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Abstract
In this papermachine learning and artificial neural networkmodels are proposed for the classification
of external noise sources affecting a given quantumdynamics. For this purpose, we train and then
validate support vectormachine,multi-layer perceptron and recurrent neural networkmodels with
different complexity and accuracy, to solve supervised binary classification problems. As a result, we
demonstrate the high efficacy of such tools in classifying noisy quantumdynamics using simulated
data sets fromdifferent realizations of the quantum systemdynamics. In addition, we show that for a
successful classification one just needs tomeasure, in a sequence of discrete time instants, the
probabilities that the analysed quantum system is in one of the allowed positions or energy
configurations. Albeit the training ofmachine learningmodels is here performed on synthetic data,
our approach is expected tofind application in experimental schemes, as e.g. for the noise
benchmarking of noisy intermediate-scale quantumdevices.

1. Introduction

Noise sensing aims at discriminating, and possibly reconstructing, noise profiles that affect static parameters and
dynamical variables governing the evolution of classical and quantum systems [1–4]. In the quantum regime,
which constitute themain object of our discussion, noise partially destroys the coherent evolution of the
investigated open quantum system, interacting with an external environment or simpler with other systems
[5, 6]. In such scenario, noise can be generallymodelled as a stochastic process, distributed according to an
unknownprobability distribution [7, 8]. As concrete examples, onemay consider the following cases that have
recently studied experimentally: (i)Resonantmicrowave fields with randomamplitude and phase for the driving
of atomic transitions [9]; (ii) solid-state spin qubits in negatively charged nitrogen-vacancy (NV) centers that are
naturally affected by a carbon nuclear spin environment [10]; (iii) single photons undergoing random
polarisation fluctuations [11, 12]. In all these experiments, noise stochastic fields sampled froman unknown
probability distribution have to be included in themicroscopic derivation of the systemdynamics under
investigation, in order to properly carry out noise sensing and discrimination.

Several techniques, at both the theoretical and experimental side, have been developed for the inference of
the unknownnoise distribution and to detect, if present, non-zero time-correlations among adjacent samples
(over time) of the noise process [9, 10, 13–22]. However,most of them suffer of the need to control the quantum
system, by generatingmultiple control sequences (e.g., dynamical decoupling ones [23–25]), each of thembeing
sensitive to a different component of the noise spectrum [26, 27]. In this regard, in Ref. [28] a diagnostic protocol
for the detection of correlations among arbitrary sets of qubits have been tested on a 14-qubit superconducting
quantumarchitecture, by discovering the persistent presence of long-range two-qubit correlations.Moreover,
Machine Learning (ML)-models have been also adopted to study non-Markovian open quantumdynamics
[29–31]. In particular, in [29] amethod is developed to learn the effectiveMarkovian embedding of a non-
Markovian process. The embedding is learned bymaximising the likelihood function built over successively
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observedmeasurements of the quantumdynamics. The assumption in [29] is that the underlying time-
evolution of the system is non-Markovian and the focus of thework is the training of theMarkovian embedding.
Thus, it is not directly addressed the issue of discriminating the presence of noise sources affecting the dynamics,
nor if the noise samples over time are time-correlated. Instead, in [30] a Support VectorMachine (SVM)model
is trained to predict the degree of non-Markovianity in open quantum systems. An open quantum system
approach is thus employed, but without providing emphasis on quantumdynamics perturbed by a stochastic
process of noise, nor on the use ofmore complexML-models as neural networks andRecurrentNeuralNetwork
(RNN). In Ref. [31] a deep neural network approach is adopted to perform (at the theoretical level)noise
regression of qubits immersed in their environment that entails different stationary, Gaussian noise spectra. In
[31], deep neural networks are trainedwith time-dependent coherence decay (echo) curves used as input data.

In this paper, differently to all the aforementioned references, we exploitML techniques [32, 33] to
efficiently carry out high accuracy classification of noise affecting quantumdynamics. The proposedmethods
are designed to distinguish between Independent and IdenticallyDistributed (i.i.d.)noise sequences and noise
samples originated by a non-trivialmemory kernel, thus characterised by specific time-correlation parameters.
It is worth reminding that, in the latter case, the dynamics of the stochastic quantum system (stochastic due to
the presence offluctuating parameters, e.g. in theHamiltonian of the analyzed system as in [9]) turns out of
being non-Markovian [34, 35], in the sense that samples of its state in different time instants are correlated [36].
This entails that the propagation of the system in subsequent time intervals is highly influenced by its previous
states, even occurring in the early stages of the dynamics [37–39]. This effect corresponds to a two-fold exchange
of information between the system and the external sources, which has thus applications for quantum
sensing [40, 41].

To present our novel approach and demonstrate its efficacy in discriminatingMarkovian and non-
Markovian noise sources, we focus on the dynamics of a quantumparticle randomlymoving on a graph �
[42–44], as generated by a stochastic Schrödinger equation. Depending on theway the particle is affected by the
external noise, the noise-dependent component of itsmovements within the graphmay be time-correlated. In
this general context, we are going to proposeML-based solutions for the classification of characteristic noise
features. Specifically, by training a properly-designedMachine Learningmodel via the probabilities that the
particle is in each node of the graph � at discrete time instants (thus, no coherence decay curves need to be
measured as in [31]), wewill show that it is possible to discriminate accurately between different noise sources
and identify the possible presence of time-correlations fromobservation of the quantum systemdynamics.

To performnoise classification, SVMs,Multi-Layer Perceptrons (MLPs) andRNNs [45–48] are successfully
trained on six data sets (each of them composed of 20 000 realisations) that have been properly generated to
carry out binary classification of noisy quantumdynamics. Once trained, the proposedML-models are able to
reach a classification accuracy (defined by the number of correctly classified realisations over their total number)
up to 97%.Apictorial representation of the proposedMLprocedure is depicted infigure 1.We share the source
codes used to generate the data and to train theML-models for our results [Q2].

As other existing sensing techniques, the training of ourML-models can be performed preliminary on
synthetic data. Specifically, synthetic data are generated by solving a stochastic Schrödinger equation—modeling
the noisy quantumdynamics we are analyzing—that exhibits at least one randomparameter to be randomly
sampled. As a result, we have observed that both i.i.d. and correlated noise sources can be accurately
discriminated bymeans of one singleML architecture.Moreover, ourML-based approach allows for non-
Markovian noise classification by processing onlymeasurements of the diagonal elements (even called
‘populations’) of the density operator ρt associatedwith the quantum systemunder investigation. Thus, no
measurements of the off-diagonal elements of ρt, stemming fromquantum coherence terms in a given basis of
interest,might be required. For example, for the quantumparticle case, thismeans thatwe just need to record, in
discrete time instants, the probabilities (denoted as ‘occupation probabilities’) that the particle is in the positions
(even part of them) identified by the nodes of the graph � . These advantages can find application in
experimental setups affected by stochastic noise sources as the ones in [9, 10, 12], and even in the available or
coming quantumdevices where a noise certification could be crucial before performing any task [14, 49] (see
also the subsection 4.3 below).

2. Stochastic quantumdynamics

Let us introduce the general physical framework towhich ourMLmethodswill be applied. For this purpose, we
consider a quantumparticle that randomlymoves on a complex graph � by following the quantummechanics
postulates. The complex graph is described by the pair ,( )& � , where & is the set of nodes or vertices while � is
the set of links, denoted as s↔ ℓ, coupling pairs of nodes, with s,ℓ= 1, K , d and d being the total number of
nodes. Each node is associatedwith a different particle position, while the links correspond to the possibility that
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the particles jumps fromanode to another. In particular, the links in � can be summarised in the adjacency
matrixAt (time-dependent operator in themore general case), whose elements are given by

A
g s

s

if

0 if .
1t

s t, ⎧⎨⎩ ℓ
ℓ

( )ℓ( ) º
« Î
« Î

�
�

In this way, we are implicitly assuming that all the links are equally coupledwith the sameweight equal to gt that
is taken as a time-dependent parameter.

Here, the coupling gt ismodelled as a stochastic process defined by the collection of random variables
g g g, ,t t

T
M0 1

( )º ¼
-

, with T(·) being the transposition operation, in correspondence of the discrete time instants
tk, k= 0, K ,M− 1. At each tk, gt is sampled from a specific probability distribution Prob(g) and is assumed to
remain constant at the extracted value for the entire time interval [tk, tk+1]. For simplicity, also the value
Δ≡ tk+1− tk is taken constant for any k= 0, K ,M− 1, and the stochastic process gt is considered to takeD
different values g(1),K , g(D)with probabilities p p, ,g g D1( ) ( )¼ . In this way,

g p g gProb 2
j

D

g
j

1

j( ) ( ) ( )( )( )å d= -
=

is provided by a discrete probability distributionwithD values, with δ( · ) denoting theKronecker delta.
If g is provided by a collection of i.i.d. randomvariables sampled from the probability distribution Prob(g),

then the noise sequence that affects the link strength g is uncorrelated over time, and it is denoted asMarkovian.
Conversely, in case the occurrence of the randomvalue g( j), j=1,K ,D, at the discrete time instants tk, k= 0,
K ,M− 1, depends on the sampling of g at previous time instants, the noise sequence is time-correlated and the
noise is denoted as non-Markovian or as a coloured noise process. In this regard, notice that the value of the
parameters, which define the correlation among different samples of noise in single time-sequences, uniquely
set the colour of the noise. Also observe that, known themulti-times distribution Prob(g) defined over the
discrete time instants tk, one can compute the noise auto-correlation function, whose Fourier transform is by
definition the power spectral density of the noise process. In other terms, there is a one-to-onemapping between
the representations of the noise in the time and frequency domains respectively. This entails that noise sensing
can be performed in one of the two domain at best convenience.Moreover, this alsomotivates the generality of
the stochastic quantummodel we are here introducing that, indeed, can be applied to all those problems
concerning the transport of single particles within a network [50–52], but also to quantum systemdynamics
influenced by the external environment as those in [2, 4, 18].

Figure 1.Pictorial representation of the proposedmachine learning procedure for noise classification. For afixed set of nodes &
(coloured circles)we take into account the stochastic evolution of a quantumparticle in a network affected by different types of noise
sources. Such noisy quantumdynamics are evaluated atM consecutive steps (small green plate). Tomake the synthetic generated data
closer to a possible real setting, the topology � (edges linking the coloured circles) of the network and the initial state distribution t0(
(black pawn on the green right circle) are chosen randomly for a predefined number of different configurations (yellow background).
After the dynamics, all the distributions tk( , in correspondence of theM + 1 time instants tkwith k=0, K ,M, are collected and
recorded alongwith the noise type label. Then, a data set ofN different realisations is used to train aML-model (a neural network in
the figure) for the classification of noise sources.
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In ourmodel we adopt as correlationmodel thewell-known formalismof time-homogeneous discrete
Markov chains [53]. The latter can be graphically interpreted as state-machines that assign the conditional
probability of ‘hopping’ from each possible value of g to an adjacent one at consecutive time instants. Each
conditional probability is defined, at any time t, by a transitionmatrix T that is a left or right stochastic operator.
Let us remind that discreteMarkov chains differ by a parameterm named the order of the chain. In aMarkov
chain of orderm, future realisations of the sampled randomvariable (e.g., our gt) depend on the pastm
realisations in previous time instants. Here, wewill consider (m= 1)-order discreteMarkov chains, namely
correlated noise sequence characterised by a single (1-step) transitionmatrixT that we aim to discriminate by
means of properly-developedML techniques. This choice is simply dictated by our desire to effectively illustrate
the obtained results, and not by intrinsic limitations of themethodswe are going to propose. As an example, let
us assumem= 1 andD= 2. In this specific case, by taking the conditional probabilities p g gt tk k 1

( ∣ )
-

with gtk
equal

to g(1) or g(2) for any k, it holds that p g gt tk k 1
( ∣ )

-
is equal to one of the elements within the following transition
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Thus, the stochastic realisations of g in different time instants are not correlated only if all the elements ofT
are equal to 1/2. In addition, we assume that all the nodes of the graph � have the same energy.Without loss of
generality, one is allowed to set such energy to zero, with the result that theHamiltonianHt of the quantum
particle is identically equal to the adjacencymatrixAt, i.e.,Ht=At for any time instant t.Moreover, we consider
that the state of the particle,moving on a graphwith dnodes, is provided by the density operator ρt that, by
definition, is anHermitian, positive semi-definite, idempotent operatormatrix with trace 1. By using the
vectorisation operation vec[ · ], we convert ρt into the column vector

vec

, , , , , , ,

t t

t t
d

t t
d

t
dd d11 1 12 2 2

[ ]
( )( ) ( ) ( ) ( ) ( ) �
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where t
s,ℓ( )r denotes the (s ℓ)-element of ρt. The stateλt is a vector of d

2 elements belonging to the space of
complex numbers. Since a quantumparticle can live in a superposition of positions, whereby also quantum
coherence plays an active role, d elements ofλt corresponds to the probabilities ofmeasuring the particle in each
of the allowed positions, while the other elements are quantum coherence terms that identify interference
patterns between the nodes of the graph. Thanks to the vectorisation of ρt, the ordinary differential equation,
governing the dynamics of the particle, is recast in a linear differential equation forλt, i.e.,

t
e

i
A A
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with⊗Kronecker product and ÿ reduced Planck constant. By construction, t$ is a skew-Hermitian operator for
any time instant t, i.e., t

†$ + 0t =$ ∀t.

3. Problem formulation

Our aim is to identify the presence of noise sources acting on the coupling gt of the adjacencymatrixAt, and then
discriminate among different noise probability distributions Prob(g) and correlation parameters in the samples
of the time-sequences g.Moreover, we also aim to evaluate if such tasks can be carried out by onlymeasuring the
population terms of the particle at the discrete time instants tk, even by taking into account few runs of the
quantum systemdynamics.

The population values are collected in the vectors t
d

k �Î( that have asmany elements as the nodes of the
graph. After each stochastic evolution of the quantumparticle, tk( takes different values depending on the
specific realisation of g.

At the experimental level, the population distributions tk( can be obtained inmultiple runs, by stopping the
stochastic evolution of the system at each time tk (with k=1,K ,M), then collecting themeasurement records
and restarting from the beginning the experimental routine. Thismeans that one does not need to
experimentally implement sequentialmeasurements routines, requiring to take into account also the quantum
measurement back-action on the state of the system. Themeasurement outcomes can be just recorded at the end
of the quantum system evolution; however, this can be realized at the price of performingmultiple runs of the
stochastic quantumdynamics under scrutiny.
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3.1.Data set generation
For the generation of the data used to train theML-models, we consider two variants of three different
classification problems. Each sample of the data sets is created by first generating a random set of links �
(random topology) for the graph � , and then initialising the particle in a randomly chosen node of the graph.We
setM= 15 as the number of evaluations (measurements) of the quantumparticle dynamics, and d= 40 as the
number of nodes of the graph � . Thismeans that t0( is a Kronecker delta centered in one of the 40 nodes, and the
stochastic quantumdynamics is evolved for 15 steps for each simulated noise source of the generated data set.
Here, it is worth noting that the choice ofM= 15 is dictated by the fact that in recent experiments as for instance
in [9, 54, 55], the number of intermediate quantummeasurements does not exceed 10, and thusM= 15 is
sufficiently large to represent actual physical setups. Instead, regarding taking d= 40, such a value is just able to
generate a complex landscape for the particle dynamics and small enough to be numericallymanageable. The
total considered dynamical time tM is taken equal to tM= 1 or tM= 0.1 in dimensionless units, each of them
corresponding to a specific variant. Notice, indeed, that the values of tM are expressed consistently with the
energy scale of the couplings gt, whose randomvalues g( j) belong to the set {1, 2, 3, 4, 5} in the data set
generation, such that ÿ can be reliably set to 1 as usual. All the probability distributions tk( for k= 0, K , 15 are
stored togetherwith the attached label that indicates the associated type of noise.

For each of the two variants of our classification problems, we generate three different balanced data sets of
20 000 samples. Thefirst data set, whichwe call IID, is suitable for a supervised binary classification task that
discriminates between two different i.i.d. noisy quantumdynamics, where the noise sources have the same
support but different probability distribution Prob(g).

The second data set, named asNM, concerns the classification of two different coloured noisy quantum
dynamics with the noise sources again having the same support but different Prob(g) (the same ones as in the
data set IID) and a transitionmatrixT.

Finally, the third data set, calledVS, is created for the classification between stochastic quantumdynamics
affected respectively by an i.i.d. and a coloured noise with same support and Prob(g).

Note that choosing graphswith random links allows to increase the statistical variability of the input data,
with the result that theML algorithms learn to classify noise sources independently of the graph topology. The
aim, indeed, is to prevent that theML-models rely only on features specific to a small class of topologies.
Moreover, taking random initial distributions t0( allows to increase the robustness of theMLmethods,making
them less likely to overfit on the synthetic data set.

As it will be explained in the following, someML-models that we are going to introducewill use as input only
the last distribution t15( , while otherML-models will take all the tk( for any tk.Moreover, each data set is
balanced split in a training set of 12 000 samples, a validation set of 4 000 samples, and a test set of 4 000 samples.

In tables 1 and 2we plot the occupation probabilities tk( (just for the IID case for the sake of an easier
presentation), being here interested in looking for the difference between choosing t15= 0.1 or 1, which identify
the two different variants of the generated data set. In this regard, it is worth noting that the duration t15= 0.1 (in
dimensionless units) of the quantum systemdynamics, as in the example in table 1, is theminimal one to observe
the diffusion of the system’s population outside the node onwhich has been initialised.However, as it will be
verified by our experiments and explained later, with this choice one has that, by taking t15= 0.1, the
classification problem results quite straightforward. Indeed, just basicML-models that are only trained on t15(
(thus, only on thefinal distribution () are able to correctly classify between two noisy quantumdynamics.
Therefore, it wasmore interesting to increase the value of t15 up to t15= 1 (in dimensionless units). As in the
example of table 2, it leads tomore complex data sets, and only deep learningmodels, designed to read all the tk( ,
can classify the generated noisy quantumdynamics.

Asfinal remark, note that the current synthetic data set is build assuming perfectmeasurement statistics, as it
was obtained from a large enough number of repetitions of the noisy quantumdynamics.Hence, to better adapt
the synthetic data set to real data, one should simulate experimental case inwhich themeasurement statistics are
estimated froma finite number of dynamics realizations (i.e., measurement shots).

3.2. Classification tasks
Wehere present the binary supervised classification tasks that we are going to address, by taking tk( as input:

Two different probability distributions Prob(g)—specifically, p p, , 0.0124, 0.04236, 0.0820 ,g g
1 5 (( ) ( )¼ =

0.2398, 0.6234) and=(0.1782, 0.1865, 0.2, 0.2107, 0.2245)—both associatedwith i.i.d. noise sources.

Two different Prob(g) (the same as (i)) and different values of the correlation parameters—identified by
transitionmatricesT as explained in section 2—for coloured (thus, non-Markovian)noise processes.
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An i.i.d. and a coloured noise process with the same support g and distribution
p p, , 0.0124 , 0.04236, 0.0820, 0.2398, 0.6234g g

1 5 ( )( ) ( )¼ = that thus differ for the presence of non-zero

correlation parameters.

The values of both Prob(g) and the transitionmatricesT, used in our numerical simulations, are chosen
randomly.

Table 1.Example of a part of tk( for all the discrete time instants tk for a noisy quantumdynamics affected by i.i.d. noise sources and t15 = 0.1
(in dimensionless units). In the table, t

s
k

( )( denotes the s-th element of the vector tk( for any tk, k = 0, K , 15.

Table 2.Example of a part of tk( for all the discrete time instants tk for a noisy quantumdynamics affected by i.i.d. noise sources and t15 = 1
(in dimensionless units). Again, t

s
k

( )( denotes the s-th element of the vector tk( for any tk, k = 0, K , 15. The topology and the initial state, for
this example, are the same of those in table 1.
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To solve the classification tasks above, we have employed in this paper both amore standardizedML-model
that is Support VectorMachine (SVM) [33] andmore recent Artificial NeuralNetworks (ANNs) [47, 56–58]
models in the formofMLPs andRNNs. For an exhaustive explanation of such aML-models refer to the
appendix.

4. Results

In ourwork, we consider two SVMmodels as baseline. Thefirst one is denotedm-SVM-single and uses as input
only thefinal probability distribution t15( (the prefixm- stands for ‘model’, to avoid confusionwith the
algorithmname; the suffix -singlemeans that it is based only on t15( ). Instead, the second one, whichwe call asm-
SVM, uses the set of all the tk( with k= 0, K , 15. For both of them,we try the following kernels to increase the
dimension of the feature-space thatmakes linearly separable the data-set: linear, polynomial with degree 2, 3 and
4, andRadial Basis Function (RBF).

Then, we denote withm-MLP-single aMLP (also refer to equation (7) in the appendix), with x t15º ( and
y≡ (0, 1) or (1, 0) to identify the two noisy quantumdynamics that we aim to classify. Differently,m-MLP takes
as input the set of all tk( .

Moreover,m-GRU andm-LSTM are unidirectional RNNs that employ the final hidden representation (see
equations (19) and (20) in appendix formore details). They are implemented by exploiting theGated Recurrent
Unit (GRU) and Long Short TermMemory (LSTM)methods, respectively. The input to themodels is
x i t1 iº+ ( , with i= 0, K , 15, while the output y≡ (0, 1) or (1, 0) as before. Besides,m-biGRU andm-biLSTM
are the bidirectional versions ofm-GRU andm-LSTM, whilem-biGRU-att andm-biGRU-max are asm-
biGRU but in addition, respectively, with an attentionmechanism and amax pooling (respectively,
equations (24) and (25) in appendix) as forms of aggregation of the RNNhidden representations . Similarly,m-
biLSTM-att andm-biLSTM-max are the attentive andmax pooling equivalents ofm-biLSTM, respectively.

In table 3, for eachmodel we report the best classification accuracy that is computed on the predictions
performed over the test set.More formally, we define the prediction set

y y y y, , , ,n n1 1{( ˆ ) ( ˆ )}G º ¼

where y1, K , yn, taken from the data set, denote the true noise sources affecting the quantum systemdynamics,
and y y, , n1̂ ˆ¼ the corresponding predictions of theML-model. Hence, the (percent) accuracy γ, function ofΓ, is
provided by

�
n

y y
100

arg max arg max , 4
i

n

j
i

j

j
i

j

1 1,2 1,2

⎧⎨⎩ ⎫⎬⎭( ) ˆ ( )( ) ( )åg G º =
= = =

Table 3.Percent accuracy γ (calculated on the test set) of theML-models trained in the tasks of binary classification of noisy quantum
dynamics with: (i)Twodifferent i.i.d. noise sources (IID); (ii) two different coloured noise processes (NM) leading to non-Markovian
dynamics; and (iii) one i.i.d. vs one coloured noise sources (VS). In this regard, let us recall that the coloured noise processes addressed in this
paper are such that the probability distributions tk( depend both on Prob(g) and 1-step transitionmatrixT. In thefirst three columns of the
table, the total duration of the dynamics is equal to t15 = 0.1, while in the last three is t15 = 1. Thefirst two rows of the table report the results
of theML-models that use as input only t15( , while themodels of the other rows take as input all the probability distributions tk( for k = 0,
K , 15. The highest values of the accuracy have been underlined, and a color gradient (fromblue to bright red) highlights the difference in
their values.
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where

� c
c1, if is true,

0, otherwise.
5⎧⎨⎩{ } ( )º

is the so-called indicator function. The accuracy γ defines the correctness of themodel and can be used as ametric
to identify which solution is better. In detail, for binary classification problems, as in our case, if γ; 50 the
classification is equivalent to perform a randomguess, thus themodel does notwork. Instead, when γ; 100 the
model perfectly classifies all the elements of the test set, thus it is a nearly ideal classifier.

From the table, one canfirst observe that, by dealingwith a total duration of the dynamics (in dimensionless
units, by rescaling as the inverse of the couplings gt) equal to t15= 0.1, we can reach the 97%and 96.6%of
accuracy for the classification tasks IID andVS via an SVMusing as input only the distribution t15( . Instead, the
taskNM ismore difficult: 82.3%of accuracy is achieved by SVMs applied just on t15( .MLP does not provide
better results. In this case (NM tasks), to obtain an accuracy over 90%, one can resort to RNNs taking as inputs all
the tk( for k= 0, K , 15.

Conversely, for a longer dynamics, i.e., with t15= 1, we notice that using only t15( all the three classification
tasks are not solved neither with SVMnorMLP. Indeed, the accuracy γ is always around 50%and themodels
basically perform randomguesses. The accuracy is increased bymeans of an SVMor anMLPbased on all tk( ,
with k= 0, K , 15 as input.However, to get over 90%of accuracy on the tasks IID andVS, we need to employ
RNNs. The taskNMwith t15= 1 is themost difficult among the analysed ones, and just 76.1%of accuracy is
obtained using RNNs. It is worth noticing that, for the tasks with t15= 1, we have empirically observed that the
models adoptingGRUperformbetter with respect to the ones that employ LSTM.Moreover, setting the
bidirectionality in theRNNs allows slight improved accuracy, as well as the use ofmax pooling in aggregation.
Instead, the attentionmechanismdoes not seem to be beneficial for those tasks.

Among the proposed solutions, themore-performing ism-biGRU-max that is realised by a bidirectional
RNNwithGRUandmax pooling aggregation.However, fromour numerical simulations, we have observed
that, independently on the employedML-model, the value of the total dynamical time aswell asM andΔ (see
also paragraph 4.1) emerge to be crucial for quantumnoise classification. Specifically, by taking a quantum
dynamics with a short enough duration, also SVMs are able to classify quantumnoise sources with very high
accuracy.With short enough dynamics wemean short with respect to the time needed to the particle in escaping
from the initial node of the graph, which in our case is around t15= 0.1. Instead, with t15 around 1 only RNNs
provide better results, and for t15? 1 none of the proposedML-techniques solves quantumnoise classification
problems (these results have not been reported in table 3 for the sake of better presentation). It is alsoworth
stressing that, if the duration of the quantumdynamics is t15= 0.1,ML-models efficiently classify quantum
noise sources by only processing the lastmeasured distribution t15( . Thesefindings can be relevant for effective
implementation (also at the experimental level), since the training and tuning of SVM is orders ofmagnitude
faster with respect to ANNs (e.g., aroundminutes vs hours or even days depending on themodel and provided
that a GPU is used). The reason to that has to be found in themore complex structure of the ANNs than SVMs.

4.1. Scaling of the classification accuracy.
Let us now investigate the scaling of the classification accuracy γ, as a function of both the intervalΔ between
two consecutive transitions for g and the numberM of discrete time instants. Notice thatΔ andM are related to
the total dynamical time tM, since tM≡MΔ.

A possible explanation of the differences observed between the three previously-analysed scenarios, i.e.,
t15= 0.1, t15= 1 and t15? 1 (in dimensionless units), could be that the information on both the noise source
and the initial quantum state is lost during the evolution of the system. For such aspect, not only the total
dynamical time t15 could play a role, but also the time intervalΔ≡ t1− t0≡L≡ tM− tM−1. In fact, it is
reasonable to conjecture that aML-model, able to correctly classify our noisy quantumdynamics with t15= 1
(thusM= 15), can alsoworkwith t 1M �¢ for M 15¢ > andD¢ = Dwhere t t t tM M1 0 1"D¢ º - º º -¢ ¢- .
In this way, the sequence , ,t t1 15¼( ( is contained in , ,t tM1 ¼ ¢( ( . In other terms, we conjecture that the
classification problem can be solved even for longer noisy quantumdynamics, but provided thatΔ remains
small.

To gain evidence on this conjecture, we have performed two additional experiments. Starting from the task
IIDwith t15= 1 andm-biGRU-max as baseline (accuracy 91.8%), the samemodel (optimised in the same
hyperparameters space) is trained on two newdata sets. In both data sets, tM= 2withM equal to 15 for thefirst
data set and 30 for the second one. Thus, in the formerD¢ > DwithΔ time interval of the original data set,
while in the latterD¢ = D. Thefirst experiment (D¢ > D)provides a classification accuracy of 81.1%,
contrarily to the results from the second experiment (D¢ = D), where a better accuracy of 96.3% is achieved.
We thus observe that, by takingD¢ = D and the sameML-model, the classification problem can be solvedwith
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an higher accuracy, but at the price of a longer training time. Indeed, in this case, the length of each sample of the
data set is twice the original one.

In another experiment, whose results are shown infigure 2, we varyM by keeping the total evolution time
equal to tM= 1. Such tests use as baseline themodelm-biGRU-max applied on themost difficult task of table 3,
i.e.,NMwith t15= 1. As a result, the achieved classification accuracy is directly proportional toM and, thus,
inversely proportional to the value of the time intervalΔ. Indeed, by taking tM fixed and reducingΔ, the
classification accuracy of the samemodel can be enhanced. Specifically, it is possible to obtainmore than 90%of
accuracy also for the taskNMwith a total dynamical time equal to 1, at the price of a longer training time as the
length of the sequences increases.

4.2.Quantumadvantages
Here, we address the following question: Could the proposedML techniques be applied for the inference of
noise sources affecting the dynamics of classical systems, e.g., Langevin equations [59]? Probably yes, but we
expect that their application to quantum systems,maybe surprisingly, can bemore effective than on classical
systems. Both classical (non-periodic) dissipative dynamics [59] and stochastic quantumdynamics (stochastic
due to the presence of an external environment, or noise sources as in our case) can asymptotically tend to a
fixed-point, whereby the information on the initial state is lost. Thismeans that the states of the systemused for
this noise classification tend to become indistinguishable as time increases. Classically, this can happen due to
energy dissipation introduced by damping terms Instead, quantum-mechanically, a dynamical fixed point can
be reached due to decoherence thatmakes vanishing, at least on average, all quantum coherence terms [5]. Thus,
once the transient of the evolution is elapsed, the evaluation of thefinal state of the systemdoes not bring
information neither on the initial state nor on the initial dynamics bringing the system to the asymptotic fixed-
point. In our case, we have observed that, by using only t15( with long total dynamical time, the accuracy of all the
classification tasks is always around 50%both for SVMandMLP.Consequently, if one aims to infer/reconstruct
the value of parameters, signals or operators that influence the systemdynamics bymeasuring its evolution, the
most appropriate timewindow is during the transient. In this regard, a quantumdynamic, until it is nearly close
of being unitary, is able to explore different configurations thanks to linearity and the quantum superposition
principle. Conversely, classical dynamics, not being able to propagate superpositions of their trajectories, cannot
provide per time unit the same amount of information on the quantity to be inferred.

In conclusion, the application of the proposedmethods should bemore accurate if applied to quantum
systems than classical ones, but during the transient of its dynamical evolutionwhen quantum effects are still
predominant and the distance among the state and thefixed point is not negligible.

4.3. Proposal for application to quantum computers
Our techniques are expected to be adopted towitness the (non-)Markovianity of the noise sources in
commercial quantumdevices, as for example theQ-IBM® [49] or Rigetti®. In fact, such quantumdevices, as

Figure 2.Percent classification accuracy γ versusM. It refers to the test set associatedwith themodelm-biGRU-max for the taskNM,
where the value of the total evolution time isfixed to tM = 1. It is worth noting that the first point of thefigure corresponds to the value
in table 3 obtained for t15 = 1.
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otherNoisy Intermediate-Scale Quantumprototypes [60], are unavoidably affected by the external environment
that entails random errors. Recently, in [61, 62], it has been shown that it is possible to discriminate different
quantum computers by looking at the (unknown)noise fingerprints that characterize each device. Thus, what
theML techniques—presented here—could provide as an added value is towitness whether such noise
fingerprints are time-correlated, and possibly howmuch the time-correlation is non-Markovian. For such
experimental noise benchmarking, as in [61], it could be convenient tofix the connections among quantum
gates (i.e., the underlying topology), and then considermore realizations of the implemented quantum
dynamics affected by noise, so as to avoid themonitoring of the dynamics (cf. section 3). Notice that tomake a
successful classification among i.i.d. and (non-)Markovian noise samples, one should be able to previously label
them asMarkovian or notMarkovian, andmore in general to understand themain features of the noise acting
on themachines.However, such task is usually very hard to be carried out. Thus, as amore plausible strategy, we
propose to compare the experimental data to the theoretical prediction at the level ofmulti-timemeasurement
statistics, according to the following two steps:

(1)Discriminate if and howmuch themeasurement statistics (provided by the distributions tk( with k=1,K ,M,
which have beenmeasured on the real quantumdevices onmultiple runs) differ from the corresponding
theoretical predictions. Such a difference, here on denoted asD, between theoretical and experimental data
returns an effective prediction of the presence of noise on themachines.

(2)Conditionally to step 1), evaluate withML-models the presence or the absence of functional relations � that
link the difference distributions tkD in correspondence of the time instants tk. If two consecutive instances of

Figure 3.Diagram of a bidirectionalmulti-layer RNNwhere the nonlinear function r is defined in equations (17) and (18), a can be
defined either with equations (24) or (25), f is provided by equation (20), and⊕denotes concatenation. The input sequence xt, with
t = 1, K , τ, is processed sequentially in both directions by the function r that is parametrised by the shared sets of weights θr[1] and

1r[ ]˜q for the forward and backward directions, respectively. The hidden representations ht[1] and h 1t[ ]i , in turn, are processed by the
subsequent layers, parametrised by a different sets of weights, so as to obtain thefinal hidden representationsht[L] and Lht[ ]i . Finally, a
performs the aggregation of the last hidden representations adopting the attentionmechanism (24) or themax pooling in
equation (25). The classification is performed by the function f that is parametrised by θf. The simpler form of aggregation in
equation (19) is not depicted in thefigure.
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Dat times tk−1 and tk are no functionally related, then the noise is originated froma i.i.d. stochastic process.
If, instead, there exist a functional f ,t t t t:k k k k1 1( )D D=- -� that links together tk 1D - and tkD in a non-trivial
way, then the noise would come from aMarkovian process. Finally, the noise process would be non-
Markovian for functional relations t t:k n k-� defined overmulti timeswith n> 1.

The empirical characterization of � , as well as thewitness of non-Markovianity in the noise samples, can
be obtained through the use of generativemodels.We can train three differentmodels: (i) onemodel that
generates tkD by processing , , ;t tk n k 1D D¼- - (ii) another generativemodel that returns tkD by taking tk 1D - as
input; (iii) amodel that directly generates tkD . If these threemodels have the same accuracy, then the noise
process is likely i.i.d..While, if the generativemodel (ii) has higher accuracy with respect to (iii) and the same
accuracy than (i), then the noise process would beMarkovian. Finally, if (i) has higher accuracywith respect
to themodels (ii) and (iii), then the noise process is non-Markovian.

To conclude, according to our proposal that will be tested in a forthcoming paper, time-correlations in the
noisy samples of the distributions tk( , with k=1,K ,M, can be determined by classifying functional relations �
linking the difference distributionsD, obtained by comparing the theoretical andmeasured values of ( for a set
of time instants. This is equivalent to discriminate coloured noise processes originated by different discrete
Markov chainwith non-zero transitionmatricesT. As a remark, it is still worth noting that also the experimental
realization of the proposed procedure can be performed onmultiple runswithout the need to implement
sequentialmeasurements routines. Hence, each time a projectivemeasurement is performed and the resulting
measurement outcome recorded, the implemented (noisy) quantum circuit shall be executed from the
beginning.

5. Conclusions

In this paper, we have addressed non-Markovian noise classification problems bymeans of deep learning
techniques. In particular, the use of RNN—developed for sequence processing—ismotivated by the fact that we
deal with time-ordered sequences of data. Evenwithout resorting to external driving thatmay hinder detection
tasks, wemanaged to classify with high accuracy stochastic quantumdynamics characterized by random
parameters sampled fromdifferent probability distributions, associatedwith i.i.d. (Markovian) and coloured
(non-Markovian)noise processes. For such a purpose, severalML-models have been tested; in this regard, refer
to table 3 for a summary of the results in term of the classification accuracy.

Among the proposed solutions, themore-performing ism-biGRU-max that is realised by a bidirectional
RNNwithGRUandmax pooling aggregation. In fact, recurrent neural networks are particularly suitable to
accomplish temporalmachine-learning tasks thanks to their capability to generate internal temporal dynamics
based on feedback connections. However, independently on the employedML-model, different accuracy values
are achieved depending on the values ofM,Δ and the total dynamical time. Theway ourML techniques rely on
the parameters of themodel has been addressed in the paragraph 4.1.

Overall, all our numerical results have shown that it is easier to classify between two different noisy quantum
dynamics both affected by i.i.d. noise sources or by i.i.d. and coloured noise processes than between two noisy
quantumdynamics subjected to coloured noise. Again it confirms the relevant role played by time-correlations
and how the latter highly influence the value of the classification accuracy. Furthermore, we also expect that the
sameML-techniques thatwe have exploited in this work could be successfully applied to classify among
coloured noise with q-step transitionmatricesTt|t−qwith q> 1.

5.1.Outlooks
As outlook, we plan to test theML-models employed in this paper on reconfigurable experimental platforms as
the ones in [63, 64], even affected bymultiple noise sources.Moreover, we also aim to adapt ourMLmethods
(and especially ANNs) to reconstruct noise processes with time-correlation as key feature in the context of
regression task instead of classification. Indeed, our proposal is to provide accurate estimates of both the
probability distribution Prob(g) and the transitionmatrixT, and the analysis would be extended for the
prediction of spatially-correlated noise sources. In this way,ML approaches would represent a very promising,
and possiblymore accurate, alternatives to other noise-sensing techniques, e.g., those recently discussed
in [65, 66].

Awell-knownproblem inML is the generalization to data shift. Amodel that is trained on a data set sampled
froma specific data distributionwill work correctly only with data sampled from the same distribution. In this
paper, we used only synthetic data to evaluate the correctness of the training process and theML techniques.
Thus, in order to validate this approach to real data, we shouldfirst collect them. This is out of the scope of the
current work, but, as a remark, we can delineate three possible ways to build a real experimental data set. The
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first strategy is to acquire information a-priori on noise sources affecting the quantum systemof interest in some
experimental contexts bymeans of standard spectroscopy techniques, so thatwe can train the proposedML-
models to discriminate between unseen classes of noise. In this way, the initial effort in building a training data
set that also contains experimental data is counterbalanced by the possibility to predict noise features bymeans
of faster classification tasks. The second strategy, which has been employed in [61], is to collect experimental
data that comes fromdifferent noisymeasurement statistics whose noise processes are not necessarily known.
TheML-models, then, are trained to classify (unknown)noise sources in distinct unseen sets ofmeasurements.
Finally, the third strategy, which is aimed to reduce the effort in building an informative experimental data set, is
to train theML-modelsfirst on synthetic data and then tofine tune the training on a smaller further data set with
only experimental data. In such a case, it is beneficial to adopt a synthetic data set that closely adapts to the real
experimental setup. For instance, a simulated extra error can be added to themeasurement statistics (in our
paper provided by the distributions tk( , k= 1,K ,M) to take into account thefinite number ofmeasurement
shots used for their computation.
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Appendix. Details on the employedMLmodels

In this section, aiming at addressing also an audience not necessarily expert inML,we describemore in detail the
ML-models used in our tasks.

A generic binary data set in input toML-models is usually represented by a set of n points xq
p�Î , with

q= 1,K ,n, each of them living in the p-dimension space of the features. A feature is a distinctive attribute of
each element of the data set. Each point xq is associatedwith one of two different classes with binary labels
yq ä {− 1, 1}, with q= 1,K ,n, depending on the specific classification problem that we are solving.

A.1. Support vectormachine
Support VectorMachine (SVM) [33] is one of thefirstML-model originally used to carry out classification tasks.
The SVM training consists infinding the hyperplane that separates the elements xq in two groups: onewith the
label yq= 1 and the other with yq=−1. Thefinal hyperplane, solution of the classification, is the one having the
maximumgeometrical distance from the two parallel hyperplanes that are defined by the subsets of xq called the
support sets.When the data is not linearly separable, the kernel trick allows to increase the dimension of the
features space in away that the data becomes linearly separable in the new space.

Historically, SVM is a generalisation of the Support Vector Classifier (SVC) that, in turn, is an improved
version of theMaximalMargin Classifier (MMC) [33].MMCs aim at finding the hyperplane separating the two
aforementioned classes of points, such that the distance between the hyperplane and the nearest points of the
classes (commonly denoted asmargin) ismaximised. If the points of the data set are not linearly separable, then
the value of themargin is negative. In such a case, theMMCs cannot be adopted. SVCs increase the performance
ofMMCs, by allowing some points of the data set, called slack variables, to be in the opposite part of the
hyperplanewith respect to the others of the belonging class. If the data set exhibits a non-linear bound between
the two classes of points, SVCs are not able to correctly separate them, albeit themethod returns a solution.
Finally, SVMs extend the capabilities of SVCs by increasing the number of dimensions of the feature-space, such
that in the new space the data set becomes linearly separable.

A.2.Multi-layer perceptron
There are several classification problems (as for example the ImageNet Large Scale Visual RecognitionChallenge
[56] employingmillions of imageswith hundreds of categories) that are solved through SVMbutwith a quite
high residual classification error. For this reason, in order to improve the performance in solving classification
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problems, ANNs have been recently (re-)introduced asmore-performing tools, and since 2012 have been
extensively used [47, 56–58].

AMLP is composed of a variable number of fully connected layers, each of themwith a variable number of
artificial neurons. A single artificial neuronwith I inputs (x) calculates the output as

y bw xTˆ ( · )sº +

that is theweighted sumof the inputs x I�Î withweights w I�Î , plus a bias term b �Î , followed by a
nonlinear activation function : � �s . Themost common activation functionsσ( · ) are: The sigmoid

x e1 ;x 1( ) ( )s º + - - the hyperbolic tangent x xtanh ;( ) ( )s º and the rectifier x xmax 0,( ) ( )s º [67, 68]. A
singleMLP-layer, composed ofO neuronswith I inputs, calculates

Wy x b ,Tˆ ( · )sº +

where y Oˆ �Î is the output vector,W I O�Î ´ is amatrix that collects all theweight vectors of the single
neurons, and b O�Î is the vector of the biases. Finally, anMLPwith L layers calculates

l W l l lh h b1 6T[ ] ( [ ] · [ ] [ ]) ( )sº - +

with l= 1,K ,L (index over the layers) andh[0]≡ x. Thus, Ly hˆ [ ]º is the output of theMLP, whereW[l] and
b[l] are, respectively, theweights and the biases of the l-th layer. Also the activation functionmay change
depending on the specific layer.More concisely, theMLP can be denoted by the function

fy x; , 7ˆ ( ) ( )q x=

of the inputs x. The function f is parametrised by the set θ≡ {W[1],b[1], K ,W[L],b[L]} and by the fixed
hyperparameters ξ defining the number, the dimension, and the activation functions of theMLP layers.

A.3. Supervised training
Let us now introduce the supervised learning process. For the sake of clarity, we just refer to the training of the
MLP; however, the same notions can be applied in general to the supervised learning of vastmajority of ANNs.

Equation (7) behaves like a generic function approximator [69]. Ideally, in the training process wewould like
tofind the parameters

Larg min , 8( ) ( )*q q x=
q

�

thatminimise the theoretical risk function

L f x y, ; , , , 9x y, ℓ( ) [ ( ( ) )] ( )( )�q x q xº ~� �

i.e., the expected value ofℓ for (x, y) sampled from the distribution � that generates the data set [32]. In
equation (9), : O Oℓ � �´ + denotes the loss function (usually taken as a differentiable function, apart
removable discontinuities) thatmeasures the distance between the prediction ŷ and the desired output y. In
general, the distribution � is unknown; thus, theminimisation problem in equation (8) cannot be neither
calculated nor solved. Indeed, one can dispose of afinite set S x y x y, , , , n1{( ) ( ) }= ¼ of samples, to train,
validate and test theML-model. By considering the partition S S S, ,tr va te{ }of S, the theoretical risk function is
approximated by the empirical risk function

L
S

f x y,
1

; , , 10S
tr Sx y,

tr

tr

ℓ( )
∣ ∣

( ( ) ) ( )
( )
åq x q x=
Î

that is the arithmeticmean of the loss functionℓevaluated on all the samples of the training set Str [32]. By
minimising the empirical risk function L ,Str ( )q x with respect to θ, theMLP is trained and θ* obtained. Then, the
validation set Sva is used to compute the empirical risk L ,Sva ( )*q x that takes as input the optimal parameters
attained by theminimisation of LStr (training stage). This procedure allows to check if theML-model works also
for unseen data. Notice that theminimisation of the training risk function L ,Str ( )q x with respect to θ is
performed step-by-step over time. After each step (also called epoch), the validation risk L ,Sva ( )*q x is evaluated,
and theminimisation procedure is stoppedwhen the time-derivative of L ,Sva ( )*q x becomes positive for several
epochs, thus showing overfitting [70]. In case such time-derivative remains negative or constant over time, the
procedure is ended after a predefined number of epochs. The validation set Sva can be also used to explore other
configurations ξ of theML-model: this process is called hyperparameters optimization. In particular, after
completing the training procedure using two different set of hyperparameters ξ and x¢, we obtain twominima θ*

and *q¢ , and then compare L ,Sva ( )*q x with L ,Sva ( )*q x¢ ¢ to also choose the best hyperparameter. Finally, we use
the test set Ste to calculate a significantmetric (in our case, the classification accuracy) and report the results.

Regarding the hyperparameters optimization, it can be performed in different ways. Themost basic
technique is called grid searchwhereby the training and validation are carried out on a specific set of
hyperparameters configurations. The random grid search considers configurations where each hyperparameter is
randomly chosenwithin an a-priori fixed range of values. It has been proved to bemore efficient than standard
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grid search [71]. Amore sophisticated class of optimizationmethods is theBayesian optimization [72] that
updates, after the training of each hyperparameters configuration, a Bayesianmodel of the validation error. The
best hyperparameters configuration is thus chosen as the one allowing for the lower guess validation error.

A.4.Minimisation algorithms
Themost used optimisation algorithm tominimise equation (10) is the Stochastic Gradient Descent (SGD)
[73–75] and its adaptive variants, such as AdaptiveMoment Estimation (ADAM) [76], that changes the value of
the learning rate η (i.e., the descent step) at each iteration. After having calculated the predictions ŷ , the loss
function y y,ℓ (ˆ ) is propagated backwards (backpropagation) in the ANNand its gradient in theweight space is
calculated. Overall, the optimisation process consists in iteratively updating the value of theweights θ according
to the relation

L , ,i i S i1 1b ( )q q h q x= - q- -

where i is the index for the descent step and S Sb trÌ denotes the b-th set of samples, taken from the training set
and used for the computation of the gradient. If S Sb trº , the algorithm is called batch SGD; if Sb contains only
one element is called on-line SGD; finally, themost common approach (we use it here) ismini-batch SGD that
consider |Sb|= BwithB afixed dimension [75]. Hence, the update of θ follows the descent direction of the
gradient, with amagnitude determined by the learning rate η.

Now, let us introduce the specific loss functionℓconsidered in this paper. For classification problemswith
two ormore classes, a common choice forℓis the categorical cross entropy, which is defined as

y yy y, log . 11
j

O
j j

1

ℓ (ˆ ) ˆ ( )( ) ( )å= -
=

This functionmeasures the dissimilarity between two ormore probability distributions. Thus, to properly use
the categorical cross entropy, it is convenient to choose the desired outputs y as Kronecker delta functions
centered around the indices associatedwith each class to be classified. Themodel output ŷ , instead, is
normalised so that it represents a discrete probability distribution, i.e., a vector of positive elements summing to
1. This operation is obtained by using softmax [46] as the activation function of the last layer:

e

e
z 12i

z

j
O z

1

i

j
( ) ( )( )

( )

( )s º
å =

whereσ(z) is the vector having as elementsσ( i)(z), with i= 1...,O, and z denotes the output of the last layer
before the activation function.

In the experiments, the activation functions for the hidden layers of theMLP have been chosen among the
sigmoid, hyperbolic tangent and rectifier functions accordingly to the hyperparameters optimization.

A.5. RecurrentNeuralNetworks
ARecurrentNeural Network (RNN) is anANN specialised for sequence processingwhen the data set is
expressed as

S x x y x x y, , , , , , , , , 13n1 1 1 n1{({ } ) ({ } ) } ( )= ¼ ¼ ¼t t

where τr defines the number of elements of the r-th sequence. RNNs can be used in tasks regardingNatural
Language Processing (NLP) [48, 77–79], time series analysis [80] and, in general, all the tasks involving ordered
set of data [81]. Note that, in general, for sequence-to-sequence problems also y can be a sequence of elements, as
for example inmachine translationwhere the inputs and outputs of the RNNare sentences in different languages
[82]. In this paper, sequence-to-sequence problems are not considered, andwe thus consider τ1≡ ...≡ τn≡ τ.

A RNN is defined by the recurrent relation

rh x h, ; , 14t t t r1( ) ( )q x= -

where tä {1, K , τ}, ht
d�Î is a d-dimensional vector with d being an hyperparameter belonging to ξ and

h0= 0 (vector of zeros). The recurrent relation (14) defines τhidden representations ht (to be seen as amemory)
of the input sequence x x, , q1{ }¼ t with q= 1,K ,n. If the function r is implemented as anMLP (7) that takes as
input the concatenation xt⊕ ht−1 (usually called ‘vanilla RNN’), themodel suffers the so-called vanishing
gradient problem [83, 84] such that theweights of the last layers of the RNNare updated onlywith respect to the
more recent input data. The vanishing gradient problemoccurs when the backpropagation is performed on a
high number of layers, as it could happen in our case with a large value of τ (thusmeaning long input sequences).
In this regard, tomitigate the vanishing gradient problem, LSTM [85] andGRU [86] have been introduced.
Thesemethods use learned gatedmechanisms, based on current input data and previous hidden representations,
to control how to update the current hidden representation ht. Specifically, if LSTM is used, equation (14)needs
to be slightlymodified as
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vs x s, ; , 15t t t v1( ) ( )q x= -

rh x s h, , ; , 16t t t t r1( ) ( )q x= -

where s0= 0 and v, r are, as usual, nonlinear functions. Both forGRU and LSTM, the nonlinearity of the
recurrent relations is due to the adoption of the hyperbolic tangent and sigmoid functions, where the latter are
employed only for the gatingmechanism. It is worth noting that in equation (15) st is a state vector that allows to
differently propagate over time specific elements of the hidden representations ht depending on the input data.
Thismeans that, at any time t, the hidden representation ht depends not only on the input xt and the previous
hidden representation ht−1 but also on the state vector st. For further details, refer to [48, 85, 86].

RNNs are usually considered deep-learningmodels, due to the high number of layers, when they are
unfolded on the sequence dimension for t= 1, K , τ. The key aspect of deep learning is the automatic extraction
of features bymeans of the composition of a large number of layers; an increasing (deep)number of layers is
typically used to extract features with increasing complexity [87].

Moreover, RNNs can be extended consideringmore layers [88] and processing the data bidirectionally [89].
Regarding the latter, one can define two sets of hidden representations: One for the forward and the other for the
backward direction, where the t-th hidden representation depends respectively on the (t− 1)-th or (t+ 1)-th
one.More formally,

l r l l lh h h1 , ; , 17t t t r1[ ] ( [ ] [ ] [ ] ) ( )q x= - -

l r l l lh h h1 , ; , 18t t t r1[ ] ( [ ] [ ] [ ] ) ( )˜i i i q x= - +

with l=1,K ,L and h h x0 0t t t[ ] [ ]iº º .

A.6. ClassificationwithRNNs
Now, let us explain how to use the hidden representations to calculate the prediction ŷ in output from theML-
model. The common approach to calculate the prediction in classification problems is to use the RNNas an
encoder of the sequence and to scale the dimension of the last hidden representation L Lh h1[ ] [ ]iÅt (in themore
general case of bidirectionalmodels) to the one of the output vector. This scaling can be done through a fully
connected layer, or,more in general, bymeans of anMLP, i.e.,

L La h h 191[ ] [ ] ( )iº Åt

fy a; , . 20fˆ ( ) ( )q x=

Then, we can use SGD tominimise an empirical risk function similar to equation (10) ofMLPs.
It is possible to consider different forms of aggregation a for the hidden representations ht[L], with t= 1, K ,

τ, instead of using only the last hidden representation as in equation (19). In this regard, attentionmechanisms
[90–92], also in hierarchical forms [93], perform aweighted average of theht[L]where theweights are learned
togetherwith theML-model. In detail, equation (19) becomes:

L Lu h h 21t t t[ ] [ ] ( )i= Å

v W u btanh 22t
T

t( · ) ( )= +

e

e
23t

j

v c

v c

,

1
,

t

j
( )a º

åt

á ñ

=
á ñ

a u , 24
t

t t
1

( )å aº
t

=

where 〈·, · 〉 denotes the dot product and c is a learned vector that is randomly initialised and jointly learned
during the training process as in [90–93]. Another formof aggregation a is themax pooling aggregation, whereby
each element a( j) of a just refers to a single value of t. In this case, equation (19) equals to

a umax . 25j

t
t

j ( )( ) ( )=

where the expression ofut is provided by equation (21). In this way, each element ut
j( ) of the hidden

representations (for t= 1, K , τ) learns to detect specific features of the input data within all the interval [1, τ].
Finally, another approach, whichwe do not use here, is to consider the RNNas a transducer that produces an

output sequence yt̂ for t 1, ,it= ¼ (generally it t¹ ) in correspondence of the input sequence xtwith t= 1,
K , τ [48, 82, 94].

A.7. Implementation of themachine learning algorithms
All theML-models are realized inPyTorch and have been trained on the six different data sets using aDELL®
Precision Towerworkstationwith oneNVIDIA®TITANRTX®GPUwith 10Gb ofmemory, 88 cores Intel®
Xeon®CPUE5-2699 v4 at 2.20 GHz and 94Gb of RAM.
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We train theANNmodels inmini-batches of dimension 16 bymeans of the SGDusing ADAM [76] and
learning rate η= 10−3.We optimize the hyperparameters ξwithASHA [95] as scheduler andHyperopt [96, 97]
(Hyperopt belongs to the family of Bayesian optimization algorithms) as search algorithm in the frameworkRay
Tune [98]. For theMLPmodels, the hyperparameters optimization defines: (i) the activation functions to be
used, (ii) the number of layers, and (iii) their dimension, within the following search space: relu, sigmoid,{s Î
tanh}, L ä {2, 3, 4, 5, 6} and L d dh hdim 1 ... dim 1 512( [ ]) ( [ ]) { ∣ }� - -º º Î Î . Instead, for the RNN
models the search space is Lä {1, 2, 3, 4} for the number of recurrent layers (L ä {1, 2, 3, 4, 5, 6} for theNM task
with t15= 0.1), and L L d dh h h hdim 1 dim 1 ... dim dim 1 512t t t t( [ ]) ( [ ]) ( [ ]) ( [ ]) { ∣ }i i � - -º º º º Î Î for
the layers dimension. Regarding theML-modelsm-biGRU-att andm-biLSTM-att, the search space includes
also the dimension of the attention layer as in equations (22) and (23), i.e., c v vdim dim ... dim1( ) ( ) ( )º º º Ît

d d1 512{ ∣ }� - -Î . In the hyperparameters optimization of all theMLP and the RNNmodels, we have also
used regularizationmethods asweight decay [99] and dropout [100]. They are able tomitigate overfitting; in
particular, the former adds a penalty (chosen among {0, 10−4, 10−3}) to the risk function LS(θ, ξ)with the aim to
discourage largeweights. Instead, using dropout, the outputs of the artificial neurons during the training are
forced to zerowith a probability among {0, 0.2, 0.5}.
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