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Abstract
Theropithecus gelada, the last surviving species of this genus, occupy a unique and 
highly	specialised	ecological	niche	in	the	Ethiopian	highlands.	A	subdivision	into	three	
geographically defined populations (Northern, Central and Southern) has been ten-
tatively proposed for this species on the basis of genetic analyses, but genomic data 
have been investigated only for two of these groups (Northern and Central). Here 
we combined newly generated whole genome sequences of individuals sampled from 
the	population	 living	 south	of	 the	East	Africa	Great	Rift	Valley	with	available	data	
from the other two gelada populations to reconstruct the evolutionary history of the 
species. Integrating genomic and paleoclimatic data we found that gene- flow across 
populations and with Papio species tracked past climate changes. The isolation and cli-
matic conditions experienced by Southern geladas during the Holocene shaped local 
diversity and generated diet- related genomic signatures.
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1  |  INTRODUC TION

Theropithecus gelada is the only extant species belonging to the 
primate genus, Theropithecus (Delson, 1993). This species occu-
pies	 a	 unique	 ecological	 niche,	 the	 Afroalpine	 grasslands	 of	 the	
Ethiopian Highlands, and is specialised for altitudes ranging from 
2000	 to	 4500	m	 (Belay	 &	 Shotake,	 1998).	 Geladas	 are	 the	 sole	
graminivorous primates, consuming a grass- based diet similarly to 
ungulates (Iwamoto, 1993a). Their diet comprises primarily gram-
inoid leaves (up to 90% of the ingested food; Dunbar, 1977). The 
second most common dietary component is underground food 
(UF: tubers, roots and corms), a nutritional fall- back resource 
rich in starch and mostly consumed when the grass is scarce as 
the result of decreased rainfall (Iwamoto, 1993a, 1993b;	 Jarvey	
et al., 2018).

On the basis of morphological traits, two major subspecies 
have been described: T. g. gelada (Rüppell, 1835) and T. g. obscurus 
Heuglin, 1863. The two subspecies are usually associated re-
spectively with the northern region and the central region of the 
Northern Ethiopian plateau (de Beaux, 1925;	Gippoliti,	2010;	Girmay	
&	Tesfay,	2020). However, the absence of clear- cut differences, par-
ticularly when considering the variation in coat pigmentation, and 
the apparent absence of a major barrier between the two taxa has 
led to scepticism about the taxonomic validity of the subspecies clas-
sification (Yalden et al., 1976, 1996).	Mitochondrial	DNA	 (mtDNA)	
phylogenetic analyses are broadly congruent with the Northern- 
Central subdivision first proposed by de Beaux (de Beaux, 1925; 
Shotake et al., 2016;	 Zinner	 et	 al.,	 2018). The geographical range 
of modern- day geladas was extended in 1990 when a population 
was	found	south	of	the	Great	Rift	Valley	in	the	South-	eastern	pla-
teau,	 in	the	Arsi	mountains	(Mori	&	Belay,	1990). In 2016 the sub-
species Theropithecus gelada arsi	 Shotake	 Saijuntha	 Agatsuma	 et	
Kawamoto, 2016, was tentatively proposed for this clearly isolated 
population on the basis of coat coloration and molecular data (Belay 
&	 Shotake,	 1998;	 Gippoliti,	 2010;	 Mori	 &	 Belay,	 1990; Shotake 
et al., 2016).

Given	 the	 debate	 about	 the	 geographical	 distribution	 of	 the	
three gelada subspecies and concerns about their taxonomic valid-
ity, in this work, we will name the three gelada demes as Northern, 
Central and Southern geladas, as done by others in previous investi-
gations (Chiou et al., 2022; Trede et al., 2020;	Zinner	et	al.,	2018) ac-
knowledging that some degree of overlap is present between these 
geographically described units and the T. g. gelada, T. g. obscurus and 
T. g. arsi taxa (cf. Figure 1;	Gippoliti,	2010; Shotake et al., 2016).

Early molecular investigations showed significant differentia-
tion	between	populations	across	the	Ethiopian	Rift	Valley	(Central	
and Southern geladas), with the two groups being characterised 
by	similar	levels	of	within-	group	variation	(Belay	&	Shotake,	1998). 

Notably, the mitochondrial lineages of the Southern geladas of the 
Arsi	mountains	are	 identified	either	 as	basal	 to	all	 the	other	ge-
ladas (Central and Northern; Shotake et al., 2016) or are placed 
within the Northern variation, sister to a Northern subclade 
(Zinner	et	al.,	2018). Despite these differences in tree topologies, 
the	investigations	conducted	by	Zinner	et	al.	 (2018) and Shotake 
et al. (2016) are concordant in supporting a relatively recent Time 
to	the	Most	Recent	Common	Ancestor	(TMRCA)	of	gelada	mtDNA	
(670–400 thousand years ago, kya), and in showing Southern ge-
ladas	as	characterised	by	the	lowest	mtDNA	diversity	across	the	
three gelada populations. Interestingly, no lineages are shared be-
tween geladas living in the three regions (with the exception of 
a	 likely	mislabelled	sample,	as	suggested	by	Zinner	et	al.	 (2018)), 
suggesting deep population structure among the three groups, 
at least for the maternal lineages. Microsatellite data from a sub-
set	 of	 the	 samples	 analysed	 by	 Zinner	 et	 al.	 (2018) confirmed a 

F I G U R E  1 Geographical	origin	in	the	Ethiopian	highlands	of	
Theropithecus gelada samples analysed in this work. Colours refer 
to source populations (Northern, Central and Southern) and shapes 
identify the data available for the sample (Complete genome 
sequence	and	mitochondrial	DNA	only).	The	dotted	line	provides	
an approximate indication of the distribution of P. hamadryas (right) 
and P. anubis (left) in the area of interest, as indicated in Sørensen 
et al. (2023). The stars provide the location of provenience of 
the five datasets with UF consumption and rainfall data (from 
top	to	bottom:	Northern:	Sankaber	(Jarvey	et	al.,	2018) and 
Gich	(Woldegeorgis	&	Bekele,	2015),	Central:	Guassa	(Fashing	
et al., 2014)	and	Wollo	(Kifle	&	Bekele,	2021), and Southern: Indetu 
(Abu	et	al.,	2018)). Prepared using Natural Earth. Free vector and 
raster map data @natur alear thdata. com.
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three- deme structure for geladas (Trede et al., 2020), the genetic 
distance, measured using FST, between Southern geladas and the 
other two populations being two- three times larger than the dis-
tance between Central and Northern (Trede et al., 2020). More 
recently, whole genome sequence data of individuals from two re-
gions in the Northern (Sankaber and Chenek), one in the Central 
(Guassa)	and	five	US	zoos	were	released	(Chiou	et	al.,	2022). The 
published preliminary population genomic analysis of this dataset 
confirmed the subdivision between Northern and Central geladas, 
zoo	specimens	(ultimate	origin	of	these	animals	or	their	ancestors	
was unknown) showing mostly a Central gelada ancestry compo-
nent. The Northern- Central separation also emerged at karyotypic 
level as a different number of chromosomes were suggested for 
individuals sampled in the two regions (42 and 44 respectively). 
Centric fission of chromosome 7 was detected in Northern gelada, 
resulting	in	two	acrocentric	chromosomes,	7a	and	7b,	and	2n = 44	
karyotype. Such a macroscopic genomic difference was inter-
preted as evidence for putative incipient speciation as hybrids be-
tween	lineages	with	heterozygous	karyotypes	might	have	reduced	
reproductive success (King, 1995).	Genome-	wide	data	were	also	
used	 to	 estimate	 how	 the	 effective	 population	 size	 of	Northern	
and Central geladas changed in the past. Both showed an almost 
steady decrease over the last million years; notably, Northern ge-
lada and Central gelada diverged in their pattern 500 kya, sug-
gesting this as the initial temporal point of separation of the two 
groups (Chiou et al., 2022).

The	Ethiopian	plateau	is	part	of	the	East	African	Rift	System,	
an area profoundly affected by environmental instability during 
the late Quaternary (Foerster et al., 2012).	 Geochemical,	 physi-
cal and biological indicators testify that Ethiopia's climate regime 
was controlled by the intensification of the dry–wet–dry cycles 
during the last glacial period, potentially linked to the change in 
orbitally forced radiation (Trauth et al., 2003). Species response to 
such changes usually includes habitat tracking towards different 
latitudes, altitudes or the population concentrated within refugia 
(Keppel et al., 2012; Raia et al., 2012). The gelada is probably no 
exception, since the species is currently confined to the Ethiopian 
Highland at high altitudes whereby the three recognised popula-
tions occupy different areas of the plateau (Keppel et al., 2012; 
Raia et al., 2012).

Assessing	 the	 ecological	 similarities	 and	 differences	 among	
gelada populations is therefore fundamental to understanding 
the effect of climate on their current distribution. Despite its rel-
evance, climate variability has been explored only in relation to 
the ecological diversification and fate of different members of the 
genus Theropithecus (Dunbar, 1993; Pigkford, 1993), while recent 
work has investigated how future climatic changes might alter the 
spatial	distribution	of	geladas	(Ahmed	et	al.,	2023). Nevertheless, 
an extensive approach to derive a climatic- driven spatial distribu-
tion of gelada in the past is yet to be applied. To this aim, we used 
Species Distribution Models (SDMs), a powerful tool widely used 
in ecology, biogeography, biodiversity conservation and natural 
resources	management	 (Guillera-	Arroita	 et	 al.,	2015). SDMs are 

further indicated to complement fossil and genetic evidence by 
providing spatial prediction of past species distribution (Svenning 
et al., 2011).

In addition, hybridisation, another process potentially influenced 
by climactic variation, has been suggested between geladas and 
members of the genus Papio, possibly having occurred more than 
once, on the basis of mobile elements being shared across the ge-
nomes	of	baboon	species	and	geladas	(Walker	et	al.,	2019). However, 
besides the rejection of a phylogenetic tree that excluded gene flow 
between geladas and Papio (Santander et al., 2022), no formal test-
ing for hybridisation event(s) has been performed so far. Mating 
events between geladas and baboons and the possible presence of 
hybrids have been reported both in captivity and in the wild (Dunbar 
&	Dunbar,	1974;	Jolly	et	al.,	1997; Markarjan et al., 1974).

Overall,	 the	 emerging	 consensus	 based	 on	 DNA	 supports	 at	
least three evolutionary units for T. gelada, with a robust parallelism 
between genetics and geography, possibly the result of their adap-
tation to the montane grassland environment (Chiou et al., 2022). 
However, the impact of climatic changes on geladas current geo-
graphical distribution and past population dynamics has been poorly 
explored, particularly considering the intense climatic oscillations 
of the Late Pleistocene. Here we integrate population genomic 
data with explicit modelling of species habitat suitability to better 
clarify the linkage between species ecological preferences and de-
mographic dynamics, with the aim of generating an integrated re-
construction of the evolutionary history of Theropithecus gelada.

As	is	often	the	case	in	biological	conservation,	reaching	a	consen-
sus on taxonomy and conservation units by integrating as many dif-
ferent	data	sets	as	possible	(Gippoliti,	2020;	Groves	et	al.,	2017) may 
be crucial for immediate management actions for Theropithecus. This 
may include the identification of priority sites for research and con-
servation in Ethiopia, the recognition of the significance of ex- situ 
population programs and the future planning for re- stocking and/
or	reintroduction	actions.	We	note	that	while	the	conservation	sta-
tus of the overall species is Least Concern	(LC;	Gippoliti	et	al.,	2019) 
the geographical features of the Ethiopian plateau can endanger the 
survival	of	populations	due	to	isolation	and	small	census	size,	as	well	
exemplified by Southern geladas.

2  |  MATERIAL S AND METHODS

2.1  |  Sampling and samples dataset

Gelada	 blood	 samples	 from	 different	 locations	 in	 Ethiopia	were	
collected	by	two	of	the	authors	(G.B.	and	T.S.)	during	1978–1997	
(more	 details	 can	 be	 found	 in	 Belay	 &	 Shotake,	 1998; Shotake 
et al., 2016). The guidelines for field research of the Kyoto 
University Primate Research Institute and the rules and regula-
tions of the Ethiopian government at the time were followed dur-
ing	blood	collection	(Belay	&	Shotake,	1998). From this collection, 
DNA	 samples	 from	 the	 Arsi	 (Southern)	 population	 were	 evalu-
ated for their compatibility with whole- genome sequencing, and 
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two	samples,	one	from	Gado-	Goro	(A28)	and	one	from	Lega	Aba	
Boge-	Lega	 Adem	 (A10),	 were	 selected	 to	 be	whole-	genome	 se-
quenced.	 Sample	 A28	was	 sequenced	 to	 a	 depth	 of	 30×, while 
sample	A10	 reached	 a	median	 coverage	 of	 12×, the sequencing 
being	 completed	by	EuroFin	 Japan.	 In	 addition,	we	 sequenced	 a	
gelada	sample	provided	via	the	European	Association	of	Zoos	and	
Aquaria	(EAZA)	by	the	Wilhelma	Zoo	Stuttgart	and	processed	by	
the	EAZA	biobank	hub	at	the	Leibniz	Institute	for	Zoo	and	Wildlife	
Research	(HJZ14-	00788),	here	referred	to	as	TGLZ1	(the	ultimate	
geographical origin of all captive animals included in this study and 
their	 ancestors	 is	 unknown).	 The	 sample	 TGLZ1	was	 sequenced	
at	the	Centro	Nacional	de	Análisis	Genómico	in	Barcelona,	reach-
ing a final coverage of 33.65×.	We	also	generated	whole	genome	
sequence data from a sample of Lophocebus aterrimus provided 
by	 the	 Gaia	 Zoo	 Kerkrade	 and	 processed	 by	 the	 EAZA	 hub	 at	
Copenhagen	 Zoo.	 This	 sample	 was	 sequenced	 at	 the	 Centro	
Nacional	de	Análisis	Genómico	in	Barcelona	with	a	mean	coverage	
of	34.98×. The taxonomic position of the genus Lophocebus, sister 
to Papio, makes it possible to highlight Papio- specific evolutionary 
dynamics.

In this study, we also included all the samples of T. gelada and one 
of Papio hamadryas (hamadryas baboon) from Chiou et al. (2022), one 
sample of Papio anubis (olive baboon) from Sørensen et al. (2023) 
and one sample of Mandrillus leucophaeus (drill) recovered from 
PRJNA785018	BioProject	 in	NCBI	 (Table S1).	We	 focused	 our	 at-
tention on the two Papio species present in Ethiopia (P. anubis and 
P. hamadryas) and known to have been in contact with geladas 
(Dunbar	&	Dunbar,	1974;	 Jolly	et	al.,	1997). In this study, we used 
the term hybridisation to refer to interbreeding between T. gelada and 
Papio, at any point in time in their evolutionary history, and admix-
ture for gene flow between gelada populations.

2.2  |  Genome mapping

Reads were mapped with BWA- MEM2	 v.2.2.1	 (Vasimuddin	
et al., 2019), to the reference assembly genome Tgel_1.0 (Chiou 
et al., 2022). Since there was no Y chromosome in this reference 
genome, we added it from the Papio reference assembly genome 
Panubis1 (Batra et al., 2020). Reads from (Chiou et al., 2022) were 
trimmed with fastp v.0.23.2 (Chen et al., 2018) in order to remove 
Nextera	adapters.	We	then	marked	the	duplicate	reads	with	Picard 
MarkDuplicates	 version	 2.8.1	 (http:// broad insti tute. github. io/ pic-
ard/	 .) and filtered the result using the options - q 10, - F 1292 and - f 2 
of samtools view (Li et al., 2009).

To avoid some analyses being influenced by the reference ge-
nome (in particular, those involving comparisons with other genera, 
see	 later;	 Günther	 &	 Nettelblad,	 2019), we additionally mapped 
Papio, Lophocebus, Mandrillus and a subset of Theropithecus samples 
(11 high- coverage gelada individuals belonging to the four localities 
of sampling—for the details see Table S1) to the Macaca mulatta ref-
erence genome (Mmul_10;	Warren	et	al.,	2020), following the same 
procedure described above.

2.3  |  Mitochondrial DNA analysis

We	 downloaded	 the	 publicly	 available	 mitogenomes	 from	 Chiou	
et al. (2022)	 (GenBank	 id	 from	MZ907630 to MZ907677), and the 
fragments generated in previous analyses of geladas mitochondrial 
DNA	variation	(Shotake	et	al.,	2016;	Zinner	et	al.,	2018; LC018113 
to LC018133 and MH634017 to MH634077	respectively).	As	out-
groups, we selected male samples from close genera with available 
genomic reads in order to be able to include them also in the Y chro-
mosome phylogeny, see Table S1. The mitogenomes of the newly 
sequenced samples, including outgroups with no available mitog-
enomes, were assembled with GetOrganelle	v1.7.5	(Jin	et	al.,	2020), 
with parameters - R 10 - s NC_020006.2.fa - F animal_mt - - fast; 
then the resulting scaffolds were filtered by length (if it was be-
tween	 16,000	 and	 17,000	 nucleotides)	 and	 manually	 rotated.	 All	
the complete mitogenomes were aligned with MAFFT v7.490 (Katoh 
&	 Standley,	 2013) with the - - auto option. Further, the cyt- b frag-
ments were added with the - - addfragments option of MAFFT to the 
mitogenomes alignment of T. gelada and Papio	samples	from	Zinner	
et al., 2013 and Roos et al., 2021 (Papio samples were not included 
in the tree here presented). The D- loop was manually removed from 
the alignment. Both Maximum Likelihood mitochondrial trees were 
computed with IQ- Tree v2.2.0 (Minh et al., 2020). The best muta-
tional model was inferred with ModelFinder (Kalyaanamoorthy 
et al., 2017) and branch support values were estimated with 1000 
Ultrafast bootstraps. Bayesian inference and divergence time 
dating	 were	 done	 with	 BEAST	 v.2.7.1	 (Bouckaert	 et	 al.,	 2019). 
TPM2u+F+I+G4,	 as	 implemented	 in	SSM v.1.2.0	 BEAST2	package	
(Bouckaert	 &	 Xie,	 2017), was selected as the substitution model 
based on the ML ModelFinder results. The trees were modelled 
under a Yule process with a strict clock with a uniform distribu-
tion. The monophyly of the 2 Macaca samples was enforced to 
root the tree with two fossil calibrated nodes: Papio- Theropitecus 
(5 MYA ± 0.5 SD,	normal	distribution,	as	in	Dolotovskaya	et	al.	(2017) 
and	the	root	node	(5.3 MYA ± 0.5 SD,	lognormal	distribution	as	sug-
gested	in	Pozzi	and	Penna	2022). Two replicates were performed for 
50MLn generations, sampling every 1000 trees.

2.4  |  Y chromosome analysis and Y STR genotyping

We	called	the	variants	on	the	Y	chromosome	with	bcftools v.1.15.1 
(Li, 2011) by setting the ploidy to 1. Then we filtered constant sites, 
indels	 and	 variants	 in	 repetitive	 regions	 with	 VCFTools	 v.0.1.16	
(Danecek et al., 2011).	 Further,	 after	 checking	 the	 resulting	 VCF,	
variants with minimum read depth (DP) lower than 250, maximum 
DP greater than 600, minimum mapping quality less than 55 and 
absent in less than 10 samples were removed. Finally, the resulting 
variants	were	thinned	out	by	keeping	only	variants	at	 least	100 bp	
apart.	We	 then	converted	 the	 final	VCF	 in	 an	alignment	with	vcf-
2phylip v.2.0 (10.5281/zenodo.2540861).	Then	we	used	BEAST2	to	
obtain a dated phylogeny with a TPM2 substitution model with four 
gamma	categories,	a	strict	clock.	We	used	as	a	calibration	point	the	
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speciation between gelada and Papio	as	Normal	5MLn ± 0.5 SD.	We	
ran four MCMC iterations of 10MLn samples each.

We	 applied	 TYPeSTer	 to	 the	 genomes	 of	 the	 gelada	 samples	
from	the	Arsi	(Southern)	region	and	Leibniz	Institute	here	analysed	
to genotype the set of Y- STRs previously recovered from other ge-
lada samples (Mutti et al., 2023). The STRs were assembled in hap-
lotypes and merged with the haplotypic data previously generated 
(Table S3). Haplotypes were used to reconstruct a phylogenetic tree 
using the Bruvo (Bruvo et al., 2004) distance from poppr R package 
(Kamvar et al., 2014)	followed	by	UPGMA	clustering,	as	described	in	
Mutti and colleagues (Mutti et al., 2023).

2.5  |  Variant calling and the final dataset

We	called	the	autosomal	chromosome	variants,	using	the	GATK ver-
sion 4.2.4.1 (McKenna et al., 2010). For each sample, we gener-
ated the gVCF with HaplotypeCaller, and then we made the joint 
calls via GenotypeGVCFs. The VCF thus obtained was filtered with 
VariantFiltration using hard filters for SNPs (‘QD < 2.0	||	MQ	< 40.0	||	
FS > 60.0	 ||	MQRankSum<	 −12.5	 ||	 ReadPosRankSum	<	 −8.0’).	 The	
final VCF was therefore composed of 70 individuals of T. gelada and 
9,244,659 variants. Using PLINK v.1.9 (Chang et al., 2015), all sites 
from	the	sex	chromosomes	and	with	a	minor	allele	frequency	(MAF)	
below 0.05 were removed, keeping only biallelic SNPs filtered using 
the - - snps- only option.

2.6  |  Whole- genome analysis

2.6.1  |  Heterozygosity,	RoH	and	kinship

To	 calculate	 the	 proportion	 of	 heterozygous	 sites	 (HET)	 we	 used	
PLINK - - het. This command estimated the observed O(HOM) ho-
mozygous	genotype	counts	 for	each	sample	and	the	 total	number	
of variable sites (N_Sites), from which we derived HET per individual 
with the formula:

We	 estimated	 the	 number,	 the	 total	 length	 and	 the	 average	
length	of	runs	of	homozygosity	(RoH)	with	PLINK - - homozyg and the 
option - - homozyg- snp 25 - - homozyg- kb 200 - - homozyg- window- snp 
10, The degree of kinship among samples was tested up to the third 
degree using KING v.2.3.1 with - - kinship - -  degree 3 flags on the 
PLINK bed file (Manichaikul et al., 2010).

2.6.2  |  PCA

We	performed	a	preliminary	survey	of	T. gelada population structure 
by	 running	 a	 principal	 component	 analysis	 (PCA)	 using	 the	 smart-
pca function implemented in EIGENSOFT	software	8.0.0	(Patterson	
et al., 2006) using default settings.

2.6.3  |  D-	statistics

We	 performed	 the	D- statistics	 (ABBA-	BABA	 test)	 using	 qpDstat 
(Patterson et al., 2012), with default parameters, to test for the 
occurrence of any imbalance in allele sharing between different 
populations and species in the form D(H4,H3;H2,H1) includ-
ing drill (M. leucophaeus)	 as	 an	 outgroup	 (H4).	We	 firstly	 tested	
whether the two Northern populations of Sankaber and Chenek 
(as H1 and H2) were symmetrical in their sharing with other gelada 
groups (Central or Southern as H3) and what was the degree of 
allelic sharing between the three gelada taxa (Northern, Central, 
Southern alternatively placed as H1, H2 or H3). Then we tested 
the allelic sharing of these gelada populations with Papio spe-
cies and Lophocebus	(Dunbar	&	Dunbar,	1974;	Jolly	et	al.,	1997) in 
the	 form	D(Drill,	 Papio;	Gelada2,	Gelada1),	D(Drill,	 Lophocebus;	
Gelada2,	 Gelada1),	 D(Drill,	 Gelada;	 Papio2,	 Papio1)	 and	 D(Drill,	
Gelada;	 Lophocebus,	 Papio),	 where	 ‘Papio’	 were	 alternatively	 P. 
anubis or P. hamadryas genomes, ‘Lophocebus’ was the genome 
of L. aterrimus	and	 ‘Gelada’	was	a	genome	from	one	of	the	three	
gelada populations.

The	test	considers	the	ancestral	alleles	(A)	and	the	derived	al-
leles	(B)	in	the	genomes	of	the	four	taxa	considered.	Without	gene	
flow,	 the	 two	 conflicting	 allelic	 patterns	 (ABBA	 and	 BABA)	 are	
equally frequent, and the values of D are not significantly different 
from	 zero.	 In	 the	 presence	 of	 gene	 flow	 an	 excess	 of	 one	 of	 the	
two allelic patterns occurs, which produces a deviation of the D 
from	zero:	positive	D	(excess	of	BABA)	indicates	the	introgression	
between	H1	 and	H3,	 and	 negative	D	 (excess	 of	ABBA)	 points	 to	
the gene flow between H2 and H3. The estimates were considered 
significant if |Z|-	score >3.

The D- statistics analysis involving the genera Papio and 
Lophocebus was conducted using reads mapped on the Mmul_10 ref-
erence genome, to avoid a reference bias.

2.6.4  |  Admixture	graphs

We	explored	the	relationships	and	the	gene-	flow	events	between	
the three gelada taxa and the species of the genus Papio (P. anu-
bis and P. hamadryas) and L. aterrimus using find_graphs in R pack-
age admixtools2 (Maier et al., 2023). The R command find_graphs 
was	 run	 with	 parameters	 stop_gen = 10,000,	 stop_gen2 = 100,	
plusminus_generations = 20,	 eject_f4z = 2,	 diag = 1e-	04,	 num-
start = 1000,	 lsqmode = FALSE,	 resid = F,	 num_admix	 between	
1 and 5 and M. leucophaeus as an outgroup; the same command 
was run 10 times per number of admixture events in order to ob-
tain the graph with the score as close as possible to the global 
optimum.	We	kept,	 for	each	edge,	 the	 three	 trees	with	 the	best	
score; we reported in the main text the tree with the greatest 
number of admixture events and no contributions equal to 0%. 
The admixture graphs analysis was conducted using reads mapped 
on the macaque reference genome Mmul_10, to avoid reference 
bias.

HET
[

N_SitesOHOM
]

∕N_Sites
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2.6.5  |  PSMC

Demographic	changes	 (effective	population	size	history)	over	time	
were explored using the pairwise sequentially Markovian coalescent 
(PSMC)	 model	 (Li	 &	 Durbin,	 2011).	 As	 recommended,	 we	 gener-
ated diploid sequences using bcftools (Li, 2011); sites with coverage 
greater than double the average genome- wide coverage or less than 
one-	third	were	 excluded.	We	 also	 excluded	 the	 repetitive	 regions	
in the genomes, indicated on the NCBI website (https:// www. ncbi. 
nlm.	nih.	gov/	data-		hub/	genome/	GCF_	00325	5815.	1).	 We	 run	 PSMC 
with default settings on autosomal chromosomes, using a muta-
tion rate of 0.5 x 10−8 per base pair per generation and a generation 
time	of	11.67 years	as	in	Chiou	et	al.	 (2022). Finally, we performed 
bootstrapping for each individual with 10 replicates following the in-
structions	described	on	the	GitHub	webpage	manual	(https:// github. 
com/ lh3/ psmc).

In a similar manner, this software can also be used to explore 
the last time of contact between populations by creating artificial 
F1 hybrids (hPSMC; Cahill et al., 2016). Following the procedure de-
scribed	 on	 the	GitHub	webpage	manual	 (https:// github. com/ jacah 
ill/	hPSMC	 ), we generated from the bam a haploid sequence in fasta 
format	 of	 the	 X	 chromosome	 for	 each	 male	 individual.	 We	 then	
combined the fasta sequences from two different individuals into a 
single .psmcfa file, and then we applied PSMC with default settings. 
We	use	a	mutation	rate	of	0.419 × 10−8 mutations per base pair per 
generation. It became necessary to recalculate the autosomal mu-
tation	rate,	as	 the	X	chromosome,	due	to	 its	presence	 in	different	
numbers in male and female individuals, results in a different muta-
tion rate. Therefore, the parameter was obtained by converting the 
autosomal	mutation	rate	into	X	mutation	rate	as	described	by	Li	and	
Durbin (2011), using the male- to- female mutation ratio of Rhesus 
macaque	 (2.9;	 Wilson	 Sayres	 et	 al.,	 2011). Finally, we performed 
bootstrapping for each hybrid as described above.

To test if the estimates obtained with hPSMC are influenced 
by the selected reference, we performed the procedure described 
above using reads mapped to the two reference genomes (Tgel_1.0 
and Mmul_10).

2.7  |  Copy number variants

We	 further	 investigated	 differences	 across	 gelada	 populations	 by	
focusing on gene content variation. Scans of gelada genomes have 
previously identified gene families significantly expanded in com-
parison to Papio and highlighted associated biological processes, 
including cell proliferation, hypoxia response and immune func-
tion (Chiou et al., 2022).	Variation	in	the	number	of	copies	present	
across individuals has been shown to significantly contribute to in-
traspecies	phenotypic	diversity	 (Almarri	et	al.,	2020;	Montinaro	&	
Capelli, 2020; Sudmant et al., 2015).

The gelada genomic reads mapped to Tgel_1.0 were processed 
via Control- FREEC to identify variations in copy number of genomic 
regions across the three populations of geladas (Boeva et al., 2012). 

The number of copies estimated for each locus was reported for all 
the individuals, clustered according to the population of provenance 
(Northern, Central and Southern). For each expanded region the 
number of individuals bearing more than two copies was counted 
to estimate their overall occurrence and the frequency within each 
population.	 Annotated	 genes	 overlapping	 these	 regions	were	 also	
reported.	KEGG	enrichment	analyses	were	conducted	via	the	clus-
terProfiler	v.4.0.5	R	package	(Wu	et	al.,	2021).

The genomic occurrence of amylase genes in the genome of ge-
ladas was verified by searching in the reference gelada genome for 
matches to the sequences of the human salivary amylase alpha 1a 
(AMY1A)	 and	both	pancreatic	 amylases	 (2A	and	2B).	Two	proteins	
were found, both annotated in the gelada genome as pancreatic 
(XP_025215097.1	and	XP_025215076.1).	The	two	genomic	regions	
hosting these genes were identified on chromosome 1: one between 
positions 131,757,727–131,766,740 (LOC112607926) and the other 
spanning	 positions	 131,799,832–131,808,869	 (LOC112607935).	
Amylase	gene	copy	number	was	further	verified	in	geladas	using	the	
average coverage across the two gelada amylase genomic regions, 
normalising it by the average coverage across chromosome 1, in 
each of the gelada genomes.

We	reasoned	that	in	the	presence	of	positive	selection	operat-
ing on a given haplotype, the areas surrounding the locus under se-
lection should be characterised by a decrease in genetic diversity, 
the	size	of	 the	chromosomal	 region	affected	by	this	pattern	being	
shaped by the time since the selective pressure has been in place. In 
order to test the hypothesis of positive selection for the duplication 
of the amylase locus LOC112607926 in Southern gelada, we esti-
mated	the	degree	of	heterozygosity	present	in	the	regions	surround-
ing the duplication in all gelada genomes.

We	partitioned	the	10-	Mb	region	centred	on	the	AMY genes in 
windows	of	10 kb;	starting	from	the	VCF,	for	each	window,	we	calcu-
lated	the	number	of	heterozygous	sites	per	individual	using	VCFtools	
-	-	het.	We	then	calculated	the	average	for	each	window	for	each	pop-
ulation and normalised the results by the mean of the variable sites 
across the entire chromosome. Starting from the windows contain-
ing	the	loci,	we	estimated	the	cumulative	sum	of	the	heterozygosity	
in each window. In order to take into account the differences across 
populations	in	the	overall	degree	of	heterozygosity,	the	cumulative	
sums	were	normalised	by	the	average	of	heterozygosity	estimated	in	
all the 10- kb windows of chromosome 1. Finally, we calculated the 
average	for	each	population,	including	zoo	individuals	in	the	Central	
population.

2.8  |  Variation in underground food 
consumption and rainfall

Amylase	expression	has	been	linked	to	variation	in	copy	number	of	
amylase genes as the result of differences in dietary starch preva-
lence	across	human	populations,	dogs	and	pigs	(Axelsson	et	al.,	2013; 
Groenen	et	al.,	2012; Pajic et al., 2019; Perry et al., 2007). Seasonal 
rainfall variation has been reported to affect grass availability and 
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Underground Food (UF; food rich in starch whose digestion is facili-
tated by amylases) consumption by geladas in Sankaber, grass avail-
ability significantly related to the cumulative rainfall in the previous 
1–3 months	(Jarvey	et	al.,	2018). To further investigate the UF die-
tary content across gelada populations, we extracted from previous 
publications dietary data of geladas in different locations (Figure 1). 
Only sites with at least 1 year of continuous data collection were 
included, which resulted in four datasets collected over different 
periods:	18 months	in	Kosheme,	Wollo	(Central;	data	collected	from	
May	2015	to	May	2016,	plus	July,	September,	Nov	2016	and	January	
2017;	Kifle	&	Bekele,	2021),	15 months	in	Guassa	(Central;	February	
2007	 to	 April	 2008;	 Fashing	 et	 al.,	2014),	 12 months	 in	 Sankaber	
(Northern;	February	2015	to	January	2016;	Jarvey	et	al.,	2018) and 
12 months	in	Gich	(Northern;	May	2013	to	April	2014;	Woldegeorgis	
&	Bekele,	2015).	We	additionally	 included	data	from	the	Southern	
gelada population of Indetu, the only site with dietary data available 
south	of	the	Great	Rift	Valley	(Abu	et	al.,	2018). Indetu comprised 
a set of continuous observations over 7 months extending from 
August	2010	to	February	2011,	 followed	by	a	gap	 in	March	2011,	
and	two	additional	data	points	for	April	and	May	2011.	In	order	to	
provide a comparison between the five datasets we initially esti-
mated the monthly dietary content of UF (here measured as feeding 
time spent collecting and processing, including chewing and swal-
lowing-  dedicated to any underground part of grass and herbs, in-
cluding	any	unclassified	underground	food	(Jarvey	et	al.,	2018)) over 
the	 6-	month	 period	 shared	 by	 all	 five	 datasets	 (August–January).	
We	 then	 repeated	 the	 same	estimate	using	 a	 sliding	window	of	7	
months, the longest continuous set of observations in Indetu, in the 
other four datasets using only data collected in subsequent months 
with	no	gaps	(number	of	windows	per	population:	seven	for	Wollo,	
eight	for	Guassa,	five	for	Sankaber	and	Gich).	Given	the	link	between	
rainfall,	grass	availability	and	UF	consumption	(Jarvey	et	al.,	2018), 
we collected data on monthly total rainfall for the period spanning 
the years sampled for dietary consumption (2006–2017) for the 
five locations (as measured within a 20 squared km) from CRU- TS 
4.06 (Harris et al., 2020)	 downscaled	with	WorldClim	 2.1	 (Fick	 &	
Hijmans, 2017; Table S5). Spearman correlation coefficient rs and 
associated p- value between UF consumption and rainfall for the full 
dataset were calculated (total number of included months across 
locations:	66).	We	repeated	this	analysis	by	alternatively	consider-
ing rainfall over 1, 2 or 3 months earlier than the month taken into 
consideration	 for	UF	 consumption	 (Jarvey	 et	 al.,	 2018), as well as 
including in the analysis the rainfall in the month of interest for UF 
consumption. Evidence of significant variation in the amount of UF 
consumption and rainfall across the five locations was tested using 
one-	way	ANOVA.

2.9  |  Climatic niche and paleoclimate 
reconstructions

To estimate the climatic niches of the three gelada populations we 
downloaded	a	set	of	19	current	bioclimatic	variables	from	CHELSA	

database version 2.1 (Karger et al., 2017).	As	past	 environmental	
predictors, we used the monthly bioclimatic variables generated 
through	 the	2 Ma	CESM1.2	simulation	 (Timmermann	et	al.,	2022) 
downscaled	 at	 0.5° × 0.5°	 grid	 resolution.	 The	 native	 set	 of	 pre-
dictors was subsequently converted using the ‘dismo’ R package 
(Hijmans et al., 2023)	 to	obtain	the	same	list	of	the	CHELSA	vari-
ables.	 The	 past	 bioclimatic	 dataset	 covers	 the	 last	 2 Ma	 at	 1	 kya	
temporal resolution. Since paleoclimate simulations in Timmermann 
et al. (2022) did not model the diurnal cycle, we excluded the an-
nual mean diurnal range (BIO2) and isothermality (BIO3) from the 
CHELSA	 original	 set	 of	 variables,	 reducing	 the	 number	 of	 biocli-
matic variables to 17 (Table S6). Lastly, both current and past varia-
bles were projected on the Mollweide coordinate reference system. 
For	 SDMs	 calibration,	CHELSA	 variables	were	 rasterised	 at	 1-	km	
spatial resolution, while past climatic predictors were obtained at 
50- km spatial resolution.

To quantify ecological similarity among the extant gelada pop-
ulations, we calculated the niche overlap between them using their 
modern occurrences, due to the lack of T. gelada fossil records 
(Delson, 1993;	Getahun	et	al.,	2023).

Consequently, we used the bioclimatic values derived from 
CHELSA	 variables	 and	 the	 gelada	 occurrences	 compiled	 by	
Ahmed	 et	 al.	 (2023).	We	 further	 filtered	 this	 data	 by	 removing	
duplicate records for cell removing multiple occurrence points 
within	 1 km × 1 km	 grid	 area	 according	 to	 the	 CHELSA	 variables	
spatial resolution. Niche overlap was calculated by adopting the 
approach described by Broennimann et al. (2011).	 Accordingly,	
PCA	was	used	to	decompose	the	environmental	space	defined	by	
modern gelada occurrences. Occurrence data and climate condi-
tions	 associated	with	 them	were	 projected	 into	 the	 PCA	 space,	
and then their densities were computed across the first two PCs 
relying on a kernel density estimator. Densities of occurrence and 
background environments were then divided by the maximum 
number of occurrences in all cells of the environmental space and 
by the number of sites with the most common climate, respec-
tively (Broennimann et al., 2011). The process generated a density 
grid in the environmental space that was used to quantify niche 
overlap between modern niches in terms of Schoener's D index 
(Schoener, 1970). This latter index ranges from 0 to 1 with values 
of 0 indicating no niche overlap and values of 1 indicating a com-
plete overlap. Niche overlap analyses were applied using the ‘eco-
spat’ R package (Di Cola et al., 2017). To define the environmental 
space for gelada, the spatial polygon which enclosed all the occur-
rences of the Theropithecus lineage (including the extinct T. darthi 
and T. oswaldi) was chosen as background environment since we 
have no a priori idea about the ‘accessible area’ (the geographical 
area that was potentially accessible given the species ecological 
tolerances and dispersal abilities) within T. gelada dispersal range. 
Then, we restricted this area to the elevation range where geladas 
currently are known to occur. Specifically, we downloaded current 
global	topography	from	the	CHELSA	database	in	order	to	exclude	
cells with altitude values outside the 95% of the total elevation 
range associated with current T gelada data points following the 
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approach	described	by	Ahmed	et	al.	(2023). Lastly, we stacked the 
17 bioclimatic variables, and we cropped them by using the back-
ground environment extent. Eventually, we grouped all climatic 
values to verify for potential multicollinearity among variables. 
The full set of 17 bioclimatic variables was sub- selected consider-
ing a pairwise correlation coefficient of r > |.75|	(Zuur	et	al.,	2010) 
through the ‘usdm’ R package (Naimi et al., 2014).	After	this	proce-
dure,	we	retained	seven	predictors:	Mean	Temperature	of	Wettest	
Quarter	 (BIO8),	 Mean	 Temperature	 of	 Driest	 Quarter	 (BIO9),	
Mean Temperature of Coldest Quarter (BIO11), Precipitation of 
Driest Month (BIO14), Precipitation Seasonality (Coefficient of 
Variation)	(BIO15),	Precipitation	of	Warmest	Quarter	(BIO18)	and	
Precipitation of Coldest Quarter (BIO19).

Occurrence records and climatic values were projected into 
a	PCA	space	to	decompose	the	entire	environmental	space,	then	
their densities were computed across the first two PCs relying on a 
kernel density estimator. Densities of occurrence and background 
environments were divided by the maximum number of occur-
rences in any cell of the environmental space and by the number of 
sites with the most common climate, respectively (Broennimann 
et al., 2011). The density grid in the environmental space was 
used	 to	compute	 the	niche	overlap.	We	chose	 the	Schoener's	D	
index as a metric for niche comparison (Schoener, 1970). Schoner' 
D metric can measure the degree of niche overlap between dif-
ferent	 species	or	 subspecies,	 from	 low	 (D = 0)	 to	perfect	 (D = 1),	
taking into account both the climatic conditions where the species 
were present and the background environments.

Since there is no fossil record for the T. gelada and because of 
the	very	 low	sample	size	of	 the	single	 living	population,	we	chose	
to calibrate a SDM by using the climatic values associated with all 
modern occurrences and to 10,000 data points randomly picked 
from the background environment. For the SDM, we adopted an en-
semble forecasting approach applying the functionalities described 
in the ‘biomod2’ R package (Thuiller et al., 2009). Specifically, models 
were	trained	by	testing	four	different	algorithms:	Generalised	Linear	
Model	 (GLM),	Generalised	Boosting	Model	 (GBM),	Random	Forest	
(RF) and Maximum Entropy (MaxEnt). The predictive accuracy of 
models was assessed adopting a bootstrap cross- validation scheme. 
Data were split into 70%–30% training/testing samples and the en-
tire procedure was repeated 10 times. To evaluate the model accu-
racy, we calculated the area under the operating characteristic curve 
(AUC;	Swets,	1988). Model averaging was performed by weighting 
the	 individual	model	 projections	 by	 their	AUC	values	 and	 averag-
ing the result (Marmion et al., 2008) after avoiding poorly calibrated 
models	with	an	AUC < 0.7.

Lastly,	we	 obtained	 SDMs	 projections	 at	 each	 1000 years	 (ky)	
for the last 130 kya (that is from the last interglacial to recent), fo-
cusing on temporal windows highlighted as of interest in relation to 
the timing of events of gene- flow and hybridisation and avoiding to 
consider temporal periods too different from the Late Quaternary in 
terms of climatic regimes.

3  |  RESULTS

3.1  |  Uniparental markers

We	 recovered	 mitochondrial	 genomes	 from	 published	 and	 newly	
generated whole genome sequences and reconstructed the phylo-
genetic relationships among the assembled mitogenomes (Figure 2a). 
The topology places the Southern geladas as deeply divergent, sister 
to the clade including both Northern and Central geladas. Central 
geladas are monophyletic but nested within a cluster of Northern ge-
lada mitogenomes, sister to an additional Northern branch. The two 
northern	branches	mirror	the	N1	and	N2	groups	reported	by	Zinner	
et al. (2018), while the C2 branch, but not the C1, is possibly unsam-
pled by currently available mitogenomes (Figure 2a; Figure S1a). The 
mitogenome topology is more similar to the one reported by Shotake 
et al. (2016)	than	the	one	presented	by	Zinner	et	al.	(2018), the ab-
sence in Shotake et al. (2016)	of	one	of	 the	 two	Northern	mtDNA	
branches (N2) possibly due to unsampled lineages (Figure S1a). The 
two Southern gelada mitogenomes are identical and include the 
previously reported haplotype h01/21, the most frequent haplo-
type in the Southern gelada population (Shotake et al., 2016;	Zinner	
et al., 2018).	The	dating	of	the	node	grouping	all	geladas	at	0.49 Mya	
(0.38–0.60)	overlaps	previous	estimates	based	on	shorter	mtDNA	re-
gions (Shotake et al., 2016;	Zinner	et	al.,	2018; Table S2).

Y chromosome SNPs were used to generate a phylogenetic tree. 
Similarly,	to	the	mtDNA	results,	Y	chromosome	sequences	clustered	
according to the population of provenance (Northern, Central and 
Southern), with Southern geladas forming a clade separated from 
the	other	two.	However,	differently	from	the	mtDNA	data,	Central	
and Northern geladas formed two separate sister clades (Figure 2b). 
Samples	from	zoos	group	 in	a	single	clade	with	Central	gelada	 lin-
eages. No further structure was detected when the two different 
sampling locations of the Northern gelada population were taken 
into	 consideration.	 The	 overall	 TMRCA	 for	 the	 gelada	 Y	 chromo-
some	phylogeny	was	dated	to	0.24	Mya	(0.18–0.30 Mya;	Table S2). 
We	additionally	genotyped	previously	described	Y-	STR	markers	 in	
the	two	Southern	geladas	and	the	Stuttgart	Zoo	sample	here	pre-
sented and, using previously genotyped gelada samples, generated 
a phylogenetic tree (Mutti et al., 2023) (Table S3; Figure S1b). The 
main features of the recovered topology were in agreement with the 
results based on whole Y chromosome sequence data: Y- STR hap-
lotypes clustered in accordance to population of provenance and 
Southern haplotypes separated from a cluster comprising Central 
and Northern haplotypes. The two Southern Y haplotypes differed 
for both SNPs and STRs.

We	 noted	 that	 the	 TMRCAs	 of	 the	 mitochondrial	 DNA	 phy-
logeny was about twice the age of those recovered from the Y 
chromosome (Figure 2a,b).	Substantial	differences	in	TMRCAs	be-
tween	the	Y	chromosome	and	mtDNA	have	been	reported	for	go-
rillas	and	orangutans,	but	not	for	chimpanzees	and	humans	(Hallast	
et al., 2016).
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3.2  |  T. gelada population structure and genomic 
variation

For the first time, the whole genome of individuals sampled from the 
gelada	population	located	south	of	the	Rift	Valley	(T. g. arsi) was in-
vestigated.	The	PCA	results	confirm	the	presence	of	structure	within	
the species. The newly analysed Southern population of T. gelada 
is distinct from the two previously reported populations (Northern 
and Central), as suggested by autosomal STRs and mitochondrial 

DNA	 (Shotake	et	al.,	2016; Trede et al., 2020;	Zinner	et	al.,	2018; 
Figure 2a–c). The Northern population is separated from the other 
two along principal component 1 (PC1) which summarises 35.62% of 
the total diversity, while the Southern population separates from the 
others	along	PC2	which	comprises	4.85%	of	the	variation.	As	shown	
by Chiou et al. (2022),	 individuals	from	zoos	belong	to	the	Central	
population	as	our	sample	from	the	zoo	in	Stuttgart	(TGLZ1).

Compared to other geladas, Southern individuals are clear outli-
ers	for	the	proportion	of	observed	heterozygous	sites,	total	length	

F I G U R E  2 Population	structure	of	Theropithecus gelada. Colours referred to gelada taxa as in Figure 1, with the addition of samples from 
zoos,	in	green.	(a)	Whole	mitogenomes	and	(b)	Y	chromosome	sequence	phylogenetic	trees;	the	red	bars	refer	to	highest	posterior	density	
(see Table S2), and the grey dots at the nodes refer to bootstrap values as indicated in the legend in panel a. (c) Principal component analysis 
of	autosomal	SNPs.	(d)	Intra-	individual	variation,	reported	for	each	sample	as	number	of	runs	of	homozygosity	(RoH,	x- axis) and total length 
of RoH (y-	axis).	(e)	Autosomal	SNPs	proportion	of	observed	heterozygous	sites	(HET)	in	investigated	samples	partitioned	by	population.
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and	number	of	RoH.	The	only	exception	was	SAMN20949854,	a	zoo	
sample	that	showed	a	 lower	heterozygosity,	a	greater	number	and	
a	 longer	 total	 length	of	RoH	 than	other	 zoo	 samples	 (Figure 2d,e) 
whose coverage at 1.29× is also much lower than the rest of the 
samples here analysed (mean 14.5×; Table S1).	We	also	tested	the	re-
lationship between individuals up to the third degree and we noted 
that three pairs of geladas individuals from the Northern (Sankaber) 
population have a first- degree relationship; nine pairs have a second- 
degree relationship, including the two from the Southern population 
(sampled in different locations); and another nine pairs have a third- 
degree relationship, including two involving pairs of captive animals, 
one	being	TGLZ1	(Figure S2). It is worth noticing here that for these 
estimates the allele frequencies consider all the individuals here an-
alysed.	As	 such	 this	might	 result	 in	artificial	 closer	affinities	 if	 the	
source populations have substantial lower diversity, as possibly the 
case for the Southern population.

3.3  |  Demographic history of gelada populations

The reconstruction of demographic changes across time was per-
formed using the PSMC	 software	 (Li	 &	 Durbin,	 2011; Figure 3a). 
Results indicate that all three gelada populations experienced de-
creasing	 population	 size	 and/or	 connectivity	 over	 the	 last	 half	 a	
million years, differently from what was experienced by two geo-
graphically close Ethiopian Papionins, Papio anubis and P. hamadryas 
(Figure S3).	Across	geladas,	the	magnitude	of	this	reduction	was	more	
pronounced for the Southern population (Chiou et al., 2022).	The	size	
of	the	three	populations	remained	small	over	the	last	50,000 years.

In order to have an indication of the timing of the most recent 
events of gene flow between different gelada populations, we 

reconstructed the demographic curves of artificial F1 hybrids of 
chromosome	X	through	hPSMC (Cahill et al., 2016; Figure 3). In ac-
cordance with coalescent theory the absence of coalescent events is 
indicative of extremely large populations, which results in the curves 
exponentially	increasing	at	the	time	of	the	latest	MRCA.	The	curves	
for the hybrids between gelada populations show this pattern at 
10–20 kya, suggesting this was the time of last genetic exchange 
between	groups.	We	observed	 the	 same	 results	when	 the	hPSMC 
analyses were replicated making use of the reads mapped to the 
Mmul_10 reference genome (Figure S4b).

We	then	used	D-	statistics	to	further	investigate	patterns	of	gene	
flow across gelada populations by alternatively placing genomes of 
geladas	from	the	three	populations	in	position	H1,	H2	or	H3.	A	gene-	
flow signal between Southern and Central geladas was highlighted 
when compared to the two Northern populations of Sankaber and 
Chenek (Figure S4a), and the two Northern populations showed a 
signal of genetic exchange with the Central than with the Southern 
population	 (D = 0.1199,	 Z = 16.952	 and	 D = 0.1206,	 Z = 16.627)	
(Figure S4a).	We	also	noted	that	the	two	Northern	groups	(Sankaber	
and Chenek) exhibited similar genetic exchange patterns with the 
Central	 and	 the	 Southern	 populations	 (D = 0.0021,	 Z = 0.613	 and	
D = 0.0012,	Z = 0.301	respectively);	as	such,	we	merged	individuals	
from two Northern groups into a single population for subsequent 
analyses (Figure S4a).

3.4  |  Theropithecus–Papio hybridisation

Following previous suggestions of possible Papio and Theropithecus 
hybrids based on molecular data and observations in the field 
(Dunbar	&	Dunbar,	1974;	Walker	et	al.,	2019), we tested for patterns 

F I G U R E  3 Demographic	history	
of gelada populations. Changes in 
effective	population	size	across	time	
estimated using PSMC.	SAMN20949878,	
SAMN20949865	and	A28	genomes	
were analysed for Northern Central and 
Southern geladas respectively. X- axis on 
logarithmic scale. Colours as in Figure 1. 
Inset: hPMSC coalescence curves of 
artificial	X	chromosome	hybrids	of	the	
same three samples, mapped on Tgel_1.0 
reference genome.
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of shared alleles across the two genera using the D- statistics.	We	
initially tested for any gene- flow signal between gelada and Papio 
genomes when compared to Lophocebus. Being sister clades, in 
the absence of gene flow, Papio and Lophocebus should be simi-
larly related to Theropithecus (Perelman et al., 2011). Our results 

highlighted that all Papio genomes exhibited more shared alleles 
with geladas than Lophocebus, suggesting contacts between the two 
genera (Figure 4a). In addition, Papio species showed no difference 
in their degree of shared alleles with different gelada populations 
and vice versa, except for P. anubis and Southern geladas among 

F I G U R E  4 Gelada-	baboons	hybridisation	events.	(a)	ABBA–BABA	tests	comparing	Theropithecus gelada populations (H3) and baboons 
sp.	(as	H1	and	H2);	(b)	ABBABABA	test	comparing	baboons	sp./Lophocebus aterrimus (as H3) and T. gelada populations (as H1 and H2); bars 
show the extent of three standard deviations; (c) admixture graphs (built using the R command find_graphs), reconstructing relationships 
and admixture events between Papionines species; dotted arrows indicate admixture, while associated numbers report the amount of each 
contribution; continuous arrows indicate linear descendants, while associated numbers are indicative of the amount of drift experienced 
along lineages, given in f- statistics units multiplied by 1000; (d) coalescence of artificial hybrids Papio–Theropithecus	X	chromosomes	(hPSMC 
analysis; the gelada samples used are the same in Figure 3; samples for this analyses were mapped on Mmul_10 reference genome); x- axis on 
logarithmic scale.
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which was highlighted a signal of gene- flow (D(Drill, Southern, P. 
hamadryas, P. anubis)	 Z-	score = 3.038;	 D(Drill,	 P. anubis, Southern, 
Central)	 Z-	score = −7.916;	 D(Drill,	 P. anubis; Southern, Northern) 
Z-	score = −7.410;	 Figure 4a,b). Overall, these results suggest that 
gelada populations differ in the amount of between species intro-
gression that occurred in their evolutionary history.

We	 investigated	 the	 evolutionary	 relationships	 among	 T. ge-
lada populations and Papio species (and Lophocebus) by means of 
the approach implemented in find_graphs (Figure S5). The topol-
ogy with the best likelihood score, the greatest number of admix-
ture	events	and	no	branches	with	zero	drift	estimates	is	presented	
in Figure 4. The graph underlined the occurrence of an ancient 
contribution of 11% from the Theropithecus branch to the lineage 
leading to P. hamadryas and subsequent smaller contributions to 
P. anubis (6%) and L. aterrimus (4%) from a population which also 
contributed, together with a pre- Central group, to Southern gela-
das (Figure 4c).

The generation of Theropithecus–Papio	 hybrid	 X-	chromosomes	
and their analysis via hPSMC provided the chronological context for 
the Papio- gelada contacts suggested by the D- statistics and high-
lighted by find_graphs.	All	P. hamadryas/T. gelada hybrids generated 
curves older than 100 kya. Similar curves were generated by P. anu-
bis/T. gelada hybrids except for the hybrids involving P. anubis and 
Southern geladas which were more recent (younger than 50 kya; 
Figure 4d).	We	observed	the	same	results	when	the	hPSMC analyses 
were replicated making use of the reads mapped to the Tgel_1.0 ref-
erence genome (Figure S6).

3.5  |  Copy number variants

We	investigated	the	pattern	of	copy-	number	variants	(CNVs)	across	
the three gelada populations by leveraging the population- based 
genomic	 data	 available	 and	 newly	 generated	 here.	 A	 total	 of	 656	
variable regions with more than two genomic copies were identi-
fied across the 69 available gelada individuals (Table S4).	 The	 size	
of	the	longest	expanded	regions	was	up	to	5.5 Mb,	the	vast	major-
ity	being	below	1 Mb	(Figure S7a). Notably, 45% are singletons, ap-
pearing only once in the whole gelada dataset (Figure S7b). 243 of 
the non- singletons were found only in one of the three populations 
(Figure 5a).	We	 considered	 that	 local	 positive	 selection	 can	 drive	
the increase in the frequency of specific variants in a given popula-
tion and therefore focused our attention on the set of population- 
specific	CNVs	that	were	present	in	no	less	than	25%	of	individuals	in	
a	population	(5	in	Central	and	13	in	Northern	populations).	As	only	
two individuals were analysed for Southern geladas, we considered 
all the regions uniquely expanded in this population and present in 
both individuals. In this way, we identified 20, 17 and 10 regions in 
the Northern, Central and Southern populations, which contained 
19,	9	and	6	genes	respectively.	No	significant	enrichment	in	KEGG	
descriptors was found for the 34 genes across the three popula-
tions.	We	manually	 inspected	 the	 list	 of	 genes	 and	 noted,	 among	
the others, the occurrence of one of the two pancreatic amylase 
genes (LOC112607926). The two Southern geladas genomes hosted 
a different number of amylase duplications: three copies were in-
ferred	 for	A28,	while	 four	were	 estimated	 in	A10,	 the	 rest	 of	 the	

F I G U R E  5 CNVs	and	amylase	gene	
copy	number.	(a)	Population-	specific	CNVs	
divided according to their frequency in 
each population. (b) Normalised genomic 
coverage over the two loci annotated 
as pancreatic amylase in geladas. (c) 
Cumulative	number	of	heterozygous	
positions in 10- kb windows, starting 
from the beginning/end of the two 
geladas pancreatic amylase gene average 
and	extended	for	0.5 Mb.	Reported	is	
the average across individuals for the 
indicated population, each individual 
estimate normalised for the average 
number	of	heterozygous	positions	
estimated on chromosome 1 in each 
individual (see Section 2); dashed lines 
refer to the expected cumulative curve 
for 10- kb windows each displaying the 
average	number	of	heterozygous	positions	
along chromosome 1.Northern Central Southern
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geladas presenting only two (Figure 5b). The extent of the dupli-
cation	was	approximately	50 kb	 in	both	 individuals	 (spanning	posi-
tions 131,716,000–131,771,999 and 131,720,000–131,771,999 in 
samples	A28	and	A10	respectively;	Figure S7c).	Given	the	reliance	
of geladas on underground food in the dry season, we decided to 
further explore the pattern of variation associated with the amylase 
sequences duplicated in Southern geladas (LOC112607926).

Considering a 10- Mb region surrounding the duplicated am-
ylase locus, Southern geladas showed a decrease in diversity that 
extended over a chromosome portion much larger than other pop-
ulations,	up	to	Mbs	in	size	(Figure 5c and Figure S7d). The physical 
extent of the reduced diversity as the result of positive selection is 
shaped by recombination events, which are scaled by the number of 
generations since the selective pressure started. The observed pat-
tern in Southern geladas is compatible with positive selection on the 
duplicated amylase gene being relatively recent (Sabeti et al., 2002, 
2007).

3.6  |  Variation in underground food 
consumption and rainfall

We	tested	for	association	between	rainfall	and	UF	consumption	using	
the full UF dataset of the five locations investigated here (Sankaber 
and	Gich,	Northern;	Guassa	and	Wollo,	Central;	 Indetu,	Southern;	
Fashing et al., 2014;	 Jarvey	 et	 al.,	 2018;	 Kifle	 &	 Bekele,	 2021; 
Woldegeorgis	&	Bekele,	2015) and data on monthly rainfall in the 
same	 locations	 (Fick	 &	 Hijmans,	 2017; Harris et al., 2020;	 Jarvey	
et al., 2018). UF consumption was significantly associated with 
four	 tested	 rainfall	 estimates	 (Jarvey	 et	 al.,	 2018): same month 
total rainfall, rs = −.43126,	p(2-	tailed) = .0003,	monthly	 rainfall	dur-
ing the previous month, rs = −.349,	p(2-	tailed) = .00408,	cumulative	
rainfall during previous 2 months, rs = −.34862,	p(2-	tailed) = .00412	
and cumulative rainfall during previous 3 months, rs = −.2801,	p(2- 
tailed) = .02274	 (Jarvey	et	al.,	2018). Similar patterns are observed 
when the cumulative estimates include the month when UF con-
sumption was considered (Figure S8a).	 We	 verified	 if	 any	 region	
affected in a substantial way the results by repeating the analysis 
removing one dataset per time. The removal of the data from Indetu, 
but not of other datasets, substantially improves the correlation be-
tween monthly rainfall and UF usage (Figure S8b).

The five datasets were collected in different years, but all in-
cluded	the	same	6-	month	period	(August–January).	UF	consumption	
during this period across the five locations is significantly different 
(One-	Way	ANOVA,	F4,25 = 3.82243,	p = .014),	pairwise	comparisons	
being significant for the Indetu–Sankaber pair (post- hoc Tukey test, 
Q = 5.13,	p = .01;	Figure S8c). During this 6- month period, the av-
erage UF contribution to diet in Indetu (31.25%) was 50%–300% 
higher	 than	 in	 the	 other	 four	 regions	 (range	 8.5%–22.21%).	Using	
a moving window of seven consecutive months (the longest con-
secutive period available for Indetu), the distributions of estimated 
averages for Northern and Central overlap, but the mean value 
across seven continuous months at 33% in Southern is outside the 

variation	reported	for	the	other	two	taxa	(Abu	et	al.,	2018) (the maxi-
mum values in the four populations being 15%–26%; Figure S8c;	Abu	
et al., 2018). The main differences between Indetu and the other 
locations appear to be not in the maximum monthly UF consump-
tion	 (46.6%	 in	 Indetu,	49.7%	 in	Sankaber,	36.7%	 in	Gich,	28.1%	 in	
Guassa,	 57.7%	 in	Wollo)	 but	 in	 this	 being	 consistently	 above	20%	
in	 Indetu	 (over	 the	 9 months	 of	 available	 data)	 but	 not	 so	 in	 the	
other	 locations	 (3 months	 in	 Sankaber,	 5	 in	Gich,	 6	 in	Guassa	 and	
7	in	Wollo;	Figure S8c).	We	tested	for	differences	in	rainfall	across	
the five regions but no significant differences were found for any of 
the four rainfall estimates related to the overlapping 6- month period 
(August–January)	(one-	way	ANOVA,	monthly	rainfall	during	relevant	
month, F4,25 = 0.03729,	p = .99716;	monthly	rainfall	during	the	previ-
ous month, F4,25 = 0.4303,	p = .7854;	cumulative	rainfall	during	pre-
vious 2 months, F4,25 = 0.7754,	p = .5516;	cumulative	rainfall	during	
previous 3 months, F4,25 = 1.3515,	p = .2789).	The	same	was	also	the	
case for cumulative estimates including the month when UF con-
sumption was considered (data not shown).

3.7  |  Paleoclimate and gelada spatio- temporal 
distribution

We	 investigated	 the	 eco-	climatic	 similarity	 of	 the	 regions	 cur-
rently occupied by geladas using climatic descriptors of the regions 
where they occur. Our analysis did not highlight significant climatic 
niche overlap among the three gelada populations (Figure 6 and 
Figure S9). Nonetheless, our results suggest the Southern popu-
lation niche resembles more that of the Central population than 
the one of the Northern geladas. The two in fact partially overlap 
in their ecological spaces but the habitat of the Southern popula-
tion is characterised by lower temperature values during the cold-
est and driest months (bio9 and bio11; Figure 6). Our results also 
indicate that the Northern population is characterised by the high-
est climatic variability. In contrast to the other two populations, 
the density of the Northern population extends along the PC1 axis 
towards	higher	bio15,	bio18	and	bio14	values	suggesting	that	this	
population is associated with wetter habitats with overall more 
precipitation (Figure 6).

SDMs achieved excellent performance with a weighted mean 
AUC = 0.96	(sd = 0.06).	SDM	predictions	suggested	a	high	climatic-	
driven variability in habitat suitabilities for the three gelada popu-
lations in the past. Northern and Central populations show similar 
behaviour in terms of climatic tolerance and adaptation. In con-
trast, we observed a general lower habitat suitability for the area 
where the Southern population actually occurs. In addition, we 
noted a drastic reduction in habit suitablities for geladas during the 
Last	Glacial	Maximum	 (LGM;	24–18	kyr;	Figure 7; Supplementary 
Material 1).	Despite	 an	 overall	 post-	LGM	 improvement,	 the	 habi-
tat suitability of the region occupied by the Southern population 
resulted consistently lower than that of the regions occupied by 
the Central and Northern populations (Figure S10; Supplementary 
Material 1).
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4  |  DISCUSSION

4.1  |  Population dynamics and climate changes

The role played by climate variation on the evolutionary history 
of extant and extinct species has gathered centre stage in the dis-
cussion about major drivers of evolution (Carotenuto et al., 2016; 
Nogués- Bravo et al., 2010). Long and short- term wet- dry cycles 
have been investigated in relation to long- distance dispersals and 
isolation, events of gene- flow and hybridisation, drift and local 
adaptation in human and non- human primates (Chala et al., 2019; 
Stewart et al., 2020; Timmermann et al., 2022;	 Timmermann	 &	
Friedrich, 2016). Dietary and environmental specialisations (Chiou 
et al., 2022), together with a low fertility rate (one infant every 
2–3 years;	 Dunbar,	 1980) make gelada populations more vulner-
able	 to	 eco-	climatic	 changes,	 past	 and	 present.	 As	 such	 the	 re-
construction of how climate changed in the past can provide the 
context for interpreting the demographic events inferred from the 
analysis of genomic variation in gelada populations. The analysis 

of	 autosomal	 microsatellites	 and	 mitochondrial	 DNA	 sequences	
in several T. gelada individuals sampled in the wild has previously 
suggested the subdivision of the species into three main popula-
tions, generally referred to as Northern, Central and Southern in 
accordance with their geographical distribution along Ethiopian 
highlands	(Gippoliti,	2010; Shotake et al., 2016; Trede et al., 2020; 
Zinner	et	al.,	2018). Our genomic analysis, extended to include data 
from gelada individuals collected from the Southern population, 
confirmed the proposed tripartition of this species. Full mitoge-
nomes and Y chromosome sequences were similarly in agreement 
with the three- population structure, with further subdivisions 
hinted	by	mtDNA	and	genomic	data,	but	not	Y	chromosome	se-
quences (Figure 2a,b). Male lineages from different Northern sub-
populations did not cluster according to their sampling location 
(unfortunately, having only one subpopulation for Central and 
Southern gelada, we were not able to explore this aspect in these 
populations) and lineages from different regions were related 
to each other. Such lack of structure might reflect the predomi-
nantly male- mediated intergroup migration observed in the wild 

F I G U R E  6 Gelada	population	niches	along	the	first	two	principal	component	analysis	(PCA)	axes	(PC1	and	PC2)	of	bioclimatic	variables	
recorded at occurrence sites and in the background environment within the study area. Red: niche calculated from central population sites; 
yellow: niche calculated from southern population sites; blue: niche calculated from exclusive northern population sites. Colour shading 
shows the density of the occurrences of the species by cell, with the solid and dashed contour lines illustrating, respectively, 50% and 90% 
of the available environment.
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(Dunbar, 1980; le Roux et al., 2011). The different demographic 
dynamics affecting males and females might also explain the sig-
nificant differences in the amount of variation recovered using the 
mtDNA	and	the	Y	chromosome	as	summarised	by	their	different	
TMRCAs,	 the	Y	 chromosome	being	 two	 times	 younger	 than	 the	
mitogenome	(0.24 Mya	vs.	0.49 Mya).	Similar	differences	in	mito-
chondrial	and	Y	chromosome	TMRCAs	have	been	noted	previously	
in	gorilla/orangutans	but	not	in	chimpanzees	(Hallast	et	al.,	2016). 
Such differences have been explained by non- mutually excluding 
scenarios related to the mating strategy implemented by males: 
(a) a substantial skew in male reproductive success, which would 
result in a reduction in Y chromosome diversity; (b) a reduced 
sperm competition, resulting in lower sperm production and an as-
sociated	lower	Y-	related	mutation	rate.	A	lower	mutation	rate	has	
not been reported in baboons, but male- skewed reproductive suc-
cess has been described (Fischer et al., 2019;	Wu	et	al.,	2020). It 
is therefore possible that the skewed sampling process associated 
with male variation reproductive success might be the underly-
ing	explanatory	mechanism	for	the	observed	Y/mtDNA	TMRCAs	
in geladas. Relative differences in age are also dependent on the 
accuracy of mutation rates for different loci (Hallast et al., 2016). 
Further investigations into other species might provide useful in-
sights on this topic.

The	lack	of	shared	Y	chromosome	and	mtDNA	lineages	across	
the three gelada populations suggests a relatively deep subdivi-
sion	 among	 these	 groups,	 the	 mtDNA/Y	 chromosome	 TMRCAs	
between Southern and Central- Northern gelada dating to 500–
150	 kya.	 Gene-	flow	 among	 populations	 appears	 to	 have	 been	
interrupted only in the last 20 kya but population contractions 
had been in place much earlier than that (Figure 3). The lack of 
more recent coalescent events for uniparental markers could 
be due to sampling as well as drift, the latter expected to be 
more pronounced for haploid systems. The occurrence of deep 

mitochondrial and Y chromosome branches in Southern geladas 
is compatible with a model suggesting early colonisation of the 
region followed by periods of isolation and population contraction 
(Supplementary Material 1; Figure S10) Interestingly, the most 
recent period of isolation suggested by genomic data appears to 
parallel changes in the climatic- driven habitat suitability of T. ge-
lada,	with	gene-	flow	being	interrupted	since	LGM	(Figures 7; 3).	A	
dynamic, metapopulation model is suggested by admixture trees, 
PSMC plots and paleoclimate reconstructions, all depicting a sce-
nario where events of expansion, gene- flow, isolation and possibly 
local extinction were probably not uncommon (Supplementary 
Material 1). The extreme fluctuations in habitat suitability are also 
compatible with the continuous reduction in effective population 
size	estimated	 for	T. gelada (Figure S10, Supplementary Material 
1; Figure 3),	resulting	from	decreasing	population	size	and/or	con-
nectivity. The more extreme reduction in diversity and increase 
in RoH reported for Southern geladas parallel the more severe 
change	in	effective	population	size	highlighted	over	recent	times	
by PSMC and follows the lower degree of habitat suitability expe-
rienced over time by the Southern population (Figures 2d,e, 3, 7; 
Figure S10, Supplementary Material 1).

4.2  |  Hybridisation

Our extensive genomic comparison provided support for previ-
ously suggested gene- flow between Theropithecus and Papio, their 
last	common	ancestor	possibly	dating	to	5 Ma,	close	to	the	human–
chimpanzee	 split	 (Liedigk	 et	 al.,	 2014). Hybrids have been poten-
tially	identified	in	the	wild	(Dunbar	&	Dunbar,	1974) and observed in 
captivity	(Jolly	et	al.,	1997; Markarjan et al., 1974). The phenotypes 
of the captive and wild hybrids were different, possibly reflecting 
gelada or Papio	backcrossing	(Jolly	et	al.,	1997). Captive F1 showed 

F I G U R E  7 Predicted	habitat	suitability	maps	of	Theropithecus gelada in Ethiopia at three different past time frames. Higher values indicate 
the areas that were more favourable for gelada habitation. Red dots represent the current geographical location of the gelada sites.
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intermediate or more gelada- like features, exceeding both parental 
populations	for	body	size	(Jolly	et	al.,	1997; Markarjan et al., 1974). 
Our data suggested ancient gelada contributions to Papio spe-
cies present in Ethiopia (P. hamadryas and P. anubis). Interestingly, 
the time of the last contact of Papio anubis with Southern geladas 
aligned with a period when the predicted Southern geladas suitable 
habitat area was increasing (Figure S10, Supplementary Material 1). 
Similar changes have occurred multiple times in the past and might 
have facilitated also the more ancient contacts of T. gelada with P. 
hamadryas.

The occurrence of captive fertile F1 (Markarjan et al., 1974) 
but the lack of genomic evidence for recent gene- flow could be 
explained by the hybrid F1 being generally disfavoured in the wild 
and	 therefore	 less	 likely	 to	 survive	 and	 reproduce.	 Jolly	 and	 col-
leagues	 (Jolly	 et	 al.,	1997) proposed two possible explanations of 
why hybrids might have a lower fitness in the wild, both based on 
their larger appearance. Both considered the additional energy re-
quirements	 associated	with	 larger	 body	 size:	 increased	 nutritional	
requirements but lower- crowned teeth (as observed in the hybrids 
in	the	wild;	Jolly	et	al.,	1997) might drive early loss of dental function 
and inability to fulfil their nutritional needs, and the increased ma-
ternal burden associated with the raising of a larger foetus and the 
nursing	of	a	bigger	infant	(Jolly	et	al.,	1997).

The antiquity of the introgression events probably provided 
enough time for natural selection to remove incompatible or dele-
terious gelada alleles from the genome of Papio (and Lophocebus), as 
well as increase the frequency of favourable variants, in a scenario 
not too dissimilar from what was observed in humans after the hybri-
disation with Neanderthals and Denisovans (Tobler et al., 2023). The 
recent release of a large Papio genomic dataset is expected to enable 
a more detailed investigation of the genomic distribution of gelada 
ancestry	and	their	possible	phenotypic	impact	(Groh	&	Coop,	2024; 
Sørensen et al., 2023).

4.3  |  Climate, diet and local adaptations

The unique dietary profile of geladas dominated by grass makes 
the variation across populations in UF usage of interest (Figure S8; 
Jarvey	et	al.,	2018).	Grass	is	the	staple	of	choice	of	geladas,	its	con-
tribution to diet being shaped by its availability ultimately influenced 
by rainfall. UF operates as fallback food, its usage strongly driven 
by	grass	availability.	While	the	link	between	grass	consumption	and	
rainfall is strong, the one between dietary UF and rainfall is present 
but	weaker	(Jarvey	et	al.,	2018 and our results). Other factors prob-
ably	play	a	role	in	determining	UF	usage	(Abu	et	al.,	2018).	All	this	
considered, despite no variation in rainfall, geladas of the Southern 
population of Indetu appear to consume more UF than other ge-
lada groups. Interestingly Southern geladas harbour more copies of 
LOC112607926, one of the two genes annotated as pancreatic am-
ylase in the gelada reference genome (Figure 5), a genomic feature 
observed in dogs, pigs and human populations with a diet enriched in 
starchy	food	(Jarvey	et	al.,	2018; Pajic et al., 2019; Perry et al., 2007). 

The reduction in diversity around the duplicated locus in Southern 
gelada is indicative of positive selection, while the chromosomal 
extent of this pattern suggests this being a relatively recent event. 
For comparison, the reduction of diversity around the variants as-
sociated with lactase persistence in humans is similarly observed 
over	more	 than	 1 Mb	 (Bersaglieri	 et	 al.,	2004;	 Joslin	 et	 al.,	2020). 
Considering that selection on the persistence of LCT expression into 
adulthood has been dated to no more than a few thousand years 
ago	(considering	a	generation	time	in	humans	of	28 years,	these	cor-
respond to a few hundred generations; Burger et al., 2020; Evershed 
et al., 2022), it is reasonable to consider the pattern observed in 
Southern gelada being generated over a number of generations 
around the same order of magnitude (at least hundreds).

During the past 30 kya, southern Ethiopia has undergone strong 
climatic	changes,	from	dry	and	relatively	cold	during	the	Last	Glacial	
Maximum	 (LGM,	 25–18	 kya)	 to	 the	 African	 Humid	 Period	 (AHP,	
15–5	kya;	Casas-	Gallego	et	al.,	2023; Fischer et al., 2021; Foerster 
et al., 2012). Our past SDM predictions perfectly fit the Ethiopian 
climatic trends suggesting that gelada spatial distribution was af-
fected by these intense climatic fluctuations (Figure 7). Particularly, 
we	show	that	during	the	LGM	the	Southern	geladas	extremely	suf-
fered cold and dry conditions (Figure 7; Supplementary Material 
1; Figure S10) whereas the impact was limited for the other two 
populations.	We	propose	 that	 increased	UF	consumption	and	am-
ylase copy number are related in Southern geladas. The ecological 
context experienced over time by this population might have driven 
positive selection on the amylase duplication in the last few thou-
sand years, compatible with the physical extent of the reduction of 
diversity around this locus. Increased UF consumption by geladas 
has been observed when grass/rain is scarce and metabolic adapta-
tion enabling more efficient processing of starchy food is expected 
to	 provide	 an	 evolutionary	 advantage	 in	 such	 situations	 (Jarvey	
et al., 2018; Pajic et al., 2019; Perry et al., 2007).	While	past	climate	
might have provided the context for positively selecting a higher 
number of copies of the amylase gene in Southern geladas, other dy-
namics might have contributed over time too. The observation that 
increased UF consumption in Indetu occurred despite no differences 
in rainfall might reflect behavioural differences in food preference 
across gelada populations. It has been also reported that gelada 
UF consumption in Indetu in the wet season is slightly higher than 
during	 the	dry	 season	 (seasonal	mean	38%	and	33%	 respectively;	
Abu	et	al.,	2018).	A	general,	behavioural-	related,	increase	in	UF	con-
sumption could have reinforced the climate- related selective pres-
sure on salivary amylase copy- number, generating a co- evolutionary 
scenario not too dissimilar from the gene–culture interactions re-
ported in humans for lactase persistence (Evershed et al., 2022). It 
remains to be tested if in Indetu the use of UF is less related to the 
amount of grass available and if local behavioural traits contribute to 
the	increase	in	UF	consumption	(Whiten	et	al.,	1999). Interestingly, 
the removal of data from Indetu improves the correlation between 
UF consumption and rainfall in the dataset we tested, suggesting 
that other variables, including anthropogenic, affect dietary UF con-
tribution	to	diet	in	Indetu	(Abu	et	al.,	2018).
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The	 Ethiopian	 Highlands	 (part	 of	 the	 Eastern	 Afromontane	
Biodiversity Hotspot; Mittermeier et al., 2011) can be divided into 
the main north- western massif (western plateau) and the smaller 
south-	eastern	plateau,	the	two	separated	by	the	East	African	Great	
Rift	Valley	(Yalden	et	al.,	1996). The highland plateaus belong to the 
same	ecozone	 (Afroalpine	and	 subafroalpine	vegetation)	 although,	
some variation in the taxonomic composition of both plant and an-
imal communities as a result of biogeographical patterns across ge-
lada	locations	is	present	(Vivero	et	al.,	2006). Currently, the lack of 
a systematic investigation in plant composition across the plateaus 
and locations of gelada occurrence prevents any further analysis in 
how these affect food consumption. Nevertheless, it is worth notic-
ing that gelada on the Eastern plateaus live at slightly lower altitudes 
than	those	on	the	western	plateau	(1600–2300 m	vs.	above	2300;	
Abu	et	al.,	2018;	Belay	&	Shotake,	1998), which might further affect 
the set of species available to geladas. However, it will be necessary 
to collect more information on what plant species are present and 
the extent of their occurrence across sites to test how these aspects 
shape what geladas prefer and ultimately consume.

We	note	that	the	two	Southern	Individuals	here	whole	genome	
sequenced were not collected in Indetu and it remains to be shown 
if increased copy number/increased UF consumption are features 
shared across all Southern geladas. More ecological and behavioural 
data, as well as a more extensive characterisation of amylase copy- 
number variation and their expression in Southern geladas, are 
necessary to test the association between UF consumption, grass 
availability and amylase genes in this population.

We	note	that	an	increase	in	the	copy	number	of	pancreatic	amy-
lase is expected to increase not only the expression in the pancreas 
but also in the salivary glands, as pancreatic amylase is also expressed 
in	salivary	glands	(Axelsson	et	al.,	2013; Fagerberg et al., 2014; Han 
et al., 2022; Mau et al., 2010; Pajic et al., 2019; Samuelson et al., 1996; 
Torres et al., 2018). Selective pressure associated with an increase 
in starch consumption have been shown to favour the expansion of 
amylase genes, salivary and/or pancreatic (Pajic et al., 2019). The re-
lated increase in amylase production, both in the pancreas and the 
salivary glands, results in an increased capacity of processing starch 
both	 in	 the	mouth	and	 the	digestive	 system	 (Axelsson	et	al.,	2013; 
Mau et al., 2010; Pajic et al., 2019; Perry et al., 2007; Samuelson 
et al., 1996), which might be the case also for Southern geladas.

4.4  |  Implications for the taxonomy and 
conservation of T. gelada

The genomic analyses here presented support that presently the 
genus Theropithecus may be subdivided into three evolutionary units 
that have been taxonomically designated as Theropithecus gelada ge-
lada (Rüppell, 1835), Theropithecus gelada obscurus Heuglin, 1863 
respectively in the northern and central areas of the Ethiopian pla-
teau, and, in the south- eastern mountain range, Theropithecus gelada 
arsi,	so	agreeing	with	most	recent	literature	(Gippoliti,	2010; Shotake 
et al., 2016; Trede et al., 2020;	 Zinner	 et	 al.,	 2018). This taxonomic 

account represents a solid base for conservation policies that aim to 
protect the current diversity of the genus, but, as often the case, must 
not be considered definitive. In particular, it remains to be determined 
whether the three identified evolutionary units should be treated as 
having	equal	 rank	or	 if	 the	Arsi	 (Southern)	gelada	should	be	consid-
ered a distinct species. This consideration is based on the potentially 
older	divergence	of	the	Arsi	gelada	from	the	two	subspecies,	gelada 
(Northern) and obscurus (Central), suggested by deep coalescent 
events	of	uniparental	markers	and	is	consistent	with	the	Rift	Valley's	
well- known role as a barrier for mountain animal specialists in Ethiopia 
(Lavrenchenko	&	Bekele,	2017).	Additionally,	the	ecological	challenges	
of	the	Arsi	habitat,	supported	by	food-	related	adaptations	reported	for	
the amylase gene and the specific present and past climatic niche of 
the	Arsi	geladas,	further	support	treating	the	Arsi	population	as	a	dis-
tinct	species.	We	highlight	that	other	standard	taxonomic	databases,	
such as cranial morphology, have been scarcely investigated so far and 
could be critical to further refine our taxonomic knowledge.

In this regard, we also note that the Northernmost gelada pop-
ulations have been recently confirmed in the Tigray, whose genetic 
and morphological affinity to other gelada populations is still un-
clear	 (Girmay	 &	 Dati,	 2020;	 Girmay	 &	 Tesfay,	 2020; Haileselasie 
et al., 2023). Considering the geographical features of the region, it is 
not impossible that the geladas from Tigray will turn out to be closer 
to T. g. obscurus (Central) than T. g. gelada (Northern), making the geo-
graphical designation of these subspecies as Central and Northern 
incorrect and instead supporting an alternative nomenclature as 
Western	 (gelada) and Eastern (obscurus)	 geladas	 (Gippoliti,	 2010). 
Future characterisation of these groups will clarify this interesting 
geographical and taxonomic aspect of the species.

As	 a	 species	Theropithecus gelada is considered Least Concern 
by	IUCN	(Gippoliti	et	al.,	2019). Irrespective of the taxonomic rank 
accorded, T. gelada arsi, with between 2000 and 3000 surviving in-
dividuals	estimated	(De	Jong	et	al.,	2023), is a conservation priority 
despite the lack of a formal description that has delayed a formal rec-
ognition	by	IUCN	(Gippoliti,	2022).	The	Arsi	gelada	may	be	consid-
ered Endangered according to IUCN criteria – a formal assessment 
has	 just	been	published	 (De	Jong	et	al.,	2023).	The	Galama	Ridge,	
which	offers	protection	to	the	Arsi	geladas,	suffers	from	intense	an-
thropogenic pressure and no protected areas exist in the region. The 
remaining mosaic forests are threatened by intensive deforestation 
and agricultural ploughing. Montane habitats suffer from burning 
during	the	dry	season	and	overgrazing	during	the	wet	season	(Kostin	
et al., 2019). This taxon may therefore serve as a much- needed flag-
ship species attracting naturalistic tourism to their narrow region 
of	occupancy	along	the	gorges	of	the	Webi	Shebeli	and	Robi	rivers.	
Obviously, revenue from tourism must be shared with local commu-
nities to lessen anthropogenic impacts on ecosystems.

5  |  CONCLUSIONS

By integrating genomic, climatic and dietary data we have generated 
a detailed picture of the evolutionary history of Theropithecus gelada. 
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The inclusion of more genomic data, from living individuals and mu-
seum	specimens	(Gippoliti,	2010), is expected to refine our results 
by providing a more detailed description of the degree of population 
structure and gene flow across populations that may be critical for 
long- term conservation planning. The integration of morphological 
data and the inclusion of functional analyses will contribute addi-
tional insights on the degree of variation within the species and the 
evolutionary significance of such diversity. Reconstructing the his-
tory of this species is also expected to unlock to what extent gela-
das will be able to face the challenges related to ongoing and future 
climatic	changes	(Ahmed	et	al.,	2023). Indeed, a formal assessment 
of	this	population	has	just	been	published	(De	Jong	et	al.,	2023) that 
suggests	the	Arsi	gelada	should	be	classified	as	Endangered	accord-
ing to IUCN criteria.
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