
9702

ABSTRACT

Effective traceability tools able to characterize milk 
from pasture are important to safeguard low-input 
farming systems, niche dairy products, and local tradi-
tions. The aims of the present study were to investigate 
the ability of proton nuclear magnetic resonance (1H 
NMR) spectroscopy to discriminate between milk pro-
duced from cows before and after the beginning of the 
grazing season, and to assess the effects of grazing on 
milk metabolites. The research trial involved a single 
alpine holding with 72 lactating cows. Individual milks 
were repeatedly sampled from the same animals before 
(i.e., d −3 and −1) and after (i.e., d 2, 3, 7, 10, and 14) 
the onset of the grazing period. One-dimensional 1H 
NMR spectra of milk extracts were collected through 
a Bruker spectrometer. Random forest discriminant 
analysis was applied to 1H NMR spectra to predict the 
period of collection for each sample. Data concerning 
the relative abundance of milk metabolites were ana-
lyzed through a linear mixed model, which included the 
fixed effects of period of sampling, cow breed, stage 
of lactation, and parity, and the random effect of cow 
nested within breed. The random forest model exhib-
ited great accuracy (93.1%) in discriminating between 
samples collected on d −3, −1, 2, and 3 and those col-
lected on d 7, 10, and 14. Univariate analysis performed 
on the 40 detected metabolites highlighted that milk 
samples from pasture had lower levels of 14 compounds 
(with fumarate being the most depressed metabolite) 
and greater levels of 15 compounds (with methanol and 
hippurate being the most elevated metabolites). Re-
sults indicate that milk 1H NMR spectra are promising 
to identify milk produced in different conditions. Also, 
our study highlights that grazing is associated with sig-

nificant changes of milk metabolic profile, suggesting 
the potential use of several metabolites as indicators of 
farm management.
Key words: pasture, metabolome, metabolite, nuclear 
magnetic resonance

INTRODUCTION

The use of pasture as a source of fresh forages for cattle 
is commonly adopted in the context of dairy farming in 
mountainous areas. Fresh herbages are administered as 
animal feed through different strategies, depending on 
farm location, management, and facilities. Usually, in 
intensive farming systems, summer forages are mowed, 
transported to the barn, and mixed with other feed in-
gredients as fresh herbages, hay, or silage. By contrast, 
in low-input farming systems that are widely diffused 
in marginal or mountainous areas, dairy farmers allow 
the herd to have direct access to pasture. Depending 
on the geographical position of the barn, grazing can 
be practiced according to different strategies: the first 
is adopted when pastures are adjacent to the barn, al-
lowing animals to autonomously move from barn to 
pastures after morning and evening milking (Niero 
et al., 2021a); the second, known as transhumance, 
is adopted when pastures are far from the barn, and 
includes active moving or passive transport of animals 
from the lowland barn to highland pastures (Niero et 
al., 2018). Regardless of the scenario, it is acknowl-
edged that the inclusion of fresh forages in animal diet 
is threatened by high labor demands and relatively low 
financial returns. Still, this practice remains of strategic 
significance due to its direct and indirect implications, 
ranging from environmental sustainability and animal 
welfare (Burow et al., 2013; Byrnes et al., 2018) to the 
quality of animal-derived products (Niero et al., 2021b), 
the touristic appeal of the territory (Bele et al., 2017), 
consumers’ appreciation of the final product (Jackson 
et al., 2020), and the maintenance of local traditions, 
biodiversity, and landscapes (Niero et al., 2018).
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Given the notable importance of this topic, it is 
worth developing and implementing analytical meth-
ods based on inherent food properties that are able to 
distinguish between dairy foods originating from con-
ventional and pasture-based conditions. For instance, it 
is well documented that both gas chromatography and 
mid-infrared spectroscopy techniques can be used to ef-
fectively monitor the modification of detailed milk fatty 
acid composition, where an increased concentration of 
polyunsaturated fatty acids can be used as a possible 
biomarker for pasture-based farming systems (Leiber et 
al., 2005; De Marchi et al., 2018). Mid-infrared spectra 
can be also used as a fingerprinting technique to dis-
criminate between milk produced under intensive and 
extensive farming conditions (Capuano et al., 2014). 
Furthermore, the profiling of stable isotopes and iso-
tope ratios has been proposed as a traceability tool able 
to discriminate between organically and conventionally 
produced milk (Molkentin and Giesemann, 2010) and 
between milks obtained through different feeding regi-
mens (Camin et al., 2008).

In the realm of food science, proton nuclear magnetic 
resonance (1H NMR) spectroscopy is one of the most 
potent analytical methods that may be used to analyze 
liquid or solid materials. Proton nuclear magnetic reso-
nance has enormous potential for analyzing complex 
matrices and offers opportunity to advance the field 
of food science due to its nondestructive nature, high 
accuracy, and reproducibility, which are frequently 
achieved without using any separation or purifica-
tion steps. The area of the 1H NMR signal is exactly 
proportional to the number of nuclei that create the 
signal in 1H NMR spectroscopy, which is a quantita-
tive method that may be used to analyze a variety of 
nuclei based on the type of food being analyzed and 
the information being sought. Moreover, even though 
conventional quality, safety, and authenticity control 
in food is based on targeted strategies, high-resolution 
1H-NMR, performed under well-defined instrumental 
specifications, offers several advantages, including 
producing an extremely reproducible food fingerprint 
and fully quantitative data by means of a single experi-
ment (Vignoli et al., 2019). In this scenario, 1H NMR 
spectroscopy has been effectively used in the dairy sec-
tor for different purposes and applications, primarily 
traceability of milk and cheese produced according to 
different farming systems (Tenori et al., 2018; Segato 
et al., 2019), detection of bovine milk adulteration in 
caprine milk (Rysova et al., 2021), and characterization 
of metabolites in milk from cows with subclinical and 
clinical mastitis (Luangwilai et al., 2021). Still, a pau-
city of information exists regarding the possibility to 
use 1H NMR spectroscopy as an analytical traceability 
tool for the distinction between intensive and extensive 

farming conditions. Similarly, few studies investigating 
the effect of grazing pasture on milk metabolome exist 
so far.

These research questions have been targeted through 
the trials of the present study, which involved dairy 
cows farmed on a single alpine herd adopting summer 
grazing. Specific aims were to (1) assess the ability of 
1H NMR spectroscopy to discriminate between milk 
produced from cows before and after the beginning of 
the grazing season and (2) investigate how, and to what 
extent, grazing can affect milk metabolic profile.

MATERIALS AND METHODS

Herd

The trials were performed during routine milking 
procedures and were not invasive; therefore, animal 
welfare committee authorization was not required. The 
commercial dairy farm involved in this study was lo-
cated in Veneto Region (Pian del Cansiglio, Belluno, 
Italy) at 1,100 m above sea level. The farm was enrolled 
in the official milk recording system of the Breeders As-
sociation of Veneto Region (Vicenza, Italy). The herd 
comprised Simmental (SI), Holstein (HO), and HO × 
SI crossbred (CR) lactating cows (n = 72). Between 
October and May, animals were housed indoors in a 
freestall barn and were fed with TMR based on grass 
silage, alfalfa hay, high-moisture corn, cereal meal, and 
a protein-mineral-vitamin mix (9.5 kg as fed, 3 kg, 7 
kg, 3 kg, and 3.5 kg, respectively). Milking took place 
twice per day, in the morning (0500 h) and in the after-
noon (1700 h). Between late spring and the beginning 
of autumn, animals had access to the pasture located 
near the farm. Cows grazed fresh herbage following the 
Voisin rotational system (Voisin, 1959), with animals 
being moved to a different paddock every day. Cows 
received 2 kg of high-moisture corn and cereal meals 
as an energy supplement during each milking event. 
Further details on chemical composition of the fresh 
herbage grazed by the animals can be retrieved from 
Niero et al. (2021a).

Sample Collection and Gross Chemical Composition

Individual milk samples from the entire herd were 
repeatedly collected during the afternoon milking from 
late May to June 2020. Milk sampling started 3 d and 1 
d before the beginning of grazing, to characterize milk 
obtained under indoor farming conditions. Milk sam-
ples were also collected 2, 3, 7, 10, and 14 d after the 
beginning of grazing, to characterize the milk obtained 
at pasture (Figure 1). After sample collection, 200 µL 
of Bronopol (2-bromo-2-nitropropan-1,3-diol; ANA.
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LI.TIK. Austria) preservative were added to 40 mL of 
milk. Samples were transferred at 4°C to the laboratory 
of the Breeders Association of Veneto Region (Padova, 
Italy) and analyzed within 12 h for gross chemical com-
position (fat, protein, casein, and lactose percentages) 
and urea content (mg/dL), using a MilkoScan FT6000 
(Foss Analytical A/S). A Fossomatic 7 DC (Foss 
Analytical A/S) was used to determine SCC (cells/
µL) and differential SCC (%). Values of SCC were 
log-transformed to SCS using the formula SCS = 3 + 
log2(SCC/100) to achieve the normality and homogene-
ity of variances (Ali and Shook, 1980). A total of 451 
milk samples from 72 cows were collected for 1H NMR 
analysis (291 samples from 49 SI cows; 21 samples from 
3 HO cows; 139 samples from 20 CR cows).

Proton Nuclear Magnetic Resonance Spectroscopy

Each milk sample was dissolved in dichloromethane 
(CH2Cl2) 1:1 (vol/vol; Tenori et al., 2018), homog-
enized by vortexing, and incubated for 10 min at room 
temperature. The mixture was centrifuged at 5,000 × g 
at 4°C for 30 min, and 350 µL of the supernatant were 

added to 350 µL of sodium phosphate buffer [70 mM 
Na2HPO4; 20% (vol/vol) H2O, 6.1 mM NaN3; 4.6 mM 
sodium trimethylsilyl (2,2,3,3-H4)-propionate; pH 7.4]. 
A total of 600 µL of the resulting mixture were trans-
ferred into a 5-mm NMR tube (Bruker BioSpin) and 
kept at −80°C until further analysis at the Magnetic 
Resonance Center (Sesto Fiorentino, Florence, Italy).

One-dimensional (1D) 1H NMR spectra of milk 
aqueous extracts were recorded on a Bruker spectrom-
eter operating at 600.13-MHz proton Larmor frequency 
and equipped with a 5-mm PATXI 1 H-13C-15N probe 
including a z-axis gradient coil, automatic tuning-
matching, and an automatically refrigerated sample-
changer (SampleJet, Bruker BioSpin). A BTO 2000 
thermocouple provided thermal stabilization of the 
samples, ensuring a maximum fluctuation of approxi-
mately 0.1 K. For temperature equilibration, samples 
were maintained inside the NMR probe for 5 min prior 
to measurement (310 K). Nuclear Overhauser effect 
spectroscopy (NOESY) pulse sequence (noesygppr1d, 
Bruker BioSpin) was used to acquire 1D 1H NMR spec-
tra with 64 scans, 98 k data points, a spectral width 
of 18,028 Hz, an acquisition time of 2.7 s, a relaxation 
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Figure 1. Test-days flowchart of the experimental design.
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time of 4 s, and a mixing time of 10 ms. The NOESY 
pulse sequence suppresses solvent signal and yields a 
spectrum in which both the signals of metabolites and 
high molecular weight molecules are visible (McKay, 
2011). Before applying Fourier transformation, free 
induction decays were multiplied by an exponential 
function equivalent to a 0.3-Hz line-broadening factor. 
TopSpin software (Bruker) was used to automatically 
adjust for phase and baseline aberrations in trans-
formed spectra. To calibrate spectra, the α-lactose 
doublet (5.24 δ1H ppm) was used. Each 1D spectra in 
the range of 0.02 to 10.00 δ1H ppm was segmented into 
0.05 δ1H ppm chemical shift buckets for multivariate 
analysis. Buckets are spectral areas calculated under 
spectral segments, reported in arbitrary units. Prior to 
performing the statistical analyses, the portions of NO-
ESY spectra corresponding to the water (4.61–4.77 δ1H 
ppm) and dichloromethane (5.30–5.33 and 5.42–5.65 
δ1H ppm) resonating regions were removed and the 
buckets were normalized using probabilistic quotient 
normalization (Dieterle et al., 2006), resulting in a data 
matrix of 451 rows (samples) and 228 columns (buck-
ets). A total of 40 signals were characterized in the 1H 
NMR spectra (Supplemental Table S1, https:​/​/​figshare​
.com/​articles/​figure/​Supplemental​_Table​_S1​_pdf/​
20712427; Visentin, 2022a), resulting in a data matrix 
of 451 rows (samples) and 40 columns (metabolites). 
Signal identification was performed using a library of 
NMR spectra of pure organic compounds (Assure NMR 
2.2 software, Bruker BioSpin), public databases storing 
references (FooDB, https:​/​/​foodb​.ca/​; Milk Composi-
tion Database, http:​/​/​www​.mcdb​.ca/​), and literature 
data (Tenori et al., 2018; Meoni et al., 2020).

Data Editing and Statistical Analyses

Among the 451 acquired records, only samples that 
satisfied specific inclusion criteria were used for statisti-
cal analyses. In particular, (1) DIM and parity were 
restricted to range from 5 to 500 d and between 1 and 
8, respectively; (2) records with milk yield (MY) <2 
kg/milking were discarded; and (3) only samples col-
lected from animals that were present in at least 5 of 
the 7 test-days (days before and after the beginning 
of grazing) were kept. Additionally, for MY and milk 
quality traits, samples exceeding 3 standard deviations 
from the respective mean were treated as missing val-
ues. Following these criteria, 421 milk samples from 72 
animals (256 samples from 49 SI cows; 21 samples from 
3 HO cows; 135 samples from 20 CR cows) remained 
for statistical analysis. A total of 118 individual milks 
were collected 3 d and 1 d before the beginning of graz-
ing, and 303 samples were obtained 2, 3, 7, 10, and 14 
d after the beginning of grazing. Descriptive statistics 

of production-related traits, MY, and quality traits are 
presented in Supplemental Table S2 (https:​/​/​figshare​
.com/​articles/​figure/​Untitled​_Item/​20712499; Visen-
tin, 2022b).

Data analyses were performed using R software (ver-
sion 3.5.3; R Core Team, 2020). Principal component 
analysis was used as the first exploratory unsupervised 
analysis on bucketed spectra, to evaluate the presence 
of a net discrimination between the days of sampling 
and potential presence of outliers. Random forest (RF) 
discriminant analysis (“Random Forest” R package) 
was applied to bucketed spectra. Here, each tree of the 
forest tree was used to predict the day of collection for 
each sample. For this study, RF was used with double 
cross-validation, and samples from various collection 
times (days) of the same animal were deleted from the 
training at each test cycle of the double cross-validation 
to obtain an unbiased predictive accuracy. For each 
computation, a forest of 5,000 trees was employed.

The univariate analysis was carried out on the 40 
identified metabolites integrated from 1D 1H-NMR 
spectra. Data were processed according to the follow-
ing linear mixed model, using PROC MIXED of SAS 
software v. 9.4 (SAS Institute Inc.):

	 yijklm = periodi + breedj + stagek + parityl 	  

+ cowm(breedj) + eijklm,

where yijklm is a milk metabolite; periodi is the fixed 
effect of the ith period of sampling [2 classes: d −3 to d 
3 (representing TMR and early-stage grazing diets) and 
d 7 to d 14 (representing prolonged grazing diet)]; breedj 
is the fixed effect of the jth cow breed (3 classes: SI, 
HO, and CR); stagek is the fixed effect of the kth stage 
of lactation (8 classes: 5–45, 46–90, 91–135, 136–180, 
181–225, 226–270, 271–315, and >315 d); parityl is the 
fixed effect of the lth parity (6 classes: 1, 2, 3, 4, 5, 
and >5); cowm is the random effect of the mth cow 
nested within the jth breed; and eijklm is the random 
residual term. Variation of milk metabolites in the 2 
sampling periods were reported as log2(fold change), 
and differences were tested with the Wilcoxon test with 
Bonferroni correction for P-value determination. Fur-
thermore, for each metabolite, the Cliff’s delta effect 
size was calculated by means of the R package “effsize” 
(Torchiano, 2020).

RESULTS AND DISCUSSION

Classification of Samples Based on 1H NMR Spectra

The capacity of the RF model to discriminate be-
tween the different days of sampling is reported in 
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Table 1. The overall accuracy of the model was 58.7%, 
and the proportion of samples correctly classified by 
the model (i.e., the sensitivity) ranged from 37.1% (d 3) 
to 80.3% (d 14). In general, the proportion of samples 
wrongly attributed was greater between adjacent days 
of sampling. For example, 35.6% of samples collected in 
d −3 (i.e., 3 d before access to pasture) were attributed 
to d −1 (i.e., the day before access to pasture), whereas 
almost none of such samples were attributed to samples 
collected from d 7 onward (Table 1). It is worth noting 
that samples collected from d −3 to d 3 tended to be 
confounded among each other, as well as samples col-
lected from d 7 to 14. This suggests that milk NMR 
spectra, and therefore the metabolic profile of dairy 
cows, is to some extent influenced by the diet of the 
dairy cows, which become evident only after some 
days of continued access to pasture and fresh herbage 
(i.e., from d 7 onward). This is also in agreement with 
previous studies, which reported that several days of 
metabolic and behavioral adaptation are needed when 
animals move from TMR to pasture (Schären et al., 
2016). Accordingly, studies involving Latin square 
designs commonly include a transition period before 
starting new sampling with different nutritional regi-
men, to avoid the influence of the previous treatment.

We therefore applied the RF model to only 2 peri-
ods of days of sampling, created by grouping together 
samples collected in d −3, −1, 2, and 3 (period 1) and 
samples collected in d 7, 10, and 14 (period 2; Table 2). 
In this case, the overall accuracy of the model increased 
to 93.1%, with 12.9% of samples in period 2 attributed 
to period 1, and only 2.4% of samples in period 1 at-
tributed to period 2 (Table 2). It is clear, in particular 
from Table 2, that exploitable information exists in milk 
NMR spectra to discriminate between milk samples col-
lected from cows before moving to pasture and cows at 
pasture. The effect of feeding regimen on the metabolic 
profile of dairy cows has been reported in previous stud-
ies (Tenori et al., 2018; Billa et al., 2020). For example, 
a restriction in concentrate administration is associated 
with increased milk glucose-6-phosphate and isocitrate, 
and with decreased milk BHB, glucose, glutamate, 
uric acid, and free amino acids concentrations (Billa 
et al., 2020). Tenori et al. (2018) applied a canonical 
analysis to partial least squares latent variables to dis-
criminate milk samples based on their herd of origin. 
This is extremely useful, for example, for food trace-
ability purposes or in a production context in which 
the administration of some feedstuffs is prohibited by 
specific voluntary regulations, as in the case of the 
Parmigiano Reggiano cheese area. In this production 
area, located in some provinces of the Emilia-Romagna 
and Lombardy regions (Northern Italy), silage is not 
permitted as feed for lactating animals, to minimize 
the risk of anaerobic bacteria presence in milk, which 
could potentially lead to undesired fermentation during 
cheese ripening (Buonaiuto et al., 2021). Exploitable 
information to discriminate between diets offered to 
dairy cattle is also available in spectra generated from 
milk mid-infrared spectroscopy analyses. Frizzarin et 
al. (2021) applied different machine-learning algorithms 
to more than 4,000 milk spectra collected from grazing 
or TMR-fed dairy cows and demonstrated that linear 
discriminant analysis and partial least squares discrimi-

Niero et al.: MILK METABOLITES DURING GRAZING

Table 1. Confusion matrix (%) of random forest model1 built to classify different days of sampling2

Actual day of sampling

Predicted day of sampling

−3 −1 2 3 7 10 14

−3 47.5 35.6 5.1 10.2 1.7 0.0 0.0
−1 27.1 54.2 8.5 6.8 1.7 1.7 0.0
2 4.9 3.3 60.7 16.4 1.6 13.1 0.0
3 4.8 11.3 22.6 37.1 3.2 21.0 0.0
7 5.2 0.0 0.0 1.7 56.9 10.3 25.9
10 4.9 1.6 9.8 4.9 3.3 73.8 1.6
14 0.0 0.0 1.6 0.0 18.0 0.0 80.3
1The diagonal of the confusion matrix reports the sensitivity (%) for the classification of each animal. Overall 
predictive accuracy = 58.7%.
2Days −3 and −1 refer to 3 and 1 d before the beginning of grazing; d 2, 3, 7, 10, and 14 refer to 2, 3, 7, 10 
and 14 d after the beginning of grazing.

Table 2. Confusion matrix (%) of random forest model1 built to 
classify different periods of sampling2

Actual period of sampling

Predicted period of sampling

1 2

1 97.6 2.4
2 12.9 87.1
1The diagonal of the confusion matrix reports the sensitivity (%) for 
the classification of each animal. Overall predictive accuracy = 93.1%.
2Period 1 refers to 3 and 1 d before the beginning of grazing and 2 and 
3 d after the beginning of grazing; period 2 refers to 7, 10, and 14 d 
after the beginning of grazing.



9707

Journal of Dairy Science Vol. 105 No. 12, 2022

nant analysis were the most effective algorithms, with 
an overall accuracy of 0.968 in both cases.

Phenotypic Correlations

Pearson correlation coefficients (r) between milk 
metabolites, milk chemical composition, and SCS are 
presented in Figure 2. Only 2 out of the 40 detected 
metabolites (namely citrate and galactose-1-phosphate) 
were positively associated with MY. The remaining me-
tabolites were negatively correlated with MY, meaning 
that higher MY was associated with a decreased rela-
tive abundance of these compounds, probably due to a 
dilution effect.

N-Acetyl carbohydrates were found to positively cor-
relate with both protein (r = 0.61; P < 0.001) and 
CN content (r = 0.62; P < 0.001). The specific role of 
N-acetyl carbohydrates in milk is still largely unknown 
(Sischo et al., 2017; Giorgio et al., 2018; Rysova et al., 
2021), even if the physiological and biochemical pat-
terns regarding these compounds are gradually being 
elucidated. Consistent with the negative association 
between N-acetyl carbohydrates and MY observed in 
this study, Tomassini et al. (2019) and Zhu at al. (2020) 
reported an increasing trend of N-acetyl carbohydrates 
across the lactation period, probably due to qualitative 
and quantitative changes in the synthesis of oligosaccha-
rides in different lactation stages. It has been reported 

that N-acetyl carbohydrates can originate from catabo-
lism of glycoproteins. In particular, during processes 
involving proteolysis, glycans become detached and are 
released from proteins, thereby becoming detectable 
in 1H NMR spectroscopy (Rysova et al., 2021). This 
argument can explain the positive association between 
protein content and relative abundance of N-acetyl car-
bohydrates observed in the present study.

Citrate exhibited weak negative correlations with 
both protein and CN content (r = −0.22; P < 0.001). 
Milk citrate acts as a calcium chelating agent, creating 
soluble calcium-citrate complexes that are in compe-
tition with colloidal calcium-phosphate complexes. 
Therefore, increased concentrations of soluble citrate 
are likely to decrease the level of colloidal calcium phos-
phate, weakening the stability of casein micelles and, 
ultimately, deteriorating milk coagulation properties 
(Sundekilde et al., 2011).

Lecithin was positively correlated with fat (r = 0.32; 
P < 0.001), protein (r = 0.52; P < 0.001), and CN 
content (r = 0.51; P < 0.001). The positive associa-
tion between lecithin and milk fat was expected, due 
to the fat-soluble properties of this compound, which 
is found in liposome structures (Holmes et al., 2000). 
As in the present study, Holmes et al. (2000) reported 
a direct association between milk lecithin and milk 
protein content, even if the physiological reasons at the 
basis of this phenomenon need further detailed study. 

Niero et al.: MILK METABOLITES DURING GRAZING

Figure 2. Correlation heatmap of milk metabolites with milk yield, chemical composition, SCS, and differential somatic cell count (DSCC). 
Pearson correlations are shown as different degree of color intensity (red, positive correlations; blue, negative correlation). Asterisks refer to 
statistically significant correlations (P < 0.001).



Journal of Dairy Science Vol. 105 No. 12, 2022

9708

Moreover, milk lecithin has been discussed by Bobbo et 
al. (2022), who observed that milk samples with greater 
SCC had lower levels of lecithin.

As expected, a strong positive correlation (r = 0.76; P 
< 0.001) was observed between the relative abundance 
of lactose determined through H1 NMR and lactose 
content predicted through mid-infrared spectroscopy, 
documenting a good level of agreement between the 2 
analytical techniques.

Similar to acetate and lecithin, galactose exhibited 
positive correlations with both protein (r = 0.50; P < 
0.001) and CN contents (r = 0.53; P < 0.001). Li et al. 
(2017) suggested that different polymorphisms of the 
UDP-galactose-4-epimerase bovine gene, which codes 
for an enzyme regulating galactose metabolism, can be 
used as a molecular marker implicated in milk protein 
concentration in dairy cattle. This may corroborate the 
association between milk galactose and milk protein 
contents observed in the present study.

Milk samples with greater SCC were characterized 
by lower levels of sarcosine and dimethylamine (r = 
−0.22; P < 0.001), lactose (r = −0.27; P < 0.001), and 
mannose (r = −0.21; P < 0.001). By contrast, valine, 
lactate, and O-acetilcarnitine had weak positive corre-
lations with SCS (r = 0.27, 0.24, and 0.23, respectively; 
P < 0.01). The decreased content of lactose in milk 
with high SCC is well documented in literature and can 
be ascribed to (1) an increased transfer of lactose from 
milk to blood, to keep osmotic pressure constant, and 
(2) an impaired biosynthesis of lactose at the mammary 
gland level (Costa et al., 2019). Furthermore, in accor-
dance with the results of the present study, Luangwilai 
et al. (2021) indicated that increased levels of valine 
and lactate (together with acetate and phenylalanine) 
are associated with greater milk SCC and mastitis 
events.

Effect of Grazing on Milk Metabolites

Results from the ANOVA of milk metabolites are 
summarized in Table 3. The model adjusted for the 
fixed effects of breed, parity, DIM (results not shown), 
and period of sampling. Out of 40 detected metabo-
lites, the period of sampling significantly affected 29 
compounds (P < 0.05). Among the latter, and in terms 
of effect size, 8 metabolites showed negligible variation, 
12 small variation, 3 medium variation, and 6 large 
variation.

Figure 3 shows the log2(fold change) of the area under 
the peaks of the identified metabolites. Out of the 40 
detected compounds, 14 metabolites were significantly 
lower in stable grazing conditions (i.e., 1 wk after the 
beginning of the grazing period), including fumarate, 

glucose, galactose-1-phosphate, orotate, glutamate, 
cis-aconitate, valine, phosphocreatine+creatine, 2-oxo-
glutarate, N-acethylcarbohydrates, 2 unknown species 
of aldehyde, and 1 unknown metabolite (P < 0.05). In 
contrast, grazing resulted in a significant increase of 
15 milk metabolites, comprising methanol, hippurate, 
acetate, 3-hydroxybuthirate, sarcosine+dimethylamine, 
N-dimethylglycine, dimethylsulfone, butyrate, lactate, 
carnitine, galactose, acetone, lecithin, succinate, and 1 
unknown species of phenyl (P < 0.05).

In accordance with results of the current study, 
previous authors have observed that milk from pas-
ture-based systems has significantly greater amount 
of hippuric acid, which has been associated with the 
presence of caffeoylquinic compounds in fresh forages 
(Besle et al., 2010; Carpio et al., 2010). This varia-
tion was confirmed for both cow (Besle et al., 2010; 
O’Callaghan et al., 2018) and goat milk (Carpio et al., 
2010). Therefore, based on findings of the present study 
and in accordance with previous literature, it seems 
appropriate to propose hippurate as a robust marker 
for milk produced under pasture conditions. Increased 
levels of 3-hydroxybutyrate in milk obtained under pas-
ture conditions may be due to greater fat mobilization 
in grazing animals as a result of lower energy intake 
and higher motility (Benedet et al., 2019). Ashokan et 
al. (2021) reported that grazing significantly affected 
35 milk metabolites. Among them, tyrosyl-threonine, 
histidinyl-cysteine, 1-methyladenine, cysteine, and se-
lenocysteine showed a sharp increase in milk of grazing 
cows. Tenori et al. (2018) reported significant varia-
tions on bulk milk metabolites depending on different 
feeding regimens. In particular, the inclusion of silages 
in animal feed rations caused lower levels of choline, 
methionine, and hippurate, and greater levels of cre-
atinine, lactate, and an unknown compound. Still, a 
direct comparison with the results of the present study 
is not always feasible, due to differences in test hy-
pothesis, experimental design (i.e., bulk milk samples 
and individual milk samples), and analytical conditions 
(i.e., protocols for sample preparation and metabolite 
extraction).

Evidence from the present research indicates that 
1H NMR can be exploited to guarantee food origin, 
but also that some milk metabolites can potentially be 
used as markers to differentiate among diets. Although 
costly and therefore challenging to be implemented on 
a routine basis, this laboratory technique could be pro-
posed as a food authentication technique, in particular 
for dairy foods sold at a greater marker price because 
of processing from grazing cows’ milk. This is the case, 
for example, for Asiago d’Allevo Protected Designation 
of Origin cheese (Segato et al., 2019), which, in some 
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cases, is produced only from grazing animals and mar-
keted with a premium market value. Indeed, it has been 
demonstrated that consumers were willing to pay more 
for dairy products with certified practices of improved 
animal welfare, including pasture access (Olynk and 
Ortega, 2013). This would encourage the development 
of a geographical traceability system for authentication 
of milk origin, whose cost could be, at least partially, 
covered by the additional market value of dairy foods 
from pasture-based cows’ milk. Such a strategy would 
increase the breadth, depth, and precision of a geo-
graphical traceability system, all of which are desirable 
characteristics in terms of establishing products’ ori-
gins and histories (Dalvit et al., 2007), and consumers 
would benefit in terms of increased confidence when 
purchasing and paying a higher price for a certified 
labeled food.

CONCLUSIONS

Results of the present study highlighted that the 
RF models applied to 1H NMR spectra were able to 
distinguish between samples obtained under different 
farming conditions with an overall accuracy from 58.7 
to 93.1%. Moreover, our study suggests that grazing 
conditions are associated with specific alterations in 
the metabolic pattern of milk. Indeed, 29 out of the 40 
detected metabolites (e.g., fumarate, methanol, hippu-
rate, and 3-hydroxybutyrate) had significantly different 
levels of expression depending on the sampling period. 
These findings represent the first step toward the de-
velopment of more specific trials to screen for milk me-
tabolites, which have been shown to vary significantly 
according to grazing, in the view of future traceability 
applications. Particularly in this perspective, results of 
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Table 3. F-values, significance of period of sampling, and effect size for the identified metabolites

Metabolite F-value   P-value   Effect size

Isoleucine 0.01 NS Negligible
Valine 13.88 *** Small
Lactate 14.70 *** Small
Alanine 0.32 NS Negligible
Butyrate 6.08 * Negligible
Acetate 38.85 *** Large
N-acetyl carbohydrates 41.08 *** Small
Acetone 32.34 *** Negligible
3-Hydroxybutyrate 48.40 *** Medium
Glutamate 56.06 *** Small
Succinate 4.40 * Negligible
2-Oxoglutarate 11.57 *** Negligible
Carnitine 4.84 * Small
O-Acetyl carnitine 1.47 NS Negligible
Citrate 0.06 NS Small
Sarcosine+dimethylamine 127.24 *** Large
N,N-Dimethylglycine 26.50 *** Medium
Creatine+phosphocreatine+creatinine 25.22 *** Small
Lecithin 7.68 ** Negligible
Dimethylsulfone 332.76 *** Large
Choline 1.09 NS Negligible
Glycerophosphocholine 0.32 NS Negligible
Methanol 250.32 *** Large
Glucose 87.74 *** Medium
Unknown 1 6.14 * Negligible
Unknown 2 1.36 NS Negligible
Lactose total 5.23 * Negligible
Mannose 2.42 NS Negligible
Galactose 5.96 * Negligible
Galactose 1-phosphate 48.30 *** Small
Cis-aconitate 15.18 *** Small
Cytidine 2.57 NS Negligible
Unknown aldehyde 1 9.78 ** Small
Unknown aldehyde 2 13.46 *** Small
Orotate 65.53 *** Small
Fumarate 118.50 *** Large
Unknown phenyl 1 40.15 *** Small
Hippurate 449.29 *** Large
Riboflavine 0.28 NS Negligible
Formate 1.73 NS Negligible

*P < 0.05; **P < 0.01; ***P < 0.001.



Journal of Dairy Science Vol. 105 No. 12, 2022

9710

the present study may contribute to the development 
of rapid cow-side tests to discriminate milk from indoor 
and pasture-grazed animals.
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