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Abstract. NLP technologies and components have an increasing dif-
fusion in mass analysis of text based dialogues, such as classifiers for
sentiment polarity, trends clustering of online messages and hate speech
detection. In this work we present the design and the implementation
an automatic classification tool for the evaluation of the complexity of
Italian texts as understood by a speaker of Italian as a second language.
The classification is done within the Common European Framework of
Reference for Languages (CEFR) which aims at classifying speakers lan-
guage proficiency. Results of preliminary experiments on a data set of
real texts, annotated by experts and used in actual CEFR exam sessions,
show a strong ability of the proposed system to label texts with the cor-
rect language proficiency class and a great potential for its integration
in learning tools, such systems supporting examiners in tests design and
automatic evaluation of writing abilities.

Keywords: learning systems · language proficiency classifier· text clas-
sifier · PoS.

1 Introduction

The recent increasing diffusion of NLP components for texts classification, such
as those applied for the detection of sentiment polarity [13][4], trends and hate
speech detection [25] in online communication, is due to the maturity of service
technologies, such as text parsing, filtering [20], PoS tagging and the availability
of powerful machine learning tools, efficiently integrated in programming envi-
ronment or libraries [22] [6]. Moreover, a vast amount of data is available on
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the web to be exploited by automated tools, either in structured [5] or semi-
unstructured [14] form for language-related purposes, e.g. determining objects’
similarity [12]. While most applications mentioned above work at a somewhat
”gross grain” level of linguistic analysis (e.g. polarity, hate speech etc.) not many
applications are available for more refined classification of text. Moreover, due
to the relevant populations movements in late year and the consequent educa-
tional actions for integration of newcomers, there is a great interest in Europe
for teaching second language and for all the related supporting learning tech-
nologies [11]. Languages teaching is an area in which being able to rank [8] a
text, with respect to the language skills and ability required for writing/reading
it, is a crucial task in order to meet the teaching goals. During teaching a too
easy or too difficult text can prove useless or impossible to understand for the
learners; on the other hand, the appropriate classification of a text is essential
in assessing or certifying language proficiency. The Common European Frame-
work of Reference for Languages (CEFR) [1] is a standard aiming at classifying
speakers language proficiency and it is typically used for assessing second lan-
guage learners (L2). The CEFR certification consists in six classes of increasing
difficult A1, A2, B1, B2, C1, C2, the same letter pairs corresponding to three
level of proficiency beginner, intermediate and advanced. The proficiency in a
language typically depends on elements such as the use of a basic or advanced
vocabulary of term, the complexity of the syntactic structure, the use of id-
iomatic phrases, the use of synonyms and conceptually close words [15] to avoid
repetitions, and so forth. While it is easy for an experienced examiner to assess
the level of proficiency necessary for understanding a given text, it is not easy
to provide a deterministic procedure for assessing a text, because the relative
weight of the linguistic elements is varying depending on the context [24] [3][16].
The general approach proposed in this paper is to extract from the text the
linguistic features upon which the proficiency class is believed to depend, and
instead of directly encoding a classification procedure, we are using the examin-
ers experience, embedded in the labeling of pre-classified exams texts, to train
different types of classifiers. In section 2 the general architecture of the system
is introduced while, in the next section, the process of extracting the linguistic
features relevant for proficiency classification is presented. The classifiers used
in the implementation are briefly recalled in section 4. The data set used in the
experiments and results obtained are then presented and discussed. Conclusions
are finally drawn in section 6.

2 A Text Proficiency Classification Architecture

The workflow of the classification process can be divided into four phases, namely
data set transformation and cleaning, extraction of basic linguistic structures,
extraction of more complex linguistic features and classifier training.
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2.1 Data set transformation and cleaning

In the first phase, the appropriate features for the experiments are extracted
from the corpus of annotated texts provided by the Centro Valutazione Certi-
ficazioni Linguistiche of University for Foreigners of Perugia used to test the
text comprehension skill of L2 Italian speakers. In the corpus, each text is an-
notated with its corresponding CEFR level i.e. A1, A2, B1, B2, C1, C2. For the
preliminary experiments, texts of levels B2 and C2 have been used. Some basic
pre-processing have been performed, in order to overcome some problems of the
TINT software [23], which was used in the subsequent phases.

2.2 Extraction of basic linguistic structures

In this phase, the previously mentioned software Tint is used to elaborate the
records. Tint is a natural language processing (NLP) pipeline, developed on the
basis of Stanford CoreNLP [21] and specifically adapted to Italian language.
Tint offers basic NLP features [23], such as tokenization, sentence splitting and
lemmatization, as well as advanced ones with, among others, PoS tagging and
dependency parsing. The outputs of this phase are single tokens, sentences and
dependency trees information; all of these structure are used for the extraction
and computation of appropriate linguistic features [17] [19] [29].

Table 1. Sample PoS Tagging Output

Word PoS TAG description

John SP Proper Noun
is VA Auxiliary Verb
preparing V Verb
the RB Determinative Article
exam S Common Noun
of E Preposition
Computational SP Proper Noun
Linguistics SP Proper Noun
. FS Sentence Boundary Punctuation

2.3 Classifier training

The architecture is parametric with respect to three different types of classi-
fiers, namely Decision Trees, Random Forests and Support Vector Machines
(SVM). Their performance have experimentally analyzed and compared. In the
implementation we have used the classifiers’ versions available in the Python
scikit-learn open-source package, which offers a variety of tools for classification,
regression and clustering tasks.
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3 Linguistic Features Extraction

In order to perform the classification task, it is necessary to build a training set
containing the linguistic features of the original corpus which are relevant for
assessing language proficiency in the language. The choice has been inspired by
the work done for the READ-IT project [10], an SVM classifier aimed at assessing
the readability of text in Italian language for people with scarce ability in reading
and writing or mild intellectual disability. The features, we have focused on, can
be grouped in four main areas:

– Raw text features
– Lexical features
– Morpho-syntactic features
– Syntactic Features

Raw text features express simple quantitative characteristics, such as the mean
word length and sentence length of the text. Lexical features look at the relative
frequency of words, regardless of their syntactic role and dependencies. For this
purpose, three collections [9] are considered: fundamental (F), high usage (HU)
and high availability (HA) words. The internal distributions, i.e. the percentage
of lemmas belonging to each of the three corpora w.r.t. to the whole text, are
calculated, as well as the lemmas within the first 100 tokens in the text and the
percentage of basic lemmas in the text. Morphological and syntactic features
are also taken into account: lexical density, Part of Speech tags distribution,
distribution of verbal moods. Finally, other features which are clues of text
complexity are extracted from the dependency parse-tree, such as the maximum
depth among all the parse trees, and the number and the depth of subordinate
phrases.

4 Classifiers for text features

In this section, the classifiers used in the experiments are briefly recalled. Three
popular classifying algorithms were considered [26], i.e. Decision Trees, Random
Forests and Support Vector Machines. During the training phase, the Nested
Cross Validation procedure has been chosen [27] [28].

4.1 Nested Cross Validation

Nested Cross Validation is used to tune the hyper-parameters of the classifiers
and fit a model using different splits, to avoid information used for performance
tests leak into the hyper-parameters optimization process; such procedure re-
duces over-fitting problems, since different data is used for the two tasks. There-
fore, Nested Cross Validation takes into account Cross Validation technique and
the Hyper-parameters optimization. Cross Validation is one of the Resampling
Techniques that repeatedly trains a new model, each time with a different part
of the training set in order to encounter each record at least once in the training
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Fig. 1. The dependency parsing tree for a sample sentence.

set. Resampling is an expensive method but luckily, nowadays we are able to
perform it with little effort in resources and time. Stratified K-Fold Cross Vali-
dation in particular, splits initially the whole data set in two parts: training set
and test set. The training set has to be fitted; for k times, it is split into k equal
parts where k-1 pieces represent the training subset and only one subset is the
validation set. Because it is stratified, each set has almost an equal distribution
of records of each class as the entire data set. At each iteration the validation set
is different. The model is fitted in the training part and then, it is tested on the
validation set. The result obtained, i.e. a measure of accuracy, will be averaged
with the other results returned by the other cross validation rounds. At the end
of the process, the model is fitted on the training part and it is ready to make
the final evaluation: making predictions on the test set.
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Fig. 2. Phases of cross validation.

Hyper-parameters are that kind of parameters of a learning function that
need to be set before the learning process begins. On the contrary, parame-
ters are learnt during the learning process. Hyper-parameters optimization is a
problem concerned with finding the optimal sequence of hyper-parameters of a
learning algorithm in order to obtain the optimal classification model with the
best scoring function value: in this project, f1 macro has been chosen as scoring
function. There are various hyper-parameters optimization techniques; in this
work, Grid Search is employed. For each hyper-parameter, i.e. the number of es-
timators in a random forest, a vector containing the candidate values it can take
is created. Then, the Cartesian Product between the candidate values of all the
parameters to be optimized is computed and all the combination of parameters
in the product, i.e. in the grid, are tested [2]. For each parameter of the learning
function, only one of the values inside the corresponding vector will be chosen
and assigned to it.

In order to assess the quality of a certain sequence of hyper-parameters in
the whole data set, cross validation is executed for each sequence of hyper-
parameters. It is clear that setting many values for the hyper-parameters means
a critical increase in the complexity of the problem. Nested Cross Validation
is more advanced than the classical CV: in fact at each round of the outer
cross validation, a Grid Search CV is executed on the training subset. Grid
Search CV is essentially the research of the best configuration of the model’s
hyper parameters, through an internal Cross Validation. For each possible hyper
parameters configuration, an internal cross validation is executed on the training
subset. The configuration with the lowest test error will be chosen for that outer
Cross Validation round and it will make predictions on the test part of the
current outer cross validation round.
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Fig. 3. Combinations of parameters obtained by grid search.

4.2 Decision Trees

Decision Trees are data structures characterized by a single root node, internal
nodes and leaves nodes. For each node n, except the root, it is defined a unique
parent node p [7]. Leaves nodes have no descendants, while internal nodes have
both ancestors and descendants. The structure of a Decision Tree embeds a set
of rules. For each node, we evaluate a decision; basing on the outcome, one
of the edges that start from that node will be followed and a new decision
node evaluated. This procedure is iterated until is reached a leaf node. In other
words, a path, that begins from the root and ends in a leaf, represents a series
of evaluations and decisions where the leaf represents the final classification
decision, i.e. the label to assign to the data item under evaluation. There is a
unique path from any node to the root. In a leaf node, there is a class label
and the subset of instances that belongs to that class and that respect the rules
imposed in the path followed in order to reach the leaf. The label assigned to the
leaf is the one related to the maximum number of instances there. The best case
is when the leaves have only records of one class with Gini impurity almost equal
to 0. At the beginning, when the decision tree still needs to be built, we have a
set of data items, i.e. a set of vectors feature values, represented by X and the
corresponding class labels y, where each vector is assigned a class label. To build
the decision tree, there are many techniques. For instance, at each step we could
choose a rule of splitting. The vectors that follow it, will be grouped together
with their classes in a node. The others will be grouped in another node. This
procedure is called recursive binary splitting because it incrementally grows the
decision tree by making two child nodes for each parent node. It is furthermore,
a greedy procedure because at each time, for each possible splitting rule, the
best split with minimal Gini impurity is chosen. [18]
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Fig. 4. Nested cross validation.

4.3 Random Forests

As stated before, one of the disadvantages of decision trees is their inclination
to overfit the data, especially when a tree becomes very depth. Random Forests
avoid the problem following the Bagging Algorithm [4]. The idea of the algorithm
is to split the training set T of size n in m training sets Ti of the same dimension
n’ ; there could be some elements repeated in the various subsets, that’s why
it is called ”random sample with replacement” [7] [18]. Then, m Decision Tree
models are fitted with the m samples created before. In classification problems,
each model will predict a class and the final result will be the one which received
the greatest number of votes. The advantage of this method is:

– averaging the results of many trees instead of one, will make the results less
sensible to noises.

– training m models with different parts of the training set will make them
more independent from each other.

It is suggested to fit at least a few hundred of decision trees. In order to improve
the quality of predictions, it is applied not only Bagging Algorithm on the data
but also on the features. Feature Bagging at each split makes a ”bag” of m
features, where usually m =

√
p p, from a total of p predictors. In the current

split, only one of the m predictors contained in that bag will be chosen as node-
splitting rule.
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4.4 SVM

Support-Vector Machine is a classifier whose goal is to find the optimal hyper-
plane that maximizes the margin [18]; for instance, in a binary classification
problem, an hyper-plane is the boundary that divides the instances of a class
from the other. The optimal hyper-plane is the one that maximizes the separation
between the two classes. Hyper-planes are multi-dimensional objects.
The decision boundary could be written as −→w · −→x + b = 0, where −→w and b are
parameters of the model. Having the following constraints we could predict the
class label of a test record:

f(xi) =

{
1, if −→w · −→x + b ≥ 1
−1, if −→w · −→x + b ≤ 1

The goal is to maximize the margin:

Margin =
2

‖−→w ‖2

Sometimes it is not possible to divide into parts the data set through an hyper
plane as in the second graph below. However, there’s a solution or a ”trick” to
this problem. The ”kernel trick” consists in using a kernel function that allows
to map the data set into a higher dimensional space without computing all the
new coordinates, in order to have a separable training set. An example is given
in Figure 2.13. In the first example, there is a separable data set. In the second
example, it is not possible to divide the data set with an hyper-plane. Applying
the kernel trick to the second example we obtain the third example, that is a
separable problem. The kernel function in fact, calculating the inner product of
each pair of vectors, can bring all the data into a higher dimension, saving up
in terms of computational resources. RBF(Radial Basis Function) kernel is one
of the most popular.

5 Experiments design and results

For the experiments, a Nested Cross Validation procedure has been employed
[28]. Nested Cross Validation is used to tune the hyper-parameters of the clas-
sifiers and fit a model using different splits, to avoid information used for per-
formance tests leak into the hyper-parameters optimization process; such proce-
dure reduces over-fitting problems, since different data is used for the two tasks.
The number of inner and outer stratification was set to 5; in the inner loop, a
Grid Search was executed to tune the parameter, using f1 macro as the scoring
function. In addition, for the decision tree and random Forest classifiers, the
maximum depth was set to log2 |features| to avoid over-fitting. After tuning
the hyper-parameters and creating the model, tests were performed on the test
set. The chosen metrics were accuracy, macro-averaged f1 score, macro-averaged
precision and macro-averaged recall ; results are shown in table 2. Results are
very promising, as for each metric a score higher than 0.9 is achieved, In partic-
ular, the best overall classifier is SVM, with Decision Trees and Random Forest
delivering slightly lower and comparable performance.
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Table 2. Classification Results

Classifier accuracy f1-score macro precision macro recall macro

Decision Tree 2C 0,9292 0,9281 0,9265 0,9303
Random Forest 2C 0,9292 0,9278 0,9278 0,9278
SVM 2C 0,9336 0,9318 0,9355 0,9291

6 Conclusions

In this work we have introduced a model for classifying Italian texts according
to the CEFR classification system for second language learners used in language
teaching and certification. The proposed architecture relies on linguistics features
extractions, which make use of corpora of terms of increasing complexity level
and morpho-syntactic features measuring the complexity of dependency parse
tree. The tree types of experimented classifiers, decision tree, random forest and
SVM, all show outstanding precision performance greater than 90 percent on
Italian texts actually used in official CEFR certification exams. The proposed
methodology has a great potential of being extended to other languages, with
quite straightforward adaptations. The preliminary experiments have been held
on texts belonging to two well separated classes B2 and C2, therefore more
systematic further experiments, using texts ranging over all the six CEFR classes,
are planned as a future development. A great potential for massive language
education is also represented by the integration of the classification module in
exam design application supporting examiner or automatic language proficiency
examination systems.
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