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1 Introduction

Relativistic fluid dynamics has been used with success as an effective theory of QCD in

the regime of high energy density probed by relativistic heavy ion collisions [1–5]. It is

seen as an expansion around states of local thermal equilibrium in terms of derivatives.

The lowest order in this derivative expansion is ideal fluid dynamics and describes fluids

in equilibrium. Higher orders in a formal derivative expansion describe viscous and other

transport corrections. The microscopic physics of QCD enters the formalism in terms

of the thermodynamic equation of state and the transport properties such as viscosities,

conductivities or relaxation times.
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In recent years the classical derivation of relativistic fluid dynamics from kinetic the-

ory [6–9] — which is valid for weakly coupled (perturbative) quantum field theories —

has been supplemented with a derivation [11–17] from the non-perturbative setup of the

AdS/CFT correspondence [10]. Further works have addressed the convergence proper-

ties of the Chapman-Enskog gradient expansion around local equilibrium (formulated in

terms of equilibrium fields such as temperature and fluid velocity) and argued that rel-

ativistic fluid dynamics could be understood as a resummation of this Chapman-Enskog

expansion [18–22].

One of the most puzzling properties of relativistic fluid dynamics is that it is not always

causal. More specifically, it has been known for a long time that relativistic versions

of the Navier-Stokes equation, formulated either in the Landau frame or in the Eckart

frame, allow for signal propagation with arbitrarily large velocities. This can be traced

back to the fact that the non-relativistic Navier-Stokes equation is a parabolic equation

and not hyperbolic as for example the Klein-Gordon equation. Hyperbolic extensions

of this setup have been proposed, most prominently by Israel and Stewart [7] (see also

refs. [8, 23–25] for related discussions). The setup of Israel and Stewart goes beyond

the Chapman-Enskog expansion and employs the shear stress, bulk viscous pressure and

diffusion current as dynamic fields with their own evolution equations. It was subsequently

shown by Hiscock and Lindblom [26] that for appropriate values of the velocity of sound and

transport properties, the theory of Israel and Stewart has equilibrium states around which

small perturbations indeed evolve in a relativistically causal way. They also investigated

the stability of these linear perturbations and found that the conditions for causality also

lead to linear stability of the homogeneous equilibrium states.

A generalization of Isreal-Stewart theory that is more complete in the sense that it

takes all possible terms at second order in derivatives into account, has been put forward by

Denicol, Niemi, Molnar and Rischke [9]; we will review their results in section 3. The rela-

tion between causality and linear stability for perturbations around equilibrium states was

investigated in more detail in refs. [27, 28]. It was confirmed that causality, in the sense of

an asymptotic group velocity that is smaller than the speed of light, implies linear stability.

So far, investigations of causality were restricted to small perturbations around thermal

equilibrium states. It is certainly necessary that such perturbations behave in a causal way,

however, it is not sufficient to guarantee causality in more general situations. In fact, in

the absence of a more general theoretical argument, causality needs to be established for

every solution of the non-linear relativistic fluid equations of motion, case by case. This

may be avoided only if the theory is organized in a scheme different from the conventional

derivative expansion, for example as in ref. [29].

In the present work, we will consider a class of such solutions of relativistic fluid

dynamics describing a fireball produced by high-energy nuclear collisions with longitudinal

and transverse expansion. We discuss the corresponding solution of the equations proposed

in ref. [9] and we discuss the issue of causality. Our main result will be concrete relations in

the form of inequalities that tell whether perturbations propagating in the radial direction

around the full, non-linear solutions of the fluid dynamic equations, behave in a causal way.

This provides a non-linear form of the causality constraint and goes beyond the causality
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constraint for perturbations around equilibrium states. In particular, it turns out that the

causality bounds are not satisfied for arbitrary initial conditions. We discuss what kind of

initial conditions are safe in this respect.

An interesting consequence of our analysis is also that terms of second order in the

Knudsen number, that arise in the formal derivative expansion scheme of ref. [9], are

problematic from the point of view of causality and the well-posedness of the initial value

problem (this was observed in ref. [9] already). We mention this issue in section 3.1 and

discuss it further in appendix D where we also describe how this problem can be remedied

by adding further relaxation time terms of higher order in a formal derivative expansion.

Throughout the manuscript we will work with natural units where c = ~ = kB = 1

and we will take the signature of the Minkowski metric to be (−,+,+,+).

2 Hyperbolic partial differential equations and causality

2.1 Sets of hyperbolic partial differential equations

In the present section we recall some mathematical details about the partial differential

equations of particular relevance to dissipative relativistic fluid dynamics. This will lay the

groundwork for a proper discussion of causality. We follow here mainly ref. [33].

Let us consider a set of first order partial differential equations of the type

Aij(Φ)
∂

∂x0
Φj +Bij(Φ)

∂

∂x1
Φj + Ci(Φ) = 0. (2.1)

We will see that the fluid equations of motion for a longitudinally and radially expanding

fluid can be expressed in this form under rather general conditions. The independent

variables or coordinates are a time variable x0 and a spatial (radial) variable x1. The

dependent variables or fields are collected into the vector structure Φj with index j =

1, . . . , n. The coefficient matrices Aij , Bij as well as the “source terms” Ci are functions

of the fields Φ and of the coordinates (x0, x1) but do not depend on derivatives of Φ.

Let us recall that the system of partial differential equations (2.1) would be called

linear if Aij and Bij were independent of Φ and Ci would depend at most linearly on Φ. If

Aij and Bij were independent of Φ and the source terms Ci some (non-linear) function of Φ,

the system would be called semi-linear. In the more general case (relevant to us) where Aij
and Bij are non-linear functions of Φ one calls (2.1) a quasi-linear set of partial differential

equations of first order. The equations (2.1) would be called homogeneous for Ci(Φ) = 0.

We also assume that the matrix Aij in front of the time derivative is non-singular,

det(A) 6= 0, and can be inverted. In the following we consider Cauchy’s initial value

problem, formulated as follows. We start with some initial configuration on some curve C.
This curve represents a Cauchy surface in the case of 1+1 dimensions and will in practice be

for example a line of constant time, x0 = const. More generally, we assume that the curve

C is specified by an equation ϕ(x0, x1) = 0 with ∂0ϕ(x0, x1) 6= 0. We now ask whether the

information given in terms of the field values Φj(x) on the curve C is sufficient to determine

the first derivatives of Φj via the system of equations (2.1).

– 3 –



J
H
E
P
0
8
(
2
0
1
8
)
1
8
6

We first note that with Φj(x) on C, we have also all the information to determine the

internal derivatives1 or derivatives along C

− (∂1ϕ)∂0Φj + (∂0ϕ)∂1Φj = (∂0ϕ)Dj , (2.2)

i. e. we can take Dj to be also known along C. We can solve this equation for ∂1Φj and,

using λ = −∂0ϕ/∂1ϕ, write (2.1) as

[λAij(Φ)−Bij(Φ)] ∂0Φj + λCi(Φ) + λBij(Φ)Dj = 0. (2.3)

This is now a linear set of equations for the time derivatives ∂0Φj . Accordingly, a necessary

and sufficient condition for the first derivatives to be uniquely determined by (2.1) along

the curve C is given by

Q(λ) = det [λAij(Φ)−Bij(Φ)] 6= 0. (2.4)

Here, Q is known as the characteristic determinant. If Q 6= 0 along the curve C, the latter

is called free. The fields Φj along such curves can be continued into a “strip” where they

solve (2.1). By going in this way from one Cauchy surface to the next, one can construct

solutions of (2.1).

If λ(m) is a real solution of the algebraic equation Q = 0, the solution of the differential

equation
dx1

dx0
= λ(m), (2.5)

is called a characteristic curve. The real eigenvalue λ(m) is known as a characteristic

velocity. Note that characteristic curves are not free in the sense defined above. For a given

real solution λ(m) of Q = 0 one can find a corresponding (left) eigenvector w
(m)
i such that

w
(m)
i

[
λ(m)δij −A−1

ik (Φ)Bkj(Φ)
]

= 0. (2.6)

The system of n equations (2.1) is called hyperbolic if n linearly independent eigenvectors

w
(m)
i with corresponding real eigenvalues λ(m) can be found. Note that the characteristic

velocities λ(m) might be degenerate. If they were all different from each other, the system

would be called totally hyperbolic.

It is instructive to use the left eigenvectors for an alternative formulation of the set of

equations (2.1). In fact, they can be used to find so-called Riemann invariant or charac-

teristic variables [34]. To this end we start from (2.1) in the form

∂0Φj +
(
A−1B

)
jk
∂1Φk + (A−1C)j = 0. (2.7)

Contracting with the left eigenvectors leads to

w
(m)
j ∂0Φj + λ(m)w

(m)
j ∂1Φj + w

(m)
j (A−1C)j = 0. (2.8)

1A derivative operator α0∂0 + α1∂1 is called internal with respect to the curve specified by ϕ(x) = 0 if

[α0∂0 + α1∂1]ϕ = 0. This is obviously the case for α0 = −∂1ϕ and α1 = ∂0ϕ.

– 4 –



J
H
E
P
0
8
(
2
0
1
8
)
1
8
6

If one now introduces new variables J (m) such that

dJ (m) = w
(m)
j dΦj , (2.9)

the differential equation (2.8) becomes

∂0J
(m) + λ(m) ∂1J

(m) + w
(m)
j (A−1C)j = 0. (2.10)

Interestingly, we have now obtained a set of equations which is formulated in terms of

derivatives along the characteristic curves labeled by the index m with corresponding ve-

locities λ(m). Without the inhomogeneous term ∼ C, the variables J (m) would actually

be conserved along the characteristic curves dx1/dx0 = λ(m). This explains the name Rie-

mann invariants or characteristic variables. The inhomogeneous terms lead to a modified

behavior which typically results in an additional damping.

Note that the causality structure of the system of partial differential equations is

particularly transparent in the characteristic form (2.10). In each infinitesimal time step,

information encoded in the spatial dependence of the variables J (m) is transported with

the characteristic velocity λ(m).

The initial conditions must be given on a Cauchy curve (or a Cauchy surface for

more than one space dimension) which is free and therefore non-parallel to any of the

characteristic curves. The Cauchy problem is then well posed and has (locally) a unique

solution. Colloquially speaking, the initial conditions are specified on a Cauchy curve,

while they are propagated along the characteristic curves.

2.2 Causality

The notion of causality can be made more precise for small (linear) perturbations around a

given solution of the set of equations (2.1). For a given space-time point P = (x0, x1) one

can show that small changes in the initial conditions outside of a certain region in the past

of P cannot change the solution at the point P . The region in the past of P where small

changes in the initial conditions can influence the solution at P is called the domain of

dependence Γd. In a similar way, small changes at P can only affect a certain region in the

future of P which is called domain of influence Γi. The domain of dependence and domain

of influence generalize the concepts of a past and future light cone familiar from electromag-

netism to the present situation of non-linear (but quasi-linear) partial differential equations.

The domain of dependence Γd and domain of influence Γi are bounded by the charac-

teristic curves with minimal and maximal characteristic velocity. This illustrates again the

important role of the characteristic curves for the causal structure. We discuss this further

in section 4.3 and in figure 4 we illustrate the regions Γd and Γi for a given point in the space-

time history of a heavy ion collision. In appendix C we recall briefly the derivation of certain

inequalities (so-called energy inequalities) which allow a rigorous proof of the above state-

ments about the domain of dependence and domain of influence for linear perturbations.

If the characteristic velocities are bounded in magnitude |λ(m)| ≤ vmax, the domain of

dependence and domain of influence of a certain point P are bound to lie in the interior

of cones with velocity vmax, similar to light cones. As long as there is some finite maximal
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velocity vmax, one can in principle see this as a causal structure, similar to the causal

structure of special (and general) relativity with vmax replacing the velocity of light c.

In principle, if one would study a relativistic fluid in the absence of any other physical

phenomena such as electromagnetism or gravity, it might be acceptable to have a causal

structure with a maximal characteristic velocity vmax larger than the speed of light. Note,

however, that also the fluid velocity could become as large as vmax. In practice we are

not interested in such an isolated situation but want to study a QCD fluid that interacts

both with electromagnetic fields and (at least in principle) gravitational fields. Moreover,

on a more microscopic level this fluid is governed by the laws of QCD as a quantum field

theory, and the latter certainly imply an upper bound on the maximal velocity of signal

propagation being given by the velocity of light, in agreement with the theory of relativity.

It is for these physics reasons, that we demand for an effective (macroscopic) theory of a

relativistic QCD fluid to follow the causality principle of special (and general) relativity

according to which the maximal velocity of signal propagation, and therefore the maximal

characteristic velocity, must be bounded from above by the velocity of light,

|λ(m)| ≤ c = 1. (2.11)

The last equality holds in our system of natural units.

3 Fluid dynamic equations of motion

3.1 Hyperbolic relativistic fluid equations to second order

The equations of motion for a relativistic fluid are those of energy-momentum conservation

plus possibly additional conservation laws (such as for baryon number) and constitutive

relations. We consider here a fluid where baryon number and other conserved quantities

can be dropped and the only relevant conservation law is for energy and momentum,

∇µTµν = 0. (3.1)

The energy-momentum tensor can be decomposed as

Tµν = εuµuν + (p+ πbulk)∆µ
ν + πµν , (3.2)

where the fluid velocity uµ is defined in the Landau frame as the (unique) time-like eigen-

vector of Tµν and the energy density ε is the corresponding eigenvalue.

The pressure p is related to ε by the same relation as in thermal equilibrium, the

thermodynamic equation of state p = p(ε) while πbulk is the bulk viscous pressure. The

projector orthogonal to the fluid velocity is given by ∆µ
ν = uµuν + δµν . Finally, the shear

stress is symmetric πµν = πνµ, traceless πµµ = 0, and transverse to the fluid velocity,

uµπ
µ
ν = 0. The fluid velocity itself is normalized to uµuµ = −1.

The conservation law leads to the following evolution equations for the energy density

and fluid velocity respectively,

uµ∂µε+ (ε+ p+ πbulk)∇µuµ + πµν∇µuν = 0,

(ε+ p+ πbulk)uν∇νuµ + ∆µν∂ν(p+ πbulk) + ∆µν∇ρπρν = 0.
(3.3)
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These equations must be supplemented by constitutive relations for the shear stress πµν and

bulk viscous pressure πbulk, either in the form of constraint equations or as dynamical laws.

In what follows we shall work in the framework of a gradient expansion and include

terms that are formally up to second order in gradients of temperature and fluid velocity.

This setup corresponds to an expansion around local equilibrium configurations where the

zeroth order corresponds to a locally equilibrated state characterized by temperature T (x)

and fluid velocity uµ(x). One can also do the organization in terms of appropriately defined

Knudsen and Reynolds numbers. The Knudsen number Kn is generically defined as a ratio

between a microscopic scale, such as the mean free path, and a macroscopic scale of the

fluid, such as the length over which the fluid velocity changes. The Reynolds number

corresponds typically to the ratio of this macroscopic length scale to the dissipation scale,

i. e. the length scale of perturbations that are efficiently damped by viscosity effects. In

the present situation, it is convenient to define the inverse Reynolds number Re−1 as the

ratio of dissipative fields such as πµν and corresponding equilibrium fields such as pressure

or enthalpy density.

The most general equation for the shear stress πµν and bulk viscous pressure πbulk

at second order in Knudsen number Kn and in inverse Reynolds number Re−1 have been

obtained in ref. [9]. We are here interested in situations without a conserved particle

number current. In this case, the evolution equation for the shear stress becomes

Pµ ρν σ

[
τshear

(
uλ∇λπσρ−2πσλωρλ

)
+2η∇ρuσ−ϕ7π

λ
ρπ

σ
λ+τππ π

σ
λσ

λ
ρ−λπΠπbulk∇ρuσ

]
+πµν [1+δππ∇ρuρ−ϕ6πbulk] = 0. (3.4)

We have used here the projector to the symmetric, transverse and trace-less part of a

tensor,

Pµνρσ =
1

2
∆µ

ρ∆
ν
σ +

1

2
∆µ

σ∆ν
ρ −

1

3
∆µν∆ρσ. (3.5)

We also use the abbreviations

σµν = P ρσ
µν ∇ρuσ, ωµν =

1

2
(∇µuν −∇νuµ) =

1

2
(∂µuν − ∂νuµ) . (3.6)

Similarly for πbulk one finds the evolution equation

τbulk u
µ∂µ πbulk +πbulk + ζ∇µuµ + δΠΠπbulk∇µuµ−ϕ1π

2
bulk−λΠππ

µν∇µuν −ϕ3π
µ
νπ

ν
µ = 0.

(3.7)

The most important term in (3.4) is the one proportional to shear viscosity η and to first

order in gradients one would obtain the Navier-Stokes result πµν = −2ησµν . Similarly, (3.7)

would give to first order in gradients, the bulk viscous pressure πbulk = −ζ∇ρuρ. At second

order in gradients, the relaxation times τshear and τbulk come in and eqs. (3.4) and (3.7)

mainly describe the dynamical relaxation of πµν and πbulk towards their Navier-Stokes

values.

There are also additional, non-linear terms of second order with additional transport

coefficients. More specifically, the coefficients τππ, δππ, λπΠ, δΠΠ and λΠπ are formally of

order O(Kn Re−1); while ϕ7, ϕ6, ϕ1 and ϕ3 are formally of order O(Re−2). All of these
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terms can be understood as non-linear modifications of how πµν and πbulk relax to their

asymptotic Navier-Stokes or equilibrium values. The terms of order O(Kn Re−1) contain

one space- or time derivative acting on the dynamical fields, which may be taken to be

energy density ε or temperature T , three independent components of fluid velocity uµ, five

independent components of the shear stress πµν and the bulk viscous pressure πbulk. The

terms of order O(Re−2) actually contain no derivatives.

Note that in (3.4) we have dropped contributions of order O(Kn2), that correspond

to non-linear terms in the transverse gradients, like for example (∇ρuρ)2 or ωµλω
λν . Such

terms are non-linear in derivatives of the fluid velocity and temperature and in principle

appear naturally in a gradient expansion scheme. Corresponding transport coefficients

have been computed in refs. [30, 31]. However the problem with these terms is that they

would transform the set of hyperbolic equations into a parabolic or mixed set of partial

differential equations which would in general be neither causal (in the relativistic sense)

nor stable with respect to small perturbations. We analyze this problem in more detail in

appendix D and describe there also how the problem could be remedied by adding further

relaxation time terms of higher order in a formal derivative expansion.

As they stand, eqs. (3.4) and (3.7) constitute the most general set of equations for the

evolution of shear stress and bulk viscous pressure at second order in the formal gradient

expansion around local equilibrium but with only first order derivatives acting on the

extended fluid fields ε, uµ, πµν and πbulk. These equations are hyperbolic and have therefore

a chance to be causal and stable with respect to linear perturbations.

3.2 Coordinate system

We will now consider a more concrete situation of a relativistic nuclear collision at high

energies with a particular set of symmetries. We firstly discuss here coordinate systems

that are particularly useful for our purpose.

Cartesian coordinates may be chosen such that the z-axis agrees with the beam axis,

that the collision of the strongly Lorentz contracted nuclei takes place at t = z = 0, and that

the center of the overlap region is at the origin of the transverse plane x = y = 0. We follow

Bjorken in assuming that the dynamics are invariant under longitudinal boosts. This should

be a good approximation at large collision energy and in the central longitudinal region.

It is therefore convenient to introduce the proper time τ =
√
t2 − z2 and longitudinal

rapidity η such that t = τ cosh(η) and z = τ sinh(η). Moreover, we introduce polar

coordinates in the transverse plane such that x = r cos(φ) and y = r sin(φ). In these

coordinates, the Minkowski space metric becomes

ds2 = −dτ2 + dr2 + r2dφ2 + τ2dη2. (3.8)

Below we will mainly concentrate on central collisions where the initial conditions are

invariant under translations in rapidity, η → η + ∆η, and the azimuthal angle, φ → φ +

∆φ, corresponding to Bjorken boosts and azimuthal rotations, respectively. By symmetry

reasons, this will then also be the case at later times. The dynamics is therefore effectively

reduced from 3+1 space and time dimensions to the 1+1 dimensional subspace of proper

time τ and transverse radius r.

– 8 –



J
H
E
P
0
8
(
2
0
1
8
)
1
8
6

To discuss the causal structure of the transverse expansion dynamics it will be con-

venient to introduce another parametrization that is related to τ and r by a conformal

mapping similar to a Penrose diagram [32]. We write

r − τ = h(ρ− σ), r + τ = h(ρ+ σ), (3.9)

where the new coordinates σ and ρ replace τ and r. The monotonic function h(x) may be

chosen to be a map from the interval (−1, 1) to (−∞,∞) with the following properties

h′(x) > 0, h(0) = 0, lim
x→1

h(x) = +∞, h(x) = −h(−x). (3.10)

As an example take

h(x) = sign(x)R [arctanh(|x|α)]1/α , (3.11)

with some length R > 0 and exponent α > 0. In this case, the infinite sector 0 ≤ τ, r <∞
is parametrized by a finite region in terms of σ and ρ, namely 0 ≤ σ < 1 and 0 ≤ ρ < 1−σ.

This coordinate system may also be useful for a numerical treatment because only a finite

coordinate region must be considered.

In figure 1a we display the function h(x) in eq. (3.11) and in figure 1b we show the

coordinate lines of constant r and τ as a function of ρ and σ. Note that the point ρ = 1,

σ = 0 corresponds to spatial infinity r → ∞ with fixed time τ and is labeled by i0 in

figure 1b. Similarly, the point σ = 1, ρ = 0 corresponds to τ → ∞ with fixed r, i.e.

timelike infinity and is labeled by i+ in figure 1b. Finally, the line σ = 1−ρ corresponds to

τ → ∞, r → ∞ with fixed ratio τ/r. This corresponds to lightlike infinity and is labeled

by J + in figure 1b. The Minkowski space metric becomes

ds2 = h′(ρ−σ)h′(ρ+σ)[−dσ2+dρ2]+
1

4
[h(ρ−σ)+h(ρ+σ)]2dφ2+

1

4
[−h(ρ−σ)+h(ρ+σ)]2dη2.

(3.12)

Note that for dφ = dη = 0 the metric (3.12) is indeed related to the metric (3.8) by

a conformal transformation, in particular light rays dτ = ±dr preserve their form and

become dσ = ±dρ. This feature is particularly useful to investigate the issue of causality.

We note as a side remark that (3.9) is not a conformal transformation in the full four-

dimensional sense.

Note also that the metrics (3.8) and (3.12) are special cases of the ansatz

gµν = diag(−g11, g11, g22, g33), (3.13)

with g11, g22 and g33 being functions of the time coordinate x0 and radial coordinate x1. In

the following it will often be convenient to work with this general case and restrict to the

special cases of Bjorken coordinates τ , r, φ and η or the conformally related coordinates

σ, ρ, φ and η at other places. We collect useful formulas for these coordinate choices, such

as Christoffel symbols, projection operators etc. in appendix A.

3.3 Evolution equations for radial expansion

Assuming longitudinal boost invariance as well as azimuthal rotation symmetry, the fluid

dynamic equations of motion become partial differential equations with one time coordinate
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Figure 1. (a) Function h(x) used to define the coordinates σ and ρ in eq. (3.9). We use the

form (3.11) with R = 15 fm and α = 3. (b) Coordinate mesh of constant Bjorken time τ and

transverse radius r as a function of the coordinates 0 ≤ σ, ρ ≤ 1. The connection between τ, r and

σ, ρ is a conformal map in the two-dimensional space, similar to a Penrose diagram. The infinite

half-plane 0 ≤ τ, r ≤ ∞ is covered by a finite region in terms of σ and ρ. The point i0 at σ = 0

and ρ = 1 corresponds to spatial infinity r → ∞ at fixed τ . Similarly i+ at σ = 1 and ρ = 0

corresponds to timelike infinity τ →∞ with fixed finite r. The connecting line J + corresponds to

lightlike infinity τ →∞ and r →∞ at fixed ratio τ/r.

x0 and one radial coordinate x1. For the set of equations (3.3), (3.4) and (3.7), the equations

are generically of hyperbolic type, and can be formulated as a first order system of equations

for conveniently chosen independent fields. For our numerical treatment we will take as

independent fields

• the radial fluid rapidity χ in terms of which the properly normalized fluid velocity is

given by

uµ =

(
cosh(χ)
√
g11

,
sinh(χ)
√
g11

, 0, 0

)
,

• the temperature T or actually its logarithm ln(T ),

• two independent components of shear stress normalized by the enthalpy density π̃φφ =

π3
3/(ε + p) and π̃ηη = π4

4/(ε + p) to which the other components are related by

eq. (A.9),

• the bulk viscous pressure normalized by enthalpy density π̃bulk = πbulk/(ε+ p).

All of these fluid variables are dimensionless and unconstrained fields, for which evolution

equations follow from the set of equations (3.3), (3.4) and (3.7).

These equations can be formulated as a quasi-linear differential equation

Aij∂0Φj +Bij∂1Φj + Ci = 0, (3.14)
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with the combined field Φ = (χ, lnT, π̃φφ, π̃
η
η , π̃bulk) and coefficients Aij , Bij and Ci that

are functions of Φ but not of its derivatives. More concretely, we present the full set of

equations of motion in appendix B and we obtain in particular the matrix associated to

the time derivative

A =


d1 cosh(χ) d2 sinh(χ) − sinh(χ) − sinh(χ) sinh(χ)

d1 sinh(χ) 1
c2s

cosh(χ) 0 0 0

d3 sinh(χ) τshearπ̃
φ
φ(1 + 1

c2s
) cosh(χ) τshear cosh(χ) 0 0

d4 sinh(χ) τshearπ̃
η
η(1 + 1

c2s
) cosh(χ) 0 τshear cosh(χ) 0

d5 sinh(χ) τbulkπ̃bulk(1 + 1
c2s

) cosh(χ) 0 0 τbulk cosh(χ)

 ,

(3.15)

and that associated to the radial derivative

B =


d1 sinh(χ) d2 cosh(χ) − cosh(χ) − cosh(χ) cosh(χ)

d1 cosh(χ) 1
c2s

sinh(χ) 0 0 0

d3 cosh(χ) τshearπ̃
φ
φ(1 + 1

c2s
) sinh(χ) τshear sinh(χ) 0 0

d4 cosh(χ) τshearπ̃
η
η(1 + 1

c2s
) sinh(χ) 0 τshear sinh(χ) 0

d5 cosh(χ) τbulkπ̃bulk(1 + 1
c2s

) sinh(χ) 0 0 τbulk sinh(χ)

 .

(3.16)

We have used here the abbreviations

d1 = 1 + π̃bulk − π̃φφ − π̃
η
η ,

d2 = 1 +

(
1 +

1

c2
s

)(
π̃bulk − π̃φφ − π̃

η
η

)
,

d3 = −1

3

(
2η

ε+ p
+ τπππ̃

φ
φ − λπΠπ̃bulk

)
+ δπππ̃

φ
φ,

d4 = −1

3

(
2η

ε+ p
+ τπππ̃

η
η − λπΠπ̃bulk

)
+ δπππ̃

η
η ,

d5 =
ζ

ε+ p
+ δΠΠπ̃bulk + λΠπ

(
π̃ηη + π̃φφ

)
.

(3.17)

The “source terms” Ci are somewhat lengthy and we do not display them explicitly.

However, they can easily be read off from the equations in appendix B. Together with initial

values provided on an appropriate Cauchy surface (for example τ = τ0), the differential

equation (3.14) specifies the solution of the fluid equations completely.

3.4 Characteristics of the differential equations

As we have reviewed in section 2, the properties of quasi-linear systems of differential equa-

tions such as (3.14) are determined by their characteristics. The characteristic curves can be

seen as the lines along which information is transported, for example small perturbations,

discontinuities, defects or shocks. The system is causal in the relativistic sense precisely if

the characteristic velocities are smaller than (or, as a limit, equal to) the velocity of light.

More specifically, the solution of the differential equation (3.14) at a particular space-

time point x has a domain of dependence in the past of that point bounded by the charac-

– 11 –



J
H
E
P
0
8
(
2
0
1
8
)
1
8
6

teristics with largest and smallest characteristic velocities [33]. This will be illustrated in

more detail below.

In order to find the characteristics of eq. (3.14) we need to solve the eigenvalue problem

w
(n)
i A−1

ij Bjk = w
(n)
k λ(n), (3.18)

where the eigenvalues λ(n) correspond to the characteristic velocities and w
(n)
i are the

corresponding left eigenvectors. The eigenvalues λ(n) corresponding to the characteristic

velocities follow from the condition

det
(
B − λ(n)A

)
= 0. (3.19)

A direct calculation shows that they are given by

λ(1) =
v + c̃

1 + c̃v
, λ(2) =

v − c̃
1− c̃v

, λ(3) = λ(4) = λ(5) = v, (3.20)

where v = tanh(χ) is the fluid velocity and c̃ is a modified sound velocity which we discuss

below. Note that the characteristic velocities λ(1) and λ(2) correspond to “relativistic sums”

of the fluid velocity v and the modified speed of sound c̃. Causality |λ(n)| ≤ 1 is guaranteed

when |v| ≤ 1 and |c̃| ≤ 1.

Physically, we expect that the two characteristics with velocities λ(1) and λ(2) describe

generalized sound propagation including viscous as well as non-linear effects. In contrast,

the characteristics with velocities λ(3), λ(4) and λ(5) should be understood as non-linear gen-

eralizations of diffusive modes for which information is propagated along the fluid flow lines.

Let us now discuss the modified sound velocity c̃. It can be written as

c̃ =
√
c2
s + d, (3.21)

where the ideal fluid velocity of sound is determined by the thermodynamic relation

c2
s =

∂p

∂ε
=

∂p
∂T
∂ε
∂T

, (3.22)

and the viscous and non-linear modification is parametrized by the combination

d =

4η
3τshear

+ ζ
τbulk

−
(

τππ
3τshear

− δππ
τshear

+ λΠπ
τbulk

)(
πφφ + πηη

)
+
(
δΠΠ
τbulk

+ λπΠ
3τshear

)
πbulk

ε+ p+ πbulk − πφφ − π
η
η

=

4η
3τshear(ε+p)

+ ζ
τbulk(ε+p) −

(
τππ

3τshear
− δππ

τshear
+ λΠπ

τbulk

)(
π̃φφ + π̃ηη

)
+
(
δΠΠ
τbulk

+ λπΠ
3τshear

)
π̃bulk

1 + π̃bulk − π̃φφ − π̃
η
η

= −d3 + d4

d1τshear
+

d5

d1τbulk
. (3.23)

The second equation uses the dimensionless variables introduced in appendix A and the

third equation uses the abbreviations (3.17). We note that causality requires large enough

relaxation times τshear and τbulk for given shear viscosity η and bulk viscosity ζ. In fact, this
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was already known from the analysis of small perturbations around thermal equilibrium

states by Hiscock and Lindblom [26]. In contrast to ref. [26], our analysis applies for the

general, non-linear evolution in the specific situation of azimuthally symmetric and Bjorken

boost invariant heavy ion collisions.

Note that the causality constraint formulated here is not only a constraint on thermo-

dynamic and transport properties. At the non-linear level (in deviations from equilibrium)

it involves the shear stress as parametrized in terms of πφφ and πηη as well as the bulk viscous

pressure πbulk. One needs to check for a specific solution of the fluid equations whether the

causality constraint |c̃| ≤ 1 is satisfied, and we will do so for a typical heavy ion collision

below.

A set of left eigenvectors corresponding to (3.18) and the eigenvalues (3.20) is given by

w(1) =
(

1, c
2
sd1+d1−1
c2s c̃ d1

, − 1
c̃ d1

, − 1
c̃ d1

, 1
c̃ d1

)
,

w(2) =
(

1, − c2sd1+d1−1
c2s c̃ d1

, 1
c̃ d1

, 1
c̃ d1

, − 1
c̃ d1

)
,

w(3) =
(

0,
(1+c2s)π

φ
φ

c2s
− d3

τsheard1c2s
, 1, 0, 0

)
,

w(4) =
(

0,
(1+c2s)π

η
η

c2s
− d4

τsheard1c2s
, 0, 1, 0

)
,

w(5) =
(

0, (1+c2s)πbulk

c2s
− d5

τbulkd1c2s
, 0, 0, 1

)
.

(3.24)

4 Causality of the radial expansion

4.1 Causal initial condition and evolution

Let us now investigate the condition for a causal evolution in more detail. The characteristic

velocities in (3.20) are below the speed of light and the system of first order hyperbolic

equations (3.14) is accordingly causal, precisely if the modified sound velocity c̃ in (3.21)

is bounded by |c̃| ≤ 1. This in turn is a condition that involves thermodynamic quantities

such as the ideal fluid velocity of sound (3.22), (ratios of) transport coefficients such as

η/τshear, but also the components of shear stress πηη and πφφ as well as the viscous pressure

πbulk. The initialization of the fluid evolution includes also the specification of initial values

for the shear stress and bulk viscous pressure. This means that the causality bound |c̃| ≤ 1

is also a condition for a viable set of initial conditions.

To investigate how important this causality bound is in practice, we will now determine

the modified sound velocity c̃ for typical initial conditions relevant to high energy nuclear

collisions.

For the numerical investigation we use the QCD equation of state provided by [35] and

we adopt a temperature dependent shear-viscosity [36] calculated for Yang-Mills theory.

We neglect the bulk viscous pressure. Among the second order transport coefficient we

keep only τshear and δππ, while other second order coefficients do not enter or are neglected.

We have chosen the value of this transport coefficient such that

τshear = η
2(2− ln (2))

ε+ p
, δππ =

4

3
τshear, (4.1)
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Figure 2. Modified speed of sound c̃ according to (3.21) including viscous and non-linear effects,

as a function of radius r for different Bjorken times τ . We compare different initializations of the

shear stress components. In (a) we have set π̃φφ = π̃ηη = 0 at the initialization time τ0 = 0.6 fm/c.

The causality constraints |c̃| ≤ 1 is satisfied there as well as at subsequent times. In (b) and (c) we

have chosen Navier-Stokes initial conditions according to equation (4.2) at the initialization time

τ0 = 0.6 fm/c and τ0 = 0.1 fm/c, respectively. One observes that in the former case causality is

violated at early times and for large radii and in the latter case for early times at all radii. For later

times one finds decreasing c̃ such that |c̃| ≤ 1 becomes valid. In (d) we have used a modification

of Navier-Stokes initial condition according to equation (4.3). The causality constraint is satisfied

then at all times τ and radii r.

as obtained from AdS/CFT calcualtions [11]. We initialize fluid dynamics on the hyper-

surface τ = τ0 with vanishing radial fluid velocity χ(τ0) = 0 and we choose the initial

temperature profile according to the model discussed in ref [37], with a maximal tempera-

ture in the center of the fireball of Tmax = 0.4 GeV.

For the initial condition of the shear stress we compare four possibilities:

(a) Vanishing azimutal and rapidity component

π̃φφ = π̃ηη = 0,

with initialization time τ0 = 0.6 fm/c.
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(b) Navier-Stokes initial condition πµν = −2ησµν initialized at τ0 = 0.6 fm/c, which leads to

√
g11π̃

φ
φ −

2η

3(ε+ p)
∂0ln(

√
g11
√
g33/g22) = 0,

√
g11π̃

η
η −

2η

3(ε+ p)
∂0ln(

√
g11
√
g22/g33) = 0.

(4.2)

(c) Navier-Stokes initial condition as in (4.2) but now initialized as τ0 = 0.1 fm/c.

(d) A variant of the Navier-Stokes initial condition specified by

√
g11π̃

η
η −

2η

3(ε+ p)
∂0ln(

√
g11
√
g22/g33) + δπππ̃

η
η∂0ln(

√
g11
√
g22
√
g33) = 0, (4.3)

and similarly for π̃φφ.

For the four choices of initial conditions above we show the velocity parameter c̃ as a

function of the radius r in figure 2. We also plot c̃ at later times τ as obtained from solving

equations (3.14) numerically.

One observes that the initial condition (a) leads to |c̃| ≤ 1 for all times τ and radii r.

Relativistic causality is indeed satisfied here. In contrast, the Navier-Stokes initial condi-

tions (b) and (c) are not viable from a causality point of view. With the initialization time

τ0 = 0.6 fm/c corresponding to (b), the velocity c̃ exceeds the velocity of light for larger radii

r at early times. At later times the shear stress relaxes and c̃ decreases below the velocity of

light. If the initialization time is chosen as τ0 = 0.1 fm/c corresponding to (c), the causality

bound is actually violated at all radii r for early times τ . The Navier-Stokes initial condition

is therefore not viable at early times τ in the second order approximation for fluid dynam-

ics (3.4), althought the solution relaxes towards a smaller value of c̃ at later times. Finally,

case (d) corresponds to a generalization of the Navier-Stokes initial condition that also in-

volves the additional transport coefficient λ2. As one can read off from 2d, when used with

the initialization time τ0 = 0.6 fm/c, this leads to |c̃| ≤ 1 at all relevant times and radii r.

The violation of the causality bound for Navier-Stokes initial conditions at early times

can be also be highlighted directly from equation (3.23). The initial conditions can be

written in a simple form

π̃φφ + π̃ηη = − 2η

3(ε+ p)τ0
,

and the causality constraint on the modified sound velocity |c̃| < 1 leads to the condition

τ0

τshear
≥
c2
s + δππ

τshear
− 1

1− c2
s − 2Γ

Γ, (4.4)

where we have used the abbreviation

Γ =
2η

3(ε+ p)τshear
.

In general, the right-hand side is a function of the initial temperature, but in order to

have an estimation of magnitude of the bound, we can approximate the speed of sound
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by c2
s = 1/3, while (4.1) leads to Γ ≈ 2/9 and for δππwe can take the conformal value

δππ = 4/3τshear. Inserting these values into the inequality (4.4) we obtain

τ0

τshear
≥ 2

9
, (4.5)

and restoring the units we have

τ0 ≥ 0.3
fm

c
. (4.6)

This simple estimation explains the differences between the initial conditions (b) and (c)

in the center of the fireball. The first is initialized at τ0 = 0.6 fm/c and consequently the

causality condition is satisfied, while (c) is initialized at τ0 = 0.1 fm/c and the causality

bound is violated.

4.2 Characteristic curves

It is instructive to study in more detail the characteristic curves defined by the characteristic

velocities λ(m) in (3.20). More specifically, the characteristic curves are defined as the

solution of the differential equation

dx1

dx0
= λ(m). (4.7)

For our purpose, it is particularly convenient to explore these curves in the σ, ρ coordi-

nate system introduced in section (3.2). We show the result in figure 3. The diagram in

figure 3a shows the characteristic curves with velocity λ(1), while figure 3b shows those

with characteristic velocity λ(2). Causality demands that these velocities be smaller than

unity which is indeed the case. Figure 3c shows the characteristic curves corresponding to

λ(3) = v. These curves can therefore also be understood as the fluid flow lines. For better

orientation we also show curves of constant temperature as the dashed lines in figure 3.

4.3 Domain of dependence and domain of influence

The characteristic curves with the smallest and the largest velocity form a boundary of

the region of dependence in the past of a given space-time point x. We illustrate this in

figure 4 for a point on the line of constant temperature T = 0.145 GeV. The characteristic

curves with velocity λ(1) and λ(2) going through this point are the boundaries of the region

Γd, the region of dependence. This is the region inside which a (hypothetical) change of

the field Φ, in the sense of a change of initial conditions, can influence the value of Φ at

the point x. On the other side, changing the initial conditions outside of this region has

no influence on Φ(x), as a consequence of causality (see also appendix C). For clarity we

also show the past and future light cone of the point x and one can observe that indeed

the domain of dependence is a subregion of the past light cone.

In a similar way, one can define the domain of influence of the point x as the region in

its future, bounded by the characteristic curves with smallest and largest velocity, respec-

tively. As the name suggests, this is the region where field values can be influenced by a

small change in the value of Φ(x) at the point x. Again this region is a subregion of the

corresponding light cone as required by causality.
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Figure 3. Characteristic curves in the coordinates σ, ρ related to Bjorken time τ and radius r

by the conformal map (3.9) (see also figure 1). In (a) we plot characteristic curves with charac-

teristic velocity λ(1) in (3.20), in (b) with characteristic velocity λ(2) and in (c) with characteristic

velocity λ(3), which corresponds to the fluid velocity. For better orientation we also show curves

corresponding to constant temperature as dashed lines. For a discussion of the significance of i0, i+

and J + see figure 1. To calculate these curves we have used initial conditions for the shear stress

according to eq. (4.3).

4.4 Causality as a bound to applicability of fluids dynamics

As discussed in section 1 and 3, fluid dynamics is an effective theory for the dynamics of

a quantum field theory that becomes valid for slow enough dynamics and small enough

spatial gradients.

Although the framework of Israel-Stewart theory [7] or the more general DNMR [9]

setup are going beyond a strict (Chapman-Enskog) derivative expansion in the thermo-

dynamic fields and fluid velocity, it is clear that the expansion assumes small Knudsen

number and inverse Reynolds number according to the definition in section 3. In partic-

– 17 –



J
H
E
P
0
8
(
2
0
1
8
)
1
8
6

0 2 4 6 8 10 12 14

2

4

6

8

10

12

14

r [fm]

τ
[f
m
/c
]

λ(1) λ(3) λ(2)

T=0.145 GeV

Γd

Γi

x

Figure 4. Domain of dependence Γd and domain of influence Γi of a space-time point x. The do-

main of dependence Γd is the region in the past of x between the characteristic curves with velocities

λ(1) and λ(2), respectively. Hypothetical changes of field values in that region could modify the so-

lution at the point x. In turn, the domain of influence Γi is the region in the future of x bounded by

the characteristic curves with velocities λ(1) and λ(2) where field values could be influenced by small

changes at the point x. For better orientation we have also shown the curve of constant temperature

T = 0.145 GeV (dashed line) and the future and the past light cones of x (dotted lines).
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Figure 5. Ratio of different pressure Pη/Pr according to (4.8) in the central region of the fireball

r = 0 as a function of Bjorken time τ . We compare different initial conditions for π̃ηη and π̃φφ within

the range allowed by causality. For panel 5a we have set τshear = 3η/(ε + p), for the panel 5b

τshear = 30η/(ε+ p).

ular, this assumes that the components of the shear stress and bulk viscous pressure are

small compared to the thermodynamic enthalpy density.

It is often stated in literature that the application of the fluid approximation needs an

approximately isotropic energy-momentum tensor Tµν . Indeed, deviations from isotropy in

the decomposition (3.3) are parametrized by the shear stress. At least superficially, a small

inverse Reynolds number Re−1 implies also a close-to-isotropic energy-momentum tensor.

However, is not clear where the bound of applicability precisely lies. Oftentimes, this is

discussed in terms of ratios of different “pressure components”, for example (assuming
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πbulk = 0 for simplicity)

Pη
Pr

=
T ηη
T rr

=
p+ (ε+ p)π̃ηη

p+ (ε+ p)(π̃ηη + π̃φφ)
, (4.8)

and it is believed that such ratios should not deviate too much from unity in order to not

leave the range of applicability of fluid dynamics. However, it is not so clear where precisely

the boundary is situated. In particular for p� ε the above ratio (4.8) could actually deviate

from unity substantially while the ratios π̃ηη = πηη/(ε + p) and π̃φφ = πφφ/(ε + p) might be

below one. A more severe bound for π̃φφ and π̃ηη comes from the causality constraint |c̃| ≤ 1

in terms of the relations (3.21), (3.22) and (3.23). It is interesting to investigate the range

of ratios such as eq. (4.8) for solutions of fluids dynamics that satisfy the causality bound.

We have done this in figure 5a where we plot the ratio Pη/Pr in the center of the fireball

for different initial conditions of π̃φφ and π̃ηη within the causality bound.

One observes that a rather large range of values is allowed by causality and that after

a rather short time of order 1 fm/c they approach the same attractor solution which then

evolves towards late time. The speed of approach to this attractor is actually governed

by the shear stress relaxation time τshear. This can be seen e by comparison to figure 5b

where we have chosen τshear to be larger by a factor 10. The approach to the attractor is

accordingly slower. In figure 5 we have chosen the initialization time τ0 = 0.6 fm/c; for

earlier initialization times τ0 the range of Pη/Pr allowed by causality is even larger.

We note that the behavior seen in figure 5 is reminiscent of the so-called hydrody-

namic attractor discussed previously in the literature [18, 20–22, 38–47]. This attractor

solution was first found via a Borel summation of a Bjorken-type expanding solution ex-

panded in gradients of fluid velocity and temperature. In our case it arises simply as the

solution to causal evolution equations of Israel-Stewart type in the center of a fireball with

longitudinal and transverse expansion. We note in this context also that relativistic fluid

dynamics of Israel-Stewart type has so-called non-hydrodynamic modes corresponding to

the dynamically evolving shear stress and bulk viscous pressure. In this sense it implies

automatically a non-trivial resummation of the formal expansion in gradients of the fluid

velocity and temperature. This is in fact necessary to formulate causal evolution equations

of quasi-linear type.

5 Conclusions

We have discussed here the causality of relativistic fluid dynamics for high-energy nu-

clear collisions. The fluid equations we use contain all terms in a gradient expansion up

to second order compatible with symmetries [9] and the additional requirement that the

evolution equations are quasi-linear and hyperbolic. We concentrated on an expanding

fireball with longitudinal Bjorken boost and azimuthal rotation symmetry. The causality

of the dynamics in the reduced configuration space of Bjorken time τ and radius r can be

conveniently discussed in terms of characteristics. We found five characteristic velocities

for the five independent fluid fields. Three of them are degenerate and corresponds to the

fluid velocity. The remaining two differ by a modified sound velocity (see eq. (3.21), (3.22)
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and (3.23)) which contains the standard ideal fluid velocity of sound but also modifications

due to the dissipative terms. In particular, the modified sound velocity depends not only

on thermodynamic variables and transport properties, but also on the components of the

shear stress tensor and bulk viscous pressure. Causality is in this sense state-dependent.

In a subsequent step we investigated whether the modified sound velocity remains be-

low the speed of light for typical situations that occur in the context of high-energy nuclear

collisions. Depending on the initial conditions, we found that the causality constraint can

be violated at early times, which indicates a violation of the applicability conditions for the

fluid approximation. In particular, such violations occur for so-called Navier-Stokes initial

conditions that have often been used in phenomenological investigations. We also show

that modifications of these initial conditions lead to a dynamical evolution that does not

violate the causality constraint. Finally, we investigated the ratio of longitudinal and radial

pressure in the center of the fireball for a range of initial conditions that does not lead to

any violations of causality. We find that this ratio can vary substantially at early times

but approaches an attractor solution quickly at late times where the “speed of approach”

is determined by the shear stress relaxation time as expected.

The relativistic fluid equations at second order in derivatives are quasi-linear and

hyperbolic because we have dropped terms of second order in Knudsen number that would

render the equations non-linear. We describe in appendix D that such terms can lead to

pathologies and violations of causality similar to the first order relativistic Navier-Stokes

theory. We also describe there how the problem can be remedied by introducing relaxation

time terms of higher order in a formal derivative expansion.

The most important conclusion from our findings is that causality poses a bound on the

applicability of relativistic fluid dynamics. This is relevant for concrete phenomenological

applications of the formalism but also improves the more conceptual understanding of its

foundations.
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A Generalized Bjorken coordinates

We collect here some useful relations for the generalized Bjorken coordinates introduced in

section 3.2. Let us recall the Minkowski space metric

ds2 = h′(ρ+σ)h′(ρ−σ)
[
−dσ2 + dρ2

]
+

1

4
[h(ρ+σ)+h(ρ−σ)]2dφ2+

1

4
[h(ρ+σ)−h(ρ−σ)]2dη2.

(A.1)
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The coordinates σ and ρ are related to the more familiar longitudinal proper time τ =√
t2 − z2 and transverse radius r =

√
x2 + y2 by

r =
1

2
[h(ρ+ σ) + h(ρ− σ)] , τ =

1

2
[h(ρ+ σ)− h(ρ− σ)] ,

ρ =
1

2

[
h−1(r + τ) + h−1(r − τ)

]
, σ =

1

2

[
h−1(r + τ)− h−1(r − τ)

]
.

(A.2)

The non-vanishing Christoffel symbols are

Γ0
00 = Γ0

11 = Γ1
01 = Γ1

10 =
1

2

(
h′′(ρ+ σ)

h′(ρ+ σ)
− h′′(ρ− σ)

h′(ρ− σ)

)
= ∂0 ln (

√
g11) ,

Γ1
11 = Γ1

00 = Γ0
01 = Γ0

10 =
1

2

(
h′′(ρ+ σ)

h′(ρ+ σ)
+
h′′(ρ− σ)

h′(ρ− σ)

)
= ∂1 ln (

√
g11) ,

Γ0
22 =

(h(ρ+ σ) + h(ρ− σ)) (h′(ρ+ σ)− h′(ρ− σ))

4h′(ρ+ σ)h′(ρ− σ)
,

Γ0
33 =

(h(ρ+ σ)− h(ρ− σ)) (h′(ρ+ σ) + h′(ρ− σ))

4h′(ρ+ σ)h′(ρ− σ)
,

Γ1
22 = −(h(ρ+ σ) + h(ρ− σ)) (h′(ρ+ σ) + h′(ρ− σ))

4h′(ρ+ σ)h′(ρ− σ)
,

Γ1
33 = −(h(ρ+ σ)− h(ρ− σ)) (h′(ρ+ σ)− h′(ρ− σ))

4h′(ρ+ σ)h′(ρ− σ)
,

Γ2
02 = Γ2

20 =
h′(ρ+ σ)− h′(ρ− σ)

h(ρ+ σ) + h(ρ− σ)
= ∂0 ln (

√
g22) ,

Γ2
12 = Γ2

21 =
h′(ρ+ σ) + h′(ρ− σ)

h(ρ+ σ) + h(ρ− σ)
= ∂1 ln (

√
g22) ,

Γ3
03 = Γ3

30 =
h′(ρ+ σ) + h′(ρ− σ)

h(ρ+ σ)− h(ρ− σ)
= ∂0 ln (

√
g33) ,

Γ3
13 = Γ3

31 =
h′(ρ+ σ)− h′(ρ− σ)

h(ρ+ σ)− h(ρ− σ)
= ∂1 ln (

√
g33) ,

(A.3)

and the square root of the metric determinant is

√
g =

√
−det gµν =

1

4
h′(ρ+σ)h′(ρ−σ) [h(ρ+ σ) + h(ρ− σ)] [h(ρ+ σ)− h(ρ− σ)] . (A.4)

Note that in terms of σ and ρ, the half plane 0 ≤ τ, r < ∞ corresponds to 0 ≤ σ, ρ < 1

with ρ+σ < 1. However, it is sometimes useful to analytically continue to negative ρ with

|ρ| < 1 − σ. One can obviously recover the original Bjorken coordinate system with the

trivial choice h(x) = x such that σ = τ and ρ = r.

In a 1+1 dimensional situation it is convenient to parametrize the fluid velocity as

uµ =

(
cosh(χ)
√
g11

,
sinh(χ)
√
g11

, 0, 0

)
, (A.5)

with radial fluid rapidity field χ. The projector orthogonal to the fluid velocity is

∆µ
ν = δµν + uµuν =


−sinh2(χ) cosh(χ)sinh(χ) 0 0

−cosh(χ)sinh(χ) cosh2(χ) 0 0

0 0 1 0

0 0 0 1

 . (A.6)
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The divergence of the fluid velocity is

√
g11 ∇µuµ = ∂0 cosh(χ) + ∂1 sinh(χ) + cosh(χ) ∂0 ln (

√
g11
√
g22
√
g33)

+ sinh(χ) ∂1 ln (
√
g11
√
g22
√
g33) .

(A.7)

We also need the tensor ∇µuν . It has the following non-vanishing components

√
g11∇0u

0 = ∂0 cosh(χ) + sinh(χ) ∂1 ln (
√
g11) ,

√
g11∇0u

1 = ∂0 sinh(χ) + cosh(χ) ∂1 ln (
√
g11) ,

√
g11∇1u

0 = ∂1 cosh(χ) + sinh(χ) ∂0 ln (
√
g11) ,

√
g11∇1u

1 = ∂1 sinh(χ) + cosh(χ) ∂0 ln (
√
g11) ,

√
g11∇2u

2 = cosh(χ) ∂0 ln (
√
g22) + sinh(χ) ∂1 ln (

√
g22) ,

√
g11∇3u

3 = cosh(χ) ∂0 ln (
√
g33) + sinh(χ) ∂1 ln (

√
g33) .

(A.8)

The shear stress πµν has only two independent components and for convenience they can

be chosen as the dimensionless ratios π̃ηη = π3
3/(ε + p) and π̃φφ = π2

2/(ε + p). The other

non-vanishing components are related to these by

π0
0 = sinh2(χ)

(
π̃φφ + π̃ηη

)
(ε+ p), π1

1 = −cosh2(χ)
(
π̃φφ + π̃ηη

)
(ε+ p),

π1
0 = −π0

1 = cosh(χ) sinh(χ)
(
π̃φφ + π̃ηη

)
(ε+ p). (A.9)

We also parametrize the bulk viscous pressure by a dimensionless variable as πbulk =

π̃bulk(ε+ p).

B Equations of motion

In this appendix we compile the relativistic fluid dynamic equations of motion for a central

heavy ion collision with longitudinal and transverse expansion. The equations are partial

differential equations involving a time coordinate x0 and a radial coordinate x1. The evolu-

tion equations for energy density and fluid velocity follow directly from energy-momentum

conservation. The energy density, pressure and other thermodynamic and transport prop-

erties close to local equilibrium can be expressed in terms of a single independent thermo-

dynamic variable, which we take to be temperature.

Using standard thermodynamic relations such as ∂p/∂T = s, ∂ε/∂T = s/c2
s and divid-

ing by the enthalpy w = ε+ p, one finds from the energy equation in (3.3),

1

c2s
[cosh(χ)∂0lnT +sinh(χ)∂1lnT ]

+(1+ π̃bulk) [sinh(χ)∂0χ+cosh(χ)∂1χ+cosh(χ)∂0 ln(
√
g11
√
g22
√
g33)+sinh(χ)∂1 ln(

√
g11
√
g22
√
g33)]

− π̃φφ [sinh(χ)∂0χ+cosh(χ)∂1χ+cosh(χ)∂0 ln(
√
g11/
√
g22)+sinh(χ)∂1 ln(

√
g11/
√
g22)] (B.1)

− π̃ηη [sinh(χ)∂0χ+cosh(χ)∂1χ+cosh(χ)∂0 ln(
√
g11/
√
g33)+sinh(χ)∂1 ln(

√
g11/
√
g33)] = 0.
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The equation for the radial fluid velocity yields in terms of the parametrization (A.6),

(1+ π̃bulk) [cosh(χ)∂0χ+sinh(χ)∂1χ+sinh(χ)∂0 ln(
√
g11)+cosh(χ)∂1 ln(

√
g11)]

+

[
1+ π̃bulk− π̃φφ− π̃

η
η +

1

c2s
(π̃bulk− π̃φφ− π̃

η
η)

]
[sinh(χ)∂0lnT +cosh(χ)∂1lnT ]

+
[
sinh(χ)∂0 π̃bulk +cosh(χ)∂1 π̃bulk−sinh(χ)∂0 π̃

φ
φ−cosh(χ)∂1 π̃

φ
φ−sinh(χ)∂0 π̃

η
η−cosh(χ)∂1 π̃

η
η

]
− π̃φφ [cosh(χ)∂0χ+sinh(χ)∂1χ+sinh(χ)∂0 ln(

√
g11g22

√
g33)+cosh(χ)∂1 ln(

√
g11g22

√
g33)]

− π̃ηη [cosh(χ)∂0χ+sinh(χ)∂1χ+sinh(χ)∂0 ln(
√
g11
√
g22g33)+cosh(χ)∂1 ln(

√
g11
√
g22g33)] = 0.

(B.2)

These equations get supplemented by the evolution equations for the shear stress.

From (3.4) and the parametrization (A.9) one finds for π̃φφ the equation

τshear

[
cosh(χ)∂0 π̃

φ
φ+sinh(χ)∂1 π̃

φ
φ

]
+τshearπ̃

φ
φ

(
1+

1

c2s

)
[cosh(χ)∂0 lnT +sinh(χ)∂1 lnT ]

+
√
g11 π̃

φ
φ

(
1− ϕ6

w
π̃bulk−

ϕ7

w
π̃φφ

)
−
(

2η

w
+τπππ̃

φ
φ−λπΠπ̃bulk

)
× 1

3
[sinh(χ)∂0χ+cosh(χ)∂1χ+cosh(χ)∂0 ln(

√
g11
√
g33/g22)+sinh(χ)∂1 ln(

√
g11
√
g33/g22)] (B.3)

+ π̃φφδππ [sinh(χ)∂0χ+cosh(χ)∂1χ+cosh(χ)∂0 ln(
√
g11
√
g22
√
g33)+sinh(χ)∂1 ln(

√
g11
√
g22
√
g33)] = 0.

In a similar way, for π̃ηη one obtains,

τshear

[
cosh(χ)∂0 π̃

η
η +sinh(χ)∂1 π̃

η
η

]
+τshear

(
1+

1

c2s

)
π̃ηη [cosh(χ)∂0 lnT +sinh(χ)∂1 lnT ]

+
√
g11 π̃

η
η

(
1− ϕ6

w
π̃bulk−

ϕ7

w
π̃ηη

)
−
(

2η

w
+τπππ̃

η
η−λπΠπ̃bulk

)
× 1

3
[sinh(χ)∂0χ+cosh(χ)∂1χ+cosh(χ)∂0 ln(

√
g11
√
g22/g33)+sinh(χ)∂1 ln(

√
g11
√
g22/g33)] (B.4)

+ π̃ηηδππ [sinh(χ)∂0χ+cosh(χ)∂1χ+cosh(χ)∂0 ln(
√
g11
√
g22
√
g33)+sinh(χ)∂1 ln(

√
g11
√
g22
√
g33)] = 0.

Finally, the evolution equation for the bulk viscous pressure follows from (3.7) as

τbulk [cosh(χ)∂0 π̃bulk +sinh(χ)∂1 π̃bulk]+τbulk

(
1+

1

c2s

)
π̃bulk [cosh(χ)∂0 lnT +sinh(χ)∂1 lnT ]

+
√
g11

[
π̃bulk−

ϕ1

w
π̃2

bulk−
2ϕ3

w
((π̃φφ)2 +(π̃ηη)2 + π̃φφ π̃

η
η)

]
+

(
ζ

w
+δΠΠπ̃bulk

)
[sinh(χ)∂0χ+cosh(χ)∂1χ+cosh(χ)∂0 ln(

√
g11
√
g22
√
g33)+sinh(χ)∂1 ln(

√
g11
√
g22
√
g33)]

+λΠππ̃
φ
φ [sinh(χ)∂0χ+cosh(χ)∂1χ+cosh(χ)∂0 ln(

√
g11/
√
g22)+sinh(χ)∂1 ln(

√
g11/
√
g22)] (B.5)

+λΠππ̃
η
η [sinh(χ)∂0χ+cosh(χ)∂1χ+cosh(χ)∂0 ln(

√
g11/
√
g33)+sinh(χ)∂1 ln(

√
g11/
√
g33)] = 0.

C Energy inequalities and uniqueness of the solution

In this appendix we explain in more detail the notion of causality of hyperbolic equations

and its relation to characteristic curves. As we discuss in the main text, the evolution is

causal if the domain of dependence Γd of a given point P = (x0, x1) is contained in the past

light cone of that point. The domain of dependence Γd is defined as the region in the past of

the point P bounded by the two extreme characteristic curves, i.e. the two integral curves

with maximal and minimal velocities. Any perturbation of the initial data that vanishes

in this region does not change the value of the solution at the point P . This property

is due to the existence of a so-called “energy inequality” that bounds the spatial average
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of the solution to the spatial average of the initial data. To be more specific consider a

perturbation δΦ, solution of the linearized version of the partial differential equation (3.14)

around a generic background Φ0, and consider the domain of dependence of the point P

shown in figure 6: Cl is the characteristic curve with largest velocity and Cr with the

smallest velocity, the line x0 = 0 is the where the initial data are provided and x0 = t

is an intermediate fixed time line. With the perturbation δΦ it is possible to construct

the new variables δJ (m) = w
(m)
i δΦi where w

(m)
i are the left eigenvectors evaluated on the

background solution (3.24). With these variables it is possible to formulate the energy

inequality (see below for a proof)

0 ≤ 1

2

∫ Pr

Pl

dx1δJmδJm ≤ e2µt 1

2

∫ Ar

Al

dx1δJmδJm, (C.1)

where Al, Ar, Pl and Pr are the intersection points of the characteristic curves with constant

time lines shown in figure 6, and µ is some positive constant. The first consequence of this

inequality is that the solution of the linearized equation δΦ can grow at most exponential

with respect to the initial data. The second consequence, and most interesting for our

purpose, is that if the initial data vanish, i.e.

1

2

∫ Ar

Al

dx1δJmδJm = 0, (C.2)

then

0 ≤ 1

2

∫ Pr

Pl

dx1δJmδJm ≤ 0, (C.3)

for all times x0 = t, and in particular at the point P , therefore δΦ(P ) = 0. As a con-

sequence, any perturbation δΦ outside of the domain of dependence can not modify the

value of the solution at the point P , to linear order.

In the rest of this appendix we recall briefly the proof of the energy inequalities that

can be found in [33] applied to equation (3.14). Consider a small perturbation δΦ around

a generic solution Φ0(x) of (3.14),

∂0δΦj +Mjk∂1δΦk + SjkδΦk = 0. (C.4)

where

Mjk(x) = (A−1B)jk

∣∣∣
Φ=Φ0(x)

,

Sjk(x) =
∂(A−1B)ji

∂Φk
∂1δΦ

0
i +

∂(A−1C)j
∂Φk

∣∣∣
Φ=Φ0(x)

.

(C.5)

This set of equations is linear and hyperbolic and the matrix M has a set of left eigenvectors

given by (3.24). Eq. (C.4) is not symmetric-hyperbolic because M in general is not a

symmetric matrix. However, we can introduce the variables δJ (m), that diagonalize the

derivative part of the equations if we multiply (C.4) with w
(m)
j (x) from the left,

δJ (m) =w
(m)
j (x)δΦj ,

∂0δJ
(m) +λ(m)∂1δJ

(m) +w
(m)
j SjkδΦk+(∂0w

(m)
j +λ(m)∂1w

(m)
j )δΦj = 0.

(C.6)
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x1

x0

Cl Cr

P(x0,x1)

PrPl

ArAl

Γ

x0=t

x0=0

Figure 6. Domain of dependence of the point P . Here, Cl is the characteristic curve with largest

velocity and Cr with the smallest velocity meeting at P , the line x0 = 0 is the where the initial

data are provided and x0 = t is an intermediate fixed time line.

The source term can be expressed in terms of δJ (m) as well using the right eigenvectors

r
(m)
j of Mjk normalized such that ∑

j

w
(m)
j r

(n)
j = δmn.

This yields

∂0δJ
(m) + λ(m)∂1δJ

(m) + FmnδJ
(n) = 0, (C.7)

with Fmn defined by

Fmn(x) = w
(m)
j Sjkr

(n)
k + ∂0w

(m)
j r

(n)
j + λ(m)∂1w

(m)
j r

(n)
j .

The linearized equations are now written in a form where the matrix coupled to the

radial derivative is diagonal and it is possible to write

1

2
∂0(δJ, δJ) +

1

2
∂1(δJ,ΛδJ) + (δJ, [F − 1

2
∂1Λ]δJ) = 0, (C.8)

where Λ = diag(λ(1), λ(2), · · · , λ(n)) and the scalar product (·, ·) is the Euclidean one,

defined on the vector space of the perturbations. The unknown vector δJ can be rescaled,

δJ = eµx
0
δJ which leads to

1

2
∂0(δJ, δJ) +

1

2
∂1(δJ,ΛδJ) = (δJ, [−µI − F +

1

2
∂1Λ]δJ). (C.9)

The quadratic form on the right hand side can be taken as a negative definite, if we select

a sufficiently large value for the constant µ. Consequently we can write an inequality for

the left hand side,
1

2
∂0(δJ, δJ) +

1

2
∂1(δJ,ΛδJ) ≤ 0. (C.10)
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For a given point P = (x0, x1) it is possible to compute the characteristic curves x1
m(x0)

solving the differential equation dx1/dx0 = λ(m), this is possible because the eigenvalue

λ(m) depends only on the background solution. Consider now the trapezoidal domain Γ

bound by the lines x0 = 0, x0 = t and the two outer characteristic curves that arrive at

the point P (see figure 6). Integrating the inequality (C.10) over this domain, we obtain

the inequality ∫
Γ

d2x

{
1

2
∂0(δJ, δJ) +

1

2
∂1(δJ,ΛδJ)

}
≤ 0. (C.11)

Using Gauss’s theorem, one now rewrites this as a line integral over the boundary ∂Γ

(see figure 6), leading to

1

2

∫ Pr

Pl

dx1(δJ, δJ)− 1

2

∫ Ar

Al

dx1(δJ, δJ) ≤ −
∫
Cl+Cr

dx0 1

2
(δJ,

[
dx1

dx0
I − Λ

]
δJ). (C.12)

Parametrizing the curves Cl and Cr with x0 and considering the different orientations

of the two curves Cl and Cr with respect to this parameter the righthand side of the

inequality (C.12) can be written as∫ t

0
dx0 1

2
(δJ,

[
Λ− λ(l)I

]
δJ)−

∫ t

0
dx0 1

2
(δJ,

[
Λ− λ(r)I

]
δJ). (C.13)

The two characteristic curves were chosen such that Cl has the maximal velocity and Cr
the minimal velocity, which corresponds to the extreme eigenvalues of Λ,

λ(l) = max
(δJ,ΛδJ)

(δJ, δJ)
, λ(r) = min

(δJ,ΛδJ)

(δJ, δJ)
, (C.14)

therefore

(δJ,
[
Λ− λ(l)I

]
δJ) ≤ 0 and (δJ,

[
Λ− λ(r)I

]
δJ) ≥ 0. (C.15)

Using these inequalities, we obtain

1

2

∫ Pr

Pl

dx1(δJ, δJ) ≤ 1

2

∫ Ar

Al

dx1(δJ, δJ). (C.16)

Restoring the original variables δJ = eµx
0
δJ and defining E(t) as

E(t) =
1

2

∫ Ar

Al

dx1δJmδJm =
1

2

∫ Ar

Al

dx1w
(m)
i w

(m)
j δΦjδΦi,

E(0) =
1

2

∫ Pk

P1

dx1δJmδJm =
1

2

∫ Pk

P1

dx1w
(m)
i w

(m)
j δΦjδΦi,

(C.17)

the “energy inequality” for this system of linear hyperbolic equations reads

0 ≤ E(t) ≤ e2µtE(0). (C.18)
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D Analysis of non-linear terms in second order formulation

In this appendix we analyze in more detail terms of second order in the Knudsen number

O(Kn2) which are present in a formal derivative expansion scheme but which we have ne-

glected in the main text (see discussion below equation (3.7)). If terms of order O(Kn2) are

included, terms quadratic in first derivatives, as for example ζ̃3 (∇µuµ)2, or terms with sec-

ond derivatives, such as ζ̃8∇µ∂µp(T ), appear on the right hand side of the evolution equa-

tion for the bulk viscous pressure (3.7) and similar for the shear stress equation (3.4) [9]. In

the following we will discuss the modification of the evolution equations and complications

that arise from these two terms. Other terms at order O(Kn2) behave similarly.

The evolution equation for the bulk viscous pressure becomes (for simplicity we set

here δΠΠ = ϕ1 = λΠπ = ϕ3 = 0)

τbulk u
µ∂µ πbulk + πbulk + ζ∇µuµ = ζ̃3 Θ2 + ζ̃8∇µFµ,

Θ = ∇µuµ,
Fµ = ∂µp(T ).

(D.1)

Note that Θ and Fµ are related here to the other fluid fields by constraints. As it stands,

equation (D.1) together with the conservation laws (3.3) and the constitutive relation for

shear stress (3.4) forms a system of partial differential equations that is non-linear in first

derivatives and contains also second derivatives. In contrast to linear, semi-linear or quasi-

linear systems, non-linear systems as well as mixed first and second order systems are much

less understood from a mathematical point of view. It is therefore difficult to make firm

statements concerning causality and stability.

One may compare the system of equations (D.1) to the first-order Navier-Stokes for-

mulation of relativistic viscous fluid dynamics. Recall that the latter is given by the

conservation law in equation (3.3) together with the constraints

πµν = −2ησµν ,

πbulk = −ζ∇µuµ.
(D.2)

As was pointed out by Müller [6] and Israel and Stewart [7], this set of equations is in fact

unstable and acausal due to the fact that the equations for πµν and πbulk are constraint

equations. The problem reappears if terms of order O(Kn2) are allowed in (3.4) and (3.7),

as was pointed out already in ref. [9].

To overcome this problem one could apply the same recipe that Müller, Israel and Stew-

art used earlier: to promote the constraint equation to a dynamical equation by introducing

a term of formally higher order in the derivative expansion. Specifically, one could introduce

a relaxation time for the variable Θ and Fµ and replace the last two equations in (D.1) by

τΘu
µ∇µΘ + Θ−∇µuµ = 0,

τFu
ν∇νFµ + Fµ − ∂µp = 0.

(D.3)

The resulting set of equations for the combined variables Φ, Θ and Fµ is now again

first order and quasi-linear and has a well-defined characteristic structure. Hyperbolicity
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and well-posedness of the initial value problem can be investigated in terms of the

associated characteristic polynomial. One would expect causality in the relativistic sense

(characteristic velocities smaller than the velocity of light) for large enough τΘ and τF .

Conversely, relativistic causality can get lost again for too small relaxation times τΘ, τF .

We plan to discuss these issues in more detail in a future publication.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[35] S. Borsányi et al., Calculation of the axion mass based on high-temperature lattice quantum

chromodynamics, Nature 539 (2016) 69 [arXiv:1606.07494] [INSPIRE].

[36] N. Christiansen, M. Haas, J.M. Pawlowski and N. Strodthoff, Transport coefficients in

Yang-Mills theory and QCD, Phys. Rev. Lett. 115 (2015) 112002 [arXiv:1411.7986]

[INSPIRE].

[37] Z. Qiu, C. Shen and U. Heinz, Hydrodynamic elliptic and triangular flow in Pb-Pb collisions

at
√
s = 2.76ATeV, Phys. Lett. B 707 (2012) 151 [arXiv:1110.3033] [INSPIRE].
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