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1. Introduction and main result

The standard Monge-Ampère operator is formally defined, for a real-valued function 
on an open set Ω ⊂ Rn, with n ≥ 2, as
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Mu = det(∇2u). (1.1)

Here, ∇2u denotes the Hessian n × n–matrix of the second-order derivatives of u and 
“det” stands for determinant. The operator M lies at one endpoint of a family of so-
called Hessian operators, whose opposite terminal is occupied by the Laplacian. Besides 
the usual divergence form Δu = div(∇u), the latter can be expressed as

Δu = tr(∇2u), (1.2)

where “tr” denotes trace.
The structure of these classical operators is in a sense related to the use of the Eu-

clidean norm in the ambient space Rn. For instance, the Laplacian emerges from the 
Euler equation of the Dirichlet energy integral, defined in terms of the Euclidean norm 
|∇u| of the gradient ∇u of u. Replacing this norm with a more general Finsler norm 
H : Rn → [0, ∞) results in the functional∫

Ω

E(∇u) dx, (1.3)

where E : Rn → [0, ∞) is the function given by

E(ξ) = 1
2H(ξ)2 for ξ ∈ Rn. (1.4)

Recall that a Finsler norm in Rn is a nonnegative convex function which vanishes only 
at 0 and is positively homogeneous of degree 1. Hence, unlike standard norms, it need 
not be an even function. Of course, any norm in Rn is, in particular, a Finsler norm.

The Finsler Laplacian built upon H can be defined as the differential operator ΔHu =
div

(
H(∇u)∇ξH(∇u)

)
appearing in the Euler equation of functional (1.3). Here, and in 

what follows, the subscript ξ attached to a differential operator denotes differentiation 
in the “gradient variable”. With this regard, observe that

−
∫
Ω

uΔHu dx = 2
∫
Ω

E(∇u) dx (1.5)

provided that u vanishes on ∂Ω. In analogy with (1.2), the operator ΔH admits the 
alternate form

ΔHu = tr
(
∇(∇ξE(∇u))

)
. (1.6)

Plainly, definition (1.2) is recovered from (1.6) when H is the Euclidean norm, since in 
this case ∇ξE(ξ) = ξ for ξ ∈ Rn.
The operator ΔH and its p-generalization, obtained analogously after replacing the expo-
nent 2 by any p ∈ (1, ∞) in functional (1.3), have been investigated under various aspects.
A sample of contributions on this subject is furnished by [1–3,6,23,24,26,27,25,30,41].
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The Finsler Monge-Ampère operator MH is defined as

MHu = det
(
∇(∇ξE(∇u))

)
. (1.7)

Besides being suggested by the mere replacement of the trace with the determinant on 
the right-hand side of equation (1.6), definition (1.7) originates from the Euler equation 
of the functional ∫

Ω

E(∇u)
n+1

2 kH(x) dx, (1.8)

where kH(x) denotes the Finsler Gauss curvature of the level set of u at the point x. 
This assertion can be verified via the identity

−
∫
Ω

uMHu dx = 2n+1
2

n

∫
Ω

E(∇u)
n+1

2 kH(x) dx, (1.9)

which holds for sufficiently smooth convex functions u vanishing on ∂Ω and sufficiently 
smooth Finsler norms H. When H is the Euclidean norm, the integral on the left-hand 
side is the customary energy functional of the Monge-Ampère operator and equation 
(1.9) is classical. Functional (1.8) thus provides us with a natural generalization to the 
Finsler realm and stands to the operator MH as functional (1.3) stands to ΔH . We 
refer to [20,21] for the derivation of equation (1.9) and properties of the operator MH in 
connection with ad hoc symmetrizations.

Formally, det
(
∇(∇ξE(∇u))

)
= det

(
∇2

ξE(∇u)∇2u
)

= det
(
∇2

ξE(∇u)
)
det(∇2u

)
. 

Thereby, MH can be regarded as a classical Monge-Ampère operator with a gradient-
depending coefficient, whose special structure depends on the Finsler norm H. We prefer 
to introduce it in the form (1.7), which allows for a definition of generalized solution in 
the sense of Alexandrov without any a priori regularity assumption on H.

Our focus here is on the symmetry of the solution to an overdetermined boundary 
value problem for the operator MH . The interest in symmetry properties of solutions to 
overdetermined boundary value problems for partial differential equations was ignited 
half a century ago by the seminal paper [38] by Serrin. A special case of his result 
concerns the Poisson equation, coupled with both a homogeneous Dirichlet condition 
and a constant Neumann condition at the boundary. It asserts that, if Ω is bounded and 
sufficiently smooth, and c is any positive constant, then the problem⎧⎪⎨⎪⎩

Δu = 1 in Ω
u = 0 on ∂Ω
|∇u| = c on ∂Ω

(1.10)

admits a solution if and only if Ω is (up to translations and dilations) the Euclidean unit 
ball B centered at 0. Moreover,
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u(x) = |x|2 − 1
2 for x ∈ B. (1.11)

Over the years, Serrin’s result has inspired a wealth of investigations on related 
questions – see e.g. the surveys [31,33] on developments along this line of research. In 
particular, overdetermined boundary value problems for a family of Hessian-type equa-
tions are the subject of [9]. The results of that paper include convex solutions to the 
Monge-Ampère equation, with a constant right-hand side, on a bounded convex set Ω
and subject to the same Dirichlet and Neumann boundary conditions as in (1.10). Ob-
serve that, because of the convexity of Ω and u, the latter condition is equivalent to 
requiring that

∇u(Ω) = B(c), (1.12)

where B(c) denotes the Euclidean ball, centered at 0, with radius c. This is a special 
case of the “second boundary condition” in the theory of the Monge-Ampère operator, 
so called as opposed to the Dirichlet boundary condition. In its general formulation, 
it amounts to imposing that ∇u(Ω) = Ω′ for some bounded convex set Ω′. It is also 
named “natural boundary condition”, inasmuch as it arises naturally in the solution to 
the Monge-Kantorovich mass transportation problem.

The conclusion of [9] is that, if the problem⎧⎪⎨⎪⎩
Mu = 1 in Ω
u = 0 on ∂Ω
∇u(Ω) = B(c)

(1.13)

admits a convex solution in a bounded convex domain Ω, for some positive constant c, 
then (up to translations and dilations) the domain agrees with the Euclidean unit ball 
B, and the solution u obeys (1.11). An alternate proof is offered in [10]. An extension 
of this result to overdetermined problems for a class of fully nonlinear elliptic equations 
more general than that considered in [10] can be found in [39], and rests upon a different 
approach.

The analysis of overdetermined problems in the Finsler ambient was initiated in [13], 
where a version of Serrin’s theorem was established for (sufficiently smooth) Finsler 
norms H. Loosely speaking, it tells us that a symmetry result still holds, provided that 
the role of Euclidean balls is replaced by balls in the Finsler norm H in the “gradient 
variable” and balls in the dual Finsler norm H0 in the “space variable”. Balls according 
to H0 are usually said to have the Wulff shape associated with H. This terminology 
comes after G. Wulff, who, at the beginning of the last century, employed anisotropic 
geometric functionals built upon general Finsler norms H in his mathematical theory of 
crystals [43]. The functionals in question replace the standard perimeter of sets in Rn. 
They are defined as the integral, over the boundary of a set, of the function H evaluated 
at the unit normal vector. Of course, the boundary and the unit normal vector of a set 
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have to be properly defined according to geometric measure theory. Wulff-shaped balls 
are known to solve the corresponding isoperimetric problem among sets of prescribed 
Lebesgue measure [40].

Specifically, the paper [13] concerns the problem⎧⎪⎨⎪⎩
ΔHu = 1 in Ω
u = 0 on ∂Ω
H(∇u) = c on ∂Ω.

(1.14)

Under suitable regularity assumptions on the bounded domain Ω, it asserts that a solu-
tion to problem (1.14) exists if and only if Ω = BH0 (up to translations and dilations). 
Moreover, the solution u is obtained on replacing the norm |x| with H0(x) in equation 
(1.11). Here, BH0 denotes the unit ball, centered at 0, in the metric of H0; balls with 
radius c > 0 will be denoted by BH0(c). Analogous notations are adopted for balls in 
the Finsler metric of H. To be precise, the result of [13] is stated in the case when H is 
a classical norm (hence, an even function) and the right-hand side equals −1; however, 
a close inspection of the proof shows that it also applies to deduce the above conclusion 
about problem (1.14) for Finsler norms.

In the last decade, further contributions appeared on overdetermined boundary value 
problems for the Finsler Laplacian and its p-Laplacian version and, more generally, on 
symmetry properties of solutions to problems involving these operators. A partial list 
includes [5,7,8,14–16,19,22].

In the present paper, we complement the picture outlined above and show the Wulff 
shape symmetry of the solution to the Finsler Monge-Ampère equation, when simulta-
neously subject to the homogeneous Dirichlet condition and a Wulff shape symmetric 
second boundary condition. This is the content of the following theorem. In its state-
ment, the notation C2

+ denotes the class of twice continuously differentiable functions 
whose Hessian matrix is everywhere positive definite.

Theorem 1.1. Let Ω be a convex bounded open set in Rn. Let H be a Finsler norm in Rn

such that H2 ∈ C2
+(Rn \ {0}). Assume that there exists an Alexandrov convex solution u

to the problem ⎧⎪⎨⎪⎩
MHu = 1 in Ω
u = 0 on ∂Ω
∇u(Ω) = BH(c)

(1.15)

for some constant c > 0. Then,

Ω = BH0 (1.16)

and
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u(x) = H0(x)2 − 1
2 for x ∈ BH0 , (1.17)

up to translations and dilations.

As observed above, owing to the convexity of Ω and u, the last condition in problem 
(1.15) can be equivalently formulated as the boundary condition

H(∇u) = c on ∂Ω.

Let us mention that overdetermined problems parallel to (1.15), for Hessian type 
operators modeled upon H which are intermediate between ΔH and MH , could be con-
sidered. A definition of these operators can be found in [21]. Results along this direction 
would extend those of [10] for classical Hessian equations. However, this falls beyond the 
scope of the present work and we leave it for possible future investigations.

Our approach to Theorem 1.1 departs from the original technique employed in [38], 
which is based on a variant of the method of moving planes. This method was introduced 
by Alexandrov in his proof of the symmetry of bodies whose boundary has constant mean 
curvature and, after [38], it was adapted to the proof of a variety of symmetry results 
for PDEs. We instead resort to arguments ultimately rooted in an alternate proof of 
Serrin’s result by Weinberger [42] and later developed in [9]. They rely upon integral 
identities and inequalities involving the solution u to problem (1.15). The overall idea 
is that overdetermination causes all the inequalities to hold as equalities. This piece 
of information forces ∇u to agree with the gradient of the right-hand side of equation 
(1.17), whence the conclusion follows.

Besides other ingredients, the derivation of the relevant integral relations makes use 
of duality arguments pertaining to the theory of convex functions and sets. Specific 
properties linking the Finsler norm H with its dual H0, and the solution u with its Young 
conjugate ũ enter the game. The regularity of the solution u is critical in substantiating 
several steps of the argument. The nowadays classical C1,α regularity theory by Caffarelli, 
as well as the W 2,1 regularity theory more recently inaugurated by De Philippis and 
Figalli, plays a key role in this connection.

The paper is organized as follows. We begin by gathering definitions and some proper-
ties of the functions H and H0. The notion of Legendre conjugate and its basic properties 
are also recalled. This is the content of Section 2. Section 3 is devoted to a precise for-
mulation of problem (1.15). The definition of its solution in the framework of the theory 
of Monge-Ampère type equations is discussed in that section, where its regularity prop-
erties of use for our analysis are presented as well. The proof of Theorem 1.1 is then 
accomplished in Section 4.
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2. Convex functions and Finsler norms

2.1. Legendre conjugate

Let Ω be a convex set and let u : Ω → R be a convex function. Its Legendre conjugate 
ũ : Rn → R is defined as

ũ(ξ) = sup{x · ξ − u(x) : x ∈ Ω} for ξ ∈ Rn. (2.1)

If the function u ∈ C1(Ω) and is strictly convex, then ũ ∈ C1(∇u(Ω)) and is strictly 
convex (see [34, Theorem 26.5]). Moreover the map ∇u : Ω → ∇u(Ω) is invertible and

∇ξũ = (∇u)−1 . (2.2)

The very definition of the function ũ entails that

x · ξ ≤ u(x) + ũ(ξ) for x ∈ Ω and ξ ∈ Rn. (2.3)

Furthermore, if u ∈ C1(Ω) and is strictly convex, then

x · ξ = u(x) + ũ(ξ) if either x = ∇ξũ(ξ) or ξ = ∇u(x). (2.4)

2.2. Finsler norms in Rn

A function H : Rn → [0, ∞) is called a Finsler norm in Rn if:

H is convex, (2.5)

H(ξ) ≥ 0 for ξ ∈ Rn, and H(ξ) = 0 if and only if ξ = 0 , (2.6)

H(tξ) = tH(ξ) for ξ ∈ Rn and t ≥ 0 . (2.7)

Notice that, owing to (2.7), assumption (2.5) can be equivalently replaced by requiring 
that H be subadditive. The dual Finsler norm H0 of H is given by

H0(x) = max
ξ �=0

x · ξ
H(ξ) for x ∈ Rn, (2.8)

where the dot “ · ” stands for scalar product in Rn. Conversely, H is the dual Finsler 
norm of H0, since

H(ξ) = max
x�=0

x · ξ
H0(x) for ξ ∈ Rn. (2.9)

As mentioned above, given r > 0, we denote by BH(r) the open ball, centered at 0 and 
with radius r, in the Finsler metric generated by H. Namely,
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BH(r) = {ξ ∈ Rn : H(ξ) < r}.

The ball BH0(r) is defined analogously. If r = 1, we shall simply write BH and BH0 .
One has that

H0 ∈ C1(Rn \ {0}) if and only if BH is strictly convex, (2.10)

see [36, Corollary 1.7.3]. Of course, an analogous property holds on interchanging the 
roles of H and H0.
If H ∈ C1(Rn \ {0}), then

∇ξH(tξ) = ∇ξH(ξ) for ξ 	= 0 and t > 0 . (2.11)

This is a consequence of property (2.7), Moreover,

ξ · ∇ξH(ξ) = H(ξ) for ξ ∈ Rn , (2.12)

where the left-hand side is taken to be 0 when ξ = 0.
Assume that H ∈ C1(Rn \ {0}) and BH is strictly convex. Then, by [13, Lemma 3.1],

H0(∇ξH(ξ)) = 1 for ξ ∈ Rn \ {0} , (2.13)

and

H(∇H0(x)) = 1 for x ∈ Rn \ {0} . (2.14)

Moreover, under the same assumptions, the map H∇ξH : Rn → Rn is invertible and

H∇ξH = (H0∇H0)−1
. (2.15)

Here, and in what follows, H∇ξH and H0∇H0 are continued by 0 at 0.
If H ∈ C2(Rn \ {0}), then

∇2
ξH(tξ) = 1

t
∇2

ξH(ξ) for ξ 	= 0 and t > 0 , (2.16)

and

∇2
ξH

2(tξ) = ∇2
ξH

2(ξ) for ξ 	= 0 and t > 0. (2.17)

Observe that the matrix-valued function ∇2
ξH

2 is discontinuous at 0, unless it is constant. 
Yet, it is bounded, and hence

H∇ξH is Lipschitz continuous in Rn, (2.18)
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inasmuch as ∇ξH
2 = 2H∇ξH. Of course, a parallel property holds for H0, provided that 

H0 ∈ C2(Rn \ {0}); namely

H0∇H0 is Lipschitz continuous in Rn. (2.19)

The properties enjoyed by the functions H and H0 mentioned so far are reflected in 
properties of the function E defined by equation (1.4) and of the function E0 defined by 
replacing H with H0 in the same equation. In particular, note that, by equations (2.7)
and (2.13),

E0(∇ξE(ξ)) = E(ξ) for ξ ∈ Rn. (2.20)

Thanks to equation (2.12),

ξ · ∇ξE(ξ) = 2E(ξ) for ξ ∈ Rn. (2.21)

Furthermore, if H2 ∈ C2
+(Rn \ {0}), i.e. E ∈ C2

+(Rn \ {0}), then

∇2
ξE(tξ) = ∇2

ξE(ξ) for ξ 	= 0 and t > 0. (2.22)

Hence, there exist constants Λ > λ > 0 such that

λ ≤ |∇2
ξE(ξ)| ≤ Λ for ξ 	= 0, (2.23)

and

λ ≤ det(∇2
ξE(ξ)) ≤ Λ for ξ 	= 0. (2.24)

Moreover, since

∇ξE = H∇ξH and ∇E0 = H0∇H0,

the maps

∇ξE : Rn → Rn and ∇E0 : Rn → Rn are Lipschitz continuous, (2.25)

and

(∇ξE)−1 = ∇E0. (2.26)

Especially,

∇ξE : BH → BH0 and ∇E0 : BH0 → BH . (2.27)
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One can also verify that E and E0 are mutual Legendre conjugates.
A property of Legendre conjugation ensures that, if E ∈ C2

+(Rn \ {0}), then

E0 ∈ C2
+(Rn \ {0}). (2.28)

3. Properties of solutions to Finsler Monge-Ampère equations

Let H be any Finsler norm in Rn. A convex function u : Ω → R is a generalized 
solution in the sense of Alexandrov to the equation

MH = 1 in Ω (3.1)

if

Ln
(
∇ξE(∇u(ω))

)
= Ln(ω) (3.2)

for every Borel set ω ⊂ Ω. Here, Ln denotes the Lebesgue measure in Rn, and ∇u

and ∇ξE are regarded as multi-valued maps, which are well defined as subgradients, 
since both u and E are convex functions. We refer to the monographs [4] and [28] for 
detailed expositions of the classical theory of Alexandrov solutions to Monge-Ampère 
type equations.
Assume now that H satisfies the additional assumptions of Theorem 1.1. Then u is a 
solution to equation (3.1) in the sense of Alexandrov if and only if it is an Alexandrov 
solution to the equation

Φ(∇u) det(∇2u) = 1 in Ω, (3.3)

where Φ : Rn → [0, ∞) is the function defined as

Φ(ξ) =
{

det(∇2
ξE(ξ)) if ξ 	= 0

inf{η �=0} det(∇2
ξE(η)) if ξ = 0.

(3.4)

Recall that a convex function u is an Alexandrov solution to equation (3.3) if∫
∇u(ω)

Φ(ξ) dξ = Ln(ω) (3.5)

for every Borel set ω ⊂ Ω. In order to verify this equivalence, notice that, by property 
(2.25), the map ∇ξE : Rn → Rn is bi-Lipschitz continuous. A change of variables via 
this map yields∫

∇u(ω)

Φ(ξ) dξ =
∫

∇u(ω)

det(∇2
ξE(ξ)) dξ =

∫
∇ξE(∇u(ω))

dx = Ln
(
∇ξE(∇u(ω))

)
(3.6)
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for every Borel set ω ⊂ Ω. Hence, the claimed equivalence follows.
Next, let Ω be a bounded convex domain and consider the problem obtained by coupling 
equation (3.1) with the second boundary condition ∇u(Ω) = BH . In view of the above 
remarks, it can be formulated as

{
Φ(∇u) det(∇2u) = 1 in Ω
∇u(Ω) = BH .

(3.7)

Besides the definition in the Alexandrov sense, another (even weaker) definition of a 
solution to the equation in (3.7) is available. It was introduced by Brenier in his fun-
damental work on the Monge-Kantorovich mass transportation problem [11]. A convex 
function u is a Brenier solution to the equation in (3.7) if

∫
∇u(Ω)

h(ξ)Φ(ξ) dξ =
∫
Ω

h(∇u(x)) dx (3.8)

for every continuous function h : ∇u(Ω) → R, where ∇u is now regarded as a function 
defined a.e. in Ω. Since, by equation (2.24), there exist constants 0 < λ ≤ Λ such that

λ ≤ Φ(ξ) ≤ Λ for ξ ∈ Rn, (3.9)

the result of [11] guarantees that problem (3.7) admits a unique solution in this sense, 
provided that the compatibility condition

Ln(Ω) = Ln(BH0),

dictated by the choice h = 1 in (3.8), is fulfilled.
A result from [12] provides us with the following information:
(i) The Brenier solution to problem (3.7) is also a solution in the sense of Alexandrov; 
hence, we may refer to the (unique) solution u to problem (3.7) without further specifi-
cation in what follows;
(ii) The Legendre conjugate ũ of u is the Brenier and the Alexandrov solution to the 
problem

{
det(∇2ũ) = Φ(ξ) in BH

∇ũ(BH) = Ω.
(3.10)

Hence, ∫
f(x) dx =

∫
f(∇ũ(ξ))Φ(ξ) dξ (3.11)
Ω BH
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for every continuous function f : Ω → R, where ∇ũ is regarded as a function defined 
a.e. in Ω. Moreover, ∫

�

Φ(ξ) dξ = Ln
(
∇ũ(�)

)
(3.12)

for every Borel set � ⊂ BH , where ∇ũ is considered a multi-valued map;
(iii) u and ũ are strictly convex;
(iv) u ∈ C1,α(Ω) and ũ ∈ C1,α(BH) for some α > 0; consequently, ∇u and ∇ũ are, in 
fact, single-valued maps, and ∇u : Ω → BH and ∇ũ : BH → Ω are inverses of each 
other.
In particular, the function u fulfills the equation in (3.7) a.e. in Ω, and ũ fulfills the 
equation in (3.10) a.e. in BH .
Let us also notice that, thanks to equation (2.26),

Φ(∇E0)det(∇2E0) = det(∇2
ξE(∇E0)) det(∇2E0) = 1 a.e in BH0 , (3.13)

and, as a consequence of equation (3.11) and the change of variable formula for Lipschitz 
maps, ∫

Ω

f(x) dx =
∫
BH

f(∇ũ(ξ))Φ(ξ) dξ

=
∫

BH0

f(∇ũ(∇E0(y)) det(∇2
ξE(∇E0(y))) det(∇2E0(y)) dy (3.14)

=
∫

BH0

f(∇ũ(∇E0(y))) dy

for every continuous function f : Ω → R.
Since the functions

∇ξE(∇u) : Ω → BH0 and ∇ũ(∇E0) : BH0 → Ω

are inverses of each other, an application of equation (3.14) with f = g(∇ξE(∇u)) yields∫
BH0

g(y) dy =
∫
Ω

g(∇ξE(∇u(x))) dx (3.15)

for every continuous function g : BH0 → R.
Inasmuch as the function ũ solves problem (3.10) and the function Φ fulfills inequalities 
(3.9), [35, Theorem 1.1] – a global version for second boundary value problems for Monge-
Ampère equations of results of [17], [18] and [37] – ensures that
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ũ ∈ W 2,1(BH). (3.16)

Moreover, we claim that

u ∈ W 2,1(Ω). (3.17)

This is again a consequence of [35, Theorem 1.1], once one notices that u is also an 
Alexandrov solution to the problem{

det(∇2u) = ψ(x) in Ω
∇u(Ω) = BH ,

(3.18)

where the function ψ : Ω → [0, ∞), defined as

ψ(x) = 1
Φ(∇u(x)) for x ∈ Ω,

satisfies the inequalities 1
Λ ≤ ψ(x) ≤ 1

λ for x ∈ Ω. The fact that u is an Alexandrov 
solution to problem (3.18) amounts to the equation

Ln(∇u(ω)) =
∫
ω

ψ(x) dx (3.19)

being fulfilled for every Borel set ω ⊂ Ω. Equation (3.19) formally follows from (3.8)
with the choice

h(ξ) =
χ∇u(ω)(ξ)

Φ(ξ) for ξ ∈ BH ,

where χ∇u(ω) stands for the characteristic function of the set ∇u(ω). A rigorous proof 
can be accomplished through a standard approximation argument for h via convolutions 
with smooth mollifiers. Note that passage to the limit is justified by the dominated con-
vergence theorem. A role is also played by the fact that, as a consequence of equation 
(3.5), Ln((∇u)−1(K)) = 0 for any set K ⊂ BH such that Ln(K) = 0.
Let us mention that [35, Theorem 1.1] ensures that the space W 2,1 can even be re-
placed by W 2,1+ε for some ε > 0 in equations (3.16) and (3.17). This additional piece of 
information will however not be exploited in our proofs.

4. Proof of Theorem 1.1

In this section, we accomplish the proof of Theorem 1.1. A couple of steps rely upon 
a generalized version of Newton’s inequality for matrices. Since we have not been able 
to locate the relevant inequality in the literature, we state it in a lemma at the end of 
the section and provide a proof for completeness.
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Proof of Theorem 1.1. Up to rescaling in x and u, we may assume that c = 1 in problem 
(1.15). Thus, in the light of the discussion in Section 3, we may assume that u is the 
Alexandrov solution to the problem⎧⎪⎪⎨⎪⎪⎩

Φ(∇u) det(∇2u) = 1 in Ω
u = 0 on ∂Ω
E(∇u) = 1

2 on ∂Ω,

(4.1)

where Φ is the function defined by (3.4).
The proof is split into several steps.
Step 1. We have that

Ln(Ω) = Ln(BH0) . (4.2)

This is a consequence of equation (3.14) with f = 1.
Step2. Owing to property (3.17), we have that u ∈ W 2,1(Ω). Moreover, by our assump-
tions on E and property (2.25), the function ∇ξE ∈ C1(Rn \ {0}) ∩Lip(Rn). Hence, the 
results of [32] on the composition of vector-valued Sobolev functions ensure that

∇ξE(∇u) ∈ W 1,1(Ω) (4.3)

and

∇(∇ξE(∇u)) = ∇2
ξE(∇u)∇2u a.e. in Ω. (4.4)

Also, inasmuch as the solution u is strictly convex, ∇u vanishes only at the unique 
minimum point of u, whence

det(∇2
ξE(∇u)∇2u) = Φ(∇u) det(∇2u) a.e. in Ω. (4.5)

Incidentally, let us notice that equation (4.5) would hold even if u were not convex, since 
∇2u vanishes a.e. on a set where ∇u is constant, provided that u is just in W 2,1(Ω).
Recall that the matrix ∇2u is positive semidefinite and the matrix ∇2

ξE is positive 
definite. Thus, thanks to the generalized version of Newton’s inequality of Lemma 4.1
below, to equation (4.5), and to the equation in (4.1), the following chain holds:

ΔHu = div(∇ξE(∇u)) = tr(∇2
ξE(∇u)∇2u) ≥ ndet(∇2

ξE(∇u)∇2u)1/n = n a.e. in Ω.
(4.6)

Moreover, equality holds in the inequality in (4.6) if and only if

∇2
ξE(∇u)∇2u = I, (4.7)

where I denotes the identity matrix in Rn×n.
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Step 3. We have that

2
∫

BH0

E0(y)dy ≥ −n

∫
Ω

u dx , (4.8)

and equality holds in the inequality if and only if equality (4.7) holds a.e. in Ω.
To prove this assertion, one can make use of equation (3.15) to deduce that

∫
BH0

E0(y)dy =
∫
Ω

E0(∇ξE(∇u)) dx.

Hence, thanks to equation (2.20),

∫
BH0

E0(y)dy =
∫
Ω

E0(∇ξE(∇u)) dx =
∫
Ω

E(∇u) dx . (4.9)

The definition of ΔH , the divergence theorem, equation (2.21) and the Dirichlet boundary 
condition in (4.1) yield:

−
∫
Ω

uΔHu dx = −
∫
Ω

div(u∇ξE(∇u)) −∇u · ∇ξE(∇u) dx (4.10)

= 2
∫
Ω

E(∇u)dx−
∫
∂Ω

u∇ξE(∇u) · ν dHn−1 = 2
∫
Ω

E(∇u)dx,

where Hn−1 denotes the (n − 1)-dimensional Hausdorff measure. Hence, by equation 
(4.6),

−n

∫
Ω

u dx ≤ 2
∫
Ω

E(∇u) dx. (4.11)

Inequality (4.8) follows from (4.11), via equation (4.9). The assertion about the case of 
equality in (4.8) is a consequence of the case of equality in (4.6).
Step 4. Here, we show that∫

Ω

u dx = −
∫

BH0

ũ(∇E0) dy +
∫

BH0

∇ξũ(∇E0) · ∇E0 dy, (4.12)

where ũ denotes the Legendre conjugate of u.
Equation (4.12) follows via equation (3.14), which entails that
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∫
Ω

u dx =
∫

BH0

u(∇ξũ(∇E0)) dy =
∫

BH0

∇ξũ(∇E0) · ∇E0 − ũ(∇E0) dy. (4.13)

Step 5. We claim that

∫
BH0

ũ(∇E0) dy = −(n + 1)
∫
Ω

u dx . (4.14)

Equation (4.14) is a consequence of the following chain:

∫
BH0

ũ(∇E0) dy =
∫
Ω

ũ(∇u) dx =
∫
Ω

∇u · x− u dx =
∫
Ω

div(ux) − nu− u dx (4.15)

=
∫
∂Ω

ux · ν dHn−1 − (n + 1)
∫
Ω

u dx = −(n + 1)
∫
Ω

u dx.

Note that the first equality holds thanks to equations (3.14) and (2.2), the second one 
by equation (2.4), the fourth one by the divergence theorem, and the last one by the 
Dirichlet boundary condition in (4.1).

Step 6. The following inequality holds:

∫
BH0

∇ξũ(∇E0) · ∇E0 dy ≥ n

2

⎛⎜⎝Ln(BH0) − 2
∫

BH0

E0 dy

⎞⎟⎠ . (4.16)

By property (3.16), one has that ũ ∈ W 2,1(BH). Also, properties (2.25) and (2.26) ensure 
that ∇E0 : BH0 → Ω is a by-Lipschitz map. Hence, the change of variables formula for 
Sobolev functions tells us that

∇ξũ(∇E0) ∈ W 1,1(BH0), (4.17)

and

∇(∇ξũ(∇E0)) = ∇2
ξũ(∇E0)∇2E0 a.e. in BH0 . (4.18)

Moreover, by equation (3.13),

det(∇2
ξũ(∇E0)∇2E0) = det(∇2ũ(∇E0))

Φ(∇E0)
a.e. in BH0 . (4.19)

An application of the divergence theorem yields:
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∫
BH0

∇ξũ(∇E0) · ∇E0 dy =
∫

∂BH0

E0 ∇ξũ(∇E0) · ν dHn−1 −
∫

BH0

E0 div(∇ξũ(∇E0)) dy

(4.20)

= 1
2

∫
∂BH0

∇ξũ(∇E0) · ν dHn−1 −
∫

BH0

E0 div(∇ξũ(∇E0)) dy

= 1
2

∫
BH0

(1 − 2E0) div(∇ξũ(∇E0)) dy.

Now, observe that 1 − 2E0 ≥ 0 in BH0 . Furthermore,

div(∇ξũ(∇E0)) = tr(∇2
ξũ(∇E0)∇2E0) ≥ ndet(∇2

ξũ(∇E0)∇2E0) (4.21)

= n
det(∇2ũ(∇E0))

Φ(∇E0)
= n a.e. in BH0 .

Here, we have made use of equation (4.18), of the version of Newton’s inequality from 
Lemma 4.1, of equation (4.19), and of the equation in (3.10). Notice that the application 
of Lemma 4.1 is legitimate, since the matrix ∇2

ξũ is positive semidefinite and, by property 
(2.28), the matrix ∇2E0 is positive definite.
From equations (4.20) and (4.21) one deduces that∫

BH0

∇ξũ(∇E0) · ∇E0 dy ≥ n

2

∫
BH0

(1 − 2E0) dy. (4.22)

This establishes inequality (4.16).
Step 7. We have that

2
∫

BH0

E0 dy ≤ −n

∫
Ω

u dx . (4.23)

To begin with, observe that merging (4.14) and (4.16) into (4.12) implies that

−n

∫
Ω

u dx ≥ n

2

⎛⎜⎝Ln(BH0) − 2
∫

BH0

E0 dy

⎞⎟⎠ . (4.24)

On the other hand,

Ln(BH0) = 2(n + 2)
n

∫
E0 dy. (4.25)
BH0
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To verify this equality, notice that

Ln(BH0) =
∫

{E0(x)≤ 1
2}

dx =

1
2∫

0

∫
{E0(x)=t}

dHn−1(x)
|∇E0(x)| dt (4.26)

=

1
2∫

0

∫
{E0(x/

√
t)=1}

dHn−1(x)
|∇E0(x)| dt =

1
2∫

0

t
n−1

2

∫
{E0(y)=1}

dHn−1(y)
|∇E0(y

√
t)|

dt

=

1
2∫

0

t
n
2 −1

∫
{E0(y)=1}

dHn−1(y)
|∇E0(y)|

dt = 1
n2n

2 −1

∫
{E0=1}

dHn−1

|∇E0|
dt,

where the second equality holds by the coarea formula, the third one since E0 is positively 
homogeneous of degree 2, the fourth one by the area formula, and the fifth one since the 
function |∇E0| is positively homogeneous of degree 1. Analogously,

∫
BH0

E0 dy =

1
2∫

0

t

∫
{E0=t}

dHn−1

|∇E0|
dt =

1
2∫

0

t
n
2

∫
{E0=1}

dHn−1

|∇E0|
dt

= 1
(n + 2)2n

2

∫
{E0=1}

dHn−1

|∇E0|
dt.

(4.27)

Combining equations (4.26) and (4.27) yields (4.25). Inequality (4.23) follows from equa-
tions (4.24) and (4.25).
Step 8. Conclusion.
Coupling inequality (4.23) with the reverse inequality (4.8) implies that

2
∫

BH0

E0 dy = −n

∫
Ω

u dx . (4.28)

This forces all the inequalities derived above to hold as equalities. Especially, equation 
(4.7) holds a.e. in Ω. Namely,

∇(∇ξE(∇u)) = I a.e. in Ω.

Hence, there exists x ∈ Rn such that

∇ξE(∇u) = x− x for x ∈ Ω , (4.29)

and, by equation (2.26),
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∇u = ∇E0(x− x) for x ∈ Ω. (4.30)

Equation (1.17) follows form (4.30) and the Dirichlet boundary condition in (4.1). �
Lemma 4.1. Assume that the matrix A ∈ Rn×n is symmetric and positive definite, and 
the matrix B ∈ Rn×n is symmetric and positive semidefinite. Then,

(detAB) 1
n ≤ tr(AB)

n
. (4.31)

Moreover, equality holds in (4.31) if and only if AB = λI for some constant λ ≥ 0.

Proof. Our assumptions on B ensure that there exist an orthogonal matrix U and a 
diagonal matrix Λ = diag{λ1, . . . , λn}, where λ1, . . . , λn ≥ 0 are the eigenvalues of B, 
such that Λ = UTBU . Hence B = UΛUT .
Set Q = UTAU and Q = (qij). Then

tr(AB)
n

= tr(AUΛUT )
n

= tr(QΛ)
n

=
∑n

i=1 λiqii
n

≥
(
Πn

i=1λiqii
) 1

n

=
(
Πn

i=1qii
) 1

n
(
Πn

i=1λi

) 1
n

=
(
Πn

i=1qii
) 1

n (detB) 1
n ≥ (detQ) 1

n (detB) 1
n

= (detA) 1
n (detB) 1

n = (detAB) 1
n .

(4.32)

Note that the first inequality in (4.32) holds by the arithmetic-geometric mean inequality, 
with equality if and only if

λ1q11 = · · · = λnnqnn. (4.33)

Moreover, the second inequality holds since Q is a symmetric positive definite matrix 
[29, Theorem 7.8.1], with equality if and only if

qij = 0 if i 	= j. (4.34)

Inequality (4.31) agrees with (4.32).
In particular, if equality holds in (4.31), then both equations (4.33) and (4.34) hold. The 
latter implies that the matrix QΛ is diagonal. By coupling this piece of information with 
the former, we deduce that QΛ is a multiple of I. Therefore

UTABU = UTAUUTBU = QΛ = tr(QΛ)
n

I = tr(AB)
n

I. (4.35)

Hence, AB = λI, with λ = tr(AB)
n . Conversely, if AB = λI for some λ ≥ 0, then equality 

trivially holds in (4.31). �
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