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On the wave equation on moving domains: Regularity,
energy balance and application to dynamic debonding
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Francesco Solombrino

Abstract. We revisit some issues about existence and regularity for the wave equation in non-
cylindrical domains. Using a method of diffeomorphisms we show, through increasing regularity
assumptions, how the existence of weak solutions, their improved regularity and an energy balance
can be derived. As an application, we give a rigorous definition of dynamic energy release rate
density for some problems of debonding, and we formulate a proper notion of solutions for such
problems. We compare the consistence of such a formulation with that of previous ones, given in
the literature for particular cases.

1. Introduction

In this paper, we revisit some issues about existence and regularity for the wave equa-
tion in noncylindrical domains, that is, in domains evolving in time. Our main motivation
comes from an elastodynamic model for a thin film, initially glued onto a rigid substrate
and progressively debonded by applying an external load. As a result of this process, the
debonded region is deformed according to the law of elastodynamics; moreover, its oscil-
lations influence the evolution of the debonding front, that is, the interface between the
debonded region and the part of film still attached onto the substrate. It is then natural to
parametrize the debonded region by means of a time-dependent, growing domain, where
the (transverse component of the) displacement satisfies the classical wave equation.

On the other hand, the evolution of the domain is also an unknown of the model and
is governed by the physical principle of stability of the internal energy (kinetic and poten-
tial) of the body. Rigorously writing the precise form of this energetic criterion requires
some technical work, particularly to characterize the energy release rate, which measures,
loosely speaking, the amount of energy dissipated during an infinitesimal growth of the
debonded region. In fact, in the literature the energy release rate and the propagation cri-
terion were identified only in special cases, such as the one-dimensional setting [11, 32]
and the case with radial solutions [23], where some explicit formulas can be used.
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The main scope of this paper is to define the energy release rate for the dynamic
debonding problem in a general setting, removing restrictive assumptions on the shape
of the growing domains; this will lead to the flow rule governing the evolution of the
domain. We show an integral formula for the dynamic energy release rate naturally aris-
ing from the energy balance for the wave equation and extending what was previously
found in special cases. To obtain this, we have to revisit the problem of the wave equation
in time-dependent domains (with initial and boundary conditions) and provide a set of
assumptions ensuring existence, uniqueness and regularity.

In the literature there are several results on the wave equation in noncylindrical dom-
ains, obtained with various methods and under different assumptions on the evolution of
the domains. In [2] an abstract formulation is proposed, as well as a regularization proce-
dure for the operators involved in the problem. In [35] the author uses the Galerkin method
combined with a suitable penalization on the boundary. In [8–10, 28, 33, 34] the authors
employ changes of variables in order to recast the problem into a fixed domain and then
apply abstract results on hyperbolic equations via semigroup theory. We also mention, for
example, [1, 3, 4, 17, 19] and references therein for various approaches on different evolu-
tion equations (parabolic, Schrödinger, Navier-Stokes, etc.) in noncylindrical domains.

In this paper we collect some results on existence, uniqueness and regularity for the
wave equation and present them in a unitary perspective. Some results, already known in
the literature, are provided here with different proofs or under slightly different assump-
tions. In Section 2 we introduce a family �t of Lipschitz domains in RN depending on
time t 2 Œ0; T �. We define weak solutions of the wave equation in �t , complemented by
natural initial conditions on �0 and a homogeneous Dirichlet condition on the bound-
ary @�t . The results are then extended to nonhomogeneous Dirichlet conditions in Sec-
tion 5.1. We show an energy balance formula that holds true if the solution has a certain
regularity in time and space (Theorem 2.4). The majority of the paper is then devoted to
the rigorous proof of such a regularity property.

To this end, in Section 3 we follow the technique of changes of variables, assuming
a certain time regularity of the family �t . Specifically, we require that there is a diffeo-
morphism ˆ W Œ0; T � � �0 ! RN such that ˆ.t; �0/ D �t for every t . This leads us
to a hyperbolic problem in the fixed domain �0, with coefficients depending on time and
space. We compare two notions of solutions for such a problem, called weak solutions and
strong-weak solutions, respectively, and we prove they are equivalent (Proposition 3.8).
Existence, uniqueness and regularity of solutions to the hyperbolic problem in the cylin-
drical domain Œ0; T � � �0 are proved in Section 4, by means of the Galerkin method
(Theorem 4.10). The corresponding results in the noncylindrical domain follow under
suitable assumptions on the diffeomorphisms (Theorems 3.9 and 5.4).

As a technical remark, in our results the regularity required on such diffeomorphisms
is different if compared to the assumptions of other works in literature. For instance,
in [10] and [34] the authors consider changes of variables of class C 2.Œ0; T �IC 2.�0//
and C 3.Œ0; T � � �0/, respectively; in contrast, we require diffeomorphisms of the
class C 1;1.Œ0; T ���0/ for existence of solutions (Sections 3 and 4.2), while we need
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diffeomorphisms of class C 2;1.Œ0; T � � �0/ for uniqueness, regularity and energy bal-
ance (Sections 4.3 and 5). Moreover, for the regularity result we need to assume that �0
is convex or of class C 2. We stress in particular that, differently from previous works,
we actually allow for a wider choice of the reference configuration �0, including some
nonsmooth cases.

In Section 5 we combine the results of Sections 3 and 4, thus providing a full statement
of the energy balance (Theorem 5.4). Moreover, we show how our results may be applied
to different settings: the case of dimension one, extensively analyzed in, for instance,
[11, 14, 22, 24–26, 30–32]; the case where each domain �t is homothetic to �0; and the
case where each domain is the sublevel set of a smooth function, which includes the case
of radial solutions investigated in [23].

Our approach is deeply related to some works dealing with dynamic models for crack
propagation in brittle fracture by means of the same “method of diffeomorphisms”
(see [5–7, 12]). Indeed, the formulation of dynamic fracture also relies on the wave equa-
tion in a time-dependent domain—in this case, a domain with a growing crack. However,
since such a domain is not Lipschitz, our results do not apply to this case. On the other
hand, in a dynamic fracture problem the domains only differ by a set of codimension one.

The main similarity between the dynamic models for fracture and debonding is that
the wave equation is coupled with a flow rule governing the evolution of the domain. The
latter arises from an energetic criterion [16] which may be stated as a maximum dissipation
principle [21], or equivalently as a Griffith-type criterion involving the dynamic energy
release rate. In particular, it turns out that the flow rule implicitly depends on the solution
of the wave equation.

In Section 6 we show how the results of the previous sections allow us to rigorously
define the energy release rate (and thus the propagation criterion) for the dynamic debond-
ing model in a quite general setting. More precisely, we introduce the density of the
dynamic energy release rate, which is obtained by a localization procedure; and a cor-
responding local version of Griffith’s criterion, satisfied at each point of the debonding
front.

Our main achievement in this respect is a proper formulation of the coupled prob-
lem of dynamic debonding (wave equation together with local Griffith criterion) which
includes the special cases analyzed in previous papers and may be applied without assum-
ing a special form of the domains. We indeed show how the solutions found in the one-
dimensional [11, 32] and radial [23] setting fulfill the formulation proposed here (Theo-
rems 6.11 and 6.12). The well-posedness in the general framework still remains an open
question, due to the high complexity arising from the coupling between the wave equation
and Griffith criterion.

Notation

Throughout the paper, the set of M �M matrices with real entries is denoted by RM�M ,
and the subset of symmetric matrices is RM�Msym . The identity matrix is denoted by I . For
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the transpose of a matrix A we adopt the symbol AT . The scalar product between two
vectors w; v 2 RM is indicated by w � v.

By Pf we mean the time derivative of a function f D f .t; x/. If f is scalar-valued
we write rf for its gradient with respect to spatial components, represented as a column
vector. If f is vector-valued, we instead write Df for its Jacobian matrix with respect
to spatial components; as usual, each row of Df is the gradient of the corresponding
component of f .

Given an open setE �RM with Lipschitz boundary @E, we denote by �E the outward
unit normal to E. If E � R �RN , as is often the case throughout the paper, we write �tE
and �xE for the time- and space-component of the outward normal, respectively, that is,
�E D .�

t
E ; �

x
E / 2 R �RN .

The integration with respect to the Lebesgue and to the M -dimensional Hausdorff
measure is denoted respectively by dx (or dy) and by dHM . We adopt standard notations
for Lebesgue and Sobolev spaces and for Bochner spaces. Given a Banach space X , we
denote by hw; viX the duality product between w 2 X� and v 2 X . If X D L2.E/, we
identify it with its dual and, with a slight abuse of notation, we mean by hw; viL2.E/
the scalar product between w and v. In the case of X D H 1

0 .E/, we instead adopt the
convention of rigged Hilbert spaces, that is, for w 2 L2.E/ and v 2 H 1

0 .E/ one has
hw; viH1

0 .E/
D hw; viL2.E/.

2. The wave equation on moving domains

For T > 0, we consider a family ¹�tºt2Œ0;T � of domains in RN , with N 2 N, that is,

for every t 2 Œ0; T � the set �t � RN is nonempty, open, bounded and Lipschitz. (2.1a)

In some of the results, in view of the applications to debonding models (see Section 6), we
shall also assume that the family ¹�tºt2Œ0;T � is nondecreasing with respect to inclusion:

�s � �t for every 0 � s � t � T: (2.1b)

We denote the complement of �t by

�ct WD RN n�t :

Furthermore, we introduce the “space-time” domain O and its parabolic boundary � by

O WD
[

t2.0;T /

¹tº ��t and � WD
[

t2.0;T /

¹tº � @�t : (2.2)

Let us consider the following formal problem for a function u W O ! R:8̂̂̂̂
<̂
ˆ̂̂:
Ru.t; x/ ��u.t; x/ D f .t; x/; .t; x/ 2 O;

u.t; x/ D 0; .t; x/ 2 �;

u.0; x/ D u0.x/; x 2 �0;

Pu.0; x/ D u1.x/; x 2 �0:

(2.3)
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The system above consists of a wave equation in the noncylindrical domain O with forcing
term

f 2 L2.O/; (2.4a)

complemented by initial conditions

u0 2 H
1
0 .�0/; u1 2 L

2.�0/; (2.4b)

and a homogeneous Dirichlet boundary condition on � .

Remark 2.1. All the results within the paper may also be adapted to more general hyper-
bolic equations of the form

Ru.t; x/ � div.A.t; x/ru.t; x// D f .t; x/; .t; x/ 2 O; (2.5)

which model, for instance, nonhomogeneous materials. The minimal assumptions on the
matrixA.t;x/ needed to perform all the arguments are contained in the regularity property

A 2 C 1;1.OIRN�Nsym /; (2.6)

and in the uniform ellipticity condition

.A.t; x/w/ � w � cAjwj
2 for all w 2 RN ; (2.7)

which must hold for all .t; x/ 2 O with a positive constant cA > 0.
Since the proofs remain basically unchanged, in order to avoid heavy notations, throu-

ghout the paper we prefer to focus our attention on problem (2.3), that is, withA.t;x/D I .
The main changes in the statements are instead highlighted throughout the paper (see
Remarks 2.7, 3.2, 3.4, 5.6, 5.8 and 6.7).

For the sake of clarity, we will also adopt the following convention:

jwjA.t;x/ WD
p
.A.t; x/w/ � w for all w 2 RN :

Notice that by (2.6) and (2.7), the function j � jA.t;x/ defines a norm on RN for every
fixed .t; x/ 2 O.

Since we are working in time-dependent domains it is useful to introduce time-depend-
ent Bochner spaces. Given a family of normed spaces ¹Xtºt2Œ0;T �, with a slight abuse
of notation we say that a function v belongs to Lp.0; T I Xt /, with p 2 Œ1;C1�, if
v.t/ 2 Xt for a.e. t 2 .0; T / and the map t 7! kv.t/kXt is in Lp.0; T /. Notice that
L2.O/ D L2.0; T IL2.�t // by Fubini’s theorem. Using a similar convention for Sobolev
spaces, whenever O is open one may write

H 1.O/ D L2.0; T IH 1.�t // \H
1.0; T IL2.�t //

and

H 2.O/ D L2.0; T IH 2.�t // \H
1.0; T IH 1.�t // \H

2.0; T IL2.�t //:
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However, we prefer to employ the notation of time-dependent Bochner spaces only when
necessary, and only for spaces of the type Lp.0; T IXt /.

We can now give the definition of weak solution to problem (2.3). Notice that prop-
erty (i) of the definition below involves the time-dependent spaces H 1.�t / and L2.�t /,
while property (ii) features usual Bochner spaces of continuous functions with fixed tar-
get. In property (ii) it is understood that we consider the restriction of u to Œ0; T ���0 and
of Pu to Œ0; ı� ��0. Here and henceforth, all solutions u to equation (2.3) will be extended
to 0 outside O.

Definition 2.2. We say that uWO!R is a weak solution to problem (2.3) with data (2.4) if

(i) u 2 L2.0; T IH 1
0 .�t // and Pu 2 L2.0; T IL2.�t //;

(ii) u 2 C 0.Œ0; T �I L2.�0// and Pu 2 C 0.Œ0; ı�I H�1.�0// for every ı > 0 and
�0 � �0 open such that Œ0; ı���0 � O; in addition, the initial conditions
u.0/ D u0 and Pu.0/ D u1 hold;

(iii) u satisfies

�

Z T

0

h Pu.t/; P�.t/iL2.�t / dt C
Z T

0

hru.t/;r�.t/iL2.�t / dt

D

Z T

0

hf .t/; �.t/iL2.�t / dt; (2.8)

for every �2L2.0;T IH 1
0 .�t //with P�2L2.0;T IL2.�t // and �.T /D �.0/D 0.

Remark 2.3. The regularity assumptions of property (ii), which allow one to state the
initial conditions on position and velocity, are actually consequences of (i) and (iii) under
additional hypotheses on t 7! �t .

Assume, for instance, that (2.1b) holds, as in Section 2.1. Then, (i) implies that u and Pu
belong to L2.0; T IL2.�0//, hence u 2 C 0.Œ0; T �IL2.�0//; moreover, the wave equation
in (iii) implies that RuD�uCf 2 L2.0; T IH�1.�0//, hence Pu 2 C 0.Œ0; T �IH�1.�0//.

Without assuming monotonicity, a similar argument holds provided there exist dif-
feomorphisms as in (3.1), satisfying (H1); such properties are assumed from Section 3
onward.

In the paper we show how to obtain existence, uniqueness and an energy balance for
solutions u of problem (2.3), in particular to explicitly derive an expression for the energy
variation due to the evolution of the domain (which will be interpreted as the energy spent
during the debonding process). Such energy balance will be crucial in Section 6, where we
present applications to dynamic debonding models. If one assumes existence of a regular
solution as in (2.10), deriving the energy balance (2.11) is a direct computation: we present
it in Theorem 2.4 for the reader’s convenience. A more delicate issue is the rigorous proof
of regularity property (2.10): this will be the aim of Sections 3 and 4. In Section 5 we will
then obtain a more precise statement of the energy balance (see Theorem 5.4).
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Theorem 2.4. Assume (2.1a), assume that O is open with Lipschitz boundary and that

@O D � [ .¹T º ��T / [ .¹0º ��0/: (2.9)

Let u be a weak solution to problem (2.3) satisfying the following regularity property:

u 2 L2.0; T IH 2.�t / \H
1
0 .�t //; Pu 2 L2.0; T IH 1.�t //; Ru 2 L2.0; T IL2.�t //:

(2.10)
Then, for every t 2 Œ0; T � the following energy balance holds true:

1

2
k Pu.t/k2

L2.�t /
C
1

2
kru.t/k2

L2.�t /
�

Z
�t

�t
O

2

h
1 �

� �t
O

j�x
O
j

�2i
jruj2 dHN

D
1

2
ku1k

2
L2.�0/

C
1

2
kru0k

2
L2.�0/

C

Z t

0

hf .s/; Pu.s/iL2.�s/ ds; (2.11)

where �t WD ¹.s; x/ 2 � W s 2 .0; t/º.

In energy balance (2.11), we recognize in the left-hand side the kinetic energy, the
potential energy and a term corresponding to the evolution of the domain, while in the
right-hand side we see the initial energy and the work of external forces. The integral
over �t may be positive or negative, according to the geometry of O. If monotonicity
condition (2.1b) is in force one has �t

O
� 0; moreover, a typical assumption is that the

growth of the domains is subsonic, that is, j�t
O
j � j�x

O
j (in this situation, the set O is usually

called time-like; see [8–10, 28, 33, 35]). In applications to debonding models, where both
conditions hold, the integral over �t can be thus interpreted as energy dissipated in the
debonding process.

Remark 2.5. We point out that condition (2.9) is a weak regularity assumption on the
time-dependence of the domain, and it does not hold in general for sets satisfying (2.1).
Indeed, if there is a time-discontinuity at time t0, the boundary of O will contain a set
of the form ¹t0º �D, for some set D. The reader may think, for instance, to the simple
one-dimensional example

�t D

´
.0; 1/ if t 2 Œ0; 1/;

.0; 2/ if t 2 Œ1; 2�;

in which the set ¹1º � .1; 2/ is contained in @O. In Section 3 we will assume a stronger
regularity condition, which will imply (2.9) (see Remark 3.1).

Remark 2.6. The request of higher regularity (2.10) is needed to give a meaning to
the term in (2.11) representing the energy variation due to the evolution of the domain,
where ru has to be integrated along the lateral boundary � . A reformulation of this term,
in such a way that the energy balance may be written for genuine weak solutions (i.e., just
satisfying property (i) in Definition 2.2), would certainly be desirable; unfortunately, to
our better knowledge, a suitable rewriting of such term is still not available.
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Remark 2.7. Under the additional assumptions of Remark 2.1, the energy balance (2.11)
changes to

1

2
k Pu.t/k2

L2.�t /
C
1

2
hA.t/ru.t/;ru.t/iL2.�t /�

Z
�t

�t
O

2

h
jruj2A�

� �t
O

j�x
O
j

�2
jruj2

i
dHN

D
1

2
ku1k

2
L2.�0/

C
1

2
hA.0/ru0;ru0iL2.�0/ C

Z t

0

hf .s/; Pu.s/iL2.�s/ ds

C
1

2

Z t

0

h PA.s/ru.s/;ru.s/iL2.�s/ ds:

Proof of Theorem 2.4. By exploiting (2.10), we deduce that u belongs toH 2.O/ and thus
satisfies

Ru.t; x/ ��u.t; x/ D f .t; x/ for a.e. .t; x/ 2 O:

Multiplying the previous equation by a function ' 2 L2.0; T IH 1.�t // such that P' 2
L2.0; T IL2.�t // and integrating by parts in the “space-time” domain O, for all t 2 Œ0; T �
we obtain

h Pu.t/; '.t/iL2.�t / � hu1; '.0/iL2.�0/

�

Z t

0

h Pu.s/; P'.s/iL2.�s/ ds C
Z t

0

hru.s/;r'.s/iL2.�s/ ds

D

Z t

0

hf .s/; '.s/iL2.�s/ ds �
Z
�t

�
Pu �tO � ru � �

x
O

�
' dHN :

Thanks to the regularity provided by (2.10), we can choose as the test function ' D Pu. We
thus obtain

k Pu.t/k2
L2.�t /

� ku1k
2
L2.�0/

�

Z t

0

h Pu.s/; Ru.s/iL2.�s/ ds C
Z t

0

hru.s/;r Pu.s/iL2.�s/ ds

D

Z t

0

hf .s/; Pu.s/iL2.�s/ ds �
Z
�t

. Pu/2�tO dHN
C

Z
�t

�
ru � �xO

�
Pu dHN : (2.12)

Integrating by parts in time the integral terms in the first line, we getZ t

0

h Pu.s/; Ru.s/iL2.�s/ ds D
1

2
k Pu.t/k2

L2.�t /
�
1

2
ku1k

2
L2.�0/

C
1

2

Z
�t

. Pu/2�tO dHN ; (2.13a)Z t

0

hru.s/;r Pu.s/iL2.�s/ ds D
1

2
kru.t/k2

L2.�t /
�
1

2
kru0k

2
L2.�0/

C
1

2

Z
�t

jruj2�tO dHN : (2.13b)
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We now notice that, since u � 0 on � , it must hold that

Pu �xO D �
t
Oru; HN -a.e. on �;

which in particular implies the relations

Pu.ru � �xO/ D �
t
Ojruj

2; HN -a.e. on �; (2.14a)

. Pu/2j�xOj
2
D .�tO/

2
jruj2; HN -a.e. on �: (2.14b)

By plugging (2.13) and (2.14) into (2.12), we finally conclude that

1

2
k Pu.t/k2

L2.�t /
�
1

2
ku1k

2
L2.�0/

C
1

2
kru.t/k2

L2.�t /
�
1

2
kru0k

2
L2.�0/

D

Z t

0

hf .s/; Pu.s/iL2.�s/ ds C
Z
�t

�t
O

2

h
1 �

� �t
O

j�x
O
j

�2i
jruj2 dHN ;

and thus, the statement is proved.

2.1. An existence result

We conclude this section by proposing a novel strategy to prove existence of solutions
to the wave equations in noncylindrical domains; see [4] for a similar approach in the
context of parabolic equations. It is based on time-discretization and it does not require
any time-regularity on the growth of the sets�t . However, it is now crucial to require that
the family ¹�tºt2Œ0;T � is nondecreasing, that is, (2.1b) holds. Under these assumptions,
we also obtain an energy inequality (in contrast, the energy balance was obtained before
under stronger regularity hypotheses on the solution).

We stress that our discretization procedure is substantially different (and from our
point of view, simpler and more intuitive) with respect to the (variant of) the classical
minimizing movements approach used for hyperbolic problems, applied, for instance, in
the context of dynamic fracture mechanics in [13]. Indeed, the latter relies on an itera-
tive minimization of a suitable energy, followed by the construction of a piecewise affine
interpolant. In our approach, instead, after the discretization of the time interval Œ0; T � we
consider the related piecewise constant evolution of the domains�t , and in each discrete-
time interval we pick the solution of the wave equation in the corresponding cylindrical
domain (see (2.17)). This allows us to employ well-known results for the wave equation
in cylindrical domains.

Before stating the result we recall that, given a Banach space X , the set C 0w.Œ0; T �IX/
denotes the space of functions u W Œ0; T �! X which are continuous with respect to the
weak topology of X . Notice that here X is independent of time; in fact, we adopt the
convention that the solutions of (2.3) are extended to zero outside O.
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Theorem 2.8. Assume (2.1) and (2.4). Then, there exists a weak solution u of prob-
lem (2.3) in the sense of Definition 2.2. Moreover,

u 2 C 0w.Œ0; T �IH
1
0 .�T //;

Pu 2 L1.0; T IL2.�t // \ C
0
w.ŒNt ; T �IL

2.�Nt // for all Nt 2 Œ0; T /:

Furthermore, the following energy inequality holds true for every t 2 Œ0; T �:

1

2
k Pu.t/k2

L2.�t /
C
1

2
kru.t/k2

L2.�t /
�
1

2
ku1k

2
L2.�0/

C
1

2
kru0k

2
L2.�0/

C

Z t

0

hf .s/; Pu.s/iL2.�s/ ds: (2.15)

Proof. We adopt a time discretisation argument: we consider a sequence of partitions
of Œ0;T �with vanishing size, that is, for every n 2N we take 0D tn0 < t

n
1 < � � �< t

n
k.n/
D T

satisfying
lim

n!C1
sup

kD1;:::;k.n/

jtnk � t
n
k�1j D 0: (2.16)

For every k D 1; : : : ; k.n/, we then take un
k

as the unique weak solution of the wave
equation in the cylinder .tn

k�1
; tn
k
/ � �tn

k�1
with initial data un

k�1
.tn
k�1

/ and Pun
k�1

.tn
k�1

/

(with the convention un0.0/ D u0 and Pun0.0/ D u1), that is,8̂̂̂̂
<̂
ˆ̂̂:
Run
k
��un

k
D f in .tn

k�1
; tn
k
/ ��tn

k�1
;

un
k
D 0 in .tn

k�1
; tn
k
/ � @�tn

k�1
;

un
k
.tn
k�1

/ D un
k�1

.tn
k�1

/;

Pun
k
.tn
k�1

/ D Puk�1.t
n
k�1

/:

(2.17)

We adopt the usual convention that un
k

is extended to 0 in�c
tn
k�1

. Standard arguments show
the following properties:

(i) un
k

belongs to C 0.Œtn
k�1

; tn
k
�IH 1

0 .�T // \ C
1.Œtn

k�1
; tn
k
�IL2.�T //;

(ii) un
k
.tn
k�1

/ D un
k�1

.tn
k�1

/ in the sense of the space C 0.Œtn
k�1

; tn
k
�IH 1

0 .�T // and
Pun
k
.tn
k�1

/ D Pun
k�1

.tn
k�1

/ in the sense of the space C 0.Œtn
k�1

; tn
k
�IL2.�T //;

(iii) for every � 2 L2.tn
k�1

; tn
k
IH 1

0 .�T //\H
1.tn

k�1
; tn
k
IL2.�T // such that �.t/D 0

in �c
tn
k�1

and for a.e. t 2 .tn
k�1

; tn
k
/ it holds that

�

Z tn
k

tn
k�1

h Punk.s/; P�.s/iL2.�T / ds C
Z tn

k

tn
k�1

hrunk.s/;r�.s/iL2.�T / ds

D

Z tn
k

tn
k�1

hf .s/; �.s/iL2.�T / ds

C h Punk�1.t
n
k�1/; �.t

n
k�1/iL2.�T / � h Pu

n
k.t

n
k /; �.t

n
k /iL2.�T /:
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Furthermore, we have the following energy balance:

(iv) for every t 2 Œtn
k�1

; tn
k
� it holds that

1

2
k Punk.t/k

2
L2.�tn

k�1
/
C
1

2
krunk.t/k

2
L2.�tn

k�1
/

D
1

2
k Punk�1.tk�1/k

2
L2.�tn

k�2
/
C
1

2
krunk�1.tk�1/k

2
L2.�tn

k�2
/

C

Z t

tn
k�1

hf .s/; Punk.s/iL2.�tn
k�1

/ ds; (2.18)

where we also extended f in the whole of .0; T / � �T by setting f � 0 outside O.
In particular, by recalling again that un

k
.t/ vanishes in �c

tn
k�1

and by summing (2.18) for
j D 2; : : : ; k, we deduce for every t 2 Œtn

k�1
; tn
k
�

1

2
k Punk.t/k

2
L2.�T /

C
1

2
krunk.t/k

2
L2.�T /

D
1

2
ku1k

2
L2.�T /

C
1

2
kru0k

2
L2.�T /

C

Z t

tn
k�1

hf .s/; Punk.s/iL2.�T / ds

C

kX
jD2

Z tnj�1

tnj�2

hf .s/; Punj�1.s/iL2.�T / ds: (2.19)

For every n 2 N, we now define

un.t/ WD

´
un
k
.t/ if t 2 Œtn

k�1
; tn
k
/ for some k D 1; : : : ; k.n/;

un
k.n/

.T / if t D T:

By construction, un belongs to C 0.Œ0; T �IH 1
0 .�T // \ C

1.Œ0; T �IL2.�T // and satisfies
the following properties:

(i’) un D 0 in
k.n/S
kD1

Œtn
k�1

; tn
k
� ��c

tn
k�1
�

S
t2Œ0;T �

¹tº ��ct ;

(ii’) un.0/ D u0 in the sense of C 0.Œ0; T �IH 1
0 .�T // and Pun.0/ D u1 in the sense of

C 0.Œ0; T �IL2.�T //;

(iii’) for every � 2 C1c ..0; T / � �T / such that supp � �
k.n/S
kD1

Œtn
k�1

; tn
k
/ � �tn

k�1
, it

holds that

�

Z T

0

h Pun.s/; P�.s/iL2.�T / ds C
Z T

0

hrun.s/;r�.s/iL2.�T / ds

D

Z T

0

hf .s/; �.s/iL2.�T / ds: (2.20)
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Furthermore, energy balance (2.19) reads as follows:

(iv’) for every t 2 Œ0; T � it holds that

1

2
k Pun.t/k2

L2.�T /
C
1

2
krun.t/k2

L2.�T /

D
1

2
ku1k

2
L2.�T /

C
1

2
kru0k

2
L2.�T /

C

Z t

0

hf .s/; Pun.s/iL2.�T / ds: (2.21)

By a classical Grönwall argument, since the forcing term f is in L2..0; T / � �T /, we
thus deduce

max
t2Œ0;T �

�1
2
k Pun.t/k2

L2.�T /
C
1

2
krun.t/k2

L2.�T /

�
� C:

This implies the existence of u 2 L1.0; T IH 1
0 .�T // and of u� 2 L1.0; T IL2.�T //

such that, up to subsequences (not relabeled), we have

un * u weakly in L2.0; T IH 1
0 .�T //;

Pun * u� weakly in L2.0; T IL2.�T //:

It is standard to show that u� D Pu. Thus, we deduce the existence of a function
u 2 L1.0; T IH 1

0 .�T // with Pu 2 L1.0; T IL2.�T // such that

un * u weakly in L2.0; T IH 1
0 .�T // \H

1.0; T IL2.�T //: (2.22)

Notice that in (2.22) the target spaces are independent of time; however, by property (i’)
we easily deduce that u � 0 outside O, so we get the stronger conditions u 2 L1.0; T I
H 1
0 .�t // and Pu 2 L1.0; T IL2.�t //. By the continuous embedding

L1.0; T IH 1
0 .�T // \H

1.0; T IL2.�T // � C
0
w.Œ0; T �IH

1
0 .�T //;

we also obtain u 2 C 0w.Œ0; T �IH
1
0 .�T //.

To complete the proof that u satisfies Definition 2.2, we prove (2.8) by passing to the
limit in (2.20) by means of (2.22). Here, a technical issue is that the spaces of test func-
tions in (2.8) and in (2.20) are different. However, given a function � 2 L2.0; T IH 1

0 .�t //

with P� 2 L2.0; T IL2.�t // and �.T / D �.0/ D 0, we can approximate it by a sequence
of smooth functions �n as in property (iii’): this readily follows thanks to (2.16) and con-
cludes the proof of (2.8). We finally observe that for every Nt 2 Œ0; T / the function u is in
particular a weak solution of the wave equation in the cylinder .Nt ; T / � �Nt , and thus it
belongs to C 1w.ŒNt ; T �IL

2.�Nt //.
We are only left to prove energy inequality (2.15). We integrate (2.21) between arbi-

trary times ˛; ˇ with 0 � ˛ � ˇ � T . By (2.22) and standard lower semicontinuity
arguments, as n!C1 we obtainZ ˇ

˛

1

2
k Pu.t/k2

L2.�T /
C
1

2
kru.t/k2

L2.�T /
dt

� .ˇ � ˛/
�1
2
ku1k

2
L2.�0/

C
1

2
kru0k

2
L2.�0/

�
C

Z ˇ

˛

Z t

0

hf .s/; Pu.s/iL2.�T / ds dt:



Wave equation on moving domains and dynamic debonding 413

By the arbitrariness of ˛ and ˇ, for a.e. t 2 Œ0; T � the above inequality yields

1

2
k Pu.t/k2

L2.�T /
C
1

2
kru.t/k2

L2.�T /

�
1

2
ku1k

2
L2.�0/

C
1

2
kru0k

2
L2.�0/

C

Z t

0

hf .s/; Pu.s/iL2.�T / ds: (2.23)

We will now improve (2.23) by providing an energy inequality valid for every time. We
fix Nt 2 Œ0; T / and consider a sequence tk & Nt along which (2.23) is satisfied. Since
u 2 C 0w.Œ0; T �IH

1
0 .�T //, Pu 2 C

0
w.ŒNt ; T �IL

2.�Nt // and �Nt � �T , again by weak lower
semicontinuity we deduce

1

2
k Pu.Nt /k2

L2.�Nt /
C
1

2
kru.Nt /k2

L2.�Nt /

� lim inf
k!C1

�1
2
k Pu.tk/k

2
L2.�T /

C
1

2
kru.tk/k

2
L2.�T /

�
�
1

2
ku1k

2
L2.�0/

C
1

2
kru0k

2
L2.�0/

C

Z Nt
0

hf .s/; Pu.s/iL2.�T / ds

D
1

2
ku1k

2
L2.�0/

C
1

2
kru0k

2
L2.�0/

C

Z Nt
0

hf .s/; Pu.s/iL2.�s/ ds:

Hence, (2.15) is satisfied for all Nt 2 Œ0; T /. Its validity also in Nt D T follows by taking a
larger final time zT > T , defining, for instance, �t WD �T for t 2 .T; zT � and arguing in
the same way.

3. Equivalent reformulation on a fixed domain

In this section we recast problem (2.3) into a hyperbolic problem in a fixed domain
(see (3.5) below). To this end, we adapt the method of diffeomorphisms developed
in [8–10] which was employed more recently, for example, in [5, 12, 34].

We thus assume (2.1a) and the existence of two functions

ˆ W Œ0; T � ��0 ! RN ; ‰ W O ! �0;

satisfying

ˆ.t;�0/ D �t ; ‰.t;�t / D �0 for all t 2 Œ0; T �; (3.1a)

ˆ.t;‰.t; x// D x for all .t; x/ 2 O; (3.1b)

‰.t;ˆ.t; y// D y for all .t; y/ 2 Œ0; T � ��0; (3.1c)

ˆ.0; y/ D y for all y 2 �0: (3.1d)
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We also assume that they fulfill the following assumptions:

(H1) ˆ;‰ are of class C 1;1 on their domains of definition;

(H2) j P̂ .t; y/j < 1 for every .t; y/ 2 Œ0; T � ��0.

Condition (H2) ensures that the growth speed of the sets�t is always strictly less than the
speed of the traveling waves of problem (2.3); it is crucial in order to guarantee that the
transformed problem (see (3.5)) is still hyperbolic (see (3.8)).

Remark 3.1. We notice that the existence of such diffeomorphisms automatically implies
that the set O introduced in (2.2) is open and with Lipschitz boundary; furthermore, (2.9)
is valid. See also Lemma 5.1 and Corollary 5.2.

Remark 3.2. In the nonhomogeneous case depicted in Remark 2.1, the wave speed is no
longer always equal to one. In this situation condition (H2) can be rewritten as

(H2A) j P̂ .t; y/j <
p
cA for every .t; y/ 2 Œ0; T � ��0,

where cA > 0 is the positive constant appearing in (2.7).

In Section 5, when we study higher regularity of solutions to problem (2.3), we will
additionally require:

(H1’) ˆ;‰ are of class C 2;1 on their domains of definition.

In the following lemma we summarize some properties of the diffeomorphisms ˆ
and ‰ needed in Theorem 3.9 below:

Lemma 3.3. Let ˆ; ‰ be as in (3.1) and satisfy (H1). Then, for almost every .t; y/ 2
Œ0; T � ��0 the following relations hold:

� D‰.t;ˆ.t; y//Dˆ.t; y/ D I; (3.2a)
� detD‰.t;ˆ.t; y// detDˆ.t; y/ D 1; (3.2b)
� P‰.t;ˆ.t; y// D �D‰.t;ˆ.t; y// P̂ .t; y/; (3.2c)
� rŒdetD‰.t; �/�.ˆ.t; y// detDˆ.t; y/

D � detD‰.t;ˆ.t; y//D‰.t;ˆ.t; y//Tr detDˆ.t; y/; (3.2d)
�

�
@t ŒdetD‰.�; ˆ.t; y//�.t/CrŒdetD‰.t; �/�.ˆ.t; y// � P̂ .t; y/

�
detDˆ.t; y/

D � detD‰.t;ˆ.t; y// @t detDˆ.t; y/; (3.2e)
� rŒdetD‰.t; �/�.ˆ.t; y// � P̂ .t; y/ detDˆ.t; y/

D P‰.t;ˆ.t; y// � r detDˆ.t; y/ detD‰.t;ˆ.t; y//; (3.2f)
� @t detDˆ.t; y/C div

�
P‰.t;ˆ.t; y// detDˆ.t; y/

�
D 0: (3.2g)

In particular, we notice that

detDˆ.t; y/ > 0 for every .t; y/ 2 Œ0; T � ��0: (3.3)

Proof. Relations (3.2a) and (3.2c) simply follow by differentiating (3.1c) with respect to y
and t , respectively. Then, (3.2a) easily implies (3.2b) and (3.3) by (3.1d). Moreover, differ-
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entiating identity (3.2b) with respect to y and using (3.2a), one obtains (3.2d). Similarly,
differentiating identity (3.2b) with respect to t , one gets (3.2e). Multiplying both sides
of (3.2d) by P̂ .t; y/ and using (3.2c), one also deduces (3.2f). Finally, we prove (3.2g):
by (3.1b), for a.e. t 2 Œ0; T � and x 2 �t it holds that

tr
h d

dt
.Dˆ.t; ‰.t; x///

i
D 0:

The above identity can be written in components as

NX
i;jD1

@j P̂ i .t; ‰.t; x//@i‰j .t; x/C

NX
i;jD1

@jˆi .t; ‰.t; x//@i P‰j .t; x/

C

NX
i;j;kD1

@k@jˆi .t; ‰.t; x// P‰k.t; x/@i‰j .t; ‰.t; x// D 0:

Setting x D ˆ.t; y/, we now get

NX
i;jD1

@j P̂ i .t; y/@i‰j .t; ˆ.t; y//C

NX
i;jD1

@jˆi .t; y/@i P‰j .t; ˆ.t; y//

C

NX
i;j;kD1

@k@jˆi .t; y/ P‰k.t; ˆ.t; y//@i‰j .t; y/ D 0:

Finally, we multiply the previous equality by detDˆ.t; y/ and apply the Jacobi identity

@t detM.t/ D detM.t/ tr
�
M.t/�1@tM.t/

�
;

with M.t/ D Dˆ.t; y/. Thus, we deduce (3.2g).

Given a weak solution u of problem (2.3), we now consider the auxiliary function

v.t; y/ WD u.t; ˆ.t; y// for all .t; x/ 2 Œ0; T � ��0: (3.4a)

Equivalently,
u.t; x/ D v.t; ‰.t; x// for all .t; x/ 2 O: (3.4b)

This change of variables yields the following problem with fixed domain:8̂̂̂̂
<̂
ˆ̂̂:
Rv � div.Brv/C a � rv � 2b � r Pv D g in .0; T / ��0;

v D 0 in .0; T / � @�0;

v.0/ D v0;

Pv.0/ D v1;

(3.5)
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whose coefficients are given by

B.t; y/ WD D‰.t;ˆ.t; y//D‰.t;ˆ.t; y//T � P‰.t;ˆ.t; y//˝ P‰.t;ˆ.t; y//; (3.6a)

a.t; y/ WD �
®
B.t; y/Tr detDˆ.t; y/

C @t
�
b.t; y/ detDˆ.t; y/

�¯
detD‰.t;ˆ.t; y//; (3.6b)

b.t; y/ WD � P‰.t;ˆ.t; y//I (3.6c)

the forcing term is
g.t; y/ WD f .t; ˆ.t; y//I (3.6d)

and the initial data are defined by

v0 WD u0; v1 WD u1 C P̂ .0; �/ � ru0: (3.6e)

Remark 3.4. If the equation under study is (2.5), the only change in the new coefficients
is given by

B.t; y/ D D‰.t;ˆ.t; y//A.t;ˆ.t; y//D‰.t;ˆ.t; y//T � P‰.t;ˆ.t; y//˝ P‰.t;ˆ.t; y//:

We also refer to [12, (2.29)] for a comparison.

The following proposition shows the regularity of the new data:

Proposition 3.5. Assume (2.1a) and (2.4) and letˆ;‰ be as in (3.1) and satisfy (H1). Let
relations (3.6) hold. Then,

B 2 C 0;1.Œ0; T � ��0IR
N�N
sym /; (3.7a)

a 2 L1.Œ0; T � ��0IR
N /; (3.7b)

b 2 C 0;1.Œ0; T � ��0IR
N /; (3.7c)

g 2 L2..0; T / ��0/; (3.7d)
v0 2 H

1
0 .�0/; v1 2 L

2.�0/: (3.7e)

Moreover, if (H2) is also satisfied, then B is uniformly elliptic, that is, there exists a
positive constant cB > 0 such that for every .t; y/ 2 Œ0; T � ��0 one has

.B.t; y/w/ � w � cB jwj
2 for all w 2 RN : (3.8)

If in addition f 2 H 1.O/ and (H1’) is fulfilled, then it holds that

B 2 C 1;1.Œ0; T � ��0IR
N�N
sym /; (3.9a)

a 2 C 0;1.Œ0; T � ��0IR
N /; (3.9b)

b 2 C 1;1.Œ0; T � ��0IR
N /; (3.9c)

g 2 H 1.0; T IL2.�0//: (3.9d)
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Proof. Regularity properties (3.7) and (3.9) directly follow from the explicit expressions
in (3.6) together with (H1) and (H1’), respectively. For ellipticity property (3.8) we refer
to [23, Lemma B.3].

To deal with problem (3.5) we introduce two equivalent notions of solution (see Propo-
sition (3.8)), whose terminologies are consistent with the one introduced in [13]. Defi-
nition 3.6 is the analogue of Definition 2.2 in the current context, while Definition 3.7
does not involve integration by parts in time (as is classical in the analysis of hyperbolic
problems; see, for instance, the textbooks [15, 27]). The first notion is useful to show
the equivalence between problem (2.3) in a moving domain and problem (3.5) in a fixed
domain. The second notion is more suited to the Galerkin method and will be used in
Section 4 to obtain higher regularity.

Definition 3.6. We say that v W Œ0; T ���0! R is a weak solution of problem (3.5) with
data (3.7) if

(i) v 2 L2.0; T IH 1
0 .�0// and Pv 2 L2.0; T IL2.�0//;

(ii) v.0/ D v0 in the sense of C 0.Œ0; T �IL2.�0// and Pv.0/ D v1 in the sense of
C 0.Œ0; T �IH�1.�0//;

(iii) v satisfies

�

Z T

0

h Pv.t/; P�.t/iL2.�0/ dt C
Z T

0

hB.t/rv.t/;r�.t/iL2.�0/ dt

C

Z T

0

ha.t/ � rv.t/; �.t/iL2.�0/ dt C 2
Z T

0

h Pv.t/; div.b.t/�.t//iL2.�0/ dt

D

Z T

0

hg.t/; �.t/iL2.�0/ dt; (3.10)

for every � 2 L2.0; T IH 1
0 .�0// \H

1
0 .0; T IL

2.�0//.

Definition 3.7. We say that v W Œ0;T ���0!R is a strong-weak solution of problem (3.5)
with data (3.7) if

(i) v 2 L2.0; T IH 1
0 .�0//, Pv 2 L

2.0; T IL2.�0//, and Rv 2 L2.0; T IH�1.�0//;

(ii) v.0/ D v0 in the sense of C 0.Œ0; T �IL2.�0// and Pv.0/ D v1 in the sense of
C 0.Œ0; T �IH�1.�0//;

(iii) v satisfies

h Rv.t/; �iH1
0 .�0/

C hB.t/rv.t/;r�iL2.�0/ C ha.t/ � rv.t/; �iL2.�0/

C 2h Pv.t/; div.b.t/�/iL2.�0/ D hg.t/; �iL2.�0/; (3.11)

for a.e. t 2 Œ0; T � and for every � 2 H 1
0 .�0/.

The next proposition shows the equivalence of the two notions of solution just intro-
duced.



G. Lazzaroni, R. Molinarolo, F. Riva, and F. Solombrino 418

Proposition 3.8. Assume (3.7). Then, a function v is a weak solution of problem (3.5)
in the sense of Definition 3.6 if and only if it is a strong-weak solution in the sense of
Definition 3.7.

Proof. First, assume that v is a strong-weak solution and fix a function

� 2 L2.0; T IH 1
0 .�0// \H

1
0 .0; T IL

2.�0//:

Then, �.t/ 2 H 1
0 .�0/ for almost every t 2 Œ0; T � and (3.11) holds with � D �.t/. Inte-

grating by parts in time, we obtain thatZ T

0

hg.t/; �.t/iL2.�0/ dt D�
Z T

0

h Pv.t/; P�.t//iL2.�0/ dtC
Z T

0

hB.t/rv.t/;r�.t/iL2.�0/ dt

C

Z T

0

ha.t/ � rv.t/; �.t/iL2.�0/ dt C 2
Z T

0

h Pv.t/; div.b.t/�.t//iL2.�0/ dt;

and so we conclude that v is a weak solution.
We now prove the reverse implication. Let v be a weak solution. We first prove

that Rv belongs to L2.0; T IH�1.�0//. Since Pv 2 L2.0; T IL2.�0//, a priori we know
that Rv 2 H�1.0; T IL2.�0// as a distributional derivative. By definition, it acts in the
following way:

h Rv; �iH1
0 .0;T IL

2.�0//
D �

Z T

0

h Pv.t/; P�.t/iL2.�0/ dt for all � 2 H 1
0 .0; T IL

2.�0//:

We now fix � 2 L2.0; T IH 1
0 .�0// \H

1
0 .0; T IL

2.�0//. Hence, (3.10) states that

�

Z T

0

h Pv.t/; P�.t/iL2.�0/ dt

D �

Z T

0

hB.t/rv.t/;r�.t/iL2.�0/ dt �
Z T

0

ha.t/ � rv.t/; �.t/iL2.�0/ dt

� 2

Z T

0

h Pv.t/; div.b.t/�.t//iL2.�0/ dt C
Z T

0

hg.t/; �.t/iL2.�0/ dt: (3.12)

Due to (3.7), by developing the divergence term

div.b.t/�.t// D div.b.t// �.t/C b.t/ � r�.t/;

we conclude that the following inequalities hold:ˇ̌̌Z T

0

hB.t/rv.t/;r�.t/iL2.�0/ dt
ˇ̌̌

� kBkL1..0;T /��0/krvkL2.0;T IL2.�0//kr�kL2.0;T IL2.�0//; (3.13a)
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ˇ̌̌Z T

0

ha.t/ � rv.t/; �.t/iL2.�0/ dt
ˇ̌̌

� kakL1..0;T /��0/krvkL2.0;T IL2.�0//k�kL2.0;T IL2.�0//; (3.13b)ˇ̌̌Z T

0

h Pv.t/; div.b.t/�.t//iL2.�0/ dt
ˇ̌̌
�
�
kdiv.b/kL1..0;T /��0/ C kbkL1..0;T /��0/

�
� kPvkL2.0;T IL2.�0//k�kL2.0;T IH1

0 .�0//
; (3.13c)ˇ̌̌Z T

0

hg.t/; �.t/iL2.�0/ dt
ˇ̌̌
� kgkL2.0;T IL2.�0//k�kL2.0;T IL2.�0//: (3.13d)

Hence, there exists a constant C > 0 such that

jh Rv; �iH1
0 .0;T IL

2.�0//
j � Ck�kL2.0;T IH1

0 .�0//
:

By the density of L2.0; T IH 1
0 .�0//\H

1
0 .0; T IL

2.�0// in L2.0; T IH 1
0 .�0//, we con-

clude that Rv is in L2.0; T IH�1.�0//.
Employing an integration by parts in time in (3.12), which now is allowed, we then

deduce thatZ T

0

hg.t/; �.t/iL2.�0/ dt D
Z T

0

h Rv.t/; �.t/iH1
0 .�0/

dt C
Z T

0

hB.t/rv.t/;r�.t/iL2.�0/ dt

C

Z T

0

ha.t/ � rv.t/; �.t/iL2.�0/ dt

C 2

Z T

0

h Pv.t/; div.b.t/�.t//iL2.�0/ dt; (3.14)

for every � 2L2.0;T IH 1
0 .�0//. Now let ¹�nºn2N �H

1
0 .�0/ be a countable dense subset

of H 1
0 .�0/ and consider, for n 2 N and t 2 Œ0; T �, the following properties:

lim
h!0C

Z tCh

t

h Rv.s/; �niH1
0 .�0/

ds D hRv.t/; �niH1
0 .�0/

; (3.15a)

lim
h!0C

Z tCh

t

hB.s/rv.s/;r�niL2.�0/ ds D hB.t/rv.t/;r�niL2.�0/; (3.15b)

lim
h!0C

Z tCh

t

ha.s/ � rv.s/; �niL2.�0/ ds D ha.t/ � rv.t/; �niL2.�0/; (3.15c)

lim
h!0C

Z tCh

t

h Pv.s/; div.b.s/�n/iL2.�0/ ds D hPv.t/; div.b.t/�n/iL2.�0/; (3.15d)

lim
h!0C

Z tCh

t

hg.s/; �niL2.�0/ ds D hg.t/; �niL2.�0/: (3.15e)

For every n 2 N, we now define the following set:

An WD
®
t 2 Œ0; T � W relations (3.15) hold

¯
:
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By the regularity of v and of the data, we have that An has full measure; hence, the set

Z WD
[
n2N

Zn with Zn WD Œ0; T � n An

has null measure. By considering the functions

 hn .s/ WD
1

h
�n �Œt;tCh�.s/ for all h > 0; n 2 N; t 2 Œ0; T � nZ

and testing (3.14) by � D  hn 2 L
2.0; T IH 1

0 .�0//, we thus obtain

1

h

Z tCh

t

h Rv.s/; �niH1
0 .�0/

ds C
1

h

Z tCh

t

hB.s/rv.s/;r�niL2.�0/ ds

C
1

h

Z tCh

t

ha.s/ � rv.s/; �niL2.�0/ ds C
2

h

Z tCh

t

h Pv.s/; div.b.s/�n/iL2.�0/ ds

D
1

h

Z tCh

t

hg.s/; �niL2.�0/ dt for all h > 0; n 2 N; t 2 Œ0; T � nZ:

Letting h! 0C, for t 2 Œ0; T � nZ we now get

h Rv.t/; �niH1
0 .�0/

C hB.t/rv.t/;r�niL2.�0/ C ha.t/ � rv.t/; �niL2.�0/

C 2h Pv.t/; div.b.t/�n/iL2.�0/ D hg.t/; �niL2.�0/;

for every n 2 N. By the density of ¹�nºn2N in H 1
0 .�0/, we finally conclude that v is a

strong-weak solution. Hence, the proof is complete.

The main result of the section is contained in the next theorem, which states that
problems (2.3) and (3.5) are actually equivalent.

Theorem 3.9. Assume (2.1a) and (2.4) and let ˆ; ‰ be as in (3.1) and satisfy (H1).
Then, u is a weak solution of problem (2.3) in the sense of Definition 2.2 if and only if
the corresponding function v defined as in (3.4a) is a weak solution of problem (3.5) with
data (3.6) in the sense of Definition 3.6.

Proof. Let u be a weak solution of problem (2.3) and let v be defined by the change of
variables ˆ as in (3.4a). Let

� 2 L2.0; T IH 1
0 .�0// \H

1
0 .0; T IL

2.�0//:

Then, consider the test function defined by

�.t; x/ D �.t; ‰.t; x// detD‰.t; x/ for a.e. .t; x/ 2 O:

Observe that by hypothesis (H1), clearly �2L2.0;T IH 1
0 .�t //with P�2L2.0;T IL2.�t //

and �.T / D �.0/ D 0. By (3.4b), the following relations hold for a.e. .t; x/ 2 O:

Pu.t; x/ D Pv.t; ‰.t; x//Crv.t; ‰.t; x// � P‰.t; x/;

ru.t; x/ D D‰.t; x/T rv.t; ‰.t; x//:
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Hence, by (2.8) we get

�

Z T

0

D
Pv.t; ‰.t; �//Crv.t; ‰.t; �// � P‰.t; �//;

d
dt

h
�.t; ‰.t; �// detD‰.t; �/

iE
L2.�t /

dt„ ƒ‚ …
J1

C

Z T

0

D
D‰.t; �/T rv.t; ‰.t; �//;r

h
�.t; ‰.t; �// detD‰.t; �/

iE
L2.�t /

dt„ ƒ‚ …
J2

D

Z T

0

hf .t; �/; �.t; ‰.t; �// detD‰.t; �/iL2.�t / dt: (3.16)

Then, by the change of variables x D ˆ.t; y/ and using identity (3.2b) of Lemma 3.3,
we getZ T

0

hf .t; �/; �.t; ‰.t; �// detD‰.t; �/iL2.�t / dt D
Z T

0

hg.t; �/; �.t; �/iL2.�0/ dt: (3.17)

In order to conclude the proof, we shall prove that J1 C J2 coincides with the left-hand
side of (3.10). We start by considering the term J2. Expanding the term

r
�
�.t; ‰.t; �// detD‰.t; �/

�
yields

r
�
�.t; ‰.t; �// detD‰.t; �/

�
D D‰.t; �/Tr�.t; ‰.t; �// detD‰.t; �/C �.t; ‰.t; �//r detD‰.t; �/:

Performing again the change of variables x D ˆ.t; y/, by (3.2b), we obtain

J2 D

Z T

0

hD‰.t;ˆ.t; �//Trv.t; �/;D‰.t;ˆ.t; �//Tr�.t; �/iL2.�0/ dt

C

Z T

0

hD‰.t;ˆ.t; �//Trv.t; �/; �.t; �/r detD‰.t;ˆ.t; �// detDˆ.t; �/iL2.�0/ dt:

Then, by (3.2d) in Lemma 3.3, we deduce that

J2 D

Z T

0

hD‰.t;ˆ.t; �//D‰.t;ˆ.t; �//Trv.t; �/;r�.t; �/iL2.�0/ dt

�

Z T

0

hD‰.t;ˆ.t; �//D‰.t;ˆ.t; �//Trv.t; �/;

�.t; �/r detDˆ.t; �/ detD‰.t;ˆ.t; �//iL2.�0/ dt:

We now consider the term J1. Expanding the term d
dt Œ�.t; ‰.t; �// detD‰.t; �/� yields

d
dt

�
�.t; ‰.t; �// detD‰.t; �/

�
D P�.t; ‰.t; �// detD‰.t; �/

Cr�.t; ‰.t; �// � P‰.t; �/ detD‰.t; �/C �.t; ‰.t; �// @t detD‰.t; �/:
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Arguing as before, we obtain

J1 D �

Z T

0

h Pv.t; �/; P�.t; �/iL2.�0/ dt �
Z T

0

h Pv.t; �/;r�.t; �/ � P‰.t;ˆ.t; �//iL2.�0/ dt

�

Z T

0

h Pv.t; �/; �.t; �/ @t ŒdetD‰.t; �/�.ˆ.t; �// detDˆ.t; �/iL2.�0/ dt

�

Z T

0

hrv.t; �/ � P‰.t;ˆ.t; �//; P�.t; �/iL2.�0/ dt

�

Z T

0

hrv.t; �/ � P‰.t;ˆ.t; �//;r�.t; �/ � P‰.t;ˆ.t; �//iL2.�0/ dt

�

Z T

0

hrv.t; �/ � P‰.t;ˆ.t; �//; �.t; �/ @t ŒdetD‰.t; �/�.ˆ.t; �// detDˆ.t; �/iL2.�0/ dt:

Then, by identity (3.2e) of Lemma 3.3, we deduce that

J1 D �

Z T

0

h Pv.t; �/; P�.t; �/iL2.�0/ dt �
Z T

0

h Pv.t; �/;r�.t; �/ � P‰.t;ˆ.t; �//iL2.�0/ dt

C

Z T

0

h Pv.t; �/; �.t; �/ @t detDˆ.t; �/ detD‰.t;ˆ.t; �//iL2.�0/ dt

C

Z T

0

h Pv.t; �/; �.t; �/rŒdetD‰.t; �/�.ˆ.t; �// � P̂ .t; �/ detDˆ.t; �/iL2.�0/ dt

�

Z T

0

hrv.t; �/ � P‰.t;ˆ.t; �//; P�.t; �/iL2.�0/ dt

�

Z T

0

h P‰.t;ˆ.t; �//˝ P‰.t;ˆ.t; �//rv.t; �/;r�.t; �/iL2.�0/ dt

C

Z T

0

hrv.t; �/ � P‰.t;ˆ.t; �//; �.t; �/ @t detDˆ.t; �/ detD‰.t;ˆ.t; �//iL2.�0/ dt

C

Z T

0

hrv.t; �/ � P‰.t;ˆ.t; �//;

�.t; �/rŒdetD‰.t; �/�.ˆ.t; �// � P̂ .t; �/ detDˆ.t; �/iL2.�0/ dt: (3.18)

We now notice that, in light of relation (3.2f) of Lemma 3.3, we can rewrite the last
summand of (3.18) as follows:Z T

0

hrv.t; �/ � P‰.t;ˆ.t; �//; �.t; �/rŒdetD‰.t; �/�.ˆ.t; �// � P̂ .t; �/ detDˆ.t; �/iL2.�0/ dt

D

Z T

0

h P‰.t;ˆ.t; �//˝ P‰.t;ˆ.t; �//rv.t; �/;

�.t; �/r detDˆ.t; �/ detD‰.t;ˆ.t; �//iL2.�0/ dt:
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The fourth summand of (3.18) can instead be rewritten asZ T

0

h Pv.t; �/; �.t; �/rŒdetD‰.t; �/�.ˆ.t; �// � P̂ .t; �/ detDˆ.t; �/iL2.�0/ dt

D

Z T

0

h Pv.t; �/; �.t; �/ P‰.t;ˆ.t; �// � r detDˆ.t; �/ detD‰.t;ˆ.t; �//iL2.�0/ dt:

By using (3.2g) in Lemma 3.3 (keeping in mind also (3.2b)), the sum of the third and the
fourth summand in (3.18) givesZ T

0

h Pv.t; �/; �.t; �/ @t detDˆ.t; �/ detD‰.t;ˆ.t; �//iL2.�0/ dt

C

Z T

0

h Pv.t; �/; �.t; �/ P‰.t;ˆ.t; �// � r detDˆ.t; �/ detD‰.t;ˆ.t; �//iL2.�0/ dt

D �

Z T

0

˝
Pv.t; �/; �.t; �/ div

�
P‰.t;ˆ.t; �//

�˛
L2.�0/

dt: (3.19)

We finally consider the second and the fifth summand of (3.18). We split the term
P‰.t;ˆ.t; y// P�.t; y/ into

P‰.t;ˆ.t; y// P�.t; y/ D
d
dt
. P‰.t;ˆ.t; y//�.t; y// �

� d
dt
P‰.t;ˆ.t; y//

�
�.t; y/

and rewrite the term �.t; y/ div. P‰.t; ˆ.t; y///C r�.t; y/ � P‰.t; ˆ.t; y// (cf. the second
summand of (3.18) and right-hand side of (3.19)) as

�.t; y/ div. P‰.t;ˆ.t; y///Cr�.t; y/ � P‰.t;ˆ.t; y// D div. P‰.t;ˆ.t; y//�.t; y//:

Finally, integrating by parts in space and in time, we conclude that

�

Z T

0

h Pv.t; �/;r�.t; �/ � P‰.t;ˆ.t; �//iL2.�0/ dt

�

Z T

0

h Pv.t; �/; �.t; �/ div. P‰.t;ˆ.t; �///iL2.�0/ dt

�

Z T

0

hrv.t; �/ � P‰.t;ˆ.t; �//; P�.t; �/iL2.�0/ dt

D �2

Z T

0

˝
Pv.t; �/; div

�
P‰.t;ˆ.t; �//�.t; �/

�˛
L2.�0/

dt

C

Z T

0

D
rv.t; �/ �

� d
dt
P‰.t;ˆ.t; �//

�
; �.t; �/

E
L2.�0/

dt:

Hence, recalling expressions (3.6a), (3.6b) and (3.6c), we deduce that

J1 C J2 D �

Z T

0

h Pv.t/; P�.t/iL2.�0/ dt C
Z T

0

hB.t/rv.t/;r�.t/iL2.�0/ dt



G. Lazzaroni, R. Molinarolo, F. Riva, and F. Solombrino 424

C

Z T

0

ha.t/ � rv.t/; �.t/iL2.�0/ dt C 2
Z T

0

h Pv.t/; div.b.t/�.t//iL2.�0/ dt;

which, due to (3.16) and (3.17), yields the conclusion.
Using the very same argument, one can prove the reverse implication, thus the proof

is complete.

4. Nonautonomous hyperbolic equations

In this section we focus on hyperbolic problem (3.5), independently of its relation to the
original problem given by the explicit formulas in (3.6). We employ the classical Galerkin
method in order to obtain the higher regularity we are looking for. In Section 4.2 we
show the first basic estimates, which also provide a way to prove existence of strong-weak
solutions to the problem under consideration. In Section 4.3 we refine such estimates,
strengthening the assumptions on the data and finally deducing more regularity for the
solutions previously obtained.

We thus consider problem (3.5) with nonautonomous coefficients B , a, b, forcing
term g and initial data v0, v1 satisfying (3.7) and (3.8). We tacitly assume throughout the
whole section that

the set �0 � RN is nonempty, open, bounded and with Lipschitz boundary. (4.1)

Moreover, the definitions of weak solutions and strong-weak solutions are the ones given
in Definitions 3.6 and 3.7, respectively.

4.1. Galerkin approximation

The Galerkin method consists in projecting problem (3.5) onto finite-dimensional spaces,
and in finding uniform estimates on the lower-dimensional problems which allow us to
retrieve information on the infinite-dimensional one.

To this end, let ¹wkºk2N � H
2.�0/ \H

1
0 .�0/ be the set of eigenfunctions of ��

in H 1
0 .�0/ normalized in L2.�0/. It is a standard fact that they form an orthogonal basis

of H 1
0 .�0/ and an orthonormal basis of L2.�0/. Furthermore, by their very definition,

for every k 2 N they fulfill

h�;wkiL2.�0/ D
hr�;rwkiL2.�0/

krwkk
2
L2.�0/

for all � 2 H 1
0 .�0/: (4.2)

For every m 2 N, we seek functions dm
k
2 H 2.0; T / such that the function defined by

vm.t/ WD

mX
kD1

dmk .t/wk 2 H
2.0; T IH 2.�0/ \H

1
0 .�0// (4.3)
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satisfies for every k D 1; : : : ; m and for almost every t 2 Œ0; T � the finite-dimensional
version of problem (3.5), namely,

h Rvm.t/; wkiH1
0 .�0/

C hB.t/rvm.t/;rwkiL2.�0/ C ha.t/ � rv
m.t/; wkiL2.�0/

� 2hb.t/ � r Pvm.t/; wkiL2.�0/ D hg.t/; wkiL2.�0/; (4.4)

with initial conditions

dmk .0/ D hv0; wkiL2.�0/; (4.5a)
Pdmk .0/ D hv1; wkiL2.�0/: (4.5b)

Comparing (4.3) and (4.4), we obtain an auxiliary ordinary differential equation whose
(time-dependent) coefficients are given by

Blk.t/ WD hB.t/rwl ;rwkiL2.�0/;

alk.t/ WD ha.t/ � rwl ; wkiL2.�0/;

and

blk.t/ WD hb.t/ � rwl ; wkiL2.�0/

gk.t/ WD hg.t/; wkiL2.�0/
for a.e. t 2 Œ0; T � and all l; k 2 N.

Then, by classical results on linear ordinary differential equations, for every m 2 N there
exists a unique m-tuple of functions

dm D .dm1 ; : : : ; d
m
m / 2 .H

2.0; T //m

satisfying8̂̂̂̂
<̂
ˆ̂̂:
Rdm
k
.t/ � 2

Pm
lD1 blk.t/

Pdm
l
.t/

C
Pm
lD1.Blk.t/C alk.t//d

m
l
.t/ D gk.t/ for a.e. t 2 Œ0; T �;

dm
k
.0/ D hv0; wkiL2.�0/;

Pdm
k
.0/ D hv1; wkiL2.�0/;

(4.6)

so that the corresponding function vm defined by (4.3) satisfies equation (4.4) for almost
every t 2 Œ0; T �.

4.2. First estimates and existence

The goal now is finding suitable uniform estimates on the functions vm. We start with the
following proposition:

Proposition 4.1. Assume (3.7) and (3.8). Then, there exists a constantC >0 (independent
of m 2 N) such that

sup
0�t�T

�
k Pvm.t/k2

L2.�0/
C kvm.t/k2

H1
0 .�0/

�
� C: (4.7)
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Moreover,

Rvm is uniformly bounded in L2.0; T IH�1.�0//: (4.8)

Proof. The proof is rather standard; see [15], for instance. We however present it in detail,
since similar estimates will be employed in the (more involved) proof of Proposition 4.9.

Consider equation (4.4) satisfied by vm, then multiply it by Pdm
k
.t/ and sum from

k D 1; : : : ; m. Fixing t 2 Œ0; T � and integrating with respect to time over .0; t/, we thus
obtainZ t

0

h Rvm.s/; Pvm.s/iH1
0 .�0/

ds„ ƒ‚ …
J1

C

Z t

0

hB.s/rvm.s/;r Pvm.s/iL2.�0/ ds„ ƒ‚ …
J2

C

Z t

0

ha.s/ � rvm.s/; Pvm.s/iL2.�0/ ds„ ƒ‚ …
J3

� 2

Z t

0

hb.s/ � r Pvm.s/; Pvm.s/iL2.�0/ ds„ ƒ‚ …
J4

D

Z t

0

hg.s/; Pvm.s/iL2.�0/ ds„ ƒ‚ …
J5

:

Let us consider each of the terms J1; : : : ; J5 defined above. For the term J1, we haveZ t

0

h Rvm.s/; Pvm.s/iH1
0 .�0/

ds D
1

2
k Pvm.t/k2

L2.�0/
�
1

2
k Pvm.0/k2

L2.�0/
:

We notice, moreover, that k Pvm.0/k2
L2.�0/

� kv1k
2
L2.�0/

by (4.5b).
As for the term J2, by the symmetry of the matrix B and integration by parts in time,

we haveZ t

0

hB.s/rvm.s/;r Pvm.s/iL2.�0/ ds D
1

2
hB.t/rvm.t/;rvm.t/iL2.�0/

�
1

2
hB.0/rvm.0/;rvm.0/iL2.�0/

�
1

2

Z t

0

h PB.s/rvm.s/;rvm.s/iL2.�0/ ds:

Moreover, by (3.8) and (3.7a), we deduce that

1

2
hB.t/rvm.t/;rvm.t/iL2.�0/ �

cB

2
krvm.t/k2

L2.�0/
;

1

2

ˇ̌
hB.0/rvm.0/;rvm.0/iL2.�0/

ˇ̌
�
1

2
kB.0/kL1.�0/krv

m.0/k2
L2.�0/

;ˇ̌̌1
2

Z t

0

h PB.s/rvm.s/;rvm.s/iL2.�0/ ds
ˇ̌̌
�
1

2
k PBkL1..0;T /��0/

Z t

0

krvm.s/k2
L2.�0/

ds:
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We notice, in particular, that krvm.0/k2
L2.�0/

� krv0k
2
L2.�0/

by (4.2) and (4.5a).
As for J3, by (3.7b), we haveˇ̌̌Z t

0

ha.s/ � rvm.s/; Pvm.s/iL2.�0/ ds
ˇ̌̌

� kakL1..0;T /��/

Z t

0

�
k Pvm.s/k2

L2.�0/
C krvm.s/k2

L2.�0/

�
ds:

Regarding J4, we observe that for each s 2 .0; t/ one has Pvm.s/ 2 H 1
0 .�0/, and hence,

integrating by parts in space and exploiting (3.7c), we get

2
ˇ̌̌Z t

0

hb.s/ � r Pvm.s/; Pvm.s/iL2.�0/ ds
ˇ̌̌
D

ˇ̌̌Z t

0

hb.s/;rj Pvm.s/j2iL1.�0/ ds
ˇ̌̌

D

ˇ̌̌
�

Z t

0

hdiv.b.s//; j Pvm.s/j2iL1.�0/ ds
ˇ̌̌

� kdiv.b/kL1..0;T /��0/

Z t

0

k Pvm.s/k2
L2.�0/

ds:

Finally, for the term J5, by Young’s inequality we readily deduce thatˇ̌̌Z t

0

hg.s/; Pvm.s/iL2.�0/ ds
ˇ̌̌
�
1

2
kgk2

L2.0;T IL2.�0/
C
1

2

Z t

0

k Pvm.s/k2
L2.�0/

ds:

By the estimates obtained for J1; : : : ; J5, we deduce that there exist positive constants c1
and c2 such that for every t 2 .0; T /, it holds that

k Pvm.t/k2
L2.�0/

C
cB

2
krvm.t/k2

L2.�0/
�c1Cc2

Z t

0

�
k Pvm.s/k2

L2.�0/
Ckrvm.s/k2

L2.�0/

�
ds:

By a classical Grönwall argument together with Poincaré inequality, we deduce the exis-
tence of a constant C > 0 such that (4.7) holds true.

In order to conclude the proof, it remains to prove (4.8). Fix w 2 H 1
0 .�0/ such that

kwkH1
0 .�0/

� 1. Now write w D wm
.1/
C wm

.2/
, where wm

.1/
2 span¹wkºmkD1 and where

hwm
.2/
; wkiL2.�0/ D 0 for every k 2 ¹1; : : : ; mº. Due to (4.2), we have kwm

.1/
kH1

0 .�0/
� 1.

Then, by (4.3) and (4.4), we obtain

h Rvm.t/; wiH1
0 .�0/

D hRvm.t/; wm.1/iL2.�0/

D �hB.t/rvm.t/;rwm.1/iL2.�0/ � ha.t/ � rv
m.t/; wm.1/iL2.�0/

C 2hb.t/ � r Pvm.t/; wm.1/iL2.�0/ C hg.t/; w
m
.1/iL2.�0/

D �hB.t/rvm.t/;rwm.1/iL2.�0/ � ha.t/ � rv
m.t/; wm.1/iL2.�0/

� 2h Pvm.t/; div.b.t/wm.1//iL2.�0/ C hg.t/; w
m
.1/iL2.�0/:

Then, using again (3.7), exploiting (4.7) and recalling that kwm
.1/
kH1

0 .�0/
� 1, the previous
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equation yields Z T

0

k Rvm.s/k2
H�1.�0/

ds � C;

for a suitable positive constant C . Here, we do not detail the estimates, as they are similar
to (3.13) in Proposition 3.8.

As a simple corollary we deduce the following result:

Theorem 4.2. Assume (3.7) and (3.8). Then, there exists a strong-weak solution v for
problem (3.5) in the sense of Definition 3.7 which fulfills

v 2 C 0w.Œ0; T �IH
1
0 .�0//;

Pv 2 C 0w.Œ0; T �IL
2.�0//:

(4.9)

Proof. By the uniform bounds obtained in Proposition 4.1, one deduces the existence of
a subsequence (not relabeled) such that

vm * v weakly in L2.0; T IH 1
0 .�0// \H

1.0; T IL2.�0// \H
2.0; T IH�1.�0//:

By integrating (4.4) with respect to time, letting m! C1 and recalling that ¹wkºk2N

is a basis of H 1
0 .�0/, it is easy to conclude that the limit function v is a strong-weak

solution to problem (3.5). Regularity property (4.9) follows by classical embeddings, as
in the proof of Theorem 2.8.

By slightly strengthening the assumptions on the coefficients, a uniqueness result is
also available. Notice that (4.10) below is implied by (3.9b) and (3.9c).

Proposition 4.3. In addition to (3.7) and (3.8), assume that

a 2 C 0;1.Œ0; T � ��0IR
N / and div b 2 C 0;1.Œ0; T �IL1.�0//: (4.10)

Then, the strong-weak solution to problem (3.5) is unique.

Proof. The proof is based on an argument introduced by Ladyzenskaya in [20]. For details
we refer to [12, Theorem 3.10].

For the sake of completeness, we also present a result regarding the energy balance for
weak solutions to problem (3.5), which can be proved by following [12, Proposition 3.11].
Unfortunately, this energy balance is not easily transferable to problem (2.3) with moving
domains.

Proposition 4.4. Assume (3.7) and (3.8) and let v be a weak solution of problem (3.5)
satisfying (4.9). Then, for every t 2 Œ0; T � we have

1

2
k Pv.t/k2

L2.�0/
C
1

2
hB.t/rv.t/;rv.t/iL2.�0/

D
1

2
kv1k

2
L2.�0/

C
1

2
hB.0/rv0;rv0iL2.�0/ CRŒv�.t/; (4.11)
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where the remainder is given by

RŒv�.t/ D

Z t

0

1

2
h PB.s/rv.s/;rv.s/iL2.�0/ � ha.s/ � rv.s/; Pv.s/iL2.�0/ ds

C

Z t

0

.�hdiv b.s/; j Pv.s/j2iL1.�0/ C hg.s/; Pv.s/iL2.�0// ds:

Remark 4.5. The energy balance given in (4.11) allows us to slightly increase the regu-
larity of the solution v obtained in Theorem 4.2, which actually fulfills

v 2 C 0.Œ0; T �IH 1
0 .�0//;

Pv 2 C 0.Œ0; T �IL2.�0//:

This easily follows by the weak lower semicontinuity (with respect to t ) of the left-hand
side of (4.11) (we recall (3.7a) and (3.8)) combined with the continuity of the right-hand
side, which indeed yields convergence of the norms.

4.3. Further estimates and higher regularity

We now improve previous estimates, assuming that the data of the problem satisfy the
stronger assumptions (3.9). As a byproduct, we deduce more regularity for strong-weak
solutions to problem (3.5). As for the initial data, we require:

v0 2 H
2.�0/ \H

1
0 .�0/ and v1 2 H

1
0 .�0/: (4.12)

We also need to assume that

�0 is convex or of class C 2: (4.13)

The latter assumption is used in Lemma 4.8 below.

Remark 4.6. In the next section we will apply our results to a family of moving dom-
ains�t satisfying (2.1a) and (4.13). From this point of view, it may be surprising to notice
that the convexity assumption on �0 allows one to circumvent other regularity assump-
tions on the domains. In particular, one may consider a family �t of merely Lipschitz,
nonconvex domains, such that they can be mapped into a single convex domain through
changes of variables as in (3.1), satisfying (H1) and (H2). Unfortunately, it is difficult
to characterize the class of sets fulfilling such properties, however, this method gives in
principle the possibility to deal with irregular domains in concrete cases.

Remark 4.7. Under these stronger assumptions, the functions dm
k

solving (4.6) are of
class H 3.0; T /, so vm belongs to H 3.0; T IH 2.�0/ \H

1
0 .�0//.

We start by stating a lemma on elliptic regularity which will be used in Proposition 4.9
below.
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Lemma 4.8. Assume (4.13) and let zB 2 C 1;1.�0IRN�Nsym / be elliptic with ellipticity con-
stant c zB . Then, there exists a positive constant zD, depending only on �0; c zB , and
k zBkC 1;1.�0IRN�N

sym /, such that

zDkdiv. zBrz/kL2.�0/ � kzkH2.�0/ for all z 2 H 2.�0/ \H
1
0 .�0/:

Proof. This is a classical result on elliptic regularity which can be proved through the
difference quotient technique, as in, for example, [18]. In particular, the case of �0 of
class C 2 is contained in [18, Sect. 2.3–2.4]. Furthermore, if�0 is convex and of class C 2,
we stress that the constant zD may be chosen in such a way that the dependence on �0
only involves its diameter (this can be found in [18, Sect. 3.1]). The dependence just on
the diameter allows one to extend the result to the case of �0 merely convex without
further regularity of the boundary, by a standard method of approximation by convex
C 2-subdomains (see [18, Sect. 3.2]).

With this tool at our disposal, we are now in a position to deduce higher uniform
estimates for the functions vm.

Proposition 4.9. Assume (3.8), (3.9), (4.13) and (4.12). Then, there exists a const-
ant D > 0 (independent of m 2 N) such that

sup
0�t�T

�
k Rvm.t/k2

L2.�0/
C kPvm.t/k2

H1
0 .�0/

C kvm.t/k2
H2.�0/

�
� D:

Proof. Defining V m WD Pvm and recalling Remark 4.7, we know that

V m 2 H 2.0; T IH 2.�0/ \H
1
0 .�0//:

By differentiating (4.4) with respect to time, we obtain

h RV m.t/; wkiH1
0 .�0/

C h PB.t/rvm.t/;rwkiL2.�0/ C hB.t/rV
m.t/;rwkiL2.�0/

C hPa.t/ � rvm.t/; wkiL2.�0/ C ha.t/ � rV
m.t/; wkiL2.�0/

� 2h Pb.t/ � rV m.t/; wkiL2.�0/ � 2hb.t/ � r
PV m.t/; wkiL2.�0/

D h Pg.t/; wkiL2.�0/: (4.14)

Now multiply (4.14) by Rdm
k
.t/ and sum from k D 1; : : : ;m. Fixing t 2 Œ0; T � and integrat-

ing with respect to time over .0; t/, we obtainZ t

0

h RV m.s/; PV m.s/iH1
0 .�0/

ds„ ƒ‚ …
J1

C

Z t

0

h PB.s/rvm.s/;r PV m.s/iL2.�0/ ds„ ƒ‚ …
J2

C

Z t

0

hB.s/rV m.s/;r PV m.s/iL2.�0/ ds„ ƒ‚ …
J3

C

Z t

0

h Pa.s/ � rvm.s/; PV m.s/iL2.�0/ ds„ ƒ‚ …
J4
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C

Z t

0

ha.s/ � rV m.s/; PV m.s/iL2.�0/ ds„ ƒ‚ …
J5

� 2

Z t

0

h Pb.s/ � rV m.s/; PV m.s/iL2.�0/ ds„ ƒ‚ …
J6

� 2

Z t

0

hb.s/ � r PV m.s/; PV m.s/iL2.�0/ ds„ ƒ‚ …
J7

D

Z t

0

h Pg.s/; PV m.s/iL2.�0/ ds„ ƒ‚ …
J8

:

Next we estimate each of the terms in the previous identity. For J1, the following holds:Z t

0

h RV m.s/; PV m.s/iH1
0 .�0/

ds D
1

2
k PV m.t/k2

L2.�0/
�
1

2
k PV m.0/k2

L2.�0/
:

We claim that

k PV m.0/kL2.�0/ � kg.0/kL2.�0/ C ka.0/kL1.�0/krv0kL2.�0/

C 2kb.0/kL1.�0/krv1kL2.�0/ C kDB.0/kL1.�0/krv0kL2.�0/

C CkB.0/kL1.�0/kv0kH2.�0/: (4.15)

We assume for the moment that the claim is true, and continue by estimating J2: integrat-
ing by parts in time, we haveZ t

0

h PB.s/rvm.s/;r PV m.s/iL2.�0/ ds

D h PB.t/rvm.t/;rV m.t/iL2.�0/ � h
PB.0/rvm.0/;rV m.0/iL2.�0/

�

Z t

0

h RB.s/rvm.s/;rV m.s/iL2.�0/ ds �
Z t

0

h PB.s/rV m.s/;rV m.s/iL2.�0/ ds:

Furthermore, by the uniform bound for rvm provided in Proposition 4.1, by (3.9a) and
by Young’s weighted inequality, the estimates

jh PB.t/rvm.t/;rV m.t/iL2.�0/j

� k PBkL1..0;T /��0/krv
m.t/kL2.�0/krV

m.t/kL2.�0/

�
C

2
k PBkL1..0;T /��0/

�1
"
C "krV m.t/k2

L2.�0/

�
for all " > 0;

(4.16)

jh PB.0/rvm.0/;rV m.0/iL2.�0/j � k
PB.0/kL1.�0/krv

m.0/kL2.�0/krV
m.0/kL2.�0/

� k PB.0/kL1.�0/krv0kL2.�0/krv1kL2.�0/;ˇ̌̌Z t

0

h RB.s/rvm.s/;rV m.s/iL2.�0/ ds
ˇ̌̌

�
1

2
k RBkL1..0;T /��0/

�
CT C

Z t

0

krV m.s/k2
L2.�0/

ds
�
;ˇ̌̌Z t

0

h PB.s/rV m.s/;rV m.s/iL2.�0/ ds
ˇ̌̌
� k PBkL1..0;T /��0/

Z t

0

krV m.s/k2
L2.�0/

ds:
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hold. As for the term J3, by the symmetry of the matrix B and integrating by parts in time,
we haveZ t

0

hB.s/rV m.s/;r PV m.s/iL2.�0/ ds

D
1

2
hB.t/rV m.t/;rV m.t/iL2.�0/ �

1

2
hB.0/rV m.0/;rV m.0/iL2.�0/

�
1

2

Z t

0

h PB.s/rV m.s/;rV m.s/iL2.�0/ ds:

Moreover, by the ellipticity of B and again by (3.9a), we deduce that

1

2
hB.t/rV m.t/;rV m.t/iL2.�0/ �

cB

2
krV m.t/k2

L2.�0/
;

1

2

ˇ̌
hB.0/rV m.0/;rV m.0/iL2.�0/

ˇ̌
�
1

2
kB.0/kL1.�0/krV

m.0/k2
L2.�0/

� kB.0/kL1.�0/krv1k
2
L2.�0/

;ˇ̌̌1
2

Z t

0

h PB.s/rV m.s/;rV m.s/iL2.�0/ ds
ˇ̌̌
�
1

2
k PBkL1..0;T /��0/

Z t

0

krV m.s/k2
L2.�0/

ds:

We now focus on J4 and J5: by using (3.9b) and by the uniform bound for rvm provided
by Proposition 4.1, we obtain thatˇ̌̌Z t

0

h Pa.s/ � rvm.s/; PV m.s/iL2.�0/ ds
ˇ̌̌

�
1

2
k PakL1..0;T /��0/

�
CT C

Z t

0

k PV m.s/k2
L2.�0/

ds
�
;ˇ̌̌Z t

0

ha.s/ � rV m.s/; PV m.s/iL2.�0/ ds
ˇ̌̌

�
1

2
kakL1.Œ0;T ���0/

Z t

0

.k PV m.s/k2
L2.�0/

C krV m.s/k2
L2.�0/

/ ds:

As for the terms J6 and J7, due to (3.9c) and by observing that for each s 2 .0; t/ one has
PV m.s/ 2 H 1

0 .�0/, we obtainˇ̌̌Z t

0

h Pb.s/ � rV m.s/; PV m.s/iL2.�0/ ds
ˇ̌̌

�
1

2
k PbkL1..0;T /��0/

Z t

0

�
k PV m.s/k2

L2.�0/
C krV m.s/k2

L2.�0/

�
ds;ˇ̌̌Z t

0

hb.s/ � r PV m.s/; PV m.s/iL2.�0/ ds
ˇ̌̌
D

ˇ̌̌Z t

0

hb.s/;rj PV m.s/j2iL1.�0/ ds
ˇ̌̌

D

ˇ̌̌Z t

0

hdiv.b.s//; j PV m.s/j2iL1.�0/ ds
ˇ̌̌

� kdiv.b/kL1..0;T /��0/

Z t

0

k PV m.s/k2
L2.�0/

ds:
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Finally, for the term J8, by the regularity of Pg and by Young’s inequality, we readily
deduce thatˇ̌̌Z t

0

h Pg.s/; PV m.s/iL2.�0/ ds
ˇ̌̌
�
1

2
k Pgk2

L2.0;T IL2.�0/
C
1

2

Z t

0

k PV m.s/k2
L2.�0/

ds:

By the estimates obtained for J1; : : : ; J8, by (4.15) and by a suitable choice of " in (4.16),
we deduce that there exist positive constants c1; c2 and c such that

k PV m.t/k2
L2.�0/

C ckrV m.t/k2
L2.�0/

� c1 C c2

Z t

0

�
k PV m.s/k2

L2.�0/
C krV m.s/k2

L2.�0/

�
ds:

By using Grönwall’s inequality together with Poincaré inequality, we thus deduce the
existence of a constant C > 0 such that

sup
0�t�T

�
k PV m.t/k2

L2.�0/
C kV m.t/k2

H1
0 .�0/

�
� C;

which yields, by the definition of V m,

sup
0�t�T

�
k Rvm.t/k2

L2.�0/
C kPvm.t/k2

H1
0 .�0/

�
� C: (4.17)

In order to conclude the proof, we have to prove claim (4.15) and provide a bound
on the H 2-norm of vm.t/ uniformly with respect to t . Let us fix t 2 Œ0; T �. We define
by gm.t/ the L2 projection of the function g.t/ on the finite-dimensional space spanned
by w1; : : : ;wm. Then, by (4.4) and by using the fact that ¹wkºk2N is an orthonormal basis
of L2.�0/ and an orthogonal basis of H 1

0 .�0/, we deduce that

� hdiv.B.t/rvm.t//; 'iL2.�0/
D hgm.t/ � Rvm.t/ � a.t/ � rvm.t/C 2b.t/ � r Pvm.t/; 'iL2.�0/;

for every t 2 Œ0; T � and ' 2 H 1
0 .�0/. In particular, for every t 2 Œ0; T � we have

� div.B.t/rvm.t// D gm.t/ � Rvm.t/ � a.t/ � rvm.t/C 2b.t/ � r Pvm.t/; (4.18)

in the sense of distributions. By choosing t D 0 in (4.18) and recalling that PV m.0/D Rvm.0/,
we can thus estimate

k PV m.0/kL2.�0/ � kg
m.0/kL2.�0/ C ka.0/kL1.�0/krv

m.0/kL2.�0/

C 2kb.0/kL1.�0/kr Pv
m.0/kL2.�0/ C k div.B.0/rvm.0//kL2.�0/

� kg.0/kL2.�0/ C ka.0/kL1.�0/krv0kL2.�0/

C 2kb.0/kL1.�0/krv1kL2.�0/ C kDB.0/kL1.�0/krv0kL2.�0/

C kB.0/kL1.�0/kv
m.0/kH2.�0/:
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By arguing as in [15, Chapter 7.1, Theorem 5], one can deduce that kvm.0/kH2.�0/ �

Ckv0kH2.�0/ for a suitable constant C > 0, and so claim (4.15) is proved.
We now observe that, by Lemma 4.8, there exists a positive constant zD (depending

on �0, on the uniform constant of ellipticity of B , which is independent of time, and
of kBkC 1;1.Œ0;T ���0/) such that

kvm.t/kH2.�0/ �
zDkdiv.B.t/rvm.t//kL2.�0/ for all t 2 Œ0; T �: (4.19)

Then, by (4.18) and (4.19) and since kgm.t/kL2.�0/ � kg.t/kL2.�0/, we deduce that

kvm.t/kH2.�0/

� zD.kgm.t/kL2.�0/ C kRv
m.t/kL2.�0/ C ka.t/ � rv

m.t/kL2.�0/

C k2b.t/ � r Pvm.t/kL2.�0//

� zD.kg.t/kL2.�0/ C kRv
m.t/kL2.�0/ C kakL1..0;T /��0/krv

m.t/kL2.�0//

C 2 zD.kbkL1..0;T /��0/kr Pv
m.t/kL2.�0//:

We now use (4.17), (3.9b), (3.9c), (3.9d) and the uniform bounds provided by Proposi-
tion 4.1 to conclude that

sup
0�t�T

kvm.t/kH2.�0/ � C

for some constant C > 0, and so, the statement is proved.

As a corollary, we now obtain the main result of the section:

Theorem 4.10. Assume (3.8), (3.9), (4.13) and (4.12). Then, there exists a unique strong-
weak solution v of problem (3.5) which satisfies:

v 2 L1.0; T IH 2.�0/ \H
1
0 .�0//;

Pv 2 L1.0; T IH 1
0 .�0//;

Rv 2 L1.0; T IL2.�0//:

(4.20)

Proof. The estimates provided by Proposition 4.9 allow us to conclude that there exists a
function v satisfying (4.20) such that, up to a subsequence which we still denote by vm,
the following convergences hold:

vm * v weakly in L2.0; T IH 2.�0/ \H
1
0 .�0//;

Pvm * Pv weakly in L2.0; T IH 1
0 .�0//;

Rvm * Rv weakly in L2.0; T IL2.�0//:

The fact that v is a strong-weak solution follows by arguing as in Theorem 4.2. Uniqueness
is instead ensured by Proposition 4.3.
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Remark 4.11. By standard results on interpolation of spaces, property (4.20) easily yields
v 2 C 0.Œ0; T �IH 1

0 .�0// and Pv 2 C 0.Œ0; T �IL2.�0//. We point out that actually (4.20)
may also be improved by replacing L1 with C 0 (as in Remark 4.5); this can be seen, for
example, by exploiting the semigroup approach (see [10] or [7]). However, this (slightly)
stronger regularity will not be needed for the purposes of the present paper.

5. Existence, uniqueness and energy balance

In this section we come back to the original problem given in (2.3), still employing the
approach of diffeomorphisms. In this way we are able to improve Theorem 2.4, by getting
existence and uniqueness of weak solutions and by showing a more precise version of the
energy balance (see Theorem 5.4). To this end, we need a lemma, the details of which can
be found in [29, Proposition 17.1].

Lemma 5.1. Let E � RM be an open set with Lipschitz boundary and let f W E ! RM

be a diffeomorphism of class C 1 with inverse g 2 C 1. Then, f.E/ is an open set with
Lipschitz boundary, and @.f.E// D f.@E/. Moreover,

�f.E/.z/ D
Dg.z/T �E .g.z//

jDg.z/T �E .g.z//j
for HM�1-a.e. z 2 @.f.E//; (5.1)

and Z
@f.E/

h �f.E/ dHM�1
D

Z
@E

.h ı f/j detDfj.Dg ı f/T �E dHM�1 (5.2)

for all h 2 L1.f.E//.

Corollary 5.2. Assume (2.1a) and letˆ;‰ be as in (3.1) and satisfy (H1). Then, the set O

introduced in (2.2) is open with Lipschitz boundary, and (2.9) is satisfied.
Furthermore, one has

�O.t; x/ D .�
t
O.t; x/; �

x
O.t; x//

D
.�!.t; x/; ��t .x//p

1C !.t; x/2
for all t 2 Œ0; T � and HN�1-a.e. x 2 @�t ; (5.3)

where we introduced the scalar normal velocity

!.t; x/ WD P̂ .t; ‰.t; x// � ��t .x/ for all t 2 Œ0; T � and HN�1-a.e. x 2 @�t : (5.4)

Moreover, the following identity holds true for every h 2 L1.�/:Z
�

h �O dHN
D

Z T

0

Z
@�t

h.t; x/

�
�!.t; x/

��t .x/

�
dHN�1.x/ dt: (5.5)
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Remark 5.3. We point out that actually the scalar normal velocity ! does not depend on
the choice of the diffeomorphisms ˆ and ‰, but it is intrinsically related to the set O (and
so to the family ¹�tºt2Œ0;T �). Indeed, by (5.3) we have

!.t; x/ D �
�t

O
.t; x/

j�x
O
.t; x/j

for all t 2 Œ0; T � and HN�1-a.e. x 2 @�t : (5.6)

Moreover, it is immediate to check that the following statements hold:

• if (H2) is in force, then k!kL1.�/ < 1;

• if (2.1b) is in force, then !.t; x/ � 0 for all t 2 Œ0; T � and HN�1-a.e. x 2 @�t .

Indeed, the former fact is a direct consequence of the explicit form given in (5.4), while
the latter can be inferred by (5.6), since under (2.1b) one has �t

O
.t; x/ � 0.

Proof of Corollary 5.2. We introduce maps ẑ W Œ0;T ���0!O and z‰ WO! Œ0;T ���0
defined as

ẑ .t; y/ WD .t; ˆ.t; y// and z‰.t; x/ WD .t; ‰.t; x//:

It is immediate to check that O D ẑ .Œ0; T � ��0/ and that, due to (H1), ẑ is a diffeomor-
phism of class C 1;1 with inverse z‰ 2 C 1;1. By Lemma 5.1, the statement regarding O is
hence verified.

By using (5.1) with the function ˆ.t; �/, we now observe that for all t 2 Œ0; T � it holds
that

��t .x/ D
D‰.t; x/T ��0.‰.t; x//

jD‰.t; x/T ��0.‰.t; x//j
for HN�1-a.e. x 2 @�t : (5.7)

By using the same formula with ẑ , we instead obtain

�O.t; x/ D
D.t;x/ z‰.t; x/

T �.0;T /��0.t; ‰.t; x//

jD.t;x/ z‰.t; x/T �.0;T /��0.t; ‰.t; x//j
for HN -a.e. .t; x/ 2 �: (5.8)

By recalling (3.2c), we now compute

D.t;x/ z‰.t; x/
T�.0;T /��0.t;‰.t; x//D

�
1 P‰.t; x/

0 D‰.t; x/T

��
0

��0.‰.t; x//

�
D

�
P‰.t; x/ � ��0.‰.t; x//

D‰.t; x/T ��0.‰.t; x//

�
D

�
� P̂ .t; ‰.t; x// �D‰.t; x/T��0.‰.t; x//

D‰.t; x/T ��0.‰.t; x//

�
: (5.9)

Since D.t;x/ z‰.t; x/T 2 R.NC1/�.NC1/, in the first equality above we have gathered its
components using the row vector P‰.t; x/ 2 RN and the matrix D‰.t; x/T 2 RN�N . By
plugging the last equality into (5.8) and recalling (5.7) and (5.4), we get (5.3).
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In order to prove (5.5), we exploit (5.2) for the function ẑ , deducingZ
�

h �O dHN

D

Z
.0;T /�@�0

h. ẑ .t; y//jdetD.t;y/ ẑ .t; y/jD.t;x/ z‰. ẑ .t; y//T �.0;T /��0.t; y/ dHN .t; y/

D

Z T

0

Z
@�0

h.t; ˆ.t; y// detDˆ.t; y/
�
� P̂ .t; y/ �D‰.t;ˆ.t; y//T ��0.y/

D‰.t;ˆ.t; y//T ��0.y//

�
dHN�1.y/ dt;

where we used the fact that jdetD.t;y/ ẑ .t; y/j D detDˆ.t;y/ and (5.9) with x Dˆ.t;y/.
By using again (5.2) with ˆ.t; �/ for the integral over @�0, we conclude by recalling
formula (5.4) for !.

Combining the results of Sections 3 and 4 and exploiting the previous corollary, we
can now state the following theorem, which rigorously extends Theorem 2.4:

Theorem 5.4. Assume (2.1a) and (4.13) and let ˆ; ‰ be as in (3.1) and satisfy (H1’)
and (H2). Let the forcing term f be in H 1.O/ and assume the initial data satisfy

u0 2 H
2.�0/ \H

1
0 .�0/ and u1 C P̂ .0; �/ � ru0 2 H

1
0 .�0/: (5.10)

Then, there exists a unique weak solution u of problem (2.3) in the sense of Definition 2.2
which satisfies

u 2 L1.0; T IH 2.�t / \H
1
0 .�t //;

Pu 2 L1.0; T IH 1.�t //;

Ru 2 L1.0; T IL2.�t //:

Moreover, for every t 2 Œ0; T � the following energy balance holds true:

1

2
k Pu.t/k2

L2.�t /
C
1

2
kru.t/k2

L2.�t /
C

Z t

0

Z
@�s

!.s; x/

2
.1�!.s; x/2/

� @u

@��s
.s; x/

�2
dHN�1.x/ ds

D
1

2
ku1k

2
L2.�0/

C
1

2
kru0k

2
L2.�0/

C

Z t

0

hf .s/; Pu.s/iL2.�s/ ds; (5.11)

where the scalar normal velocity ! was introduced in (5.4).

Remark 5.5. We point out that since u0 2 H
2.�0/ \ H

1
0 .�0/, it must hold that

ru0 D
@u0
@��0

��0 on @�0. So, the second compatibility condition in (5.10) is actually
equivalent to

u1 2 H
1.�0/ and u1 C !.0; �/

@u0

@��0
D 0 on @�0:
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For the same reason we deduce that

ru.t; x/ D
@u

@��t
.t; x/��t .x/ for a.e. t 2 Œ0; T � and HN�1-a.e. x 2 @�t : (5.12)

Remark 5.6. Under the additional assumptions of Remark 2.1 and (H2A), energy bal-
ance (5.11) now reads as in Remark 2.7, with the boundary term taking the formZ t

0

Z
@�s

!.s; x/

2

�
j��s .x/j

2
A.s;x/ � !.s; x/

2
�� @u

@��s
.s; x/

�2
dHN�1.x/ ds:

Proof of Theorem 5.4. Existence and uniqueness of the weak solution u satisfying the
regularity properties in the statement follow by combining Propositions 3.5 and 3.8, and
Theorems 3.9 and 4.10.

To prove (5.11) we just need to show that

�

Z
�t

�t
O

2

h
1 �

� �t
O

j�x
O
j

�2i
jruj2 dHN

D

Z t

0

Z
@�s

!.s; x/

2
.1 � !.s; x/2/

� @u

@��s
.s; x/

�2
dHN�1.x/ ds;

and then exploit (2.11). The above equality easily follows by applying (5.5) together
with (5.6) and (5.12).

5.1. Moving boundary conditions

We now show how our result can be applied to problems driven by time-dependent bound-
ary conditions, which often appear in mechanical models of debonding. To this end, we
ask that the boundary of the set �t is composed of a fixed part ƒ1 and a moving one, ƒ2t ,
that is, we require that

for all t 2 Œ0; T � it holds that @�tDƒ1 [ƒ2t ; where ƒ1 and ƒ2t are HN�1-measurable

sets, with ƒ1 independent of time t , and satisfying HN�1.ƒ1 \ƒ2t / D 0: (5.13)

Consistently with the previous notation, we define

�1 WD .0; T / �ƒ1 and �2 WD
[

t2.0;T /

¹tº �ƒ2t ;

so that � D�1 [�2. For the sake of clarity, we instead denote by �ƒ1 and �ƒ2t the outward
unit normal to �t restricted to ƒ1 and ƒ2t , respectively.

From a mechanical point of view, it is meaningful to prescribe a time-dependent
external loading W on the fixed boundary �1, while homogeneous Dirichlet boundary
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conditions are assumed on the moving boundary �2. We thus consider the problem8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

RU.t; x/ ��U.t; x/ D 0; .t; x/ 2 O;

U.t; x/ D W.t; x/; .t; x/ 2 �1;

U.t; x/ D 0; .t; x/ 2 �2;

U.0; x/ D U0.x/; x 2 �0;

PU.0; x/ D U1.x/; x 2 �0:

(5.14)

The notion of weak solution for problem (5.14) is given by Definition 2.2, with the obvious
changes regarding the boundary conditions. Such a problem can be tackled by assuming
that W is the trace on �1 of a regular function, still denoted by W , which is everywhere
defined and vanishes on �2 (as stated in Theorem 5.7). Indeed, by considering

u.t; x/ WD U.t; x/ �W.t; x/; (5.15)

one can resort to Theorem 5.4.

Theorem 5.7. Assume (2.1a), (4.13), (5.13) and let ˆ;‰ be as in (3.1) and satisfy (H1’)
and (H2). Let the external loading W and the initial data satisfy:

• W 2 H 3.0; T IL2loc.R
N // \H 2.0; T IH 1

loc.R
N // \H 1.0; T IH 2

loc.R
N // \ L2.0; T I

H 3
loc.R

N // such that W D 0 on �2;

• U0 2 H
2.�0/ such that U0 D W.0; �/ on ƒ1 and U0 D 0 on ƒ20;

• U1 2 H
1.�0/, such that U1 D PW .0; �/ on ƒ1 and U1 C !.0; �/ @U0@�

ƒ20

D 0 on ƒ20.

Then, there exists a unique weak solution U of problem (5.14) which satisfies

U 2 L1.0; T IH 2.�t //;

PU 2 L1.0; T IH 1.�t //;

RU 2 L1.0; T IL2.�t //:

Moreover, for every t 2 Œ0; T � the following energy balance holds true:

1

2
k PU.t/k2

L2.�t /
C
1

2
krU.t/k2

L2.�t /
C

Z t

0

Z
ƒ2s

!.s; x/

2
.1�!.s; x/2/

� @U
@�ƒ2s

.s; x/
�2

dHN�1.x/ ds

D
1

2
kU1k

2
L2.�0/

C
1

2
krU0k

2
L2.�0/

C

Z t

0

Z
ƒ1

PW .s; x/
@U

@�ƒ1
.s; x/ dHN�1.x/ ds:

Remark 5.8. Under the additional assumptions of Remark 2.1 and (H2A), in the energy
balance above, besides the usual changes on the potential energy and the presence of the
forcing term due to PA, the boundary terms related to ƒ1 and ƒ2t need to be replaced byZ t

0

Z
ƒ1

PW .s; x/j�ƒ1.x/j
2
A.s;x/

@U

@�ƒ1
.s; x/ dHN�1.x/ ds
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and Z t

0

Z
ƒ2s

!.s; x/

2

�
j�ƒ2s .x/j

2
A.s;x/ � !.s; x/

2
�� @U
@�ƒ2s

.s; x/
�2

dHN�1.x/ ds:

Proof of Theorem 5.7. By considering the function u defined in (5.15), it is easy to see
that, from the point of view of weak solutions, problem (5.14) is equivalent to prob-
lem (2.3) with data

f .t; x/ D �W.t; x/ � RW .t; x/;

u0.x/ D U0.x/ �W.0; x/ and u1.x/ D U1.x/ � PW .0; x/:
(5.16)

By the assumptions onW;U0;U1 we infer that f 2H 1.O/ and that (5.10) holds (see also
Remark 5.5), and so Theorem 5.4 yields existence, uniqueness and regularity of the weak
solution U .

The energy balance instead follows from (5.11) by exploiting (5.15) and (5.16) and
after some simple (but tedious) manipulation via integration by parts.

5.2. Examples of moving domains

We finally collect some examples of sets�t satisfying (2.1a) (and sometimes also (2.1b))
for which we can explicitly construct diffeomorphisms ˆ and ‰ satisfying (3.1) and the
regularity conditions (H1’) and (H2).

5.2.1. One-dimensional setting. Let ` 2 C 2;1.Œ0; T �/ satisfy

`.t/ > 0 and j P̀.t/j < 1 for all t 2 Œ0; T �;

and consider the sets �t WD .0; `.t//. By defining

ˆ.t; y/ WD
`.t/

`.0/
y; ‰.t; x/ WD

`.0/

`.t/
x;

it is elementary to verify the validity of all the assumptions of Theorem 5.4 and also
of (5.13). If in addition ` is nondecreasing, then (2.1b) is also satisfied. In this situation it
holds that

!.t; 0/ D 0 and !.t; `.t// D P̀.t/ for every t 2 Œ0; T �: (5.17)

This setting has been analyzed in [11, 24–26, 30–32], where ` is just required to be Lips-
chitz. Their argument strongly relies on an explicit representation of solutions of the wave
equation provided by d’Alembert’s formula, which holds true only in dimension one.

5.2.2. Homothetic transformations. Let �0 � RN satisfy (4.1) and (4.13) and let
� 2 C 2;1.Œ0; T �/ satisfy �.0/ D 1 and

�.t/ > 0 and j P�.t/j max
y2�0

jyj < 1 for all t 2 Œ0; T �:
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Consider the sets

�t WD �.t/�0 D
®
x 2 RN W x D �.t/y for some y 2 �0

¯
;

and the diffeomorphisms

ˆ.t; y/ WD �.t/y and ‰.t; x/ WD
x

�.t/
:

It is again immediate to check all the assumptions of Theorem 5.4. If, moreover, � is
nondecreasing and �0 is positively balanced, meaning that

"�0 � �0 for every " 2 .0; 1/; (5.18)

then (2.1b) is also satisfied. Notice that (5.18) is related to the position of �0 with respect
to the origin. It is, for instance, fulfilled by star-shaped sets at the origin.

In this setting we have

!.t; x/ D P�.t/
x

�.t/
� ��0

� x

�.t/

�
for all t 2 Œ0; T � and for HN�1-a.e. x 2 @�t ;

where @�t D �.t/@�0. In the particular case �0 D B1.0/, we infer !.t; x/ D P�.t/ and
we get a radial symmetry similar to the one studied in [23].

If instead �0 is a tetrahedron of the form

�0 D
®
y 2 RN W y � n < 1 and yi > 0 for all i D 1; : : : ; N

¯
; (5.19)

where n 2 RN is a unit vector with positive components, then

!.t; x/ D

´
0 if xi D 0 for some i D 1; : : : ; N;
P�.t/ if x � n D �.t/;

for every t 2 Œ0; T �:

We may also treat the case of an octahedron

�0 D
®
y 2 RN W y � ni < 1; for i D 1; : : : ; 2N

¯
;

where ni 2 RN is a unit vector belonging to the i�th orthant for all i D 1; : : : ; 2N ; in this
situation we have !.t; x/ D P�.t/.

5.2.3. Sublevel sets. Let g 2 C 0.RN /\ C 3;1.RN n ¹g D 0º/ be a nonnegative function
satisfying

rg.x/ ¤ 0 for every x 2 RN n ¹g D 0º;

and assume there existsR>0 such that the sublevel set ¹g <Rº is bounded; then, consider
a nondecreasing function � 2 C 2;1.Œ0; T �/ such that

0 < �.0/ � �.T / < R:
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We now define the sets
�t WD

®
R � �.t/ < g < R

¯
;

which fulfill assumptions (2.1), (4.13) and (5.13). A similar choice, with the obvious
changes, is �t D ¹r < g < �.t/º with r 2 .0; �.0//.

We thus need to build the diffeomorphisms ˆ, ‰ satisfying (3.1), (H1’) and (H2). To
this end, let us consider the vector field X W Œ0; T � � .RN n ¹g D 0º/! RN defined by

X.t; x/ WD
P�.t/

�.t/
.g.x/ �R/

rg.x/

jrg.x/j2
;

and notice that X is of class C 1;1.Œ0; T �IC 2;1.RN n ¹g < "º// for all " > 0. The map ˆ
is now defined as follows: ˆ.t; y/ is the evolution at time t of the point y 2 �0 through
the flow ´

P̂ .s; y/ D X.s;ˆ.s; y//; s 2 .0; T /;

ˆ.0; y/ D y:

By standard results on ODEs, for all y 2�0 there exists a time Ty 2 .0; T � such that there
exists a unique local solution ˆ.�; y/ 2 C 2;1.Œ0; Ty �/ of the Cauchy problem above. We
now show that actually the solution is global (i.e., Ty D T ) by proving thatˆ.t;�0/D�t
for all t 2 Œ0; T �. Indeed, this ensures that the flow is always well contained in the region
where g does not vanish, and hence where the vector field X does not blow up.

To this end, we notice that for all t 2 Œ0; Ty � we have

g.ˆ.t; y// D g.y/C

Z t

0

rg.ˆ.s; y// � P̂ .s; y/ ds

D g.y/C

Z t

0

P�.s/

�.s/
.g.ˆ.s; y// �R/ ds:

By setting Fy.t/ WD g.ˆ.t; y// �R and by differentiating the above equality, we get´
PFy.t/ D

P�.t/
�.t/

Fy.t/; t 2 Œ0; Ty �;

Fy.0/ D g.y/ �R:
(5.20)

The only solution to (5.20) is given by Fy.t/ D
�.t/
�.0/

Fy.0/, which finally implies

g.ˆ.t; y// �R D
�.t/

�.0/
.g.y/ �R/ for every t 2 Œ0; Ty �: (5.21)

This implies that ˆ.t; �/ maps level sets of g in level sets of g and hence that
ˆ.t; �0/ D �t ; recalling that R > �.T /, we now infer that ˆ is well-defined on the
whole of Œ0; T � ��0 and it belongs to C 2;1.Œ0; T �IC 2;1.�0//.
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We can now introduce the function ‰ W O! Œ0; T � ��0 as the “space”-inverse of ˆ,
namely ‰.t; x/ WD Œˆ.t; �/��1.x/, so that (3.1) is fulfilled by construction. By the Inverse
Function Theorem and the Implicit Function Theorem, from the regularity of ˆ we also
deduce (H1’).

To finally have (H2), we require in addition that

P�.t/ < min
x2�t

jrg.x/j for every t 2 Œ0; T �I (5.22)

indeed, by also exploiting (5.21), it yields

j P̂ .t; y/j D
P�.t/

�.t/

.R � g.ˆ.t; y///

jrg.ˆ.t; y//j
D

P�.t/

jrg.ˆ.t; y//j

R � g.y/

�.0/
�

P�.t/

jrg.ˆ.t; y//j
< 1:

The scalar normal velocity can be finally computed as follows:

!.t; x/ D X.t; x/ � ��t .x/ D

´
P�.t/
jrg.x/j

if g.x/ D R � �.t/;

0 if g.x/ D R;
for every t 2 Œ0; T �:

With the particular choice g.x/ D jxj the sets �t are annuli, so we recover the radial
case already mentioned above. Since now jrg.x/j D 1, condition (5.22) reads as
P�.t/ < 1 and the scalar normal velocity is

!.t; x/ D

´
P�.t/ if jxj D R � �.t/;

0 if jxj D R
for every t 2 Œ0; T �: (5.23)

The radial case was analyzed in [23] with slightly lower regularity assumptions, by reduc-
ing the problem to a one-dimensional one, as in the example given in Section 5.2.1.

The situations described in the examples given in Sections 5.2.2 and 5.2.3 above refer
to debonding models where one assumes to know a priori the possible shapes of the
debonding front and of the debonded set. The unknown to be determined is the evolu-
tion law providing the time when a certain debonded front is reached. This is analogous
to models with a prescribed crack in fracture mechanics.

A simple concrete application is the following: in dimension two, the possible de-
bonded regions are triangles

�t D
®
x 2 R2 W x � n < �.t/ and xi > 0 for i D 1; 2

¯
;

with n 2 RN a unit vector with positive components and � 2 C 2;1.Œ0; T �I Œ1;C1// non-
decreasing (cf. (5.19)). Boundary conditions are given, for example, on the segments
¹xD .x1; 0/ W 0 < x � n < �.0/=2º and ¹xD .0;x2/ W 0 < x � n < �.0/=2º. (This represents
an external load pulling the film from a region close to the vertex .0; 0/.) Such examples
can be treated with both methods shown in the examples in Sections 5.2.2 and 5.2.3. As in
the one-dimensional case of the example in Section 5.2.1, the possible debonding fronts
are parallel lines (modeling a material that can be detached only in a certain direction).
However, this example is genuinely two-dimensional, since the debonding front is not
parallel to the edges where the boundary condition is imposed, which results in nontrivial
reflections in the propagation of waves in the debonded region.
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6. Application to dynamic debonding

In this final section we propose a proper formulation of a dynamic debonding model.
Different from the previous sections, in this setting the evolution of the sets t 7!�t is also
unknown, and it has to be recovered by means of energetic considerations which involve
the solution u of problem (2.3) in an implicit and complex way. Here we rigorously define
the dynamic energy release rate in a general framework, that is, without any ansatz on
the shape of the domains. This allows us to state the energetic principle governing the
evolution, called the (dynamic) Griffith criterion.

We assume that the energy needed to debond a portion of film parametrized on a
(measurable) set E � RN is given by Z

E

�.x/ dx; (6.1)

where � 2 C 0.RN / is a positive function representing the toughness of the glue between
the film and the substrate.

The next lemma shows how the integral in (6.1) varies when the domain of integration
depends on time, and its evolution is given.

Lemma 6.1. Assume (2.1a) and let ˆ;‰ be as in (3.1) and satisfy (H1). Given any func-
tion � 2 C 0.RN /, for every t 2 Œ0; T � it holds thatZ

�t

�.x/ dx D
Z
�0

�.x/ dx C
Z t

0

Z
@�s

!.s; x/�.x/ dHN�1.x/ ds: (6.2a)

In particular, we have

j�t j D j�0j C

Z t

0

Z
@�s

!.s; x/ dHN�1.x/ ds: (6.2b)

Proof. We recall that by Corollary 5.2 the set O is open, with Lipschitz boundary, and
satisfies (2.9). Setting Ot WD ¹.s; x/ 2O W s 2 .0; t/º, by an application of the fundamental
theorem of calculus in RNC1 we thus deduce that

0 D

Z
Ot

@

@s
�.x/ ds dx D

Z
@Ot

� �tO dHN

Z
�t

�.x/ dx �
Z
�0

�.x/ dx C
Z
�t

� �tO dHN :

We now conclude by using (5.5).

6.1. The dynamic energy release rate, maximum dissipation principle and Griffith
criterion

Now, let u be the weak solution found in Theorem 5.4 for a given nondecreasing family�t
(i.e., also satisfying (2.1b)). The dynamic energy release rate [16] is the opposite of the
(infinitesimal) energy variation due to the change in time of the domain, without account-
ing for the energy variation due to the evolution of the external forces. Recalling energy
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balance (5.11), we thus consider the internal energy (kinetic and potential) subtracted by
the work of external forces:

E.t/ WD
1

2
k Pu.t/k2

L2.�t /
C
1

2
kru.t/k2

L2.�t /
�

Z t

0

hf .s/; Pu.s/iL2.�s/ ds: (6.3)

We now provide the definition of the dynamic energy release rate.

Definition 6.2. For t 2 Œ0;T �, we define the dynamic energy release rate of the debonding
model as

G .t/ WD lim
h!0C

�
E.t C h/ � E.t/

j�tCh n�t j
;

whenever such limit exists.

Due to energy balance (5.11) together with (6.2b), by means of (6.3), we thus infer
that the dynamic energy release rate can be computed as follows:

G .t/ D �
PE.t/

d
dt j�.�/j.t/

D

R
@�t

!.t;x/
2
.1 � !.t; x/2/

�
@u
@��t

.t; x/
�2dHN�1.x/R

@�t
!.t; x/ dHN�1.x/

if
Z
@�t

!.t; x/ dHN�1.x/>0:

In the one-dimensional setting and in the radial case (see Sections 5.2.1 and 5.2.3), ana-
lyzed in [11, 32] and [23] respectively, the integrands in the latter formula actually do
not depend on x due to the symmetry of the problem; in other words, in those cases the
released energy is the same at each point of the boundary @�t . In contrast, in the general
situation here depicted the released energy may be different from point to point. It is thus
convenient to introduce the density of the dynamic energy release rate, which is obtained
by localizing the above formula around a point x 2 @�t as in the following definition:

Definition 6.3. Given t 2 Œ0; T � and x 2 @�t for which ˛ WD !.t; x/ > 0, the dynamic
energy release rate density at the point .t; x/ with speed ˛ 2 .0; 1/ is defined by

G˛.t; x/ WD lim
r!0C

R
@�t\Br .x/

!.t/
2
.1 � !.t/2/

�
@u
@��t

.t/
�2 dHN�1R

@�t\Br .x/
!.t/ dHN�1

D
1

2
.1 � ˛2/

� @u

@��t
.t; x/

�2
: (6.4)

If ˛ D 0, the dynamic energy release rate density is extended by continuity, setting

G0.t; x/ WD
1

2

� @u

@��t
.t; x/

�2
:

Remark 6.4. We now provide the explicit expression of the dynamic energy release
rate in the one-dimensional setting and in the radial one, recalling that in those cases
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the dynamic energy release rate coincides with its density and recovering the formulas
obtained in [11, 23, 32]. In the one-dimensional situation, by means of (5.17), it is easy to
check that

G .t/ D G P̀.t/.t; `.t// D
1

2
.1 � P̀.t/2/ux.t; `.t//

2 for a.e. t 2 Œ0; T �:

In the radial case the weak solution u.t; �/ has radial symmetry [23], hence the dynamic
energy release rate density G˛.t; �/ is radial as well. Thus, by considering functions
urad.t; r/ WD u.t; x/ and Grad

˛ .t; r/ WD G˛.t; x/ for r D R � jxj and by using (5.23), we
obtain

G .t/ D Grad
P�.t/.t; �.t// D

1

2
.1 � P�.t/2/urad

r .t; �.t//
2 for a.e. t 2 Œ0; T �:

Remark 6.5. We notice that the dynamic energy release rate density can be written in an
equivalent way by using the relation

Pu.t; x/C !.t; x/
@u

@��t
.t; x/ D 0 for a.e. t 2 Œ0; T � and HN�1-a.e. x 2 @�t ;

which follows since u � 0 on � . Indeed, from the above equality we deduce

G!.t;x/.t; x/ D
1

2
.1 � !.t; x/2/

� @u

@��t
.t; x/

�2
D
1

2

1 � !.t; x/

1C !.t; x/

h
.1C !.t; x//

@u

@��t
.t; x/

i2
D
1

2

1 � !.t; x/

1C !.t; x/

h @u
@��t

.t; x/ � Pu.t; x/
i2
: (6.5)

This will be used in Proposition 6.6.

Given a positive toughness � 2 C 0.RN /, we now postulate that during the evolution
process the following energy balance is satisfied:

E.t/C

Z
�tn�0

�.x/ dx D E.0/ for every t 2 Œ0; T �: (6.6)

By comparing (6.6), (5.11), (6.2a) and (6.4), we observe that the energy is conserved if
one requires

!.t; x/�.x/ D !.t; x/G!.t;x/.t; x/ for a.e. t 2 Œ0; T � and for HN�1-a.e. x 2 @�t :

However, the above condition is not sufficient to determine a proper evolution of the
sets �t ; indeed, ! � 0 (i.e., �t � �0) is always an admissible choice.

A stronger requirement is the following local maximum dissipation principle, which
essentially says that �t grows whenever it is possible, while preserving the energy bal-
ance:

!.t; x/ D max
®
˛ 2 Œ0; 1/ W ˛ �.x/ D ˛G˛.t; x/

¯
;

for a.e. t 2 Œ0; T � and for HN�1-a.e. x 2 @�t :
(6.7)
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We refer to [11, 23, 32] for a discussion. The next proposition states two equivalent forms
of the local maximum dissipation principle: the first one is the (local) dynamic Griffith
criterion, the second one consists of two equivalent equations for the scalar normal veloc-
ity, involving the normal derivative of the displacement u. Note that the condition ! < 1
in (6.8) corresponds to the physical requirement that the speed of growth of the domain is
subsonic.

Proposition 6.6. Let � 2 C 0.RN / be positive. Assume (2.1b) and the hypotheses of The-
orem 5.4, and let u be the unique weak solution of problem (2.3). Then, the following three
conditions are equivalent:

• the local maximum dissipation principle (see (6.7)) holds true;

• the local dynamic Griffith criterion, namely8̂̂<̂
:̂
0 � !.t; x/ < 1;

G!.t;x/.t; x/ � �.x/;

!.t; x/ŒG!.t;x/.t; x/��.x/�D0

for a.e. t 2 Œ0; T � and HN�1-a.e. x 2 @�t

(6.8)
holds true;

• for a.e. t 2 Œ0; T � and for HN�1-a.e. x 2 @�t the scalar normal velocity ! is given
by

!.t; x/ D

8̂<̂
:
s
1 � 2�.x/�

@u
@��t

.t;x/
�2 if

�
@u
@��t

.t; x/
�2
> 2�.x/;

0 otherwise;

(6.9a)

or equivalently,

!.t; x/ D max

´ � @u
@��t

.t; x/ � Pu.t; x/
�2
� 2�.x/�

@u
@��t

.t; x/ � Pu.t; x/
�2
C 2�.x/

; 0

µ
: (6.9b)

Proof. Let us first fix a pair .t; x/. We then observe that the set

A.t; x/ WD
®
˛ 2 Œ0; 1/ W ˛�.x/ D ˛G˛.t; x/

¯
appearing in (6.7) consists of at most two elements; indeed, by recalling (6.4) and since
�.x/ > 0, it is easy to check that

A.t; x/ D

8̂<̂
:
²
0;

s
1 � 2�.x/�

@u
@��t

.t;x/
�2³ if

�
@u
@��t

.t; x/
�2
> 2�.x/;

¹0º otherwise:

Hence, the equivalence between (6.7) and (6.9a) is proved. Analogously, (6.7) and (6.9b)
turn out to be equivalent by employing (6.5). The equivalence between (6.9a) and (6.8)
is shown straightforwardly by exploiting the explicit form given in (6.4), and so
we conclude.
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Remark 6.7. We conclude this section by listing the changes that must be taken into
account in the case of the hyperbolic equation (see (2.5)). The energy E in (6.3) now takes
the form

E.t/ D
1

2
k Pu.t/k2

L2.�t /
C
1

2
hA.t/ru.t/;ru.t/iL2.�t / �

Z t

0

hf .s/; Pu.s/iL2.�s/ ds

�
1

2

Z t

0

h PA.s/ru.s/;ru.s/iL2.�s/ ds:

As a consequence, the dynamic energy release rate density becomes

G˛.t; x/ D
1

2
.j��t .x/j

2
A.t;x/ � ˛

2/
� @u

@��t
.t; x/

�2
;

and so

G!.t;x/.t; x/ D
1

2
.j��t .x/j

2
A.t;x/ � !.t; x/

2/
� @u

@��t
.t; x/

�2
D
1

2

j��t .x/jA.t;x/ � !.t; x/

j��t .x/jA.t;x/ C !.t; x/

h
j��t .x/jA.t;x/

@u

@��t
.t; x/ � Pu.t; x/

i2
:

This implies that equations (6.9) have to be rewritten as

!.t; x/ D

8̂<̂
:
s
j��t .x/j

2
A.t;x/

�
2�.x/�
@u
@��t

.t;x/
�2 if

�
j��t .x/jA.t;x/

@u
@��t

.t; x/
�2
> 2�.x/;

0 otherwise

D max
²
j��t .x/jA.t;x/

�
j��t .x/jA.t;x/

@u
@��t

.t; x/ � Pu.t; x/
�2
� 2�.x/�

j��t .x/jA.t;x/
@u
@��t

.t; x/ � Pu.t; x/
�2
C 2�.x/

; 0

³
;

and also that the first line in the local dynamic Griffith criterion becomes

0 � !.t; x/ < j��t .x/jA.t;x/:

The resulting changes in Definition 6.8 below are straightforward.

6.2. Formulation of the coupled problem

We are now in the position to provide a proper formulation of a dynamic debonding model,
by combining the wave equation in (2.3) with the local maximum dissipation principle
in (6.7) (or, equivalently, with the local dynamic Griffith criterion in (6.8), or with (6.9)).
We point out that the resulting system features a strong coupling: indeed, the evolution
of the domain of the wave equation is governed by (6.9), which in turn depends on the
solution u to the wave equation itself.

A solution to the dynamic debonding model is defined as follows:
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Definition 6.8. Given the data

• �0 � RN satisfying (4.1) and (4.13),

• � 2 C 0.RN / satisfying �.x/ > 0 for all x 2 RN ;

• f 2 H 1.0; T IL2loc.R
N // \ L2.0; T IH 1

loc.R
N //;

• u0 2 H
2.�0/ \H

1
0 .�0/ and u1 2 H 1.�0/ satisfying

either u1.x/ D 0 and
� @u0
@��0

.x/
�2
� 2�.x/;

or u1.x/ ¤ 0;
� @u0
@��0

.x/
�2
� u1.x/

2
D 2�.x/ and

@u0
@��0

.x/

u1.x/
< �1

(6.10)

for HN�1-a.e. x 2 @�0,

we say that an evolution Œ0; T � 3 t 7! .u.t/; �t / is a weak solution of the coupled prob-
lem ((2.3),(6.7)) if the following conditions are satisfied:

(i) there exists a map ˆ W Œ0; T � � �0 ! RN with “space”-inverse ‰.t; �/ satisfy-
ing (3.1), (H1’) and (H2), for which

�t D ˆ.t;�0/ for every t 2 Œ0; T �I

(ii) u is the weak solution to problem (2.3) with forcing term f and initial data u0, u1;

(iii) the local maximum dissipation principle in (6.7) is satisfied, or equivalently the
scalar normal velocity !.t; x/ D P̂ .t; ‰.t; x// � ��t .x/ fulfills one of the two
(equivalent) equations in (6.9) for a.e. t 2 Œ0; T � and for HN�1-a.e. x 2 @�t .

Remark 6.9. We point out that the definition makes sense. Indeed, condition (i) ensures
the regularity (2.1a) of the family ¹�tºt2Œ0;T �. Furthermore, by simple computations, one
can check that compatibility condition (6.10) is actually equivalent to

u1 C !.0; �/
@u0

@��0
D 0 on @�0;

where !.0; �/ is defined by (6.9). Hence, by Remark 5.5 one can apply Theorem 5.4, con-
cluding that the wave equation (see (2.3)) has a unique weak solution u, whose regularity
allows one to give a meaning to the normal derivative @u

@��t
at the boundary, appearing

in (6.9). Finally, notice that (6.9) also implies monotonicity property (2.1b).

Remark 6.10. Definition 6.8 can be adapted to the case of moving boundary conditions
described in Section 5.1, with minor modifications. In this setting �0 also satisfies (5.13)
(at t D 0), and the external loading fulfills W � 0 in a neighborhood of .0; T / �ƒ20. The
compatibility conditions on U0 (and on U1 on ƒ1) are those of Theorem 5.7, while (6.10)
has to be valid for U0 and U1 onƒ20. Finally, condition (ii) is prescribed only onƒ2t , while
on ƒ1 we must have !.t; x/ � 0.
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We conclude the paper by showing how Definition 6.8 covers the particular cases of
the one-dimensional and radial models already analyzed in [11, 32] and [23], respectively
(see also Sections 5.2.1 and 5.2.3). In fact, in those papers the notion of solution to the
coupled problem is given in a slightly different form, and the existence is obtained by
exploiting d’Alembert’s formula. We prove that, if the initial data are well-prepared, the
solution found in the aforementioned works fulfills Definition 6.8, at least for short times.

Theorem 6.11. Let `0 > 0 and let � 2 C 1;1loc .Œ`0;C1// satisfy �.x/ > 0 for all x 2
Œ`0;C1/. Assume that f 2 C 0;1.Œ0; T � � Œ0;C1// and that u0 2 C 2;1.Œ0; `0�/ and
u1 2 C

1;1.Œ0; `0�/ satisfy

u0.0/ D 0; u0.`0/ D 0 and u1.0/ D 0 (6.11a)

and

u1.`0/ ¤ 0; u00.`0/
2
� u1.`0/

2
D 2�.`0/;

u00.`0/

u1.`0/
< �1: (6.11b)

Then, there exist T � 2 .0; T � and a unique weak solution t 7! .u.t/; .0; `.t/// to the
coupled problem ((2.3),(6.7)) in Œ0; T �� in the sense of Definition 6.8.

Proof. By [32, Theorem 4.6], there exists a unique pair .u; `/ such that:

(i) u is a weak solution to the wave equation with forcing term f and initial data u0
and u1 in the moving domain

S
t2.0;T /¹tº � .0; `.t//;

(ii) `.0/ D `0 and in a right neighborhood of 0, the function ` is a solution of the
following ODE:

P̀.t/Dmax
² �
u00.`.t/�t /�u1.`.t/ � t /�

R t
0
f .�; ��tC`.t//d�

�2
�2�.`.t//�

u00.`.t/ � t /�u1.`.t/ � t /�
R t
0
f .�; ��tC`.t//d�

�2
C2�.`.t//

; 0

³
:

(6.12)

We observe that the equation solved by ` is the analogue of (6.9b) in the one-dimensional
setting (see (5.17)), by means of d’Alembert’s formula. Hence, conditions (ii) and (iii) of
Definition 6.8 are satisfied by the function u and the sets .0; `.t//. To conclude, we need
to check also the validity of (i).

To this end, we notice that (6.11b) implies

Œu00.`0/ � u1.`0/�
2 > 2�.`0/:

As a consequence, from (6.12) one obtains that P̀.0/ > 0 and so, by continuity, there exists
T � 2 .0; T � such that ` solves

P̀.t/D

�
u00.`.t/ � t / � u1.`.t/ � t /�

R t
0
f .�; � � t C `.t// d�

�2
�2�.`.t//�

u00.`.t/ � t / � u1.`.t/ � t /�
R t
0
f .�; � � t C `.t// d�

�2
C2�.`.t//

; in Œ0;T ��:

In particular, as pointed out in [32, Remarks 4.9 and 4.12], by a classical bootstrap
argument the regularity assumptions on f; u0 and u1 and compatibility conditions (6.11)
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ensure that ` 2 C 2;1.Œ0; T ��/. Moreover, (6.12) directly yields 0 � P̀.t/ < 1 for all
t 2 Œ0; T ��. Hence, the construction presented in Section 5.2.1 provides the existence of
the diffeomorphisms required in (i) and we can conclude.

The following result deals with the radial case in dimension 2; the extension to arbi-
trary dimension is straightforward. In order to state it we introduce the following nota-
tion. Given a ball or an annulus A � R2, we denote by C k;˛rad .A/ the space of functions
h 2 C k;˛.A/ which are radial, meaning that there exists a function hrad W R! R such that
h.x/ D hrad.jxj/ for all x 2 A.

Theorem 6.12. Let R > �0 > 0 and let � 2 C 1;1rad .BR.0// satisfy �.x/ > 0 for all
x 2 BR.0/. Setting �0 WD ¹x 2 R2 W R � �0 < jxj < Rº, assume that f 2 C 0;1.Œ0; T �I
C
0;1
rad .BR.0///, and that u0 2 C

2;1
rad .�0/ and u1 2 C

1;1
rad .�0/ satisfy

u0.x/ D 0 if jxj D R or jxj D R � �0;

u1.x/ D 0 if jxj D R

and

u1.x/¤ 0;
� @u0
@��0

.x/
�2
� u1.x/

2
D 2�.x/ and

@u0
@��0

.x/

u1.x/
< �1 if jxj D R � �0:

Then, there exist T � 2 .0; T � and a unique weak solution t 7! .u.t/; �t / to the coupled
problem ((2.3),(6.7)) in Œ0; T �� in the sense of Definition 6.8, where

�t WD
®
x 2 R2 W R � �.t/ < jxj < R

¯
;

for a suitable � 2 C 2;1.Œ0; T ��/.

Proof. The proof is analogous to the one of Theorem 6.11, taking into account Sec-
tion 5.2.3 and (5.23). Here, the existence of the function � is guaranteed by [23, The-
orem 3.6]. For the regularity of � we instead refer to [23, Remarks 3.7 and 3.8].

We finally stress once again that the well-posedness of Definition 6.8 in the general
case seems to be a difficult task, due to the strong coupling between the wave equation
and the rule given in (6.9) governing the evolution of the domains. We leave the problem
open for future research.
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