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Abstract
Theropithecus gelada, the last surviving species of this genus, occupy a unique and 
highly specialised ecological niche in the Ethiopian highlands. A subdivision into three 
geographically defined populations (Northern, Central and Southern) has been ten-
tatively proposed for this species on the basis of genetic analyses, but genomic data 
have been investigated only for two of these groups (Northern and Central). Here 
we combined newly generated whole genome sequences of individuals sampled from 
the population living south of the East Africa Great Rift Valley with available data 
from the other two gelada populations to reconstruct the evolutionary history of the 
species. Integrating genomic and paleoclimatic data we found that gene-flow across 
populations and with Papio species tracked past climate changes. The isolation and cli-
matic conditions experienced by Southern geladas during the Holocene shaped local 
diversity and generated diet-related genomic signatures.
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1  |  INTRODUC TION

Theropithecus gelada is the only extant species belonging to the 
primate genus, Theropithecus (Delson,  1993). This species occu-
pies a unique ecological niche, the Afroalpine grasslands of the 
Ethiopian Highlands, and is specialised for altitudes ranging from 
2000 to 4500 m (Belay & Shotake,  1998). Geladas are the sole 
graminivorous primates, consuming a grass-based diet similarly to 
ungulates (Iwamoto, 1993a). Their diet comprises primarily gram-
inoid leaves (up to 90% of the ingested food; Dunbar, 1977). The 
second most common dietary component is underground food 
(UF: tubers, roots and corms), a nutritional fall-back resource 
rich in starch and mostly consumed when the grass is scarce as 
the result of decreased rainfall (Iwamoto,  1993a, 1993b; Jarvey 
et al., 2018).

On the basis of morphological traits, two major subspecies 
have been described: T. g. gelada (Rüppell, 1835) and T. g. obscurus 
Heuglin,  1863. The two subspecies are usually associated re-
spectively with the northern region and the central region of the 
Northern Ethiopian plateau (de Beaux, 1925; Gippoliti, 2010; Girmay 
& Tesfay, 2020). However, the absence of clear-cut differences, par-
ticularly when considering the variation in coat pigmentation, and 
the apparent absence of a major barrier between the two taxa has 
led to scepticism about the taxonomic validity of the subspecies clas-
sification (Yalden et al., 1976, 1996). Mitochondrial DNA (mtDNA) 
phylogenetic analyses are broadly congruent with the Northern-
Central subdivision first proposed by de Beaux (de Beaux,  1925; 
Shotake et  al.,  2016; Zinner et  al.,  2018). The geographical range 
of modern-day geladas was extended in 1990 when a population 
was found south of the Great Rift Valley in the South-eastern pla-
teau, in the Arsi mountains (Mori & Belay, 1990). In 2016 the sub-
species Theropithecus gelada arsi Shotake Saijuntha Agatsuma et 
Kawamoto, 2016, was tentatively proposed for this clearly isolated 
population on the basis of coat coloration and molecular data (Belay 
& Shotake,  1998; Gippoliti,  2010; Mori & Belay,  1990; Shotake 
et al., 2016).

Given the debate about the geographical distribution of the 
three gelada subspecies and concerns about their taxonomic valid-
ity, in this work, we will name the three gelada demes as Northern, 
Central and Southern geladas, as done by others in previous investi-
gations (Chiou et al., 2022; Trede et al., 2020; Zinner et al., 2018) ac-
knowledging that some degree of overlap is present between these 
geographically described units and the T. g. gelada, T. g. obscurus and 
T. g. arsi taxa (cf. Figure 1; Gippoliti, 2010; Shotake et al., 2016).

Early molecular investigations showed significant differentia-
tion between populations across the Ethiopian Rift Valley (Central 
and Southern geladas), with the two groups being characterised 
by similar levels of within-group variation (Belay & Shotake, 1998). 

Notably, the mitochondrial lineages of the Southern geladas of the 
Arsi mountains are identified either as basal to all the other ge-
ladas (Central and Northern; Shotake et  al.,  2016) or are placed 
within the Northern variation, sister to a Northern subclade 
(Zinner et al., 2018). Despite these differences in tree topologies, 
the investigations conducted by Zinner et al.  (2018) and Shotake 
et al. (2016) are concordant in supporting a relatively recent Time 
to the Most Recent Common Ancestor (TMRCA) of gelada mtDNA 
(670–400 thousand years ago, kya), and in showing Southern ge-
ladas as characterised by the lowest mtDNA diversity across the 
three gelada populations. Interestingly, no lineages are shared be-
tween geladas living in the three regions (with the exception of 
a likely mislabelled sample, as suggested by Zinner et al.  (2018)), 
suggesting deep population structure among the three groups, 
at least for the maternal lineages. Microsatellite data from a sub-
set of the samples analysed by Zinner et  al.  (2018) confirmed a 

F I G U R E  1 Geographical origin in the Ethiopian highlands of 
Theropithecus gelada samples analysed in this work. Colours refer 
to source populations (Northern, Central and Southern) and shapes 
identify the data available for the sample (Complete genome 
sequence and mitochondrial DNA only). The dotted line provides 
an approximate indication of the distribution of P. hamadryas (right) 
and P. anubis (left) in the area of interest, as indicated in Sørensen 
et al. (2023). The stars provide the location of provenience of 
the five datasets with UF consumption and rainfall data (from 
top to bottom: Northern: Sankaber (Jarvey et al., 2018) and 
Gich (Woldegeorgis & Bekele, 2015), Central: Guassa (Fashing 
et al., 2014) and Wollo (Kifle & Bekele, 2021), and Southern: Indetu 
(Abu et al., 2018)). Prepared using Natural Earth. Free vector and 
raster map data @natur​alear​thdata.​com.

6°N

8°N

10°N

12°N

14°N

36°E 38°E 40°E 42°E 44°E
Longitude

La
tit

ud
e

Great Rift Valley

Red Sea

P. anubis P. hamadryas

K E Y W O R D S
evolutionary history, gene-flow, paleoclimate, population genomics, Theropithecus gelada

 1365294x, 2024, 19, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.17514 by U
ni Federico Ii D

i N
apoli, W

iley O
nline L

ibrary on [28/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://naturalearthdata.com
https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1111%2Fmec.17514&mode=


    |  3 of 23CALDON et al.

three-deme structure for geladas (Trede et al., 2020), the genetic 
distance, measured using FST, between Southern geladas and the 
other two populations being two-three times larger than the dis-
tance between Central and Northern (Trede et  al.,  2020). More 
recently, whole genome sequence data of individuals from two re-
gions in the Northern (Sankaber and Chenek), one in the Central 
(Guassa) and five US zoos were released (Chiou et al., 2022). The 
published preliminary population genomic analysis of this dataset 
confirmed the subdivision between Northern and Central geladas, 
zoo specimens (ultimate origin of these animals or their ancestors 
was unknown) showing mostly a Central gelada ancestry compo-
nent. The Northern-Central separation also emerged at karyotypic 
level as a different number of chromosomes were suggested for 
individuals sampled in the two regions (42 and 44 respectively). 
Centric fission of chromosome 7 was detected in Northern gelada, 
resulting in two acrocentric chromosomes, 7a and 7b, and 2n = 44 
karyotype. Such a macroscopic genomic difference was inter-
preted as evidence for putative incipient speciation as hybrids be-
tween lineages with heterozygous karyotypes might have reduced 
reproductive success (King, 1995). Genome-wide data were also 
used to estimate how the effective population size of Northern 
and Central geladas changed in the past. Both showed an almost 
steady decrease over the last million years; notably, Northern ge-
lada and Central gelada diverged in their pattern 500 kya, sug-
gesting this as the initial temporal point of separation of the two 
groups (Chiou et al., 2022).

The Ethiopian plateau is part of the East African Rift System, 
an area profoundly affected by environmental instability during 
the late Quaternary (Foerster et  al.,  2012). Geochemical, physi-
cal and biological indicators testify that Ethiopia's climate regime 
was controlled by the intensification of the dry–wet–dry cycles 
during the last glacial period, potentially linked to the change in 
orbitally forced radiation (Trauth et al., 2003). Species response to 
such changes usually includes habitat tracking towards different 
latitudes, altitudes or the population concentrated within refugia 
(Keppel et al., 2012; Raia et al., 2012). The gelada is probably no 
exception, since the species is currently confined to the Ethiopian 
Highland at high altitudes whereby the three recognised popula-
tions occupy different areas of the plateau (Keppel et  al.,  2012; 
Raia et al., 2012).

Assessing the ecological similarities and differences among 
gelada populations is therefore fundamental to understanding 
the effect of climate on their current distribution. Despite its rel-
evance, climate variability has been explored only in relation to 
the ecological diversification and fate of different members of the 
genus Theropithecus (Dunbar, 1993; Pigkford, 1993), while recent 
work has investigated how future climatic changes might alter the 
spatial distribution of geladas (Ahmed et al., 2023). Nevertheless, 
an extensive approach to derive a climatic-driven spatial distribu-
tion of gelada in the past is yet to be applied. To this aim, we used 
Species Distribution Models (SDMs), a powerful tool widely used 
in ecology, biogeography, biodiversity conservation and natural 
resources management (Guillera-Arroita et  al.,  2015). SDMs are 

further indicated to complement fossil and genetic evidence by 
providing spatial prediction of past species distribution (Svenning 
et al., 2011).

In addition, hybridisation, another process potentially influenced 
by climactic variation, has been suggested between geladas and 
members of the genus Papio, possibly having occurred more than 
once, on the basis of mobile elements being shared across the ge-
nomes of baboon species and geladas (Walker et al., 2019). However, 
besides the rejection of a phylogenetic tree that excluded gene flow 
between geladas and Papio (Santander et al., 2022), no formal test-
ing for hybridisation event(s) has been performed so far. Mating 
events between geladas and baboons and the possible presence of 
hybrids have been reported both in captivity and in the wild (Dunbar 
& Dunbar, 1974; Jolly et al., 1997; Markarjan et al., 1974).

Overall, the emerging consensus based on DNA supports at 
least three evolutionary units for T. gelada, with a robust parallelism 
between genetics and geography, possibly the result of their adap-
tation to the montane grassland environment (Chiou et  al.,  2022). 
However, the impact of climatic changes on geladas current geo-
graphical distribution and past population dynamics has been poorly 
explored, particularly considering the intense climatic oscillations 
of the Late Pleistocene. Here we integrate population genomic 
data with explicit modelling of species habitat suitability to better 
clarify the linkage between species ecological preferences and de-
mographic dynamics, with the aim of generating an integrated re-
construction of the evolutionary history of Theropithecus gelada.

As is often the case in biological conservation, reaching a consen-
sus on taxonomy and conservation units by integrating as many dif-
ferent data sets as possible (Gippoliti, 2020; Groves et al., 2017) may 
be crucial for immediate management actions for Theropithecus. This 
may include the identification of priority sites for research and con-
servation in Ethiopia, the recognition of the significance of ex-situ 
population programs and the future planning for re-stocking and/
or reintroduction actions. We note that while the conservation sta-
tus of the overall species is Least Concern (LC; Gippoliti et al., 2019) 
the geographical features of the Ethiopian plateau can endanger the 
survival of populations due to isolation and small census size, as well 
exemplified by Southern geladas.

2  |  MATERIAL S AND METHODS

2.1  |  Sampling and samples dataset

Gelada blood samples from different locations in Ethiopia were 
collected by two of the authors (G.B. and T.S.) during 1978–1997 
(more details can be found in Belay & Shotake,  1998; Shotake 
et  al.,  2016). The guidelines for field research of the Kyoto 
University Primate Research Institute and the rules and regula-
tions of the Ethiopian government at the time were followed dur-
ing blood collection (Belay & Shotake, 1998). From this collection, 
DNA samples from the Arsi (Southern) population were evalu-
ated for their compatibility with whole-genome sequencing, and 
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two samples, one from Gado-Goro (A28) and one from Lega Aba 
Boge-Lega Adem (A10), were selected to be whole-genome se-
quenced. Sample A28 was sequenced to a depth of 30×, while 
sample A10 reached a median coverage of 12×, the sequencing 
being completed by EuroFin Japan. In addition, we sequenced a 
gelada sample provided via the European Association of Zoos and 
Aquaria (EAZA) by the Wilhelma Zoo Stuttgart and processed by 
the EAZA biobank hub at the Leibniz Institute for Zoo and Wildlife 
Research (HJZ14-00788), here referred to as TGLZ1 (the ultimate 
geographical origin of all captive animals included in this study and 
their ancestors is unknown). The sample TGLZ1 was sequenced 
at the Centro Nacional de Análisis Genómico in Barcelona, reach-
ing a final coverage of 33.65×. We also generated whole genome 
sequence data from a sample of Lophocebus aterrimus provided 
by the Gaia Zoo Kerkrade and processed by the EAZA hub at 
Copenhagen Zoo. This sample was sequenced at the Centro 
Nacional de Análisis Genómico in Barcelona with a mean coverage 
of 34.98×. The taxonomic position of the genus Lophocebus, sister 
to Papio, makes it possible to highlight Papio-specific evolutionary 
dynamics.

In this study, we also included all the samples of T. gelada and one 
of Papio hamadryas (hamadryas baboon) from Chiou et al. (2022), one 
sample of Papio anubis (olive baboon) from Sørensen et  al.  (2023) 
and one sample of Mandrillus leucophaeus (drill) recovered from 
PRJNA785018 BioProject in NCBI (Table  S1). We focused our at-
tention on the two Papio species present in Ethiopia (P. anubis and 
P. hamadryas) and known to have been in contact with geladas 
(Dunbar & Dunbar, 1974; Jolly et al., 1997). In this study, we used 
the term hybridisation to refer to interbreeding between T. gelada and 
Papio, at any point in time in their evolutionary history, and admix-
ture for gene flow between gelada populations.

2.2  |  Genome mapping

Reads were mapped with BWA-MEM2 v.2.2.1 (Vasimuddin 
et  al.,  2019), to the reference assembly genome Tgel_1.0 (Chiou 
et  al.,  2022). Since there was no Y chromosome in this reference 
genome, we added it from the Papio reference assembly genome 
Panubis1 (Batra et al., 2020). Reads from (Chiou et al., 2022) were 
trimmed with fastp v.0.23.2 (Chen et al., 2018) in order to remove 
Nextera adapters. We then marked the duplicate reads with Picard 
MarkDuplicates version 2.8.1 (http://​broad​insti​tute.​github.​io/​pic-
ard/​ .) and filtered the result using the options -q 10, -F 1292 and -f 2 
of samtools view (Li et al., 2009).

To avoid some analyses being influenced by the reference ge-
nome (in particular, those involving comparisons with other genera, 
see later; Günther & Nettelblad,  2019), we additionally mapped 
Papio, Lophocebus, Mandrillus and a subset of Theropithecus samples 
(11 high-coverage gelada individuals belonging to the four localities 
of sampling—for the details see Table S1) to the Macaca mulatta ref-
erence genome (Mmul_10; Warren et al., 2020), following the same 
procedure described above.

2.3  |  Mitochondrial DNA analysis

We downloaded the publicly available mitogenomes from Chiou 
et al.  (2022) (GenBank id from MZ907630 to MZ907677), and the 
fragments generated in previous analyses of geladas mitochondrial 
DNA variation (Shotake et al., 2016; Zinner et al., 2018; LC018113 
to LC018133 and MH634017 to MH634077 respectively). As out-
groups, we selected male samples from close genera with available 
genomic reads in order to be able to include them also in the Y chro-
mosome phylogeny, see Table  S1. The mitogenomes of the newly 
sequenced samples, including outgroups with no available mitog-
enomes, were assembled with GetOrganelle v1.7.5 (Jin et al., 2020), 
with parameters -R 10 -s NC_020006.2.fa -F animal_mt --fast; 
then the resulting scaffolds were filtered by length (if it was be-
tween 16,000 and 17,000 nucleotides) and manually rotated. All 
the complete mitogenomes were aligned with MAFFT v7.490 (Katoh 
& Standley,  2013) with the --auto option. Further, the cyt-b frag-
ments were added with the --addfragments option of MAFFT to the 
mitogenomes alignment of T. gelada and Papio samples from Zinner 
et al., 2013 and Roos et al., 2021 (Papio samples were not included 
in the tree here presented). The D-loop was manually removed from 
the alignment. Both Maximum Likelihood mitochondrial trees were 
computed with IQ-Tree v2.2.0 (Minh et al., 2020). The best muta-
tional model was inferred with ModelFinder (Kalyaanamoorthy 
et al., 2017) and branch support values were estimated with 1000 
Ultrafast bootstraps. Bayesian inference and divergence time 
dating were done with BEAST v.2.7.1 (Bouckaert et  al.,  2019). 
TPM2u+F+I+G4, as implemented in SSM v.1.2.0 BEAST2 package 
(Bouckaert & Xie,  2017), was selected as the substitution model 
based on the ML ModelFinder results. The trees were modelled 
under a Yule process with a strict clock with a uniform distribu-
tion. The monophyly of the 2 Macaca samples was enforced to 
root the tree with two fossil calibrated nodes: Papio-Theropitecus 
(5 MYA ± 0.5 SD, normal distribution, as in Dolotovskaya et al. (2017) 
and the root node (5.3 MYA ± 0.5 SD, lognormal distribution as sug-
gested in Pozzi and Penna 2022). Two replicates were performed for 
50MLn generations, sampling every 1000 trees.

2.4  |  Y chromosome analysis and Y STR genotyping

We called the variants on the Y chromosome with bcftools v.1.15.1 
(Li, 2011) by setting the ploidy to 1. Then we filtered constant sites, 
indels and variants in repetitive regions with VCFTools v.0.1.16 
(Danecek et  al.,  2011). Further, after checking the resulting VCF, 
variants with minimum read depth (DP) lower than 250, maximum 
DP greater than 600, minimum mapping quality less than 55 and 
absent in less than 10 samples were removed. Finally, the resulting 
variants were thinned out by keeping only variants at least 100 bp 
apart. We then converted the final VCF in an alignment with vcf-
2phylip v.2.0 (10.5281/zenodo.2540861). Then we used BEAST2 to 
obtain a dated phylogeny with a TPM2 substitution model with four 
gamma categories, a strict clock. We used as a calibration point the 
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speciation between gelada and Papio as Normal 5MLn ± 0.5 SD. We 
ran four MCMC iterations of 10MLn samples each.

We applied TYPeSTer to the genomes of the gelada samples 
from the Arsi (Southern) region and Leibniz Institute here analysed 
to genotype the set of Y-STRs previously recovered from other ge-
lada samples (Mutti et al., 2023). The STRs were assembled in hap-
lotypes and merged with the haplotypic data previously generated 
(Table S3). Haplotypes were used to reconstruct a phylogenetic tree 
using the Bruvo (Bruvo et al., 2004) distance from poppr R package 
(Kamvar et al., 2014) followed by UPGMA clustering, as described in 
Mutti and colleagues (Mutti et al., 2023).

2.5  |  Variant calling and the final dataset

We called the autosomal chromosome variants, using the GATK ver-
sion 4.2.4.1 (McKenna et  al.,  2010). For each sample, we gener-
ated the gVCF with HaplotypeCaller, and then we made the joint 
calls via GenotypeGVCFs. The VCF thus obtained was filtered with 
VariantFiltration using hard filters for SNPs (‘QD < 2.0 || MQ < 40.0 || 
FS > 60.0 || MQRankSum< −12.5 || ReadPosRankSum < −8.0’). The 
final VCF was therefore composed of 70 individuals of T. gelada and 
9,244,659 variants. Using PLINK v.1.9 (Chang et  al.,  2015), all sites 
from the sex chromosomes and with a minor allele frequency (MAF) 
below 0.05 were removed, keeping only biallelic SNPs filtered using 
the --snps-only option.

2.6  |  Whole-genome analysis

2.6.1  |  Heterozygosity, RoH and kinship

To calculate the proportion of heterozygous sites (HET) we used 
PLINK --het. This command estimated the observed O(HOM) ho-
mozygous genotype counts for each sample and the total number 
of variable sites (N_Sites), from which we derived HET per individual 
with the formula:

We estimated the number, the total length and the average 
length of runs of homozygosity (RoH) with PLINK --homozyg and the 
option --homozyg-snp 25 --homozyg-kb 200 --homozyg-window-snp 
10, The degree of kinship among samples was tested up to the third 
degree using KING v.2.3.1 with --kinship -- degree 3 flags on the 
PLINK bed file (Manichaikul et al., 2010).

2.6.2  |  PCA

We performed a preliminary survey of T. gelada population structure 
by running a principal component analysis (PCA) using the smart-
pca function implemented in EIGENSOFT software 8.0.0 (Patterson 
et al., 2006) using default settings.

2.6.3  |  D-statistics

We performed the D-statistics (ABBA-BABA test) using qpDstat 
(Patterson et  al.,  2012), with default parameters, to test for the 
occurrence of any imbalance in allele sharing between different 
populations and species in the form D(H4,H3;H2,H1) includ-
ing drill (M. leucophaeus) as an outgroup (H4). We firstly tested 
whether the two Northern populations of Sankaber and Chenek 
(as H1 and H2) were symmetrical in their sharing with other gelada 
groups (Central or Southern as H3) and what was the degree of 
allelic sharing between the three gelada taxa (Northern, Central, 
Southern alternatively placed as H1, H2 or H3). Then we tested 
the allelic sharing of these gelada populations with Papio spe-
cies and Lophocebus (Dunbar & Dunbar, 1974; Jolly et al., 1997) in 
the form D(Drill, Papio; Gelada2, Gelada1), D(Drill, Lophocebus; 
Gelada2, Gelada1), D(Drill, Gelada; Papio2, Papio1) and D(Drill, 
Gelada; Lophocebus, Papio), where ‘Papio’ were alternatively P. 
anubis or P. hamadryas genomes, ‘Lophocebus’ was the genome 
of L. aterrimus and ‘Gelada’ was a genome from one of the three 
gelada populations.

The test considers the ancestral alleles (A) and the derived al-
leles (B) in the genomes of the four taxa considered. Without gene 
flow, the two conflicting allelic patterns (ABBA and BABA) are 
equally frequent, and the values of D are not significantly different 
from zero. In the presence of gene flow an excess of one of the 
two allelic patterns occurs, which produces a deviation of the D 
from zero: positive D (excess of BABA) indicates the introgression 
between H1 and H3, and negative D (excess of ABBA) points to 
the gene flow between H2 and H3. The estimates were considered 
significant if |Z|-score >3.

The D-statistics analysis involving the genera Papio and 
Lophocebus was conducted using reads mapped on the Mmul_10 ref-
erence genome, to avoid a reference bias.

2.6.4  |  Admixture graphs

We explored the relationships and the gene-flow events between 
the three gelada taxa and the species of the genus Papio (P. anu-
bis and P. hamadryas) and L. aterrimus using find_graphs in R pack-
age admixtools2 (Maier et al., 2023). The R command find_graphs 
was run with parameters stop_gen = 10,000, stop_gen2 = 100, 
plusminus_generations = 20, eject_f4z = 2, diag = 1e-04, num-
start = 1000, lsqmode = FALSE, resid = F, num_admix between 
1 and 5 and M. leucophaeus as an outgroup; the same command 
was run 10 times per number of admixture events in order to ob-
tain the graph with the score as close as possible to the global 
optimum. We kept, for each edge, the three trees with the best 
score; we reported in the main text the tree with the greatest 
number of admixture events and no contributions equal to 0%. 
The admixture graphs analysis was conducted using reads mapped 
on the macaque reference genome Mmul_10, to avoid reference 
bias.

HET
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2.6.5  |  PSMC

Demographic changes (effective population size history) over time 
were explored using the pairwise sequentially Markovian coalescent 
(PSMC) model (Li & Durbin,  2011). As recommended, we gener-
ated diploid sequences using bcftools (Li, 2011); sites with coverage 
greater than double the average genome-wide coverage or less than 
one-third were excluded. We also excluded the repetitive regions 
in the genomes, indicated on the NCBI website (https://​www.​ncbi.​
nlm.​nih.​gov/​data-​hub/​genome/​GCF_​00325​5815.​1). We run PSMC 
with default settings on autosomal chromosomes, using a muta-
tion rate of 0.5 x 10−8 per base pair per generation and a generation 
time of 11.67 years as in Chiou et al.  (2022). Finally, we performed 
bootstrapping for each individual with 10 replicates following the in-
structions described on the GitHub webpage manual (https://​github.​
com/​lh3/​psmc).

In a similar manner, this software can also be used to explore 
the last time of contact between populations by creating artificial 
F1 hybrids (hPSMC; Cahill et al., 2016). Following the procedure de-
scribed on the GitHub webpage manual (https://​github.​com/​jacah​
ill/​hPSMC​ ), we generated from the bam a haploid sequence in fasta 
format of the X chromosome for each male individual. We then 
combined the fasta sequences from two different individuals into a 
single .psmcfa file, and then we applied PSMC with default settings. 
We use a mutation rate of 0.419 × 10−8 mutations per base pair per 
generation. It became necessary to recalculate the autosomal mu-
tation rate, as the X chromosome, due to its presence in different 
numbers in male and female individuals, results in a different muta-
tion rate. Therefore, the parameter was obtained by converting the 
autosomal mutation rate into X mutation rate as described by Li and 
Durbin  (2011), using the male-to-female mutation ratio of Rhesus 
macaque (2.9; Wilson Sayres et  al.,  2011). Finally, we performed 
bootstrapping for each hybrid as described above.

To test if the estimates obtained with hPSMC are influenced 
by the selected reference, we performed the procedure described 
above using reads mapped to the two reference genomes (Tgel_1.0 
and Mmul_10).

2.7  |  Copy number variants

We further investigated differences across gelada populations by 
focusing on gene content variation. Scans of gelada genomes have 
previously identified gene families significantly expanded in com-
parison to Papio and highlighted associated biological processes, 
including cell proliferation, hypoxia response and immune func-
tion (Chiou et al., 2022). Variation in the number of copies present 
across individuals has been shown to significantly contribute to in-
traspecies phenotypic diversity (Almarri et al., 2020; Montinaro & 
Capelli, 2020; Sudmant et al., 2015).

The gelada genomic reads mapped to Tgel_1.0 were processed 
via Control-FREEC to identify variations in copy number of genomic 
regions across the three populations of geladas (Boeva et al., 2012). 

The number of copies estimated for each locus was reported for all 
the individuals, clustered according to the population of provenance 
(Northern, Central and Southern). For each expanded region the 
number of individuals bearing more than two copies was counted 
to estimate their overall occurrence and the frequency within each 
population. Annotated genes overlapping these regions were also 
reported. KEGG enrichment analyses were conducted via the clus-
terProfiler v.4.0.5 R package (Wu et al., 2021).

The genomic occurrence of amylase genes in the genome of ge-
ladas was verified by searching in the reference gelada genome for 
matches to the sequences of the human salivary amylase alpha 1a 
(AMY1A) and both pancreatic amylases (2A and 2B). Two proteins 
were found, both annotated in the gelada genome as pancreatic 
(XP_025215097.1 and XP_025215076.1). The two genomic regions 
hosting these genes were identified on chromosome 1: one between 
positions 131,757,727–131,766,740 (LOC112607926) and the other 
spanning positions 131,799,832–131,808,869 (LOC112607935). 
Amylase gene copy number was further verified in geladas using the 
average coverage across the two gelada amylase genomic regions, 
normalising it by the average coverage across chromosome 1, in 
each of the gelada genomes.

We reasoned that in the presence of positive selection operat-
ing on a given haplotype, the areas surrounding the locus under se-
lection should be characterised by a decrease in genetic diversity, 
the size of the chromosomal region affected by this pattern being 
shaped by the time since the selective pressure has been in place. In 
order to test the hypothesis of positive selection for the duplication 
of the amylase locus LOC112607926 in Southern gelada, we esti-
mated the degree of heterozygosity present in the regions surround-
ing the duplication in all gelada genomes.

We partitioned the 10-Mb region centred on the AMY genes in 
windows of 10 kb; starting from the VCF, for each window, we calcu-
lated the number of heterozygous sites per individual using VCFtools 
--het. We then calculated the average for each window for each pop-
ulation and normalised the results by the mean of the variable sites 
across the entire chromosome. Starting from the windows contain-
ing the loci, we estimated the cumulative sum of the heterozygosity 
in each window. In order to take into account the differences across 
populations in the overall degree of heterozygosity, the cumulative 
sums were normalised by the average of heterozygosity estimated in 
all the 10-kb windows of chromosome 1. Finally, we calculated the 
average for each population, including zoo individuals in the Central 
population.

2.8  |  Variation in underground food 
consumption and rainfall

Amylase expression has been linked to variation in copy number of 
amylase genes as the result of differences in dietary starch preva-
lence across human populations, dogs and pigs (Axelsson et al., 2013; 
Groenen et al., 2012; Pajic et al., 2019; Perry et al., 2007). Seasonal 
rainfall variation has been reported to affect grass availability and 
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Underground Food (UF; food rich in starch whose digestion is facili-
tated by amylases) consumption by geladas in Sankaber, grass avail-
ability significantly related to the cumulative rainfall in the previous 
1–3 months (Jarvey et al., 2018). To further investigate the UF die-
tary content across gelada populations, we extracted from previous 
publications dietary data of geladas in different locations (Figure 1). 
Only sites with at least 1 year of continuous data collection were 
included, which resulted in four datasets collected over different 
periods: 18 months in Kosheme, Wollo (Central; data collected from 
May 2015 to May 2016, plus July, September, Nov 2016 and January 
2017; Kifle & Bekele, 2021), 15 months in Guassa (Central; February 
2007 to April 2008; Fashing et  al.,  2014), 12 months in Sankaber 
(Northern; February 2015 to January 2016; Jarvey et al., 2018) and 
12 months in Gich (Northern; May 2013 to April 2014; Woldegeorgis 
& Bekele, 2015). We additionally included data from the Southern 
gelada population of Indetu, the only site with dietary data available 
south of the Great Rift Valley (Abu et al., 2018). Indetu comprised 
a set of continuous observations over 7 months extending from 
August 2010 to February 2011, followed by a gap in March 2011, 
and two additional data points for April and May 2011. In order to 
provide a comparison between the five datasets we initially esti-
mated the monthly dietary content of UF (here measured as feeding 
time spent collecting and processing, including chewing and swal-
lowing- dedicated to any underground part of grass and herbs, in-
cluding any unclassified underground food (Jarvey et al., 2018)) over 
the 6-month period shared by all five datasets (August–January). 
We then repeated the same estimate using a sliding window of 7 
months, the longest continuous set of observations in Indetu, in the 
other four datasets using only data collected in subsequent months 
with no gaps (number of windows per population: seven for Wollo, 
eight for Guassa, five for Sankaber and Gich). Given the link between 
rainfall, grass availability and UF consumption (Jarvey et al., 2018), 
we collected data on monthly total rainfall for the period spanning 
the years sampled for dietary consumption (2006–2017) for the 
five locations (as measured within a 20 squared km) from CRU-TS 
4.06 (Harris et  al.,  2020) downscaled with WorldClim 2.1 (Fick & 
Hijmans,  2017; Table  S5). Spearman correlation coefficient rs and 
associated p-value between UF consumption and rainfall for the full 
dataset were calculated (total number of included months across 
locations: 66). We repeated this analysis by alternatively consider-
ing rainfall over 1, 2 or 3 months earlier than the month taken into 
consideration for UF consumption (Jarvey et  al.,  2018), as well as 
including in the analysis the rainfall in the month of interest for UF 
consumption. Evidence of significant variation in the amount of UF 
consumption and rainfall across the five locations was tested using 
one-way ANOVA.

2.9  |  Climatic niche and paleoclimate 
reconstructions

To estimate the climatic niches of the three gelada populations we 
downloaded a set of 19 current bioclimatic variables from CHELSA 

database version 2.1 (Karger et  al.,  2017). As past environmental 
predictors, we used the monthly bioclimatic variables generated 
through the 2 Ma CESM1.2 simulation (Timmermann et al., 2022) 
downscaled at 0.5° × 0.5° grid resolution. The native set of pre-
dictors was subsequently converted using the ‘dismo’ R package 
(Hijmans et al., 2023) to obtain the same list of the CHELSA vari-
ables. The past bioclimatic dataset covers the last 2 Ma at 1 kya 
temporal resolution. Since paleoclimate simulations in Timmermann 
et al.  (2022) did not model the diurnal cycle, we excluded the an-
nual mean diurnal range (BIO2) and isothermality (BIO3) from the 
CHELSA original set of variables, reducing the number of biocli-
matic variables to 17 (Table S6). Lastly, both current and past varia-
bles were projected on the Mollweide coordinate reference system. 
For SDMs calibration, CHELSA variables were rasterised at 1-km 
spatial resolution, while past climatic predictors were obtained at 
50-km spatial resolution.

To quantify ecological similarity among the extant gelada pop-
ulations, we calculated the niche overlap between them using their 
modern occurrences, due to the lack of T. gelada fossil records 
(Delson, 1993; Getahun et al., 2023).

Consequently, we used the bioclimatic values derived from 
CHELSA variables and the gelada occurrences compiled by 
Ahmed et  al.  (2023). We further filtered this data by removing 
duplicate records for cell removing multiple occurrence points 
within 1 km × 1 km grid area according to the CHELSA variables 
spatial resolution. Niche overlap was calculated by adopting the 
approach described by Broennimann et  al.  (2011). Accordingly, 
PCA was used to decompose the environmental space defined by 
modern gelada occurrences. Occurrence data and climate condi-
tions associated with them were projected into the PCA space, 
and then their densities were computed across the first two PCs 
relying on a kernel density estimator. Densities of occurrence and 
background environments were then divided by the maximum 
number of occurrences in all cells of the environmental space and 
by the number of sites with the most common climate, respec-
tively (Broennimann et al., 2011). The process generated a density 
grid in the environmental space that was used to quantify niche 
overlap between modern niches in terms of Schoener's D index 
(Schoener, 1970). This latter index ranges from 0 to 1 with values 
of 0 indicating no niche overlap and values of 1 indicating a com-
plete overlap. Niche overlap analyses were applied using the ‘eco-
spat’ R package (Di Cola et al., 2017). To define the environmental 
space for gelada, the spatial polygon which enclosed all the occur-
rences of the Theropithecus lineage (including the extinct T. darthi 
and T. oswaldi) was chosen as background environment since we 
have no a priori idea about the ‘accessible area’ (the geographical 
area that was potentially accessible given the species ecological 
tolerances and dispersal abilities) within T. gelada dispersal range. 
Then, we restricted this area to the elevation range where geladas 
currently are known to occur. Specifically, we downloaded current 
global topography from the CHELSA database in order to exclude 
cells with altitude values outside the 95% of the total elevation 
range associated with current T gelada data points following the 
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approach described by Ahmed et al. (2023). Lastly, we stacked the 
17 bioclimatic variables, and we cropped them by using the back-
ground environment extent. Eventually, we grouped all climatic 
values to verify for potential multicollinearity among variables. 
The full set of 17 bioclimatic variables was sub-selected consider-
ing a pairwise correlation coefficient of r > |.75| (Zuur et al., 2010) 
through the ‘usdm’ R package (Naimi et al., 2014). After this proce-
dure, we retained seven predictors: Mean Temperature of Wettest 
Quarter (BIO8), Mean Temperature of Driest Quarter (BIO9), 
Mean Temperature of Coldest Quarter (BIO11), Precipitation of 
Driest Month (BIO14), Precipitation Seasonality (Coefficient of 
Variation) (BIO15), Precipitation of Warmest Quarter (BIO18) and 
Precipitation of Coldest Quarter (BIO19).

Occurrence records and climatic values were projected into 
a PCA space to decompose the entire environmental space, then 
their densities were computed across the first two PCs relying on a 
kernel density estimator. Densities of occurrence and background 
environments were divided by the maximum number of occur-
rences in any cell of the environmental space and by the number of 
sites with the most common climate, respectively (Broennimann 
et  al.,  2011). The density grid in the environmental space was 
used to compute the niche overlap. We chose the Schoener's D 
index as a metric for niche comparison (Schoener, 1970). Schoner' 
D metric can measure the degree of niche overlap between dif-
ferent species or subspecies, from low (D = 0) to perfect (D = 1), 
taking into account both the climatic conditions where the species 
were present and the background environments.

Since there is no fossil record for the T. gelada and because of 
the very low sample size of the single living population, we chose 
to calibrate a SDM by using the climatic values associated with all 
modern occurrences and to 10,000 data points randomly picked 
from the background environment. For the SDM, we adopted an en-
semble forecasting approach applying the functionalities described 
in the ‘biomod2’ R package (Thuiller et al., 2009). Specifically, models 
were trained by testing four different algorithms: Generalised Linear 
Model (GLM), Generalised Boosting Model (GBM), Random Forest 
(RF) and Maximum Entropy (MaxEnt). The predictive accuracy of 
models was assessed adopting a bootstrap cross-validation scheme. 
Data were split into 70%–30% training/testing samples and the en-
tire procedure was repeated 10 times. To evaluate the model accu-
racy, we calculated the area under the operating characteristic curve 
(AUC; Swets, 1988). Model averaging was performed by weighting 
the individual model projections by their AUC values and averag-
ing the result (Marmion et al., 2008) after avoiding poorly calibrated 
models with an AUC < 0.7.

Lastly, we obtained SDMs projections at each 1000 years (ky) 
for the last 130 kya (that is from the last interglacial to recent), fo-
cusing on temporal windows highlighted as of interest in relation to 
the timing of events of gene-flow and hybridisation and avoiding to 
consider temporal periods too different from the Late Quaternary in 
terms of climatic regimes.

3  |  RESULTS

3.1  |  Uniparental markers

We recovered mitochondrial genomes from published and newly 
generated whole genome sequences and reconstructed the phylo-
genetic relationships among the assembled mitogenomes (Figure 2a). 
The topology places the Southern geladas as deeply divergent, sister 
to the clade including both Northern and Central geladas. Central 
geladas are monophyletic but nested within a cluster of Northern ge-
lada mitogenomes, sister to an additional Northern branch. The two 
northern branches mirror the N1 and N2 groups reported by Zinner 
et al. (2018), while the C2 branch, but not the C1, is possibly unsam-
pled by currently available mitogenomes (Figure 2a; Figure S1a). The 
mitogenome topology is more similar to the one reported by Shotake 
et al. (2016) than the one presented by Zinner et al. (2018), the ab-
sence in Shotake et al.  (2016) of one of the two Northern mtDNA 
branches (N2) possibly due to unsampled lineages (Figure S1a). The 
two Southern gelada mitogenomes are identical and include the 
previously reported haplotype h01/21, the most frequent haplo-
type in the Southern gelada population (Shotake et al., 2016; Zinner 
et al., 2018). The dating of the node grouping all geladas at 0.49 Mya 
(0.38–0.60) overlaps previous estimates based on shorter mtDNA re-
gions (Shotake et al., 2016; Zinner et al., 2018; Table S2).

Y chromosome SNPs were used to generate a phylogenetic tree. 
Similarly, to the mtDNA results, Y chromosome sequences clustered 
according to the population of provenance (Northern, Central and 
Southern), with Southern geladas forming a clade separated from 
the other two. However, differently from the mtDNA data, Central 
and Northern geladas formed two separate sister clades (Figure 2b). 
Samples from zoos group in a single clade with Central gelada lin-
eages. No further structure was detected when the two different 
sampling locations of the Northern gelada population were taken 
into consideration. The overall TMRCA for the gelada Y chromo-
some phylogeny was dated to 0.24 Mya (0.18–0.30 Mya; Table S2). 
We additionally genotyped previously described Y-STR markers in 
the two Southern geladas and the Stuttgart Zoo sample here pre-
sented and, using previously genotyped gelada samples, generated 
a phylogenetic tree (Mutti et al., 2023) (Table S3; Figure S1b). The 
main features of the recovered topology were in agreement with the 
results based on whole Y chromosome sequence data: Y-STR hap-
lotypes clustered in accordance to population of provenance and 
Southern haplotypes separated from a cluster comprising Central 
and Northern haplotypes. The two Southern Y haplotypes differed 
for both SNPs and STRs.

We noted that the TMRCAs of the mitochondrial DNA phy-
logeny was about twice the age of those recovered from the Y 
chromosome (Figure 2a,b). Substantial differences in TMRCAs be-
tween the Y chromosome and mtDNA have been reported for go-
rillas and orangutans, but not for chimpanzees and humans (Hallast 
et al., 2016).
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3.2  |  T. gelada population structure and genomic 
variation

For the first time, the whole genome of individuals sampled from the 
gelada population located south of the Rift Valley (T. g. arsi) was in-
vestigated. The PCA results confirm the presence of structure within 
the species. The newly analysed Southern population of T. gelada 
is distinct from the two previously reported populations (Northern 
and Central), as suggested by autosomal STRs and mitochondrial 

DNA (Shotake et al., 2016; Trede et al., 2020; Zinner et al., 2018; 
Figure 2a–c). The Northern population is separated from the other 
two along principal component 1 (PC1) which summarises 35.62% of 
the total diversity, while the Southern population separates from the 
others along PC2 which comprises 4.85% of the variation. As shown 
by Chiou et al.  (2022), individuals from zoos belong to the Central 
population as our sample from the zoo in Stuttgart (TGLZ1).

Compared to other geladas, Southern individuals are clear outli-
ers for the proportion of observed heterozygous sites, total length 

F I G U R E  2 Population structure of Theropithecus gelada. Colours referred to gelada taxa as in Figure 1, with the addition of samples from 
zoos, in green. (a) Whole mitogenomes and (b) Y chromosome sequence phylogenetic trees; the red bars refer to highest posterior density 
(see Table S2), and the grey dots at the nodes refer to bootstrap values as indicated in the legend in panel a. (c) Principal component analysis 
of autosomal SNPs. (d) Intra-individual variation, reported for each sample as number of runs of homozygosity (RoH, x-axis) and total length 
of RoH (y-axis). (e) Autosomal SNPs proportion of observed heterozygous sites (HET) in investigated samples partitioned by population.
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and number of RoH. The only exception was SAMN20949854, a zoo 
sample that showed a lower heterozygosity, a greater number and 
a longer total length of RoH than other zoo samples (Figure  2d,e) 
whose coverage at 1.29× is also much lower than the rest of the 
samples here analysed (mean 14.5×; Table S1). We also tested the re-
lationship between individuals up to the third degree and we noted 
that three pairs of geladas individuals from the Northern (Sankaber) 
population have a first-degree relationship; nine pairs have a second-
degree relationship, including the two from the Southern population 
(sampled in different locations); and another nine pairs have a third-
degree relationship, including two involving pairs of captive animals, 
one being TGLZ1 (Figure S2). It is worth noticing here that for these 
estimates the allele frequencies consider all the individuals here an-
alysed. As such this might result in artificial closer affinities if the 
source populations have substantial lower diversity, as possibly the 
case for the Southern population.

3.3  |  Demographic history of gelada populations

The reconstruction of demographic changes across time was per-
formed using the PSMC software (Li & Durbin,  2011; Figure  3a). 
Results indicate that all three gelada populations experienced de-
creasing population size and/or connectivity over the last half a 
million years, differently from what was experienced by two geo-
graphically close Ethiopian Papionins, Papio anubis and P. hamadryas 
(Figure S3). Across geladas, the magnitude of this reduction was more 
pronounced for the Southern population (Chiou et al., 2022). The size 
of the three populations remained small over the last 50,000 years.

In order to have an indication of the timing of the most recent 
events of gene flow between different gelada populations, we 

reconstructed the demographic curves of artificial F1 hybrids of 
chromosome X through hPSMC (Cahill et al., 2016; Figure 3). In ac-
cordance with coalescent theory the absence of coalescent events is 
indicative of extremely large populations, which results in the curves 
exponentially increasing at the time of the latest MRCA. The curves 
for the hybrids between gelada populations show this pattern at 
10–20 kya, suggesting this was the time of last genetic exchange 
between groups. We observed the same results when the hPSMC 
analyses were replicated making use of the reads mapped to the 
Mmul_10 reference genome (Figure S4b).

We then used D-statistics to further investigate patterns of gene 
flow across gelada populations by alternatively placing genomes of 
geladas from the three populations in position H1, H2 or H3. A gene-
flow signal between Southern and Central geladas was highlighted 
when compared to the two Northern populations of Sankaber and 
Chenek (Figure S4a), and the two Northern populations showed a 
signal of genetic exchange with the Central than with the Southern 
population (D = 0.1199, Z = 16.952 and D = 0.1206, Z = 16.627) 
(Figure S4a). We also noted that the two Northern groups (Sankaber 
and Chenek) exhibited similar genetic exchange patterns with the 
Central and the Southern populations (D = 0.0021, Z = 0.613 and 
D = 0.0012, Z = 0.301 respectively); as such, we merged individuals 
from two Northern groups into a single population for subsequent 
analyses (Figure S4a).

3.4  |  Theropithecus–Papio hybridisation

Following previous suggestions of possible Papio and Theropithecus 
hybrids based on molecular data and observations in the field 
(Dunbar & Dunbar, 1974; Walker et al., 2019), we tested for patterns 

F I G U R E  3 Demographic history 
of gelada populations. Changes in 
effective population size across time 
estimated using PSMC. SAMN20949878, 
SAMN20949865 and A28 genomes 
were analysed for Northern Central and 
Southern geladas respectively. X-axis on 
logarithmic scale. Colours as in Figure 1. 
Inset: hPMSC coalescence curves of 
artificial X chromosome hybrids of the 
same three samples, mapped on Tgel_1.0 
reference genome.
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of shared alleles across the two genera using the D-statistics. We 
initially tested for any gene-flow signal between gelada and Papio 
genomes when compared to Lophocebus. Being sister clades, in 
the absence of gene flow, Papio and Lophocebus should be simi-
larly related to Theropithecus (Perelman et  al.,  2011). Our results 

highlighted that all Papio genomes exhibited more shared alleles 
with geladas than Lophocebus, suggesting contacts between the two 
genera (Figure 4a). In addition, Papio species showed no difference 
in their degree of shared alleles with different gelada populations 
and vice versa, except for P. anubis and Southern geladas among 

F I G U R E  4 Gelada-baboons hybridisation events. (a) ABBA–BABA tests comparing Theropithecus gelada populations (H3) and baboons 
sp. (as H1 and H2); (b) ABBABABA test comparing baboons sp./Lophocebus aterrimus (as H3) and T. gelada populations (as H1 and H2); bars 
show the extent of three standard deviations; (c) admixture graphs (built using the R command find_graphs), reconstructing relationships 
and admixture events between Papionines species; dotted arrows indicate admixture, while associated numbers report the amount of each 
contribution; continuous arrows indicate linear descendants, while associated numbers are indicative of the amount of drift experienced 
along lineages, given in f-statistics units multiplied by 1000; (d) coalescence of artificial hybrids Papio–Theropithecus X chromosomes (hPSMC 
analysis; the gelada samples used are the same in Figure 3; samples for this analyses were mapped on Mmul_10 reference genome); x-axis on 
logarithmic scale.
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which was highlighted a signal of gene-flow (D(Drill, Southern, P. 
hamadryas, P. anubis) Z-score = 3.038; D(Drill, P. anubis, Southern, 
Central) Z-score = −7.916; D(Drill, P. anubis; Southern, Northern) 
Z-score = −7.410; Figure  4a,b). Overall, these results suggest that 
gelada populations differ in the amount of between species intro-
gression that occurred in their evolutionary history.

We investigated the evolutionary relationships among T. ge-
lada populations and Papio species (and Lophocebus) by means of 
the approach implemented in find_graphs (Figure S5). The topol-
ogy with the best likelihood score, the greatest number of admix-
ture events and no branches with zero drift estimates is presented 
in Figure  4. The graph underlined the occurrence of an ancient 
contribution of 11% from the Theropithecus branch to the lineage 
leading to P. hamadryas and subsequent smaller contributions to 
P. anubis (6%) and L. aterrimus (4%) from a population which also 
contributed, together with a pre-Central group, to Southern gela-
das (Figure 4c).

The generation of Theropithecus–Papio hybrid X-chromosomes 
and their analysis via hPSMC provided the chronological context for 
the Papio-gelada contacts suggested by the D-statistics and high-
lighted by find_graphs. All P. hamadryas/T. gelada hybrids generated 
curves older than 100 kya. Similar curves were generated by P. anu-
bis/T. gelada hybrids except for the hybrids involving P. anubis and 
Southern geladas which were more recent (younger than 50 kya; 
Figure 4d). We observed the same results when the hPSMC analyses 
were replicated making use of the reads mapped to the Tgel_1.0 ref-
erence genome (Figure S6).

3.5  |  Copy number variants

We investigated the pattern of copy-number variants (CNVs) across 
the three gelada populations by leveraging the population-based 
genomic data available and newly generated here. A total of 656 
variable regions with more than two genomic copies were identi-
fied across the 69 available gelada individuals (Table S4). The size 
of the longest expanded regions was up to 5.5 Mb, the vast major-
ity being below 1 Mb (Figure S7a). Notably, 45% are singletons, ap-
pearing only once in the whole gelada dataset (Figure S7b). 243 of 
the non-singletons were found only in one of the three populations 
(Figure  5a). We considered that local positive selection can drive 
the increase in the frequency of specific variants in a given popula-
tion and therefore focused our attention on the set of population-
specific CNVs that were present in no less than 25% of individuals in 
a population (5 in Central and 13 in Northern populations). As only 
two individuals were analysed for Southern geladas, we considered 
all the regions uniquely expanded in this population and present in 
both individuals. In this way, we identified 20, 17 and 10 regions in 
the Northern, Central and Southern populations, which contained 
19, 9 and 6 genes respectively. No significant enrichment in KEGG 
descriptors was found for the 34 genes across the three popula-
tions. We manually inspected the list of genes and noted, among 
the others, the occurrence of one of the two pancreatic amylase 
genes (LOC112607926). The two Southern geladas genomes hosted 
a different number of amylase duplications: three copies were in-
ferred for A28, while four were estimated in A10, the rest of the 

F I G U R E  5 CNVs and amylase gene 
copy number. (a) Population-specific CNVs 
divided according to their frequency in 
each population. (b) Normalised genomic 
coverage over the two loci annotated 
as pancreatic amylase in geladas. (c) 
Cumulative number of heterozygous 
positions in 10-kb windows, starting 
from the beginning/end of the two 
geladas pancreatic amylase gene average 
and extended for 0.5 Mb. Reported is 
the average across individuals for the 
indicated population, each individual 
estimate normalised for the average 
number of heterozygous positions 
estimated on chromosome 1 in each 
individual (see Section 2); dashed lines 
refer to the expected cumulative curve 
for 10-kb windows each displaying the 
average number of heterozygous positions 
along chromosome 1.Northern Central Southern
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geladas presenting only two (Figure  5b). The extent of the dupli-
cation was approximately 50 kb in both individuals (spanning posi-
tions 131,716,000–131,771,999 and 131,720,000–131,771,999 in 
samples A28 and A10 respectively; Figure S7c). Given the reliance 
of geladas on underground food in the dry season, we decided to 
further explore the pattern of variation associated with the amylase 
sequences duplicated in Southern geladas (LOC112607926).

Considering a 10-Mb region surrounding the duplicated am-
ylase locus, Southern geladas showed a decrease in diversity that 
extended over a chromosome portion much larger than other pop-
ulations, up to Mbs in size (Figure 5c and Figure S7d). The physical 
extent of the reduced diversity as the result of positive selection is 
shaped by recombination events, which are scaled by the number of 
generations since the selective pressure started. The observed pat-
tern in Southern geladas is compatible with positive selection on the 
duplicated amylase gene being relatively recent (Sabeti et al., 2002, 
2007).

3.6  |  Variation in underground food 
consumption and rainfall

We tested for association between rainfall and UF consumption using 
the full UF dataset of the five locations investigated here (Sankaber 
and Gich, Northern; Guassa and Wollo, Central; Indetu, Southern; 
Fashing et  al.,  2014; Jarvey et  al.,  2018; Kifle & Bekele,  2021; 
Woldegeorgis & Bekele, 2015) and data on monthly rainfall in the 
same locations (Fick & Hijmans,  2017; Harris et  al.,  2020; Jarvey 
et  al.,  2018). UF consumption was significantly associated with 
four tested rainfall estimates (Jarvey et  al.,  2018): same month 
total rainfall, rs = −.43126, p(2-tailed) = .0003, monthly rainfall dur-
ing the previous month, rs = −.349, p(2-tailed) = .00408, cumulative 
rainfall during previous 2 months, rs = −.34862, p(2-tailed) = .00412 
and cumulative rainfall during previous 3 months, rs = −.2801, p(2-
tailed) = .02274 (Jarvey et al., 2018). Similar patterns are observed 
when the cumulative estimates include the month when UF con-
sumption was considered (Figure  S8a). We verified if any region 
affected in a substantial way the results by repeating the analysis 
removing one dataset per time. The removal of the data from Indetu, 
but not of other datasets, substantially improves the correlation be-
tween monthly rainfall and UF usage (Figure S8b).

The five datasets were collected in different years, but all in-
cluded the same 6-month period (August–January). UF consumption 
during this period across the five locations is significantly different 
(One-Way ANOVA, F4,25 = 3.82243, p = .014), pairwise comparisons 
being significant for the Indetu–Sankaber pair (post-hoc Tukey test, 
Q = 5.13, p = .01; Figure  S8c). During this 6-month period, the av-
erage UF contribution to diet in Indetu (31.25%) was 50%–300% 
higher than in the other four regions (range 8.5%–22.21%). Using 
a moving window of seven consecutive months (the longest con-
secutive period available for Indetu), the distributions of estimated 
averages for Northern and Central overlap, but the mean value 
across seven continuous months at 33% in Southern is outside the 

variation reported for the other two taxa (Abu et al., 2018) (the maxi-
mum values in the four populations being 15%–26%; Figure S8c; Abu 
et  al.,  2018). The main differences between Indetu and the other 
locations appear to be not in the maximum monthly UF consump-
tion (46.6% in Indetu, 49.7% in Sankaber, 36.7% in Gich, 28.1% in 
Guassa, 57.7% in Wollo) but in this being consistently above 20% 
in Indetu (over the 9 months of available data) but not so in the 
other locations (3 months in Sankaber, 5 in Gich, 6 in Guassa and 
7 in Wollo; Figure S8c). We tested for differences in rainfall across 
the five regions but no significant differences were found for any of 
the four rainfall estimates related to the overlapping 6-month period 
(August–January) (one-way ANOVA, monthly rainfall during relevant 
month, F4,25 = 0.03729, p = .99716; monthly rainfall during the previ-
ous month, F4,25 = 0.4303, p = .7854; cumulative rainfall during pre-
vious 2 months, F4,25 = 0.7754, p = .5516; cumulative rainfall during 
previous 3 months, F4,25 = 1.3515, p = .2789). The same was also the 
case for cumulative estimates including the month when UF con-
sumption was considered (data not shown).

3.7  |  Paleoclimate and gelada spatio-temporal 
distribution

We investigated the eco-climatic similarity of the regions cur-
rently occupied by geladas using climatic descriptors of the regions 
where they occur. Our analysis did not highlight significant climatic 
niche overlap among the three gelada populations (Figure  6 and 
Figure  S9). Nonetheless, our results suggest the Southern popu-
lation niche resembles more that of the Central population than 
the one of the Northern geladas. The two in fact partially overlap 
in their ecological spaces but the habitat of the Southern popula-
tion is characterised by lower temperature values during the cold-
est and driest months (bio9 and bio11; Figure 6). Our results also 
indicate that the Northern population is characterised by the high-
est climatic variability. In contrast to the other two populations, 
the density of the Northern population extends along the PC1 axis 
towards higher bio15, bio18 and bio14 values suggesting that this 
population is associated with wetter habitats with overall more 
precipitation (Figure 6).

SDMs achieved excellent performance with a weighted mean 
AUC = 0.96 (sd = 0.06). SDM predictions suggested a high climatic-
driven variability in habitat suitabilities for the three gelada popu-
lations in the past. Northern and Central populations show similar 
behaviour in terms of climatic tolerance and adaptation. In con-
trast, we observed a general lower habitat suitability for the area 
where the Southern population actually occurs. In addition, we 
noted a drastic reduction in habit suitablities for geladas during the 
Last Glacial Maximum (LGM; 24–18 kyr; Figure 7; Supplementary 
Material 1). Despite an overall post-LGM improvement, the habi-
tat suitability of the region occupied by the Southern population 
resulted consistently lower than that of the regions occupied by 
the Central and Northern populations (Figure S10; Supplementary 
Material 1).
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4  |  DISCUSSION

4.1  |  Population dynamics and climate changes

The role played by climate variation on the evolutionary history 
of extant and extinct species has gathered centre stage in the dis-
cussion about major drivers of evolution (Carotenuto et al., 2016; 
Nogués-Bravo et  al.,  2010). Long and short-term wet-dry cycles 
have been investigated in relation to long-distance dispersals and 
isolation, events of gene-flow and hybridisation, drift and local 
adaptation in human and non-human primates (Chala et al., 2019; 
Stewart et  al.,  2020; Timmermann et  al.,  2022; Timmermann & 
Friedrich, 2016). Dietary and environmental specialisations (Chiou 
et  al.,  2022), together with a low fertility rate (one infant every 
2–3 years; Dunbar,  1980) make gelada populations more vulner-
able to eco-climatic changes, past and present. As such the re-
construction of how climate changed in the past can provide the 
context for interpreting the demographic events inferred from the 
analysis of genomic variation in gelada populations. The analysis 

of autosomal microsatellites and mitochondrial DNA sequences 
in several T. gelada individuals sampled in the wild has previously 
suggested the subdivision of the species into three main popula-
tions, generally referred to as Northern, Central and Southern in 
accordance with their geographical distribution along Ethiopian 
highlands (Gippoliti, 2010; Shotake et al., 2016; Trede et al., 2020; 
Zinner et al., 2018). Our genomic analysis, extended to include data 
from gelada individuals collected from the Southern population, 
confirmed the proposed tripartition of this species. Full mitoge-
nomes and Y chromosome sequences were similarly in agreement 
with the three-population structure, with further subdivisions 
hinted by mtDNA and genomic data, but not Y chromosome se-
quences (Figure 2a,b). Male lineages from different Northern sub-
populations did not cluster according to their sampling location 
(unfortunately, having only one subpopulation for Central and 
Southern gelada, we were not able to explore this aspect in these 
populations) and lineages from different regions were related 
to each other. Such lack of structure might reflect the predomi-
nantly male-mediated intergroup migration observed in the wild 

F I G U R E  6 Gelada population niches along the first two principal component analysis (PCA) axes (PC1 and PC2) of bioclimatic variables 
recorded at occurrence sites and in the background environment within the study area. Red: niche calculated from central population sites; 
yellow: niche calculated from southern population sites; blue: niche calculated from exclusive northern population sites. Colour shading 
shows the density of the occurrences of the species by cell, with the solid and dashed contour lines illustrating, respectively, 50% and 90% 
of the available environment.
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(Dunbar,  1980; le Roux et  al.,  2011). The different demographic 
dynamics affecting males and females might also explain the sig-
nificant differences in the amount of variation recovered using the 
mtDNA and the Y chromosome as summarised by their different 
TMRCAs, the Y chromosome being two times younger than the 
mitogenome (0.24 Mya vs. 0.49 Mya). Similar differences in mito-
chondrial and Y chromosome TMRCAs have been noted previously 
in gorilla/orangutans but not in chimpanzees (Hallast et al., 2016). 
Such differences have been explained by non-mutually excluding 
scenarios related to the mating strategy implemented by males: 
(a) a substantial skew in male reproductive success, which would 
result in a reduction in Y chromosome diversity; (b) a reduced 
sperm competition, resulting in lower sperm production and an as-
sociated lower Y-related mutation rate. A lower mutation rate has 
not been reported in baboons, but male-skewed reproductive suc-
cess has been described (Fischer et al., 2019; Wu et al., 2020). It 
is therefore possible that the skewed sampling process associated 
with male variation reproductive success might be the underly-
ing explanatory mechanism for the observed Y/mtDNA TMRCAs 
in geladas. Relative differences in age are also dependent on the 
accuracy of mutation rates for different loci (Hallast et al., 2016). 
Further investigations into other species might provide useful in-
sights on this topic.

The lack of shared Y chromosome and mtDNA lineages across 
the three gelada populations suggests a relatively deep subdivi-
sion among these groups, the mtDNA/Y chromosome TMRCAs 
between Southern and Central-Northern gelada dating to 500–
150 kya. Gene-flow among populations appears to have been 
interrupted only in the last 20 kya but population contractions 
had been in place much earlier than that (Figure  3). The lack of 
more recent coalescent events for uniparental markers could 
be due to sampling as well as drift, the latter expected to be 
more pronounced for haploid systems. The occurrence of deep 

mitochondrial and Y chromosome branches in Southern geladas 
is compatible with a model suggesting early colonisation of the 
region followed by periods of isolation and population contraction 
(Supplementary Material 1; Figure  S10) Interestingly, the most 
recent period of isolation suggested by genomic data appears to 
parallel changes in the climatic-driven habitat suitability of T. ge-
lada, with gene-flow being interrupted since LGM (Figures 7; 3). A 
dynamic, metapopulation model is suggested by admixture trees, 
PSMC plots and paleoclimate reconstructions, all depicting a sce-
nario where events of expansion, gene-flow, isolation and possibly 
local extinction were probably not uncommon (Supplementary 
Material 1). The extreme fluctuations in habitat suitability are also 
compatible with the continuous reduction in effective population 
size estimated for T. gelada (Figure S10, Supplementary Material 
1; Figure 3), resulting from decreasing population size and/or con-
nectivity. The more extreme reduction in diversity and increase 
in RoH reported for Southern geladas parallel the more severe 
change in effective population size highlighted over recent times 
by PSMC and follows the lower degree of habitat suitability expe-
rienced over time by the Southern population (Figures 2d,e, 3, 7; 
Figure S10, Supplementary Material 1).

4.2  |  Hybridisation

Our extensive genomic comparison provided support for previ-
ously suggested gene-flow between Theropithecus and Papio, their 
last common ancestor possibly dating to 5 Ma, close to the human–
chimpanzee split (Liedigk et  al.,  2014). Hybrids have been poten-
tially identified in the wild (Dunbar & Dunbar, 1974) and observed in 
captivity (Jolly et al., 1997; Markarjan et al., 1974). The phenotypes 
of the captive and wild hybrids were different, possibly reflecting 
gelada or Papio backcrossing (Jolly et al., 1997). Captive F1 showed 

F I G U R E  7 Predicted habitat suitability maps of Theropithecus gelada in Ethiopia at three different past time frames. Higher values indicate 
the areas that were more favourable for gelada habitation. Red dots represent the current geographical location of the gelada sites.
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intermediate or more gelada-like features, exceeding both parental 
populations for body size (Jolly et al., 1997; Markarjan et al., 1974). 
Our data suggested ancient gelada contributions to Papio spe-
cies present in Ethiopia (P. hamadryas and P. anubis). Interestingly, 
the time of the last contact of Papio anubis with Southern geladas 
aligned with a period when the predicted Southern geladas suitable 
habitat area was increasing (Figure S10, Supplementary Material 1). 
Similar changes have occurred multiple times in the past and might 
have facilitated also the more ancient contacts of T. gelada with P. 
hamadryas.

The occurrence of captive fertile F1 (Markarjan et  al.,  1974) 
but the lack of genomic evidence for recent gene-flow could be 
explained by the hybrid F1 being generally disfavoured in the wild 
and therefore less likely to survive and reproduce. Jolly and col-
leagues (Jolly et  al.,  1997) proposed two possible explanations of 
why hybrids might have a lower fitness in the wild, both based on 
their larger appearance. Both considered the additional energy re-
quirements associated with larger body size: increased nutritional 
requirements but lower-crowned teeth (as observed in the hybrids 
in the wild; Jolly et al., 1997) might drive early loss of dental function 
and inability to fulfil their nutritional needs, and the increased ma-
ternal burden associated with the raising of a larger foetus and the 
nursing of a bigger infant (Jolly et al., 1997).

The antiquity of the introgression events probably provided 
enough time for natural selection to remove incompatible or dele-
terious gelada alleles from the genome of Papio (and Lophocebus), as 
well as increase the frequency of favourable variants, in a scenario 
not too dissimilar from what was observed in humans after the hybri-
disation with Neanderthals and Denisovans (Tobler et al., 2023). The 
recent release of a large Papio genomic dataset is expected to enable 
a more detailed investigation of the genomic distribution of gelada 
ancestry and their possible phenotypic impact (Groh & Coop, 2024; 
Sørensen et al., 2023).

4.3  |  Climate, diet and local adaptations

The unique dietary profile of geladas dominated by grass makes 
the variation across populations in UF usage of interest (Figure S8; 
Jarvey et al., 2018). Grass is the staple of choice of geladas, its con-
tribution to diet being shaped by its availability ultimately influenced 
by rainfall. UF operates as fallback food, its usage strongly driven 
by grass availability. While the link between grass consumption and 
rainfall is strong, the one between dietary UF and rainfall is present 
but weaker (Jarvey et al., 2018 and our results). Other factors prob-
ably play a role in determining UF usage (Abu et al., 2018). All this 
considered, despite no variation in rainfall, geladas of the Southern 
population of Indetu appear to consume more UF than other ge-
lada groups. Interestingly Southern geladas harbour more copies of 
LOC112607926, one of the two genes annotated as pancreatic am-
ylase in the gelada reference genome (Figure 5), a genomic feature 
observed in dogs, pigs and human populations with a diet enriched in 
starchy food (Jarvey et al., 2018; Pajic et al., 2019; Perry et al., 2007). 

The reduction in diversity around the duplicated locus in Southern 
gelada is indicative of positive selection, while the chromosomal 
extent of this pattern suggests this being a relatively recent event. 
For comparison, the reduction of diversity around the variants as-
sociated with lactase persistence in humans is similarly observed 
over more than 1 Mb (Bersaglieri et  al.,  2004; Joslin et  al.,  2020). 
Considering that selection on the persistence of LCT expression into 
adulthood has been dated to no more than a few thousand years 
ago (considering a generation time in humans of 28 years, these cor-
respond to a few hundred generations; Burger et al., 2020; Evershed 
et  al.,  2022), it is reasonable to consider the pattern observed in 
Southern gelada being generated over a number of generations 
around the same order of magnitude (at least hundreds).

During the past 30 kya, southern Ethiopia has undergone strong 
climatic changes, from dry and relatively cold during the Last Glacial 
Maximum (LGM, 25–18 kya) to the African Humid Period (AHP, 
15–5 kya; Casas-Gallego et al., 2023; Fischer et al., 2021; Foerster 
et al., 2012). Our past SDM predictions perfectly fit the Ethiopian 
climatic trends suggesting that gelada spatial distribution was af-
fected by these intense climatic fluctuations (Figure 7). Particularly, 
we show that during the LGM the Southern geladas extremely suf-
fered cold and dry conditions (Figure  7; Supplementary Material 
1; Figure  S10) whereas the impact was limited for the other two 
populations. We propose that increased UF consumption and am-
ylase copy number are related in Southern geladas. The ecological 
context experienced over time by this population might have driven 
positive selection on the amylase duplication in the last few thou-
sand years, compatible with the physical extent of the reduction of 
diversity around this locus. Increased UF consumption by geladas 
has been observed when grass/rain is scarce and metabolic adapta-
tion enabling more efficient processing of starchy food is expected 
to provide an evolutionary advantage in such situations (Jarvey 
et al., 2018; Pajic et al., 2019; Perry et al., 2007). While past climate 
might have provided the context for positively selecting a higher 
number of copies of the amylase gene in Southern geladas, other dy-
namics might have contributed over time too. The observation that 
increased UF consumption in Indetu occurred despite no differences 
in rainfall might reflect behavioural differences in food preference 
across gelada populations. It has been also reported that gelada 
UF consumption in Indetu in the wet season is slightly higher than 
during the dry season (seasonal mean 38% and 33% respectively; 
Abu et al., 2018). A general, behavioural-related, increase in UF con-
sumption could have reinforced the climate-related selective pres-
sure on salivary amylase copy-number, generating a co-evolutionary 
scenario not too dissimilar from the gene–culture interactions re-
ported in humans for lactase persistence (Evershed et al., 2022). It 
remains to be tested if in Indetu the use of UF is less related to the 
amount of grass available and if local behavioural traits contribute to 
the increase in UF consumption (Whiten et al., 1999). Interestingly, 
the removal of data from Indetu improves the correlation between 
UF consumption and rainfall in the dataset we tested, suggesting 
that other variables, including anthropogenic, affect dietary UF con-
tribution to diet in Indetu (Abu et al., 2018).
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The Ethiopian Highlands (part of the Eastern Afromontane 
Biodiversity Hotspot; Mittermeier et al., 2011) can be divided into 
the main north-western massif (western plateau) and the smaller 
south-eastern plateau, the two separated by the East African Great 
Rift Valley (Yalden et al., 1996). The highland plateaus belong to the 
same ecozone (Afroalpine and subafroalpine vegetation) although, 
some variation in the taxonomic composition of both plant and an-
imal communities as a result of biogeographical patterns across ge-
lada locations is present (Vivero et al., 2006). Currently, the lack of 
a systematic investigation in plant composition across the plateaus 
and locations of gelada occurrence prevents any further analysis in 
how these affect food consumption. Nevertheless, it is worth notic-
ing that gelada on the Eastern plateaus live at slightly lower altitudes 
than those on the western plateau (1600–2300 m vs. above 2300; 
Abu et al., 2018; Belay & Shotake, 1998), which might further affect 
the set of species available to geladas. However, it will be necessary 
to collect more information on what plant species are present and 
the extent of their occurrence across sites to test how these aspects 
shape what geladas prefer and ultimately consume.

We note that the two Southern Individuals here whole genome 
sequenced were not collected in Indetu and it remains to be shown 
if increased copy number/increased UF consumption are features 
shared across all Southern geladas. More ecological and behavioural 
data, as well as a more extensive characterisation of amylase copy-
number variation and their expression in Southern geladas, are 
necessary to test the association between UF consumption, grass 
availability and amylase genes in this population.

We note that an increase in the copy number of pancreatic amy-
lase is expected to increase not only the expression in the pancreas 
but also in the salivary glands, as pancreatic amylase is also expressed 
in salivary glands (Axelsson et al., 2013; Fagerberg et al., 2014; Han 
et al., 2022; Mau et al., 2010; Pajic et al., 2019; Samuelson et al., 1996; 
Torres et  al.,  2018). Selective pressure associated with an increase 
in starch consumption have been shown to favour the expansion of 
amylase genes, salivary and/or pancreatic (Pajic et al., 2019). The re-
lated increase in amylase production, both in the pancreas and the 
salivary glands, results in an increased capacity of processing starch 
both in the mouth and the digestive system (Axelsson et al., 2013; 
Mau et  al.,  2010; Pajic et  al.,  2019; Perry et  al.,  2007; Samuelson 
et al., 1996), which might be the case also for Southern geladas.

4.4  |  Implications for the taxonomy and 
conservation of T. gelada

The genomic analyses here presented support that presently the 
genus Theropithecus may be subdivided into three evolutionary units 
that have been taxonomically designated as Theropithecus gelada ge-
lada (Rüppell,  1835), Theropithecus gelada obscurus Heuglin,  1863 
respectively in the northern and central areas of the Ethiopian pla-
teau, and, in the south-eastern mountain range, Theropithecus gelada 
arsi, so agreeing with most recent literature (Gippoliti, 2010; Shotake 
et  al.,  2016; Trede et  al.,  2020; Zinner et  al.,  2018). This taxonomic 

account represents a solid base for conservation policies that aim to 
protect the current diversity of the genus, but, as often the case, must 
not be considered definitive. In particular, it remains to be determined 
whether the three identified evolutionary units should be treated as 
having equal rank or if the Arsi (Southern) gelada should be consid-
ered a distinct species. This consideration is based on the potentially 
older divergence of the Arsi gelada from the two subspecies, gelada 
(Northern) and obscurus (Central), suggested by deep coalescent 
events of uniparental markers and is consistent with the Rift Valley's 
well-known role as a barrier for mountain animal specialists in Ethiopia 
(Lavrenchenko & Bekele, 2017). Additionally, the ecological challenges 
of the Arsi habitat, supported by food-related adaptations reported for 
the amylase gene and the specific present and past climatic niche of 
the Arsi geladas, further support treating the Arsi population as a dis-
tinct species. We highlight that other standard taxonomic databases, 
such as cranial morphology, have been scarcely investigated so far and 
could be critical to further refine our taxonomic knowledge.

In this regard, we also note that the Northernmost gelada pop-
ulations have been recently confirmed in the Tigray, whose genetic 
and morphological affinity to other gelada populations is still un-
clear (Girmay & Dati,  2020; Girmay & Tesfay,  2020; Haileselasie 
et al., 2023). Considering the geographical features of the region, it is 
not impossible that the geladas from Tigray will turn out to be closer 
to T. g. obscurus (Central) than T. g. gelada (Northern), making the geo-
graphical designation of these subspecies as Central and Northern 
incorrect and instead supporting an alternative nomenclature as 
Western (gelada) and Eastern (obscurus) geladas (Gippoliti,  2010). 
Future characterisation of these groups will clarify this interesting 
geographical and taxonomic aspect of the species.

As a species Theropithecus gelada is considered Least Concern 
by IUCN (Gippoliti et al., 2019). Irrespective of the taxonomic rank 
accorded, T. gelada arsi, with between 2000 and 3000 surviving in-
dividuals estimated (De Jong et al., 2023), is a conservation priority 
despite the lack of a formal description that has delayed a formal rec-
ognition by IUCN (Gippoliti, 2022). The Arsi gelada may be consid-
ered Endangered according to IUCN criteria – a formal assessment 
has just been published (De Jong et al., 2023). The Galama Ridge, 
which offers protection to the Arsi geladas, suffers from intense an-
thropogenic pressure and no protected areas exist in the region. The 
remaining mosaic forests are threatened by intensive deforestation 
and agricultural ploughing. Montane habitats suffer from burning 
during the dry season and overgrazing during the wet season (Kostin 
et al., 2019). This taxon may therefore serve as a much-needed flag-
ship species attracting naturalistic tourism to their narrow region 
of occupancy along the gorges of the Webi Shebeli and Robi rivers. 
Obviously, revenue from tourism must be shared with local commu-
nities to lessen anthropogenic impacts on ecosystems.

5  |  CONCLUSIONS

By integrating genomic, climatic and dietary data we have generated 
a detailed picture of the evolutionary history of Theropithecus gelada. 
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The inclusion of more genomic data, from living individuals and mu-
seum specimens (Gippoliti, 2010), is expected to refine our results 
by providing a more detailed description of the degree of population 
structure and gene flow across populations that may be critical for 
long-term conservation planning. The integration of morphological 
data and the inclusion of functional analyses will contribute addi-
tional insights on the degree of variation within the species and the 
evolutionary significance of such diversity. Reconstructing the his-
tory of this species is also expected to unlock to what extent gela-
das will be able to face the challenges related to ongoing and future 
climatic changes (Ahmed et al., 2023). Indeed, a formal assessment 
of this population has just been published (De Jong et al., 2023) that 
suggests the Arsi gelada should be classified as Endangered accord-
ing to IUCN criteria.
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