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A B S T R A C T   

This study introduces a robust method for analyzing the geochemical behavior of chemical species in river 
catchment water. It focuses on isometric log-ratio coordinates obtained from a sequential partition method that 
successively maximizes the explained variance in the data set. Robust orthonormal coordinates are created based 
on hierarchical clustering and robust estimation of the variation matrix. Applying this to the water chemistry of 
Italy's Arno and Tiber basins, the research reveals the associations of variables in data structure and processes 
across varying geological and climatic conditions. The method uncovers key contrasting geochemical processes 
and suggests that the behavior of simple balances characterized by lower variances (i.e., Ca2+/HCO−

3 and 
Na+/Cl− ) are mainly influenced by random fluctuations with no differences between classical or robust methods. 
However, when balances describe more complex geochemical processes resulting in frequency distributions 
affected by the presence of bimodality or outliers, significant differences among the two approaches emerge, 
compromising the data interpretation. The proposed metodology offers more insights into the investigation of 
catchment geochemistry's resilience to hydroclimatic changes, marking a significant step in understanding large- 
scale environmental dynamics.   

1. Introduction 

Rivers are a fundamental component of the hydrological cycle and 
the chemical composition of their water can be used to monitor the 
ecological status of the environment as well as the response to climatic 
perturbations. Climate changes induce substantial modifications in the 
watersheds, which are then reflected in the water chemical composition. 
Increased aridity makes forests more prone to fires and soils more sub-
jected to erosion, compromising the quality and quantity of water. 
Despite the importance of several geological and geomorphological 
factors, the chemical weathering on the Earth's surface is mainly 
controlled by climate (Dinis et al., 2020; Schmeller et al., 2022). In this 
framework, riverine waters connect atmosphere, lithosphere, and 
biosphere through complex dynamics governed by thermodynamical 
laws, thus generating biogeochemical cycles of elements and modifying 
the status of the Earth Critical Zone (Kleidon et al., 2012). Furthermore, 
rivers have been fundamental in the development of human society and 
are still important today, representing a crucial component for water 
supply, irrigation, food and energy production, recreation and 

transportation (Patil et al., 2018). As a consequence, watersheds are the 
most extensively and deeply altered ecosystem on Earth today subjected 
to wide variability (Dai et al., 2023; Dede et al., 2023). This is particu-
larly true for the Mediterranean catchments, which are expected to 
experience substantial climate changes during the 21st century (Lutz 
et al., 2016). To obtain generalizable insights into river catchment 
geochemistry, it is necessary to explore the organizing principles that 
could underlie their heterogeneity and complexity moving beyond the 
current status of explicitly characterizing local watersheds with very 
complex models (McDonnell et al., 2007). In this regard, it is crucial to 
conduct comparative studies of different catchment areas and imple-
ment robust methods capable of exploring the sources of geochemical 
variability on different scales. Analyzing the chemical composition of 
water allows us to understand how watersheds evolve and retrace the 
impact of different stressors, as well as identify potential drivers and 
feedback mechanisms. 

Numerous studies suggest that variability, as measured by the sta-
tistics of variance, can indicate whether a system is more or less stable in 
time and space, whether flickering or transitions to alternative states 
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occur (Dakos et al., 2014; Belle et al., 2017; Chen et al., 2018; Gozzi 
et al., 2021; Grziwotz et al., 2023). However, investigation of the vari-
ance for single variables, as given by the chemical concentration of el-
ements/species dissolved in river water, is not significant for 
compositional data due to their relative nature (Aitchison, 1982, 1986; 
Gozzi et al., 2020). Therefore, in this work we use a compositional 
approach based on the analysis of variance of isometric coordinates 
obtained with the sequential partition method as defined by Egozcue 
and Pawlowsky-Glahn (2005) and then modified by Martn-Fernández 
et al. (2017). Nevertheless, in the presented approach, the sequence of 
orthonormal coordinates (also called balances) that successively maxi-
mize the explained variance in the data set is further implemented by 
applying a new robust methodology. 

Applying the proposed methods, we compare the hydrochemical 
variability of rivers pertaining to two of the widest catchments in central 
Italy (Arno and Tiber river basins). The shape of the frequency distri-
bution of the obtained balances is then analyzed to understand which 
group of variables is better associated with resilient behavior to 
hydroclimatic changes (Mitzenmacher, 2004; Gozzi and Buccianti, 
2022). The newly developed method was implemented in the free and 
open-source R software environment (R Development Core Team, 
2023), specifically in the robCompositions package (Templ et al., 2021; 
Filzmoser et al., 2018). 

2. Materials and methods 

2.1. Compositional data analysis 

A deeper understanding of the nature of these types of data begins 
with Aitchison (1982) indicating that log-ratios provide a one-to-one 
mapping from the constrained sample space of compositional data 
(called the simplex) and the real space. 

We present our data as equivalence classes instead of vector of 
constant sums (ie. sum to 100 %), taking into account that we are 
dealing with molar fractions or molarities that do not add up to a single 
constant (Buccianti and Pawlowsky-Glahn, 2005). The composition x =

[x1,…, xD]
′ with all its parts being strictly positive holds the same relative 

information in both xi/xj and (axi)/
(
axj

)
for any non-zero scalar a. The 

composition can be expressed as a proportion, x* = ax, by setting a =

1/
∑

xi. This composition x* is part of the standard simplex, which is 
defined as 

SD =

{

x* =
[
x*

1 … x*
D

]′
|x*

i > 0,
∑D

i=1
x*

i = 1

}

.

The choice of 1 as the closing is arbitrary and does not affect the 
ratios between variables (van den Boogaart and Tolosana-Delgado, 
2013; Filzmoser et al., 2018). Simplex geometry is distinct from 
Euclidean geometry, and the standard statistical tools have typically 
been designed for the latter. In fact, around 2000, the algebraic- 
geometric structure of the simplex was recognized (Billheimer et al., 
2001; Pawlowsky-Glahn and Egozcue, 2001) leading to the proposal of 
the principle of working in coordinates (Mateu-Figueras et al., 2011). 
This trend is reflected in compositions being represented by ortho-
normal coordinates in a real Euclidean space, which is the same as the 
sample space of compositions. 

There are several ways to define orthonormal bases in the simplex, 
and one of the most used is the identification of a sequential binary 
partition (SBP) of a compositional vector (Egozcue and Pawlowsky- 
Glahn, 2005). The motive is that such bases can easily lead to a better 
interpretation of the meaning of the constructed factors of the grouped 
parts of the composition. The definition of an orthonormal basis of a 
sequential partition of a composition is discussed in Egozcue and 
Pawlowsky-Glahn (2005), which links the idea of balance between 
groups of components to the sub-composition of a set of parts. Thus, 

when a SBP process is used, the corresponding coordinates are the bal-
ances between the groups of parts separated in each step of a binary 
partition, and they allow us both subcompositional analysis, i.e. intra- 
group ratios, and grouped parts analysis, i.e. inter-group ratios. 

From a practical point of view, an SBP is a hierarchy of the parts of a 
composition. In the first order of the hierarchy, all parts are divided into 
two groups. In the following steps, each group is again divided into two 
groups. The process continues until all groups have a single part. For the 
kth order partition, it is possible to define the two subgroups formed at 
that level: if i1, i2,…, ir are the r parts of the first subgroup (coded by +1) 
and j1, j2,…js the s parts of the second (coded by − 1), the coordinate is 
defined as the normalized log-ratio of the geometric mean of each group 
of parts: 

zr =

̅̅̅̅̅̅̅̅̅̅
rs

r + s

√

ln
(xi1, xi2…xir)

1/r

(
xj1, xj2…xjs

)1/s = ln
(xi1, xi2…xir)

a+
(
xj1, xj2…xjs

)a− , (1)  

where 

a+ = +
1
r

̅̅̅̅̅̅̅̅̅̅
rs

r + s

√

, a− = −
1
s

̅̅̅̅̅̅̅̅̅̅
rs

r + s

√

. (2) 

The term a+ refers to parts in the numerator, a− to parts in the de-
nominator, and the values of r and s correspond to the k-th order 
partition. Depending of the number of variables D, following the SBP 
process will lead to D − 1 coordinates for which the shape of the fre-
quency distribution can be analyzed to search for variance and resilience 
indications. However, the original proposal of Egozcue and Pawlowsky- 
Glahn (2005) then modified by Martn-Fernández et al. (2017) is sensible 
to the presence of outliers cases or skewness. In our approach, the 
sequence of orthonormal coordinates that successively maximize the 
explained variance in the data set is obtained by applying a new robust 
methodology. The balances obtained in the SBP process governed by the 
decreasing variance are computed using a hierarchical clustering 
applied on the robust variation matrix, as explained in the following 
section. The aim is to discover associations of variables more resilient to 
flickering processes and/or characterized by input from different sour-
ces in a robust framework. 

2.2. Robust Orthonormal coordinates 

Robust orthonormal coordinates are created on the basis of hierar-
chical clustering and robust adaptations. The robust methods that are 
subsequently used are presented first. 

2.2.1. Robust covariance estimation 
Let z1,…, zn of n coordinates, that is, compositions expressed in co-

ordinates (cf. Eq. 1), of the n × D matrix Z. The classical estimators for 
the covariance 

Sz =
1

n − 1
∑n

i=1
(zi − z)(xi − z)′,

(so as the classical estimation of the (column-wise) arithmetic means: z) 
are sensitive to outliers with a finite sample breakdown point 1

n (Mar-
onna et al., 2006), because an outlier observation can make these esti-
mators arbitrarily large just by changing any of the values of a 
coordinate. 

Nowadays, several robust counterparts of location and covariance 
are available, including the property of affine equivariance, that is, the 
covariance estimate is appropriately adjusted under shifted, rotated, or 
rescaled versions of Z. The Minimum Covariance Determinant (MCD) 
estimator is a robust statistical method used for estimating the center 
and scatter of multivariate data. It is designed to be resistant to the in-
fluence of outliers in the data, making it particularly useful when dealing 
with datasets that may contain aberrant observations. The MCD esti-
mator (Rousseeuw and Van Driessen, 1999) works by finding a subset of 
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h observations that has the smallest determinant of the covariance ma-
trix. The MCD estimator then computes the mean and covariance matrix 
of this subset as an estimate for the location and covariance. It is worth 
mentioning that the MCD algorithm also includes a re-weighting step 
that also involves correction factors due to finite sample correction. 
After an initial estimate of the MCD subset is obtained, the re-weighting 
step is applied to adjust the influence of each data point on the MCD 
estimator. This process involves evaluating each data point's distance 
from these robust estimates to determine their weights in the final 
model. The goal is to refine these estimates by potentially including 
additional observations that align well with the already established 
robust pattern, but might not have been part of the initial MCD-selected 
subset. 

The weights are then used to better represent data points that are 
closer to the MCD subset and less weight to those that are farther away. 
Estimates of the column-wise arithmetic means and the (Pearson) 
covariance matrix of the reweighted subset of data form the solution of 
the MCD estimator. An alternative is to use the MM estimator, which has 
higher efficiency but also higher computational costs. As it provided 
very similar results with our data sets, as is the case with some other 
studies (to give some examples: Todorov et al., 2011; Templ et al., 
2019), we have not reported them. The version that uses the MM esti-
mator can be selected in the procedures that we provide together with 
this article and that are available in the R package robCompositions 
(Templ et al., 2011). 

2.2.2. Robust estimation of the variation matrix 
We focus on estimating with sample data and for the definitions of 

theoretical concepts related to random variables, we refer to Filzmoser 
et al. (2018). 

The estimated variation matrix is a D × D matrix of sample variances 
for all pairwise log-ratios of a compositional data sample. For a 
compositional data matrix X = (x1,…, xD)

′
∈ ℝD, the element (j, k) of 

the variation matrix, denoted as T̂, is estimated by vars
(
ln
(
xj/xk

) )
, 

where vars denotes the sample variance, for j,k ∈ {1,…,D}. 
The variation matrix can be expressed by using centered log-ratio 

coordinates Y of X (more details and derivation in Filzmoser et al., 
2018). 

For an n × D matrix X of compositional sample data, with the com-
positions xi′ = (xi1,…, xiD) in the rows of X, for i = 1,…,n, the matrix of 
clr coefficients Y is formed by the rows 

y′
i = (clr(xi) )

′
=

⎛

⎜
⎝ln

xi1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∏D

k=1xik
D
√ ,…, ln

xiD
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∏D

k=1xik
D
√

⎞

⎟
⎠. (3) 

For Z the principal balance coordinate representation of X (see Eq. 
(1), the centered log-ratio coefficients y of this composition can be ob-
tained by 

Y = VZ and Z = V′Y, (4)  

see Egozcue et al. (2003) and Tolosana-Delgado et al. (2019). The D ×

(D − 1) matrix V represents orthonormal basis vectors that express the 
relationship of the isometric logarithmic ratio coordinates in Eq. (1) and 
centered log-ratio coefficients. In our case, these orthonormal basis 
vectors are obtained in the SBP process governed by the decreasing 
variance using hierarchical clustering on the robust variation matrix. It 
represents the sign matrix of our obtained sequential binary partition. It 
is a matrix similar in shape to the principal balance coordinates in Eq. 1, 
but contains only values of +1, 0, or − 1. These values indicate whether 
a particular part of the composition is involved in the numerator (+1), 
the denominator (− 1), or not involved at all (0) in each coordinate of the 
principal balance coordinate transformation of Eq. 1. 

Thus the robust covariances ĈMCD (or alternatively with the MM 
estimator, ĈMM) are estimated. It is irrelevant whether we work with 

pivot coordinates, pca scores or even alr coordinates; any coordinate 
representation (hence full-rank) would suffice. A robust estimate of the 
variation matrix T is then obtained by 

T̂MCD = Jdiag(VĈMCDV′)+ diag(VĈMCDV′)J − 2VĈMCDV′. (5)  

Filzmoser et al. (2018) called this approach to estimate the robust 
variation matrix as variation based on robust pivot coordinates. 

It is essential to employ Eq. (5) since the centered log-ratio co-
efficients are singular, and the MCD estimator would not work on sin-
gular matrices. Therefore, it is necessary to apply the robust covariance 
fit in isometric logarithmic coordinates and to work with the ortho-
normal basis vectors V to project the result to a centered log-ratio 
representation. 

2.2.3. Obtaining principal coordinates from the robust variation matrix by 
hierarchical clustering 

The initial start of a (agglomerative) hierarchical clustering is that 
each object forms a separate cluster, thus having n different clusters, 
with n the number of observations in a data set. Clusters are then merged 
by a stepwise procedure. In each step, the number of clusters is reduced 
by 1, merging the two most similar clusters. Thus, it is important to 
measure the dissimilarity between clusters. In the end, only one cluster 
is left, all objects lie in this cluster. Note that a “height” (dissimilarity 
when merging) is assigned to the newly obtained cluster and this height 
is used to represent these steps in a dendrogram. The dissimilarity be-
tween clusters can be measured in different ways. One example is single 
linkage, where the minimum distance of all members in one cluster to 
members of another cluster is measured. This tends to have clusters of 
different sizes, as large clusters tend to merge quickly. 

The Ward method (Murtagh and Legendre, 2014) in hierarchical 
clustering is a criterion that minimizes the total within-cluster variance. 
At each step, the pair of clusters with minimum between-cluster distance 
is merged. To prevent any misunderstandings due to the numerous 
implementations of the Ward method, we will refer to it as ward.D2 in 
the following, to emphasize that squared distances are employed as 
outlined in Murtagh and Legendre (2014). The Ward clustering tech-
nique has the advantageous characteristic that the distance between two 
clusters is proportional to the variance of the balance between the two 
clusters that are to be combined. 

Instead of clustering observations, it is often useful to cluster the 
variables. The dissimilarity matrix, as input for a hierarchical clustering 
procedure, is then usually built on correlations between variables. More 
precisely, the dissimilarities between variables with index i and j can 
then be expressed by correlations rij after its transformation into dis-
similarities by dij = 1 − ∣rij∣. For elements of the dissimilarity matrix of 
compositional data, the variation matrix can be used to form the 
dissimilarity matrix as input to hierarchical clustering. Interpreting 
correlations based on symmetric pivot coordinates is more challenging 
than analyzing variations, so variations are typically used as the stan-
dard approach. Our software also includes the version with symmetric 
pivot coordinates (Kynčlová et al., 2017). 

In Section 2.2.2 we have already introduced the sign matrix. More 
precisely in our problem, a sign matrix of dimension (D × (D − 1) ) ex-
presses the sequential binary partition based on a merged structure of a 
hierarchical clustering algorithm that contains values of +1, 0 or − 1. 
For example, if variables 3 and 5 are first merged using the hierarchical 
clustering procedure in a compositional data set of 5 variables, then the 
first balance is built with a basis e1 = (0,0, − 1,0, 1), that is, zr in Eq. 1 is 
built with the logarithmic ratio of xi3 and xi5. Subsequently, all balances 
are formed by the corresponding sequential binary partition based on 
the merged structure resulting from the hierarchical clustering algo-
rithm. Thus, the first resulting coordinate contains the two parts with 
most similar variance of log-ratios considering all D clusters (each part 
of a composition is a cluster when starting the hierarchical clustering 
algorithm). The second coordinate expresses the second most similar 
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log-ratios but based on the remaining (D − 1) clusters, thus members of 
one cluster joined (noted by +1) to other members of another cluster 
(noted by − 1). 

In other words, to create compositional (principal) balances, a 
clustering algorithm is employed. The first step is to identify the smallest 
entry in the variation matrix T. The parts corresponding to this entry are 
then merged into a group. Next, the variation matrix is updated 
accordingly based on the previous merge of two clusters. This process is 
repeated iteratively, with groups of parts merged according to the 
smallest variance of the corresponding balance. Eventually, in the final 
phase of the algorithm, the last two remaining groups are merged to 
obtain the balance with the largest variance (Martn-Fernández et al., 
2017). Our contribution is to robustify the procedure of Egozcue and 
Pawlowsky-Glahn (2005) and Martn-Fernández et al. (2017) by a robust 
variation matrix based on robust pivot coordinates and to show the 
consequences of such a robustification in practical applications. 

Additional features of the procedure would be visualizing the role of 
each balance in a dendrogram explaining the decomposition of the total 
variance (Egozcue and Pawlowsky-Glahn, 2005). More precisely, the 
compositional dendrogram is the graphical representation of a sequen-
tial binary partition where the vertical scale is proportional to the total 
variance, as described in Pawlowsky-Glahn and Egozcue (2011). 

Although the compositional dendrogram has indeed been imple-
mented showing vertical quantile boxplots in addition, yet, in the spirit 
of simplicity similar to Martn-Fernández et al. (2017), our primary 

attention is dedicated to the facet of robust estimation. 

2.2.4. Comparing two hierarchical structures 
The cophenetic correlation between two hierarchical clustering re-

sults is a measure of how similarly the two clusterings preserve the 
pairwise distances between the original data points. It involves 
comparing the cophenetic distances from each hierarchical clustering's 
dendrogram to each other. To receive the cophenetic correlation be-
tween two clustering structures, the cophenetic distance between two 
points in a cluster is first calculated, which is the height at which these 
points are first joined together in the dendrogram. The cophenetic cor-
relation coefficient is then calculated using the Pearson correlation from 
the cophenetic distances from both clustering results. Essentially, this 
correlation assesses whether the two hierarchical clustering results 
produce similar structures and groupings in the data. A high cophenetic 
correlation would indicate that both clusterings agree on the data's 
structure, while a low correlation would suggest that they are inter-
preting the data structure differently. 

The variation matrix, either robustly estimated or classical, must be 
estimated before clustering it. This leads to a clustering structure, say the 
reference clustering structure. In a leave-on-out sensitivity analysis, the 
clustering is applied to the (robust or classical) variation matrix ob-
tained with one observation left out. This leads to another clustering 
structure that can then be compared with the reference clustering 
structure using the cophenetic correlation. This is repeated for each 

Fig. 1. Map illustrating the geographical positioning of the Arno and Tiber River basins in central Italy, their respective sampling points and primary lithotypes. The 
latter were derived and modified from ISPRA Ambiente (2017). 
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observation once left out. For the simulation procedure presented sub-
sequently, the variation matrix is estimated once based on the entire 
data set prior to clustering. This leads again to a reference clustering 
structure. Another clustering structure can be obtained by introducing 
outliers into the data set before clustering. Again, these two clustering 
structures can then be compared using the cophenetic correlation. 

2.3. Geochemical datasets and catchments settings 

The proposed methodology was applied to two geochemical data sets 
associated with different Mediterranean catchments. The testing areas 
were identified by the two largest river basins in central Italy, the Arno 
and Tiber river basins, draining an area of 8228 km2 and 17,156 km2, 
respectively (Fig. 1). Regarding the Arno catchment, a sampling field 
trip, encompassing seasonal variability, was conducted in 2002–2003 
(Nisi et al., 2008), followed by an additional upgrade in 2019 for 
monitoring purposes, resulting in a total of 521 samples. The data set for 
the Tiber River basin includes 160 water samples collected in 2017 and 
62 samples taken in 2018 from selected locations during supplementary 
monitoring campaigns. The sampling strategy was uniform for both 
basins, covering the entire extent of their respective watersheds, from 
the major rivers to the smallest branches in the upper sub-catchments. 
More details on sampling and analytical methods can be found in 
Gozzi et al. (2019) and Nisi et al. (2008). All analyzes considered nine 
main dissolved species, defining the primary water composition as 
HCO−

3 , F− , Cl− , NO−
3 , SO2−

4 , Ca2+, Mg2+, Na+, K+, with concentrations 
measured in mg/L. These elements serve to trace the most relevant 
weathering processes that take place in each catchment. 

The geological features of the Tiber and Arno river basins are inti-
mately connected to the recent evolution of the Apenninic chain (e.g. 
Bonini, 1998). Situated in the south-eastern sector of the Northern 
Apennines, the Tiber basin is shaped by a NE to E-verging arcuate fold 
and thrust belt. It predominantly exhibits terrigenous deposits in its 
upper section, the carbonatic Apennine ridge to the south-east, and 
potassic and ultra-potassic volcanic complexes in the south-western area 
(Fig. 1). On the other hand, the Arno basin is located in the central sector 
of the Northern Apennines, featuring predominantly sedimentary folded 
and faulted Mesozoic and Tertiary units resulting from the formation of 
the Apennine chain (e.g. Carmignani et al., 1994). The Tiber river basin 
has a mean altitude of 520 m and only 6 % of the total area of the basin 
exceeds 1200 m (Panichi et al., 2005). The Arno river basin has a slightly 
lower average elevation (353 m) with 68 % of its surface characterized 
by a hilly landscape (Cencetti and Tacconi, 2005). Both the Arno and 
Tiber basins fall within the temperate climate zone. Their annual rainfall 
pattern exhibits a minimum in summer and two maxima, one in 
November–December and another at the end of winter. 

3. Results 

3.1. Classical and robust balances 

The results of the SBP process for the river chemistry of the Arno and 
Tiber basins, derived from both classical and robust procedures, are 
presented in Figs. 2. The boxes provide a detailed description of the steps 
of the SBP process allowing to follow the fate of each chemical species 
participating in the balance construction. The eight balances are labeled 

Fig. 2. SPB process for the waters of the Arno and Tiber river basins obtained using classical (a,b) and robust approaches (c,d) based on the principle of decreasing 
variance from pc8 to pc1. 
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pc1, pc2,…, pc8 and the explained variance decreases from pc8 to pc1. 
The results unveiled that the balance having the highest variance is pc8 
(rest of the variables vs. NO−

3 ) for both basins, notwithstanding the 
method applied. From pc7 to pc3, the balances derived from the classical 
approach deviate from the robust ones. In the case of the Arno basin, pc7 
(robust) is distinguished by two sets of variables, namely Na+, SO2−

4 , K+, 
Cl− and F− versus Ca2+, HCO−

3 and Mg2+. Similarly, for the Tiber basin, 
pc7 (robust) identifies two groups but with different variables: Mg2+, 
SO2−

4 , Ca2+, HCO−
3 and F− , versus Na+, Cl− , and K+. The primary 

distinction between the two basins appears to be related to the assign-
ment of F− and SO2−

4 in pc7 (robust), which are associated with car-
bonate species (Mg2+, HCO−

3 , and Ca2+) in the Tiber basin and with 
silicate species in Arno. The robust balances associated with the lower 
variability (pc1 and pc2) are instead common to both cases and are 
represented by the simple Ca2+/HCO−

3 and Na+/Cl− log-ratios. By 
comparing the two approaches, it is clear that when the variance of the 
balance is the highest or the lowest, similar results are obtained while in 
the “middle-earth” important differences are observed. 

The behavior of the eight balances is illustrated for the two study 
cases in Fig. 3 using box-plots and frequency distribution diagrams. In 
the search for indices capable of monitoring the state of the environ-
ment, investigating the behavior of the balances associated with the 
lowest and the highest variance could represent a promising opportunity 
(Scheffer et al., 2015). When data appear unimodal and clearly tend to 
concentrate around a central value, variability could become a less 

evident feature. In general, the histograms of the balances that are suf-
ficiently symmetrical, such as those obtained for Ca2+/HCO−

3 and 
Na+/Cl− , indicate that the original molar ratios are log-normal distrib-
uted. Molar ratios that include elements as Ca2+ and HCO−

3 or Na+ and 
Cl− have been widely used in river chemistry investigation (Gaillardet 
et al., 1999). Moreover, when examining the average log-ratios calcu-
lated for unpolluted and polluted rivers in Europe, as reported in Berner 
and Berner (1996), the values stand at ln(Ca2+/HCO−

3 ) equal to − 1.2 and 
0.38, and ln(Na+/Cl− ) equal to − 0.99 and 0.19, respectively. For 
ln(Ca2+/HCO−

3 ), median values of − 1.22 were obtained for Tiber and 
Arno data, likely indicating unpolluted conditions. Conversely, the 
values of ln(Na+/Cl− ) appear to be closer to those reported for polluted 
conditions, especially for the Tiber river (0.17). 

On the other hand, the balance pc8 associated with the highest 
variance, involving NO−

3 versus all the other variables in both catch-
ments is characterized by presence of plurimodality, skewness and 
outliers. When the frequency distribution deviates from a symmetrical 
shape due to multimodality, high data fragmentation and the possible 
presence of alternative stable states emerges. These factors favor flick-
ering processes, leading to increased instability and resilience loss 
(Dakos et al., 2014; Scheffer et al., 2015). 

Fig. 3. Box-plots showing the eight principal balances obtained for Arno and Tiber river waters using the robust procedure. Variables involved in each balance are 
reported in Figs. 2(c-d). 
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3.2. Which observations have the greatest influence on principal 
balances? Simulation results 

In the Tiber river basin, observations with a significant impact on 
both the variation matrix and the resulting SBP process comprise two 
saline springs located in the upper and central areas of the catchment, 
namely Acqua Cetra and S. Susanna. These are depicted in purple and 
dark pink, respectively, in Fig. 4. Concerning the Arno River, the most 
impactful observations are situated in the lower stretches of the Elsa and 
Era rivers, which drain recent marine deposits and scattered outcrops of 
marine evaporites (Dinelli et al., 1999). 

In order to deeply investigate the influence of outliers values on our 
approach, a simulation study is carried out by using geochemical data 
with potential anomalous cases. The simulation of the data is based on 
the hypothesis of the multivariate normal distribution with parameters 
that have been estimated from the data of the Tiber river basin 
considering a specified number of outliers n(out). The approach is a bal-
ance between the complexity of the models and the taking in charge of a 
few multivariate characteristics of realistic data, such as the different 
covariance structures due to the presence of outliers. 

The data generation proceeds as follows:  

1. Identify potential outliers using robust Mahalanobis distances by 
flagging observations as outliers if they exceed a specified quantile 
threshold (0.975 in our case). The outlier detection procedure is 
based on (robust) Mahalanobis distances in isometric logratio 

coordinates (Filzmoser and Hron, 2008) and the MCD estimator 
(Rousseeuw and Van Driessen, 1999).  

2. Represent the geochemical measurements of the Tiber River basin 
data in centered log-ratio coordinates.  

3. Estimate the covariance matrix, say Ĉ, for the non-outlier clr- 
transformed data using the Orthogonalized Gnanadesikan- 
Kettenring (OGK) method with the benefits of using pairwise esti-
mation, avoiding singularity issues of centered log-ratio coefficients 
and the simpler meaning of them (average of one part to the whole 
composition) compared to, e.g., isometric coordinates (dominance of 
parts to other parts). 

4. Similarly, compute the covariance matrix, say Ĉ(out), for the identi-
fied outlier data.  

5. Generate a new set of data points with the same dimension as the 
original Tiber River basin data, X*, from a multivariate normal dis-
tribution with the mean and covariance obtained in step 3.  

6. If n(out) is greater than 0, replace the last n(out) points in X* with 
outliers generated similarly, but using parameters from Ĉ(out) and 
scaling the mean by a factor of 10. This scaling factor is used to 
generate larger outliers, since otherwise the outliers overlap with 
non-outliers. This data with some of its observations replaced by 
outliers is referred to as X*

(out).  
7. Convert the simulated back to the original space using the inverse 

centered log-ratio transformation. 

Fig. 4. Maps illustrating the observations with significant impact on both the variation matrix and the resulting SBP process.  
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The resulting data set comprises both regular observations and 
artificially introduced outliers, suitable for testing outlier detection and 
robust statistical methods in geochemical analysis. Fig. 5 shows the 
average results from 2000 simulations for each different number of 
outliers. In this way, the cophenetic correlation between the hierarchical 
clustering structure obtained from the variation matrix of the full data 
set without outliers X* and those obtained from X*

(out) is computed. For 
comparison reasons, the average linkage, single linkage, and a hierar-
chical clustering method called genieclust (Gagolewski, 2021) are 
compared. Average linkage and ward.D2 gives comparable results. If one 
does not use a robust estimation of the variation matrix, the effect of 
outliers is quite noticeable (as seen in the left plot of Fig. 5). The 
cophenetic correlation between the hierarchical clustering structures is 
large as soon as few outliers are introduced. This means that a few 
outliers will change the hierarchical clustering structure obtained. 
Consequently, only a few outliers may have a large potential effect on 
the choice of principal coordinates. The graphic to the right of Fig. 5 
shows that the results do not change much until 111 outliers of the 222 
observations. Naturally, with more than 50 % outliers, the results are 
driven by the outliers that now represent the majority of the data points. 

4. Discussion 

Rapid and extensive global changes affect hydrological cycle so that 
the concept of invariance of climate, land use, morphology and dy-
namics for different spatio-temporal ranges cannot be sustained any 
more. In this framework, catchments can change from stationary sys-
tems to transient ones, a condition governed by greater variability. From 
a thermodynamic perspective, catchments are open and dissipative 
systems operating far from equilibrium. They have the capacity to un-
dergo substantial structural changes and can spontaneously develop self- 
organization (Kleidon et al., 2009). In fact, the state far from 

thermodynamic equilibrium is maintained by a range of processes that 
continuously perform work, dissipate energy, and thereby produce en-
tropy. Following Prigogine and Stengers (1984) all dissipative systems 
contain subsystems with permanent fluctuation. However, at a certain 
moment of the time, the fluctuations become so strong that break the 
original system to generate a new state. In this context, the irreversible 
processes governing dissipative structures are able to produce order 
rather than chaos. The nonequilibrium state is a source of ordering and 
progressive development, where the components of the systems interact 
with each other, and the system works as a whole. Inside the hydro-
logical cycle, the water-rock system operates in equilibrium-non- 
equilibrium states everywhere in natural conditions, acting like a 
dissipative structure (Shvartsev, 2009). 

Taking into account the previous considerations, the variation pat-
terns in the concentration of the chemical components within natural 
waters are fundamental since they inherit the organization and history 
of the catchment (Rinaldo et al., 2014; Allen, 2017). The hypothesis is 
that the degree of variability reflects the sensitivity and adaptability of 
the system and that the investigation of this property can be related to 
the probability models that generate the data. Due to the in-
terconnections inherent in compositional data, this task cannot be 
addressed investigating the role of single variables but rather that of 
more complex indices, such as balances obtained using a SBP process 
governed by the decreasing of variance. 

The robust approach developed in this paper has yielded additional 
insights compared to prior investigations (Gozzi et al., 2019) and 
interesting results have been found that are valid regardless of the 
catchment investigated. In fact, for the two cases of study, pc8 balance (i. 
e., all the other variables vs. NO−

3 ) explain the highest variance. From a 
geochemical point of view, this index could represent the contrast be-
tween anthropic sources and geogenic input (i.e. the whole water/rock 
interaction, either with silicate- or carbonate-dominated landscapes) 

Fig. 5. The cophenetic correlation was used to compare the clustering structure of the variation matrix of the outlier-free data with that of the outlier-induced data, 
based on 2000 replications, while changing the number of outliers. 
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(Schlesinger et al., 2020). The persistence of the identical pc8 balance in 
both robust and classical methods indicates that its high variability is an 
inherent characteristic of the system. There are no outliers in this log- 
ratio; rather, there are extreme values that may still be part of the 
main distribution. 

The distinct variable associations observed in pc7 for the two basins 
likely mirror the geological characteristics of their respective catch-
ments. Notably, a more pronounced role of silicate weathering is evident 
in the Tiber river, while the Arno river exhibits a stronger influence of 
carbonate weathering. These results are likely attributed to the higher 
prevalence of volcanic rocks in the Tiber basin, as opposed to their 
almost negligible presence in the Arno basin (refer to Fig. 1). These 
distinctions would be less evident if solely the classical method had been 

employed. 
To further explore potential sources of variability, also related to the 

spatial behavior of the variables, pc8 values are represented in Fig. 6 
using graduated colors for two available seasons (summer and winter). 
In addition to the clear effects on the index variability of the lithological 
composition of the drainage areas, it should be noted that seasonality 
also affects the distribution of pc8. This could indicate that additional 
seasonal-induced processes or anthropic inputs could also play a role in 
increasing pc8 values, thus creating multi-modalities. For the Tiber river 
waters, lower values of pc8 (higher relative content of NO−

3 ) are found 
along the main course especially in summer (yellow points; Fig. 6a). 
These are likely related to anthropogenic inputs from urban centers (e.g. 
city of Rome) and diffuse agricultural activities and farming areas (Gozzi 

Fig. 6. Maps of pc8 balance (Mg2+, SO2−
4 , Ca2+, HCO−

3 , F− , Na+, Cl− , K+ versus NO−
3 ) for the Tiber and Arno basins in a) summer and b) winter seasons. Values of pc8 

represented using graduated symbols and class breaks determined with the natural breaks (Jenks) classification in ArcGIS Pro. 
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et al., 2021, 2020; Taussi et al., 2022). Similarly, the Arno River basin 
suffers from anthropic inputs such as direct discharges from urban areas 
(e.g., Florence), agricultural activities and waste water from industrial 
settlements (for example, nurseries, tanneries, and paper mills) (Cor-
tecci et al., 2002; Dinelli et al., 2005; Nisi et al., 2008). This lead to 
higher contents of NO−

3 , especially downstream from Florence in the 
summer season (Fig. 6a). Conversely, during winter NO−

3 -related effects 
appear more local in both river basins (see cyan points in Fig. 6b), due to 
dilution processes. 

Following Scheffer et al. (2015) and Dakos et al. (2014) a histogram 
can be mirrored upside down, and the area related to the higher fre-
quency can be transformed into a more or less deep hole. Generally 
speaking, the deeper the hole, the more difficult it is for a ball to escape, 

indicating a more stable system, within certain margins. The presence of 
multimodality or skewness in this context generates meta-stable valleys 
increasing the possibility of flickering between different states, thus 
creating instability (Seely and Macklem, 2012). Considering the results 
for the balance characterized by the lowest variance (i.e., Ca2+/HCO−

3 ), 
we can say that processes affecting water chemistry for the investigate 
catchment are simpler and mainly affected by random fluctuations 
around a well-defined barycenter. They are characterized by a scarce 
occurrence of outliers observations, thus representing the conditions of 
stability described by Scheffer et al. (2015) and Dakos et al. (2014). It 
can also be concluded that the positive values of the index could be due 
to Ca2+’s excess over HCO−

3 owing to the possibility of Ca2+ being bound 
to SO2−

4 . This could indicate the presence of evaporite rocks such as 

Fig. 7. Maps of pc1 balance (Ca2+/HCO−
3 ) for the Tiber and Arno basins in summer a) and winter b) seasons. Values of pc1 are represented using graduated colors and 

class breaks determined with the natural breaks (Jenks) classification in ArcGIS Pro. 

C. Gozzi et al.                                                                                                                                                                                                                                   



Journal of Geochemical Exploration 259 (2024) 107438

11

anhydrite or gypsum within the catchment. This idea is supported by the 
maps of pc1 reported in Figs. 7a-b. For the Tiber basin high values of pc1 
are reported for the Nera sub-basin most likely related to the effects of 
groundwater circulation in Triassic evaporites of the Narni-Amelia 
aquifer system (Dinelli et al., 1999; Frondini et al., 2012; Gozzi et al., 
2021). Similarly, in the Arno basin, high values are found for Era and 
Elsa rivers that drain the recent marine deposits and the scattered out-
crops of marine evaporites, both Messinian and Triassic (Dinelli et al., 
1999). Additional sources of Ca2+ stemming from the weathering of 
Anorthite and Ca-bearing silicates could potentially contribute to the 
excess of Ca2+. However, this does not appear to be the case, as elevated 
values of pc1 are predominantly observed in areas where carbonate 
rocks are prevalent (see Fig. 1). Overall, seasonal variability does not 
appear to have a substantial effect on pc1, confirming the role of this 
balance for monitoring weathering processes on a global scale and, 
potentially the effect of climate changes. 

5. Conclusions 

The objective of this study was to demonstrate the utilization of 
robust techniques to investigate the origins of geochemical variability 
and to conduct comparative analyses in different watersheds to find 
similar laws regulating the behavior of chemical species. This is 
particularly true for Mediterranean catchments, which are predicted to 
experience substantial climate change in the 21st century. Using the 
open-source R software environment, we implement a robust method-
ology for the analysis of variance of isometric coordinates (balances) 
obtained by sequential partitioning that successively maximizes the 
explained variance. Based on hierarchical clustering and robust esti-
mation of the variation matrix, robust orthonormal coordinates are 
generated. When applying this compositional method to the Tiber and 
Arno river basins, the results indicate that they have similar balances, 
with the highest and lowest geochemical variability that are described 
exactly by the same indices in both basins. On the other hand, in the 
“middle-earth” situated between the lower and the higher variances 
interesting results emerge shedding light on the behavior of the vari-
ables participating in different water/rock interaction processes, mainly 
dominated by silicate or carbonate weathering. Furthermore, the fre-
quency distributions of the balances were analyzed as resilience in-
dicators along with their spatial distribution as support for 
interpretation. When a higher number of variables is considered, the 
balance between silicate and carbonate weathering processes appear to 
be counterpoised to anthropic inputs and seasonal variations, thus 
dominating variability and generating an index able to monitor insta-
bility in time or space. Contrary to this, the log-ratio Ca2+/HCO−

3 , which 
shows the lowest variance, suggests that pure carbonate weathering 
processes are more stable and mainly influenced by random fluctua-
tions, even though local variability induced by evaporitic outcrops could 
be detected. This work will be further improved by applying the pro-
posed approach to a broader range of catchments experiencing signifi-
cantly different geological and morpho-climatic conditions, for a deeper 
understanding of river geochemistry response to global hydroclimatic 
change, its variability and repeatability (Gozzi and Buccianti, 2024). 
The calculations were done using the recently added capabilities of the 
robCompositions R package (Templ et al., 2011) and the existing 
features of the compositions R package (van den Boogaart and 
Tolosana-Delgado, 2008). The robustbase R package (Mächler et al., 
2018) is employed to perform robust estimation of covariances. 
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