ℓ)G
(
x, e〈θ,x〉+ℓ, e〈θ,x〉+ℓθ

)

must be concave in Ω.

As a direct consequence of Corollary 4.6, we obtain negative answers to the following question,
which is motivated by the arguments in [20, Section 5].

(Q4) Is log-concavity preserved by classical solutions of problem (N) for the nonlinear parabolic
equations listed below? 




∂tu = ∆u+ κup,

∂tu = ∆u+ κeu,

∂tu = ∆u+ κ′up log u,

∂tu = ∆u+ µup + κ|∇u|q,

∂tu = ∆u+ 〈b,∇up〉.

Here p, q ∈ (1,∞), κ ∈ (0,∞), κ′ ∈ R \ {0}, µ ∈ R, and b ∈ Rn \ {0}.

Corollary 4.7 Let Ω be a convex domain in Rn. Consider one of the nonlinear parabolic

equations listed in (Q4). Then, for any σ ∈ (0, 1), there exist

φ ∈ CΩ[Φ0] ∩ C
2,σ(Ω) ∩BC1(Ω)

and a corresponding classical solution u of problem (N) for some T ∈ (0,∞] such that u(·, t) is

not log-concave in Ω for some t ∈ (0, T ).
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Proof. Consider one of the nonlinear parabolic equations listed in (Q4). Let σ ∈ (0, 1). For
any φ ∈ C2,σ(Ω) ∩BC1(Ω), there exists a classical solution u ∈ C2;1(Ω× [0, T )) of problem (N)
for some T ∈ (0,∞]. (See e.g. [38, 42].) Since each of the functions

e−zG (x, ez, ezθ) =





κe(p−1)z ,

κe−zee
z
,

κ′ze(p−1)z ,

µe(p−1)z + κe(q−1)z |θ|q,

pe(p−1)z〈b, θ〉,

with z = 〈θ, x〉+ ℓ,

is not concave in Ω for some θ ∈ Rn and ℓ ∈ R, by Corollary 4.6 we see that condition (II) does
not hold. Consequently, Corollary 4.7 follows. ✷

Next, we modify the argument in the proof of Proposition 4.4 to obtain a necessary condition
for F -concavity to be preserved by DHF in Ω.

Proposition 4.8 Let F be admissible on I = [0, a) with a ∈ (0,∞] such that F ∈ C2(int I).
Let Ω be a convex domain in Rn. Assume that F -concavity is preserved by DHF in Ω. Then

F ′ > 0 in int I and (log f ′F )
′ is concave in JF .

Proof. Since F is strictly increasing in int I, for any δ ∈ (0, a), there exists r∗ ∈ (0, δ) such that
F ′(r∗) > 0. Then we find r1, r2 ∈ [0, a] with r1 < r∗ < r2 such that

F ′(r) > 0 for r ∈ (r1, r2).

Set I ′ := (r1, r2) and J ′ := F (I ′). Let θ ∈ Rn. Let B be an open ball with B ⊂ Ω and κ ∈ R

such that
〈θ, x〉+ κ ∈ J ′ for x ∈ B.

Set
φ(x) := fF (〈θ, x〉+ κ)1B(x) for x ∈ Ω. (4.9)

Then φ ∈ CΩ[F ] ∩L
∞(Ω), which together with the preservation of F -concavity by DHF implies

that
et∆Ωφ ∈ CΩ[F ] for t > 0. (4.10)

For any open ball B′ with B′ ⊂ B, let ψ ∈ C∞
0 (Ω) be such that 0 ≤ ψ ≤ 1 in Ω, ψ = 1 in B′,

and suppψ ⊂ B. It follows that

(et∆Ωφ)(x) =

∫

Ω
G∆Ω

(x, y, t)ψ(y)φ(y) dy +

∫

Ω
G∆Ω

(x, y, t)(1 − ψ(y))φ(y) dy for x ∈ Ω.

Since ψφ ∈ C2(Ω) and (1− ψ)φ = 0 in B′, we see that

(et∆Ωφ) ∈ C2;1(B′ × [0,∞)). (4.11)

As in the proof of Proposition 4.4, we introduce a function

Ψλ(x, y, t) := F (et∆Ωφ((1− λ)x+ λy))− (1− λ)F (et∆Ωφ(x)) − λF (et∆Ωφ(y))

for x, y ∈ Ω, t ≥ 0, and λ ∈ (0, 1). By (4.9) and (4.10), for any λ ∈ (0, 1), we have

Ψλ(x, y, t) ≥ 0 for (x, y, t) ∈ Ω× Ω× (0,∞), Ψλ(x, y, 0) = 0 for (x, y) ∈ B ×B.
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This together with (4.11) implies that (∂tΨλ)(x, y, 0) ≥ 0 for x, y ∈ B′ and λ ∈ (0, 1). Then, by
the same argument as in (4.8) we see that

(log f ′F )
′((1− λ)z + λw) ≥ (1− λ)(log f ′F )

′(z) + λ(log f ′F )
′(w)

for x, y ∈ B′ and λ ∈ (0, 1), where z := 〈θ, x〉 + κ and w := 〈θ, y〉+ κ. Since κ, B, and B′ are
arbitrary, we see that the function (log f ′F )

′ is concave in J ′.
Assume that r2 < a and F ′(r2) = 0. It follows from the concavity of (log f ′F )

′ in J ′ that

lim sup
z→F (r2)−0

(log f ′F )
′(z) <∞,

which implies that

lim
z→F (r2)−0

log f ′F (z)− log f ′F (ζ) = lim
z→F (r2)−0

∫ z

ζ
(log f ′F (w))

′ dw <∞ for ζ ∈ J ′.

On the other hand, since F ′(fF (z))f
′
F (z) = 1 for z ∈ J ′ and F ′(r2) = 0, we see that

lim
z→F (r2)−0

f ′F (z) = lim
z→F (r2)−0

1

F ′(fF (z))
=∞.

This is a contradiction. Then we see that F ′(r) > 0 for r ∈ (r1, a). Since δ is arbitrary and
r1 ∈ (0, δ), we deduce that F ′(r) > 0 for r ∈ (0, a). Then, setting I ′ = int I and J ′ = JF , we see
that F ′ > 0 in int I and (log f ′F )

′ is concave in JF . The proof is complete. ✷

Further necessary conditions for the preservation of F -concavity by solutions of parabolic
equations are discussed in Section 6.

5 Main theorems

In this section we complete the proofs of Theorem 1.5 and Theorem 1.6. The proof of the former
is better split in some steps which have their own interest and are enucleated in the following
two theorems.

Theorem 5.1 Let I = [0, a) with a ∈ (0,∞] and Ω a convex domain in Rn with n ≥ 1.

(1) Ha-concavity is preserved by DHF in Ω.

(2) Let F be admissible on I. If F -concavity is preserved by DHF in Ω, then F -concavity is

weaker than Ha-concavity in AΩ(I) and limr→+0 F (r) = −∞.

Proof. Let a ∈ (0,∞]. The proof is divided into three steps.

Step 1: Consider the case where Ω is a smooth, bounded, and convex domain in Rn. Let
φ ∈ CΩ[Ha] ∩ BC0(Ω). For any θ ∈ Rn and t > 0, let Hθ,t be as in Proposition 4.1 with G = 0
and (aij) = (δij). In the case a ∈ (0,∞), since the function ah is the inverse function of Ha in
R, for any θ ∈ Rn, we observe from Lemma 2.9 that

Hθ,t(x, z,M) = trace (M) +

(
ah′′(z)

ah′(z)
− 1

)
|θ|2 = trace (M) +

(
−
1

2
z − 1

)
|θ|2

for (x, z,M) ∈ Ω×R× Sym(n). Similarly, in the case a =∞, since ez is the inverse function of
Ha, we have

Hθ,t(x, z,M) = trace (M) for (x, z,M) ∈ Ω× R× Sym(n).
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These imply that Hθ,t is concave with respect to (x, z,M) ∈ Ω × R × Sym (n) for any θ ∈ Rn

and t > 0. Then it follows from Proposition 4.2 that et∆Ωφ is F -concave in Ω for all t > 0.

Step 2: Let Ω be a convex domain in Rn and φ ∈ CΩ[Ha]∩L
∞(Ω). Then there exists a sequence

of smooth, bounded, and convex domains {Ωℓ} such that

Ω1 ⊂ Ω2 ⊂ · · · ⊂ Ωℓ ⊂ · · · ,
∞⋃

ℓ=1

Ωℓ = Ω.

(See e.g. [43, Theorem 2.7.1].) By Lemma 3.4 we find a sequence {φj} ⊂ CΩℓ
[Ha] ∩ BC0(Ωℓ)

such that
lim
j→∞

(
et∆Ωℓφj

)
(x) =

(
et∆Ωℓφ

)
(x) for (x, t) ∈ Ωℓ × (0,∞).

By Step 1 we see that et∆Ωℓφj is Ha-concave in Ωℓ for all t > 0, consequently so is et∆Ωℓφ. On
the other hand, we observe that

lim
ℓ→∞

(
et∆Ωℓφ

)
(x) =

(
et∆Ωφ

)
(x) for (x, t) ∈ Ω× (0,∞).

Then we conclude that et∆Ωφ is Ha-concave in Ω for all t > 0. The proof of assertion (1) is
complete.

Step 3: We prove assertion (2). Let F be admissible on I = [0, a). Assume that F -concavity
is preserved by DHF in Ω. Then Proposition 3.3 implies that F -concavity is also preserved by
DHF in Rn. Consider the case of a <∞. Let a′ ∈ (0, a) and set

φ(x) := a′1[0,∞)(〈x, e1〉) for x ∈ Rn.

Then φ ∈ ARn(I) and φ is F -concave in Rn. This together with the preservation of F -concavity
by DHF in Rn implies that e∆Rnφ is F -concave in Rn. Since

(
e∆Rnφ

)
(x) = a′h(〈x, e1〉) ∈ (0, a′) for x ∈ Rn,

we see that F (a′h) is concave in R. Letting a′ → a, we observe that F (ah) is concave in R.
This together with Lemma 2.4 implies that CRn [Ha] ⊂ CRn [F ]. Then we deduce from Lemma 2.6
that CΩ[Ha] ⊂ CΩ[F ]. Furthermore, by Lemma 2.7 we see that limr→+0 F (r) = −∞. Thus
assertion (2) holds in the case a <∞.

Assertion (2) in the case a =∞ follows from [27, Theorem 1.1]. Here we give another proof
for the sake of completeness of this paper. By assertion (2) with a <∞ we see that

CΩ[Hk] ⊂ CΩ[F ] ∩ AΩ([0, k)) for all k > 0 (5.1)

and limr→+0 F (r) = −∞. Let f be log-concave in Ω. For any m > 0, since min{f,m} is
log-concave in Ω, by Lemma 2.10 we find a sequence {fk} such that fk ∈ CΩ[Hk] and

lim
k→∞

fk(x) = min{f(x),m} for x ∈ Ω.

This together with (5.1) yields f ∈ CΩ[F ], which implies that that log-concavity is stronger
than F -concavity in AΩ([0,∞)). Thus assertion (2) holds in the case a = ∞, and the proof of
Theorem 5.1 is complete. ✷

Theorem 5.2 Let F be admissible on I = [0, a) with a ∈ (0,∞] and Ω a convex domain in Rn

with n ≥ 2.
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(1) Assume that F -concavity is preserved by DHF in Ω. Then

(i) F -concavity is stronger than log-concavity in AΩ(I);

(ii) if a function f is F -concave in Ω, then so is κf for κ ∈ (0, 1).

(2) If F -concavity is not stronger than log-concavity in AΩ(I), then there exists a bounded

continuous function φ on Ω with the following properties:

• φ is F -concave in Ω and φ = 0 on ∂Ω if ∂Ω 6= ∅;

• et∆Ωφ is not quasi-concave in Ω for some t > 0.

Proof. By Propositions 3.2 and 3.5 we obtain Theorem 5.2 (1)-(i) and (2). It remains to prove
Theorem 5.2 (1)-(ii). Let Ω be a convex domain in Rn with n ≥ 2. Assume that there exist
f ∈ CΩ[F ] and κ ∈ (0, 1) satisfying κf 6∈ CΩ[F ]. Setting f = 0 outside Ω, we see that f ∈ CRn [F ]
and κf 6∈ CRn [F ]. Then Proposition 4.3 implies that F -concavity is not preserved by DHF in
Rn. Consequently, by Proposition 3.3 we see that F -concavity is not preserved by DHF in Ω.
Therefore we observe that if F -concavity is preserved by DHF in Ω, then κCΩ[F ] ⊂ CΩ[F ] for
all κ ∈ (0, 1). Thus Theorem 5.2 (1)-(ii) follows. The proof of Theorem 5.2 is complete. ✷

Remark 5.3 Theorem 5.2 (1)-(ii) also gives a necessary condition for F -concavity to be pre-

served by DHF and leads to a nice property of the inverse function fF of F (see Proposi-

tion 6.1 (3)), which plays an important role in Section 6. Notice that if F -concavity possesses

property (1)-(ii) of Theorem 5.2 for all κ ∈ (0,∞), then F -concavity coincides with some power

concavity (see Lemma 2.8).

Now we can proceed to the proofs first of Theorem 1.6 and then of Theorem 1.5.

Proof of Theorem 1.6. We prove assertion (1). Let F be admissible on I = [0, a) with
a ∈ (0,∞]. Assume that F -concavity is preserved by DHF in Ω. Then we apply Theorem 5.1 (2)
to obtain limr→+0 F (r) = −∞. Furthermore, it follows from Proposition 4.8 that F ′ > 0 in int I
and the concavity of (log f ′Z)

′ in JF .
Conversely, we assume that limr→+0 F (r) = −∞, F ′ > 0 in int I, and the function (log f ′F )

′

is concave in JF . By Proposition 4.2 we see that et∆Ωφ is F -concave in Ω for all t > 0 when Ω
is a smooth, bounded, and convex domain and φ ∈ CΩ[F ] ∩BC0(Ω). Then, repeating the same
argument as in the proof of Theorem 5.1 (see Step 2), we deduce that F -concavity is preserved
by DHF in convex domains in Rn. The proof is complete. ✷

Remark 5.4 Let us remark again that, to our knowledge, Theorem 1.6 is the first result regard-

ing a necessary and sufficient condition for concavity properties of solutions to partial differential

equations. As an application of Theorem 1.6 (1), we can also characterize α-log-concavity pre-

served by DHF in Ω (see Corollary 6.10).

Proof of Theorem 1.5. By Theorem 5.1 we obtain (A1). Theorem 5.2 (1)-(i) yields (A2) for
n ≥ 2, while Theorem 5.2 (2) gives (A3). Theorem 1.6 (together with Proposition 1.1 (1)) gives
the one-dimensional part of (A2). The proof is complete. ✷

6 Further study of the preservation of F -concavity

In this section, based on the arguments of the previous sections, we study the preservation of
F -concavity by solutions of the Cauchy–Dirichlet problem for linear parabolic equations with
variable coefficients (see Section 6.1); semilinear heat equations (see Section 6.2); the porous
medium equation and the parabolic p-Laplace equation (see Section 6.3).
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6.1 Linear parabolic equation with variable coefficients

In this subsection we consider a (slightly) simplified version of problem (P) (treated in Section 3),
precisely, the following Cauchy–Dirichlet problem for a linear parabolic equation with variable
(but independent of t) coefficients:





∂tu = Lu in Ω× (0,∞),

u = 0 in ∂Ω× (0,∞) if ∂Ω 6= ∅,

u(·, 0) = φ ≥ 0 in Ω,

(P’)

where Ω is a convex domain in Rn and φ ∈ L∞(Ω). Here L is an elliptic operator of the form

L :=

n∑

i,j=1

aij(x)∂xi∂xj +

n∑

i=1

bi(x)∂xi − c(x),

and the coefficients satisfy the following conditions:

(L1’) there exists σ ∈ (0, 1) such that

aij , bi ∈ C0,σ(Ω), c ∈ BC0,σ(Ω),

where i, j = 1, . . . , n;

(L2’) A(x) = (aij(x)) ∈ Sym (n) for x ∈ Ω and there exists Λ > 0 such that

Λ−1|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ Λ|ξ|2 for all ξ ∈ Rn and x ∈ Ω.

The preservation of concavity property by solutions of problem (P’) has been studied in several
papers (see e.g. [1, 6, 7, 20,22,35]), and the following properties hold.

• Let L = ∆− c(x). If c is nonnegative and convex in Ω, then log-concavity is preserved by
the Dirichlet parabolic flow associated with L in Ω (see e.g. [6, 7, 22]).

• Let aij , bi ∈ C2,σ(Rn) for some σ ∈ (0, 1) and c = 0 in Rn. Then log-concavity is preserved
by the Dirichlet parabolic flow associated with L in Rn if and only if A = (aij) is constant
in Rn and bi is affine in Rn (see [35]).

Below, under conditions (L1’) and (L2’), we develop the arguments in the previous sections to
characterize the F -concavities preserved by the Dirichlet parabolic flow.

Proposition 6.1 Let F be admissible on I = [0, a) with a ∈ (0,∞] such that F ∈ C2(int I).
Let Ω be a convex domain in Rn. Assume that F -concavity is preserved by the Dirichlet parabolic

flow associated with L in Ω under conditions (L1’) and (L2’). Then the following conditions hold.

(1) F -concavity is weaker than Ha-concavity and stronger than log-concavity in AΩ(I).

(2) limr→+0 F (r) = −∞, F ′ > 0 in int I, and (log f ′F )
′ is concave in JF .

(3) (log fF )
′ is (−1)-concave in JF .
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Proof. Assume that F -concavity is preserved by the Dirichlet parabolic flow associated with L
in Ω. By Proposition 3.3 we see that F -concavity is also preserved by DHF in Rn. Then
conditions (1) and (2) follow from Theorem 5.1 (2), Theorem 5.2 (1)-(i), and Theorem 1.6.
Furthermore, we deduce from Theorem 5.2 (1)-(ii) and Theorem 1.6 (2) that

e−tet∆Rnφ ∈ CRn [F ] for t > 0 if φ ∈ CRn [F ].

This implies that F -concavity is preserved by the Dirichlet parabolic flow associated with ∆− 1
in Rn. Then, by Proposition 4.4 we see that, for any θ ∈ Rn and ℓ ∈ R, the function

−
fF (〈θ, x〉+ ℓ)

f ′F (〈θ, x〉+ ℓ)
+
f ′′F (〈θ, x〉+ ℓ)

f ′F (〈θ, x〉+ ℓ)
|θ|2

is concave in {x ∈ Ω | 〈θ, x〉+ ℓ ∈ JF }, that is, the function

−
fF (z)

f ′F (z)
+
f ′′F (z)

f ′F (z)
|θ|2

is concave with respect to z ∈ JF for any θ ∈ Rn \ {0}, which implies that (log fF )
′ is (−1)-

concave in JF . Thus condition (3) follows. The proof is complete. ✷

We focus on the case that c = 0 in Ω, and obtain a necessary and sufficient condition for
F -concavity to be preserved by the Dirichlet parabolic flow.

Theorem 6.2 Let F be admissible on I = [0, a) with a ∈ (0,∞] such that F ∈ C2(int I). Let

Ω be a convex domain in Rn and the elliptic operator L satisfy conditions (L1’) and (L2’) with
c = 0 in Ω. Then F -concavity is preserved by the Dirichlet parabolic flow associated with L in Ω
if and only if the following conditions hold:

(1) (log f ′F )
′(z)〈A(x)θ, θ〉 are concave with respect to (x, z) ∈ Ω× JF for any θ ∈ Rn;

(2) bi is affine in Ω for i = 1, . . . , n;

(3) limr→+0 F (r) = −∞, F ′ > 0 in int I, and (log f ′F )
′ is concave in JF .

Proof. Assume that F -concavity is preserved by the Dirichlet parabolic flow associated with L
in Ω under conditions (L1’) and (L2’). By Proposition 6.1 (2) we see that condition (3) holds.
Furthermore, thanks to parabolic regularity theorems (see e.g. [38, Chapter IV, Theorem 10.1]),
we see that assumption (II’) in Proposition 4.5 holds. Then Proposition 4.5 implies that, for
any θ = (θ1, . . . , θn) ∈ Rn and ℓ ∈ R, the function

n∑

i=1

bi(x)θi + (log f ′F )
′(〈θ, x〉+ ℓ)〈A(x)θ, θ〉 (6.1)

is concave in {x ∈ Ω | 〈θ, x〉+ℓ ∈ JF }. Then we observe that the function
∑n

i=1 b
i(x)θi is concave

with respect to x ∈ Ω for any θ = (θ1, . . . , θn) ∈ Rn, which implies that bi is concave and convex
in Ω for i = 1, . . . , n. Thus condition (2) holds. Furthermore, by (6.1) we see that, for any
θ ∈ Rn,

(log f ′F )
′(〈θ, x〉+ ℓ)〈A(x)θ, θ〉 are concave in {x ∈ Ω | 〈θ, x〉+ ℓ ∈ JF }. (6.2)

Then we obtain condition (1). Indeed, if not, we find λ ∈ (0, 1), x, y ∈ Ω, and z, w ∈ JF such
that

(log f ′F )
′((1 − λ)z + λw)〈A((1 − λ)x+ λy)θ, θ〉

< (1− λ)(log f ′F )
′(z)〈A(x)θ, θ〉+ λ(log f ′F )

′(w)〈A(y)θ, θ〉.
(6.3)

33



Thanks to the continuity of A, we can assume that x 6= y. Then we find θ ∈ R such that
z − w = 〈x− y, θ〉. Setting ℓ = z − 〈θ, x〉, we obtain

z = 〈θ, x〉+ ℓ, w = 〈θ, y〉+ ℓ.

This together with (6.3) implies that (6.2) does not hold, which is a contradiction. Thus condi-
tion (1) holds.

Conversely, under conditions (1)–(3), by Proposition 4.2 we see that, if Ω is a smooth,
bounded, and convex domain in Rn, and φ ∈ CΩ[F ]∩BC0(Ω), then e

tLΩφ ∈ CΩ[F ] for t > 0. For
any convex domain Ω, we apply the same argument as in Step 2 of the proof of Theorem 5.1 to
see that F -concavity is preserved by the Dirichlet parabolic flow associated with L in Ω. Thus
Theorem 6.2 follows. ✷

Similarly, we obtain a sufficient and necessary condition for log-concavity to be preserved by
the Dirichlet parabolic flow in every convex domain in Rn under conditions (L1’) and (L2’).

Theorem 6.3 Let the elliptic operator L satisfy conditions (L1’) and (L2’) with Ω replaced

by Rn. Assume that log-concavity is preserved by the Dirichlet parabolic flow associated with L
in Rn under conditions (L1’) and (L2’). Then the following conditions hold:

(1) the matrix A is constant in Rn;

(2) bi is affine in Rn for i = 1, . . . , n;

(3) c is convex in Rn.

Conversely, under conditions (1), (2), and (3), log-concavity is preserved by the Dirichlet parabolic

flow associated with L in every convex domain in Rn.

Proof. Assume that log-concavity is preserved by the Dirichlet parabolic flow associated with
L in Rn. Proposition 4.5 implies that, for any θ = (θ1, . . . , θn) ∈ Rn, the function

n∑

i=1

bi(x)θi − c(x) + 〈A(x)θ, θ〉

is concave in Rn. Then, for any θ ∈ Rn, 〈A(x)θ, θ〉 is concave and nonnegative in Rn. This
implies condition (1). Furthermore, we see that for any θ ∈ Rn,

∑n
i=1 b

i(x)θi is concave in Rn,
and we obtain condition (2). Then condition (3) also holds.

Conversely, under conditions (1), (2), (3), applying the same argument as in Step 2 of the
proof of Theorem 5.1, we see that log-concavity is preserved by the Dirichlet parabolic flow
associated with L in every convex domain in Rn. Thus Theorem 6.3 follows. ✷

6.2 Semilinear heat equation

In this subsection we consider the Cauchy–Dirichlet problem for a semilinear heat equation




∂tu = ∆u+ κ|u|p−1u in Ω× (0, T ),

u(x, t) = 0 on ∂Ω× [0, T ) if ∂Ω 6= ∅ ,

u(x, 0) = φ(x) ≥ 0 in Ω,

(SH)

where T ∈ (0,∞], φ ∈ L∞(Ω), κ ∈ R, and p > 1. Problem (SH) possesses a unique classical
L∞(Ω)-solution SΩ(·)φ for some T ∈ (0,∞] (see [42, Section 15] for the existence and the
uniqueness of classical L∞(Ω)-solutions of problem (SH)). Then

SΩ(·)φ ∈ BC
2;1(Ω× (0, T )) ∩ C(Ω× (0, T )), lim

t→+0
‖SΩ(t)φ− e

t∆Ωφ‖L∞(Ω) = 0,
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and

(SΩ(t)φ)(x) =

∫

Ω
G∆Ω

(x, y, t)φ(y) dy

+ κ

∫ t

0

∫

Ω
G∆Ω

(x, y, t− s)|(SΩ(s)φ)(y)|
p−1(SΩ(s)φ)(y) dy ds

for all (x, t) ∈ Ω × (0, T ). Let z be a solution of the ODE z′ = κ|z|p−1z with z(0) = ‖φ‖L∞(Ω),
that is,

z(t) = ‖φ‖L∞(Ω)

(
1− κ(p − 1)t‖φ‖p−1

L∞(Ω)

)− 1
p−1

.

Let TM (resp. T ∗
M ) be the maximal existence time of the solution SΩ(·)φ (resp. z). Then it

follows from the comparison principle that

0 ≤ (SΩ(t)φ)(x) ≤ z(t) for (x, t) ∈ Ω× (0, T ∗
M ),

TM ≥ T
∗
M =

1

κ(p − 1)
‖φ‖

−(p−1)
L∞(Ω) if κ > 0, TM = T ∗

M =∞ if κ ≤ 0. (6.4)

Notice that, if κ > 0, then it does not necessarily hold that TM = ∞ (see e.g. [18, 46]). We
also observe from the strong maximum principle that (SΩ(t)φ)(x) > 0 for (x, t) ∈ Ω× (0, TM ) if
φ 6= 0 in L∞(Ω).

Problem (SH) has been studied from various points of view (see e.g. the monograph [42] and
references therein). Behavior of solutions of problem (SH) depends on the exponent p, the sign
of κ, the behavior of the initial datum φ, and the shape of the domain Ω. In the case where
κ > 0 and p > 1 + 2/n, the large time behavior of solutions with Ω = Rn depends on the size
of the initial datum (see e.g. [29, 44]). On the other hand, in the case κ < 0, the large time
behavior of solutions with Ω = Rn varies widely with the behavior of the initial datum φ at the
space infinity and the sign of p− (1 + 2/n) (see e.g. [19, 28,37]).

Concavity properties of solutions of problem (SH) have been studied only in the case κ < 0,
where the preservation of log-concavity by solutions of problem (SH) has been established in
[20,22]. In the case κ > 0, Corollary 4.7 implies that log-concavity is not preserved by classical
solutions of problem (SH). The aim of this section is to characterize F -concavities, in particular,
the strongest and the weakest ones, preserved by solutions of problem (SH).

Definition 6.4 Let F be admissible on I = [0, a) with a ∈ (0,∞] and Ω a convex domain in Rn.

We say that F -concavity is preserved by solutions of problem (SH) if

SΩ(t)φ ∈ CΩ[F ] holds for all φ ∈ CΩ[F ] ∩ L
∞(Ω) and t ∈ (0, TM ).

We start with proving that the disruption of F -concavity by DHF implies the same by
solutions of problem (SH).

Proposition 6.5 Let F be admissible on I = [0, a) with a ∈ (0,∞] and Ω a convex domain

in Rn. If F -concavity is not preserved by DHF in Rn, then there exists φ ∈ CΩ[F ] ∩ BC0(Ω)
such that SΩ(t)φ is not F -concave in Ω for some t ∈ (0, TM ).

Proof. Thanks to (1.2), we can assume, without loss of generality, that 0 ∈ Ω. Set Ωℓ := ℓΩ for
ℓ = 1, 2, . . . . Assume that there exists φ ∈ CRn [F ] ∩ L∞(Rn) such that eτ∆Rnφ is not F -concave
in Rn for some τ > 0, that is,

F ((eτ∆Rnφ)((1 − λ)ξ + λη)) < (1− λ)F ((eτ∆Rnφ)(ξ)) + λF ((eτ∆Rnφ)(η)) (6.5)

35



for some ξ, η ∈ Rn and λ ∈ (0, 1). By the same argument as in the proof of Proposition 3.3 we
find a sequence {ℓj} ⊂ {ℓ} with limj→∞ ℓj =∞ such that there exists φℓj ∈ CΩℓj

[F ]∩BC0(Ωℓj)

satisfying

sup
j
‖φℓj‖L∞(Ωℓj

) ≤ ‖φ‖L∞(Rn), (6.6)

lim
j→∞

(
e
t∆Ωℓj φℓj

)
(x) = (et∆Rnφ)(x) uniformly on compact sets in Rn × (0,∞).

We write Ωj := Ωℓj and φj := φℓj for simplicity.
Since ℓj →∞ as j →∞, taking large enough j, by (6.4) and (6.6) we find a unique L∞(Ωj)-

classical solution vj of the problem




∂tv = ∆v + κℓ−2
j |v|

p−1v in Ωj × (0, 1),

v = 0 on ∂Ωj × (0, 1) if ∂Ωj 6= ∅,

v(x, 0) = φj(x) in Ωj .

(6.7)

Set

γ±j (t) :=

(
1∓ |κ|ℓ−2

j (p − 1)

∫ t

0
‖es∆Ωj φj‖

p−1
L∞(Ωj)

ds

)− 1
p−1

, V ±
j (x, t) := γ±j (t)

(
e
t∆Ωj φj

)
(x),

for (x, t) ∈ Ωj × (0, 1). Since

∂tV
±
j −∆V ±

j = ±|κ|ℓ−2
j γ±j (t)

p‖e
t∆Ωj φj‖

p−1
L∞(Ωj)

e
t∆Ωj φj in Ωj × (0, 1),

we have

∂tV
+
j −∆V +

j ≥ |κ|ℓ
−2
j |V

+
j |

p−1V +
j , ∂tV

−
j −∆V +

j ≤ −|κ|ℓ
−2
j |V

−
j |

p−1V −
j ,

in Ω × (0, 1), that is, V +
j (resp. V −

j ) is a supersolution (resp. subsolution) of problem (6.7).
Furthermore,

vj = V ±
j on ∂Ωj × (0, 1) if ∂Ωj 6= ∅ and on Ωj × {0}.

Then the comparison principle for problem (6.7) implies that

V −
j (x, t) ≤ vj(x, t) ≤ V

+
j (x, t) in Ωj × (0, 1). (6.8)

On the other hand, by (6.6) we have

|γ±j (τ)− 1| ≤ Cℓ−2
j

∫ τ

0
‖φj‖

p−1
L∞(Ωj)

ds→ 0 as j →∞, (6.9)

where τ is as in (6.5). Combining (6.5), (6.8), and (6.9), we obtain

F (vj((1− λ)ξ + λη, τ)) < (1− λ)F (vj(ξ, τ)) + λF (vj(η, τ)) (6.10)

for large enough j.
Set uj(x, t) := vj(ℓjx, ℓ

2
j t) for (x, t) ∈ Ω × [0, ℓ−2

j ). Then uj is a solution of problem (SH)

such that uj(·, 0) ∈ CΩ[F ] ∩BC0(Ω). Furthermore, it follows from (6.10) that

F (uj((1− λ)ξj + ληj , τj)) < (1− λ)F (uj(ξj , τj)) + λF (uj(ηj , τj))

for large enough j, where ξj := ℓ−1
j ξ, ηj := ℓ−1

j η, and τj := ℓ−2
j τ . These mean that F -concavity

is not preserved by solutions of problem (SH). Thus Proposition 6.5 follows. ✷

Similarly to the proof of Proposition 6.5, we see that the disruption of quasi-concavity by DHF
implies the same by solutions of problem (SH).
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Proposition 6.6 Let F be admissible on I = [0, a) with a ∈ (0,∞] and Ω a convex domain

in Rn. Assume that there exists φ ∈ CRn [F ] ∩ L∞(Rn) such that eτ∆Rnφ is not quasi-concave

in Rn for some τ > 0. Then there exists ψ ∈ CΩ[F ] ∩ BC0(Ω) such that SΩ(t)ψ is not quasi-

concave in Ω for some t ∈ (0, TM ).

Combining Propositions 6.1, 6.5, and 6.6 with Theorems 5.1 and 5.2, we have:

Theorem 6.7 Let F be admissible on I = [0, a) with a ∈ (0,∞] and Ω a convex domain in Rn.

(1) Assume that F -concavity is preserved by solutions of problem (SH). Then the following

properties hold.

(i) F -concavity is weaker than Ha-concavity in AΩ(I) and limr→+0 F (r) = −∞.

(ii) Let n ≥ 2. Then F -concavity is stronger than log-concavity in AΩ(I). Furthermore,

if a function f is F -concave in Ω, then so is κf for κ ∈ (0, 1).

(iii) If F ∈ C2(int I), then F satisfies conditions (1)–(3) of Proposition 6.1.

(2) If F -concavity is not stronger than log-concavity in AΩ(I) and n ≥ 2, then there exists

φ ∈ CΩ[F ] ∩BC0(Ω) such that SΩ(t)φ is not quasi-concave in Ω for some t ∈ (0, TM ).

Proof. Assume that F -concavity is preserved by solutions of problem (SH). Proposition 6.5 im-
plies that F -concavity is preserved by DHF in Rn. Then, combing Theorem 5.1, Theorem 5.2,
and Proposition 6.1 with Lemma 2.6, we obtain assertion (1). Assertion (2) follows from Theo-
rem 5.2 and Proposition 6.6. The proof is complete. ✷

Now we are in position to state the main results of this subsection: Theorem 6.8 and Theo-
rem 6.9. The former concerns with the case of κ > 0 and the latter with κ ≤ 0.

Theorem 6.8 Let F be admissible on I = [0, a) with a ∈ (0,∞] such that F ∈ C2(int I).
Let Ω be a convex domain in Rn and κ > 0. Then F -concavity is not preserved by solutions of

problem (SH).

Proof. Assume that F -concavity is preserved by solutions of problem (SH). It follows from
Theorem 1.6 and Proposition 6.5 that F -concavity is preserved by DHF in Ω. This together
with Theorem 1.6 (1) yields limr→+0 F (r) = −∞ and F ′ > 0 in int I. By parabolic regularity
theorems (see e.g. [38, Chapter IV]) we see that assumption (II’) in Proposition 4.5 holds for
problem (SH). Then, by Proposition 4.5, for any θ ∈ Rn and ℓ ∈ R, we see that

κ
fF (〈θ, x〉+ ℓ)p

f ′F (〈θ, x〉+ ℓ)
+
f ′′F (〈θ, x〉+ ℓ)

f ′F (〈θ, x〉+ ℓ)
|θ|2

is concave in {x ∈ Ω | 〈θ, x〉 + ℓ ∈ JF }. This implies that fF (z)
p/f ′F (z) is concave with respect

to z ∈ JF . Then we see that

(
fF (z)

p

f ′F (z)

)′

= fF (z)
p−1

(
p−

fF (z)f
′′
F (z)

f ′F (z)
2

)
is non-increasing in JF . (6.11)

On the other hand, it follows from Theorem 6.7 (1)-(iii) (see also Proposition 6.1 (3)) that fF/f
′
F

is convex in JF , which implies that

(
fF (z)

f ′F (z)

)′

= 1−
fF (z)f

′′
F (z)

f ′F (z)
2

is non-decreasing in JF . (6.12)
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Since fF is strictly increasing in JF , by (6.11) and (6.12) we see that

(
fF
f ′F

)′

= −(p− 1) in JF ,

that is, there exists C1 ∈ R such that

fF (z)

f ′F (z)
= −(p− 1)z + C1 for z ∈ JF .

Since fF/f
′
F > 0 in JF , we see that −(p− 1)F (a) +C1 ≥ 0. Then there exists C2 > 0 such that

f(z) = C2(−(p − 1)z + C1)
− 1

p−1 for z ∈ JF ,

that is,

F (r) = −
1

p− 1

(
r

C2

)−(p−1)

+
C1

p− 1
for r ∈ I.

Lemma 2.5 implies that F -concavity coincides with −(p− 1)-concavity in AΩ(I). On the other
hand, Theorem 6.7 (1)-(iii) implies that F -concavity is stronger than log-concavity in AΩ(I).
This is a contradiction (see Example 2.1 (1)). Thus F -concavity is not preserved by solutions
of problem (SH), and Theorem 6.8 follows. ✷

In the case κ ≤ 0, we have:

Theorem 6.9 Let F be admissible on I = [0, a) with a ∈ (0,∞] and F ∈ C2(int I). Let Ω be a

convex domain in Rn and κ ≤ 0. Then F -concavity is preserved by solutions of problem (SH) if
and only if limr→+0 F (r) = −∞, F ′ > 0 in int I, and

the functions F1 := (log f ′F )
′ and F2 := κ

fpF
f ′F

are concave in JF . (6.13)

In particular,

(1) log-concavity is preserved by solutions of problem (SH):

(2) α-log-concavity is preserved by solutions of problem (SH) if and only if α ∈ [1/2, 1]:

(3) for any a ∈ (0,∞], Ha-concavity is preserved by solutions of problem (SH).

Proof. Assume that limr→+0 F (r) = −∞, F ′ > 0 in int I, and (6.13) holds. It follows from
(6.13) that the function

κ
fF (z)

p

f ′F (z)
+
f ′′F (z)

f ′F (z)
|θ|2 = F2(z) + F1(z)|θ|

2

is concave with respect to z ∈ JF for any θ ∈ Rn. Then Proposition 4.2 implies that F -concavity
is preserved by solutions of problem (SH) in the case Ω is a smooth bounded convex domain.
Then, by the same argument as in Step 2 of the proof of Theorem 5.1 we obtain the preservation
of F -concavity by solutions of problem (SH) for a generic convex domain.

Conversely, assume that F -concavity is preserved by solutions of problem (SH). Then, simi-
larly to the proof of Theorem 6.8, we see that, for any θ ∈ Rn and ℓ ∈ R, the function

κ
fF (〈θ, x〉+ ℓ)p

f ′F (〈θ, x〉+ ℓ)
+
f ′′F (〈θ, x〉+ ℓ)

f ′F (〈θ, x〉+ ℓ)
|θ|2 = F2(〈θ, x〉+ ℓ) + F1(〈θ, x〉+ ℓ)|θ|2
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is concave in {x ∈ Ω | 〈θ, x〉 + ℓ ∈ JF }. Since θ and ℓ are arbitrary, we observe that each of
the functions F1 and F2 is concave in JF , that is, (6.13) holds. Furthermore, it follows from
Theorem 6.7 (1)-(iii) that limr→+0 F (r) = −∞ and F ′ > 0 in int I.

It remains to prove assertions (1)–(3). We prove assertion (1). It suffices to prove that (6.13)
holds in the case F = Φ0: since fF (z) = ez for z ∈ JF = R, we have

F1(z) = 1, F2(z) = κe(p−1)z , for z ∈ R,

which are concave in R since κ ≤ 0. Thus (6.13) holds, and assertion (1) follows.
We prove assertion (2). We write fα := fLα and Jα := JLα for simplicity. By the above

arguments we see that α-log-concavity is preserved by solutions of problem (SH) if and only if
limr→+0 Lα(r) = −∞, L′

α > 0 in int I, and the functions (log f ′α)
′ and κfpα/f ′α are concave in Jα.

If α < 0, then Lα(r)→ 1/α as r → +0. If α = 0, since

fα(z) = e−e−z
, f ′α(z) = e−e−z

e−z, f ′′α(z) = e−e−z
e−2z − e−e−z

e−z,
f ′′α(z)

f ′α(z)
= e−z − 1,

for z ∈ Jα = R, we see that (log f ′α)
′ is not concave in Jα. Therefore, by (6.13) we see that

α-log-concavity is not preserved by solutions of problem (SH) if α ≤ 0.
Let α > 0. Then Jα = (−∞, 1/α) and

fα(z) = exp
(
−(1− αz)

1
α

)
for z ∈ Jα.

It follows that

f ′α(z) = (1− αz)−1+ 1
α fα(z),

f ′′α(z) =
(
(α− 1)(1 − αz)−2+ 1

α + (1− αz)−2+ 2
α

)
fα(z),

F1(z) = (α− 1)(1− αz)−1 + (1− αz)−1+ 1
α ,

F2(z) = κ(1− αz)1−
1
α fα(z)

p−1,

for z ∈ Jα. Then

F ′
1(z) = α(α− 1)(1 − αz)−2 + (α− 1)(1 − αz)−2+ 1

α ,

F ′′
1 (z) = 2α2(α− 1)(1 − αz)−3 + (α− 1)(2α − 1)(1 − αz)−3+ 1

α ,

F ′
2(z) = −κ(α− 1)(1− αz)−

1
α fα(z)

p−1 + κ(p − 1)fα(z)
p−1,

F ′′
2 (z) = −κ(α− 1)(1− αz)−1− 1

α fα(z)
p−1

− κ(α − 1)(p − 1)(1 − αz)−1fα(z)
p−1 + κ(p− 1)2(1− αz)−1+ 1

α fα(z)
p−1,

for z ∈ Jα. We observe that F ′′
1 ≤ 0 in Jα if and only if α ∈ [1/2, 1]. Furthermore, if α ∈ [1/2, 1],

then F ′′
2 ≤ 0 in Jα. Therefore we deduce that α-log-concavity is preserved by solutions of

problem (SH) if and only if α ∈ [1/2, 1]. Thus assertion (2) follows.
We prove assertion (3). It suffices to consider the case of a < ∞. Indeed, assertion (3)

follows assertion (1) if a =∞. Since ah is the inverse function of Ha in R, by (2.5) we have

F1(z) =
h′′(z)

h′(z)
= −

1

2
z, F2(z) = κap−1h(z)

p

h′(z)
, for z ∈ JHa = R.
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Then F1 is concave in R. Furthermore, it follows from (2.5) that

F ′
2(z) = κap−1ph(z)p−1 − κap−1h(z)p

h′′(z)

h′(z)2
= κap−1ph(z)p−1 + κ

ap−1

2
z
h(z)p

h′(z)
,

F ′′
2 (z) = κap−1p(p− 1)h(z)p−2h′(z) + κ

ap−1

2

h(z)p

h′(z)
+ κ

ap−1

2
pzh(z)p−1 + κ

ap−1

4
z2
h(z)p

h′(z)
,

for z ∈ R, and we see that F ′′
2 ≤ 0 in [0,∞). On the other hand, it follows from (2.7) that

h′(z) ≥ −
1

2
zh(z) for z ∈ R.

Then we have

F ′′
2 (z) ≤ −κ

ap−1p

2
(p − 2)zh(z)p−1 + κ

ap−1

2

h(z)p

h′(z)
+ κ

ap−1

4
z2
h(z)p

h′(z)
(6.14)

for z ∈ (−∞, 0), and we see that F ′′
2 ≤ 0 in (−∞, 0) if p ≥ 2. We deduce that F ′′

2 (z) ≤ 0 in R if
p ≥ 2.

We consider the case of 1 < p < 2. Since H1-concavity is preserved by DHF in Ω, by
Proposition 6.1 (3) we see that (log h)′ is (−1)-concave in R, which together with (2.5) implies
that

0 ≤

(
h(z)

h′(z)

)′′

=

(
1−

h(z)h′′(z)

h′(z)2

)′

=

(
zh(z)

2h′(z)

)′

=
h(z)

2h′(z)
+
z

2
−
zh(z)h′′(z)

2h′(z)2

=
h(z)

2h′(z)
+
z

2
+
z2h(z)

4h′(z)
for z ∈ R.

(6.15)

By (6.14) and (6.15) we obtain

F ′′
2 (z) ≤ −κ

ap−1

2
|z|h(z)p−1 + κ

ap−1

2

h(z)p

h′(z)
+ κ

ap−1

4
z2
h(z)p

h′(z)

= κap−1h(z)p−1

[
z

2
+

h(z)

2h′(z)
+
z2h(z)

4h′(z)

]
≤ 0

for z ∈ (−∞, 0). Thus F ′′
2 ≤ 0 in R if 1 < p < 2. Therefore, each of F1 and F2 is concave in R,

and Ha-concavity is preserved by solutions of problem (SH). Thus assertion (3) follows, and the
proof of Theorem 6.9 is complete. ✷

By a direct consequence of Theorem 6.9 with κ = 0 we have:

Corollary 6.10 Let Ω be a convex domain in Rn and α ∈ R. Then α-log-concavity is preserved

by DHF in Ω if and only if α ∈ [1/2, 1].

6.3 Porous medium equation and parabolic p-Laplace equation

In this subsection we discuss the preservation of concavity property by solutions of the Cauchy–
Dirichlet problem for the porous medium equation and the parabolic p-Laplace equation.

Consider the Cauchy–Dirichlet problem for the porous medium equation




∂tu = ∆(um) in Ω× (0,∞),

u = 0 on ∂Ω × (0,∞) if ∂Ω 6= ∅,

u(·, 0) = φ ≥ 0 in Ω,

(PM)
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where m > 1 and φ ∈ L∞(Ω). The porous medium equation provides a simple model in many
physical situations and the preservation of power concavity by solutions of problem (PM) has
been studied in many papers, see e.g. [5,8,11,14–16,22,24,40] and references therein. (See also
the monograph [45] for the the existence and the uniqueness of solutions of problem (PM) and
for related topics.) Among others, Bénilan and Vázquez [5, Theorem 1] proved the preservation
of (m − 1) -concavity by solutions of (PM) in the case Ω = R. Furthermore, Daskalopoulos,
Hamilton, and Lee [16, Theorem 1.1] proved that (m− 1)/2 -concavity is preserved by solutions
of problem (PM) in the case Ω = Rn with n ≥ 1 under the following non-degeneracy condition
on φm := φm−1: {

φm has a compact support D;

φm is smooth on D and min
D

(φm + |∇φm|
2) > 0.

(6.16)

On the other hand, it was also proved in [22, Theorem 1.3] that (m−1)/2 -concavity is preserved
by solutions of problem (PM) in the case where Ω is a smooth, bounded, and convex domain
in Rn and φ ∈ BC0(Ω) with φ > 0 in Ω. Then, similarly to DHF, the following question naturally
arises:

(Q5) if α 6= (m− 1)/2, is α-concavity preserved by solutions of problem (PM)?

(See [45, Page 520] for related questions.) A partial negative answer to question (Q5) was given
in [24, Theorem 1.1] for the case of n ≥ 2. Recently, question (Q5) was negatively and perfectly
resolved by [11, Theorem 1.1] in the case where Ω = R2, but it remains open in the other cases.

Although problem (PM) is outside the framework of the previous sections, as a direct applica-
tion of the argument in the proof of Proposition 4.1, we obtain a negative answer to question (Q5)
for all dimension.

Theorem 6.11 Let n ≥ 1, m > 1, and −∞ < α < (m− 1)/2.

(1) Let Ω be a bounded convex domain in Rn. Then there exists φ ∈ CΩ[Φα] ∩ BC0(Ω) with

φ > 0 in Ω such that the corresponding solution of problem (PM) is not α-concave in Ω
for some t > 0.

(2) Let D be compact and convex in Rn. There exists φ ∈ CRn [Φα] such that φm = φm−1

satisfies condition (6.16) and the corresponding solution of problem (PM) with Ω = Rn is

not α-concave in Rn for some t > 0.

Proof. We prove assertion (1). Thanks to the boundedness of Ω and (1.2), we can assume,
without loss of generality, that

〈e1, x〉 > 0 for x ∈ Ω.

Let −∞ < α < (m− 1)/2. Set

φ(x) :=

{
〈e1, x〉

1
α if α 6= 0,

e〈e1,x〉 if α = 0,
(6.17)

for x ∈ Ω. Then φ is α-concave in Ω.
Let u be the solution of (PM) with the initial datum φ. It follows from the comparison

principle that u > 0 in Ω × [0,∞). Then parabolic regularity theorems (see [38, Chapter V])
imply that u ∈ C2;1(Ω× [0,∞)). Assume that u(·, t) is α-concave in Ω for all t > 0, that is,

Φα(u((1 − λ)x+ λy, t))− (1− λ)Φα(u(x, t))− λΦα(u(y, t)) ≥ 0
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for x, y ∈ Ω, t > 0, and λ ∈ (0, 1). Furthermore, by (6.17) we have

Φα(u((1 − λ)x+ λy, 0)) − (1− λ)Φα(u(x, 0)) − λΦα(u(y, 0)) = 0

for x, y ∈ Ω. Then we observe that

(∂tΦα(u)) ((1− λ)x+ λy, 0))− (1− λ) (∂tΦα(u)) (x, 0) − λ (∂tΦα(u)) (y, 0) ≥ 0 (6.18)

for x, y ∈ Ω.
On the other hand, it follows from (PM) and (6.17) that

(∂tΦα(u)) (z, 0) = φ(z)α−1(∆φm)(z) =





m

α

(m
α
− 1
)
〈e1, z〉

−1+m−1
α if α 6= 0,

m2e(m−1)〈e1,z〉 if α = 0,

for z ∈ Ω. Then relation (6.18) leads the concavity of (∂tΦα(u)) (·, 0), and we have

0 ≤ −1 +
m− 1

α
≤ 1 if α 6= 0, m2(m− 1)2 ≤ 0 if α = 0.

These are both contradictions. Thus α-concavity is not preserved by the solution u. Finally,
similarly to Lemma 3.4, we approximate φ by positive functions belonging to CΩ[Φα]∩BC0(Ω) to
obtain assertion (1). Applying a similar argument with Ω replaced by D, we obtain assertion (2).
Thus Theorem 6.11 follows. ✷

Finally, we consider the Cauchy–Dirichlet problem for the parabolic p-Laplace equation





∂tu = div (|∇u|p−2∇u) in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞) if ∂Ω 6= ∅,

u(·, 0) = φ ≥ 0 in Ω,

(PP)

where p > 2 and φ ∈ L∞(Ω). See e.g. [17] for the existence, the uniqueness, and the regularity
of solutions of problem (PP). Little is known concerning the preservation of concavity properties
by solution of the parabolic p-Laplace equation, and the only available result is in [39], where
Lee proved that (p − 2)/p -concavity is preserved by solutions of problem (PP) with Ω = Rn

under the following non-degeneracy condition on ϕp := φ(p−2)/(p−1):

{
ϕp has a compact support D;

ϕp is smooth on D and min
D

(ϕp + |∇ϕp|) > 0.
(6.19)

On the other hand, by the same argument as in the proof of Theorem 6.11, we have the following
result for problem (PP).

Theorem 6.12 Let n ≥ 1, p > 2, and −∞ < α < (p− 2)/p.

(1) Let Ω be a bounded convex domain in Rn. Then there exists φ ∈ CΩ[Φα] ∩ BC0(Ω) with

φ > 0 in Ω such that the corresponding solution of problem (PP) is not α-concave in Ω for

some t > 0.

(2) Let D be convex and compact in Rn. There exists φ ∈ CRn [Φα] such that ϕp = φ(p−2)/(p−1)

satisfies (6.19) and the corresponding solution of problem (PP) with Ω = Rn is not α-
concave in Rn for some t > 0
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Proof. We prove assertion (1). Thanks to the boundedness of Ω and (1.2), we can assume,
without loss of generality, that

〈e1, x〉 > 0 for x ∈ Ω.

Let −∞ < α < (p − 2)/p and let φ be as in the proof of Theorem 6.11. Since ∇φ 6= 0 in Ω, for
any x ∈ Ω, the corresponding solution u of problem (PP) is C2;1-smooth in a neighborhood of
(x, 0) in Ω× [0,∞). (See e.g. [17] and [38, Chapters IV and V].) Furthermore,

φ(z)α−1div (|∇φ|p−2∇φ)(z) =





p− 1

|α|p−2α

1− α

α
〈e1, z〉

p−2
α

−(p−1) if α 6= 0,

(p− 1)e(p−2)〈e1,z〉 if α = 0,

(6.20)

for z ∈ Ω.
Assume that u(·, t) is α-concave in Ω for all t > 0. Applying the same argument as in the

proof of Theorem 6.11, by (6.20) we see α 6= 0 and

0 ≤
p− 2

α
− (p − 1) ≤ 1.

This implies that α ≥ (p−2)/p, which yields a contradiction. Thus α-concavity is not preserved
by the solution u. Finally, we approximate φ by functions belonging to CΩ[Φα]∩BC0(Ω) to obtain
assertion (1). Applying a similar argument with Ω replaced by D, we obtain assertion (2) is
similar. Thus Theorem 6.12 follows. ✷
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