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Runs of Homozygosity (RoHs) are popular among geneticists as the footprint of demographic processes,
evolutionary forces and inbreeding in shaping our genome, and are known to confer risk of Mendelian
and complex diseases. Notwithstanding growing interest in their study, there is unmet need for reliable
and rapid methods for genomic analyses in large data sets. AUDACITY is a tool integrating novel RoH
detection algorithm and autozygosity prediction score for prioritization of mutation-surrounding regions.
It processes data in VCF file format, and outperforms existing methods in identifying RoHs of any size.
Simulations and analysis of real exomes/genomes show its potential to foster future RoH studies in med-
ical and population genomics.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Runs of Homozygosity (RoH) are sizeable stretches of consecu-
tive homozygous genotypes that arise in the genome of an individ-
ual who receives copies of an identical ancestral haplotype, a
situation known as autozygosity [6]. RoHs are present in any human
genome, but their size generally reflects the number of generations
over which recombination had the chance to operate in breaking up
haplotypes descending from a parental common ancestor.

As a consequence, the RoH burden increases in the offspring to
consanguineous matings, as well as within isolated populations as
a result of elevated levels of population background relatedness
[25]. Within such populations, apparently unrelated parents often
result to be connected as closely as third cousins ormorewhen ana-
lyzedat thegenome-wide level [12]. Conversely, RoHnumber shows
distinctive population patterns which seem to follow the ‘‘out of
Africa” serial-migration model, being less present in Africans while
spreading in the other continental groups because of successive
migrations that decreased the effective population size, reducing
haplotype diversity and thus favoring the occurrence of RoHs [25].
Due to the fact that RoHs are enriched for rare deleterious vari-
ants [34], autozygosity is associated with an increased risk of auto-
somal recessive diseases [4]. In patients born to consanguineous
parents the homozygous disease-causing variant usually resides
within long (several to tens of megabases) tracts of autozygosity.

Exploiting this, homozygosity mapping has successfully identi-
fied during last decades genes underlying many hundreds of rare
recessive diseases [2]. While a few, randomly distributed long
RoHs stand out in the genome of inbred individuals, shorter RoHs
are frequent also in outbred populations and tend to be relatively
concentrated in genomic regions mainly governed by Linkage Dise-
quilibrium (LD). Nonetheless, short RoHs may represent true
autozygosity [25], and may surround autosomal recessive genes
likely as a result of founder effects [14,24]. Beyond Mendelian
genetics, RoHs have been recently investigated in complex condi-
tions and quantitative traits, and have been shown to be indicative
of selection signals [8].

The gold-standard technology for RoH detection is still consid-
ered to be array Single Nucleotide Polymorphisms (aSNPs),
although following the advent of Next Generation Sequencing
(NGS) a number of methods have been either adapted from aSNP
or originally tailored to Whole Exome Sequencing (WES) data
[26]. Arrays have lower genotyping error rates than NGS [36],
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but give only access to a fixed set of about 1 million common SNPs.
As WES and now Whole Genome Sequencing (WGS) are becoming
at hand for research and diagnostic laboratories world-wide, RoH
studies are making more and more extensive use of NGS data in
medical as well as in population genomics [2,3,5,29,8].

However, an approach is lacking that comprehensively address
the problem to reliably identify autozygosity by detecting RoH of
any size, being as sensitive to the different characteristics of data
underlying WES and WGS, as robust to undergo computationally
intensive tasks in ever larger data sets.

We thus aimed to develop a rapid and accurate approach for
RoH detection and characterization that exploits genotypes in Vari-
ant Calling Format (VCF) originated from either WES or WGS. To
this end, we modeled NGS genotype calls by means of
DIDOH3M2, a discrete-input, discrete-output Hidden Markov
Model (HMM) obtained as a modification of our previous algorithm
H3M2 [19], and calculated for each of the so identified RoHs a log-
arithm of the odds (RLOD) score reflecting its probability to be
autozygous (Fig. 1).

We packaged DIDOH3M2 and RLOD score in the AUDACITY
(AUtozygosity iDentification And ClassIfication Tool) software tool
and we show how such an approach outperforms current strate-
gies to characterize RoHs that, irrespective of their size, are rele-
vant for population studies exploiting WES/WGS data as well as
for the identification of genes underlying recessive diseases.
2. Methods

2.1. Ethical considerations

Written informed consents were obtained from all patients or
their parents/legal guardians who underwent WES for diagnostic
Fig. 1. AUDACITY workflow. Panel a: AUDACITY takes as input genotype data in VCF file
Extraction, Hidden Markov Model, Viterbi algorithm) and classification by RLOD (Score
Genome Project Phase 3 as well as calculate custom allele frequencies from genotypes in
algorithm leading to RoH identification. Panel c: RLOD allows to classify ROH based on
or research purposes at the Medical Genetics Unit, Sant’Orsola-
Malpighi University Hospital, and analysis of their WES was
approved by the local Medical Ethics Committees.

2.2. DIDOH3M2 algorithm

The HMM underlying DIDOH3M2 (discrete-input, discrete-
output homozygosity heterogeneous hidden Markov model) is a
two-state HMM where the hidden states are the non-
homozygous (S1) and homozygous state (S2) and the observations
are the genotypes Gi assigned to each interrogated SNV i
(Gi 2 fGHomr;GHet;GHomag, where GHomr is homozygous reference,
GHet is heterozygous, while GHoma is homozygous alternative) along
the length of the genome.

The emission matrix, B, has the following form:

B ¼ 1� R1 R1

1� R2 R2

� �
ð1Þ

where R1 and R2 are the probabilities of finding a heterozygous SNV
in non-homozygous and homozygous genomic regions, respec-
tively. In practice, R1 models the proportion of heterozygous SNVs
in non-homozygous regions, while R2 the presence of heterozygous
SNVs in homozygous regions which results mainly from sequencing
and alignment errors.

We incorporated the distance between adjacent SNVs (di) and
the likelihood of each observed genotype (Pi) into the transition
probabilities of the HMM by considering a modified transition
matrix defined for 1 6 i 6 n� 1 where n is the number of genomic
markers:

Ai ¼ 1� p1ð1� e�f i Þ p1ð1� e�f i Þ
p2ð1� e�f i Þ 1� p2ð1� e�f i Þ

 !
ð2Þ
format and follows 4 analysis steps for RoH identification by DIDOH3M2 (Genotype
calculation). For this latter step, AUDACITY can exploit allele frequencies by 1 K
the input VCF file. Panel b: The Hidden Markov Model is the core of the DIDOH3M2

the allele frequencies of SNP genotypes forming the RoH diplotype.
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where p1 (p2) is the probability to shift from S1 to S2 (S2 to S1) in a
homogeneous HMM, f i ¼ ðdi=dNormÞ þ ð1� PiÞ=PPNorm

i Þ; ðdNorm;dNormÞ is
the distance normalization parameter and PNorm is the genotype
likelihood normalization parameter.

As a result, we obtained a heterogeneous HMM, where the lar-
ger (smaller) di (Pi) and the greater the probability to shift from
one state to another. dNorm (the distance normalization parameter)
and PNorm (genotype probability normalization parameter) modu-
late the impact of di and Pi, respectively, on the transition probabil-
ity between the two hidden states (S1-S2). p1; p2;R1;R2, together
with dNorm and PNorm, are all set as parameters for DIDOH3M2

instead of being estimated by an expectation-maximization algo-
rithm since they result to be useful to set the resolution of RoH
detection in terms of region size and SNV number. Finally, we
use the Viterbi algorithm to estimate the best sequence of S1 and
S2 and to consequently associate each Gi to one of the two states,
allowing to discriminate between homozygous and non-
homozygous genomic regions and thus identifying RoH.

2.3. Evaluation dataset and performance comparison

In its Phase1, the 1000 Genomes Project (1KGP) consortium, by
combining low-coverage whole-genome sequencing (WGS) and
high-coverage whole-exome sequencing (WES) of 1092 individuals
from 14 populations from Europe, East Asia, sub-Saharan Africa
and the Americas, identified around 38 million single nucleotide
polymorphic positions and 1.4 million short insertions and dele-
tions [1].

In order to test the performance of our algorithm and the other
three state of the art methods on real data analysis, we used them
to analyze the WGS and WES genotype data of 200 individuals (50
of European ancestry, 50 of African ancestry, 50 of American ances-
try and 50 of Asian ancestry) sequenced by 1000GP consortium
(see Supplemental materials). For WGS data analyses we consid-
ered the complete set of biallelic SNVs (around 38 million), while
for WES analyses we included all the SNVs falling within the range
of the 1KGP exomic target regions.

To evaluate DIDOH3M2 ability to identify RoH from WES and
WGS data and to compare its performance with respect to other
three state of the art methods (PLINK, BCFtools, VCFtools, see Sup-
plemental materials), we generated a gold standard RoH dataset by
using the 1KGP SNV genotype calls of the aforementioned 200 indi-
viduals. To this end, we considered as gold standard RoH all the
regions � 100Kb and containing at least 200 consecutive homozy-
gous SNVs.

To compare the performance of DH3M2 and existing tools we
calculated precision and recall as follows:

� to calculate precision, we considered all the SNVs called within
RoH by each of the 4 approaches and we then calculated the
fraction of these SNVs called as homozygous also in the gold
standard dataset;

� to calculate recall, we considered all the SNVs called in RoH in
the gold standard dataset and we then calculated the fraction
of these SNVs called as homozygous by each of the 4
approaches.

2.4. Generation of WGS/WES synthetic variant call sets in offspring to
consanguineous unions

To simulate realistic WGS/WES data of offspring to consan-
guineous unions, we created synthetic variant call sets using a
gene dropping strategy (Supplementary Fig. 4). To speed up the
process of dropping dense genetic maps made of hundred thou-
sands or million SNVs such as in WES or WGS, we followed the
simulation framework of [11]. We generated a genetic map for
each of the 22 autosomes by picking up from Rutgers Map v.3a
(http://compgen.rutgers.edu/maps) one biallelic SNP having minor
allele frequency (MAF) in the range 0.3–0.7 every about 0.05 cM.
The so obtained SNP backbone (64 K autosomal SNPs) was used
to simulate recombination patterns conditional on a disease-
linked locus with the Markerdrop utility of the MORGAN v. 3.1.1
suitehttps://www.stat.washington.edu/thompson/Genepi/MOR-
GAN/Morgan.shtml.

We constructed genealogies with consanguinity loops formed
by unions between 1st, 2nd or 3rd cousins unions (1C/2C/3C)
and with one single offspring to the consanguineous parents (index
offspring). To condition recombination patterns on the presence of
a recessive disease-linked locus, we forced a specific locus (chr1:
212677319) to be inherited by the index offspring as 2 copies of
an ancestral allele dropping from one of the 2 common ancestors
of the parents in the pedigree.

Since Markerdrop associates a founder-tracking label with
each dropping haplotype, we were able to trace pairs of adjacent
SNPs between which the simulated recombinations took place.
To locate each recombination spot to an exact genomic position,
we randomly drew a single base pair coordinate according to the
hg19 reference genome between every 2 adjacent SNPs with dif-
ferent founder-tracking labels. We assigned to each of the 2 SNP
backbone haplotypes in the family founders one among 160
phased 1KGP Phase1 SNV haplotypes of European unrelated
individuals [1]. For WGS, we used all SNVs called in the Euro-
pean 1KGP samples (about 16 M SNVs). For WES, to obtain a
set of SNV sites that could be representative of most widely
adopted exome target enrichment kits, we used the subset of
SNV sites (about 470 K SNPs) that had median depth of at least
20X calculated across 5 of our WES performed in-house with
each of the following kits: Agilent SureSelect Human All Exon
v6 (Agilent Technologies Inc., La Jolla, CA, USA), SeqCap EZ
v2.0/v3.0, (Roche NimbleGen, Basel, Switzerland) BGI (BGI, Shen-
zhen, China) and Nextera Rapid Capture Exome (Illumina Inc.,
San Diego, CA, USA).

WGS/WES variant call sets were eventually created by superim-
posing on the SNP backbone haplotypes in the index offspring the
corresponding 1KGP haplotypes according to the recombination
patterns traced by the founder-tracking labels.

To generate sets of recombination patterns large enough to
reproduce a representative spectrum of inbreeding coefficient (F)
in the index offspring, we run 100 Markerdrop simulations for each
pedigree with 1C, 2C and 3C genealogy loop. To account for the
variability ascribable to different SNV sets among the selected
1KGP subjects, we assigned 10 and 5 different combinations of
1KGP founders? haplotype pairs for WGS and WES, respectively.
2.5. Definition of true autozygous/non-autozygous RoH

To define true RoH, we wanted to find the minimum number of
consecutive SNVs that were not homozygous by chance. To this
end, we randomly picked up 100 K stretches of n consecutive SNVs
from our WGS/WES call sets and used Hardy-Weinberg’s law to
calculate the probability that all the n SNVs were homozygous.
We included increasing n SNVs and chose the minimum n for
which, on average over the 100 K stretches, the probability of find-
ing n homozygous SNVs was 6 0:01.

We found that the minimum nwas 50 and 60 forWGS andWES,
respectively, and defined each of these stretches spanning
P 100kb, as true RoH. We made use of the founder-tracking labels
associated with each of the 2 founders’ haplotypes to discriminate
between autozygosity (same label) and non-autozygosity (differ-
ent labels).

http://compgen.rutgers.edu/maps
https://www.stat.washington.edu/thompson/Genepi/MORGAN/Morgan.shtml
https://www.stat.washington.edu/thompson/Genepi/MORGAN/Morgan.shtml
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2.6. Estimation of inbreeding coefficient F

We estimated the inbreeding coefficient (F) of the simulated 1C,
2C, 3C index offspring using FSuite [11] with default options, cre-
ating 100 random submaps with one marker every 0.5 cM using
SNVs in common betweenWES andWGS and with minor allele fre-
quency P 0:05.

2.7. Linkage disequilibrium based SNV pruning

The pruned subset of SNVs was generated by using PLINK [28]
with the –indep-pairwise option and the following parameter set-
tings: window size in SNPs (50), number of SNPs to shift the win-
dow at each step (5) and r2 threshold (0.5).

2.8. Incorporation of different allele frequency sets into the calculation
of RLOD

To calculate RLOD;DIDOH3M2 allows either to derive allele fre-
quencies directly from the batch of samples under analysis or to
use global allele frequencies pre-calculated by the 1KGP project.
If a batch is relatively small, frequencies based on few subjects
may affect RLOD calculation. However, users may be interested in
using allele frequencies from the sample under study because they
retain that global allele frequencies may not properly reflect the
samples’ population. We therefore calculated RLOD using sets of
allele frequencies derived from subsets of 10, 50, 100 individuals
in the 1KGP Phase 1 European population and from the global
1KGP Phase 1 population and evaluated the performance of RLOD
to predict autozygosity under the different sets.

2.9. RoH clustering

RoHs clustering was performed with a three-component Gaus-
sian mixture models by using the Mclust function from the mclust
package (v.3) in R allowing component magnitudes, means, and
variances to be free parameters. RoHs were then partitioned in
the three classes and boundaries sizes between classes A and B
and between classes B and C were estimated using the following
formulas:

Ci
AB ¼ AimaxþBimin

2

Ci
BC ¼ BimaxþCi

min
2 where Ai

max;B
i
min;B

i
max;C

i
min are the minimum and

maximum RoH sizes for the three classes for population i,
respectively.

3. Results

3.1. RoH identification

To evaluate the performance of DIDOH3M2 for different
parameter settings we performed several analyses based on syn-
thetic data (see Methods and Supplemental materials), and we
found that when we want to study only large homozygous seg-
ments we should set large values of dNorm (105;106) and small
values of p1 (0.1, p2 must be set to 0.1). On the other hand, to
increase the resolution of the algorithm and detect small RoHs,
small dNorm (103;104) and larger p1 values (0.2, 0.3) are
recommended.

As a further step, to test DIDOH3M2 in the analysis of real geno-
type data for different parameter settings, we leveraged WES and
WGS genotype calls of 200 subjects from 1000 Genomes Project
(see Methods and Supplemental materials) and we studied the
RoHs identified by our method in terms of their cumulative global
size and number. We found that while using higher values of R1
increase both size and number of homozygous segments, the use
of smaller values of R2 increase the number but decrease the cumu-
lative size of RoHs (Supplemental Fig. 4).

These results are a direct consequence of the role of R1 and R2

parameters in our heterogeneous HMM. R1 represents the propor-
tion of heterozygous markers that defines non-homozygous seg-
ments and all the segments that have a heterozygous proportion
smaller than R1 are identified as homozygous. For this reason,
the larger R1 and the larger the total size and number of homozy-
gous segments identified by our model. On the other hand, R2 rep-
resent the proportion of heterozygous markers that our HMM
tolerates in a homozygous region. Larger values of R2 allows to
identify as homozygous regions with a higher number of heterozy-
gous markers, while for small values of R2 homozygous regions are
called only if they contain a smaller fraction of heterozygous
markers.

Hence, increasing the value of R2 impose the algorithm to split
large homozygous regions (with a fraction of heterozygous mark-
ers larger than R2) in small segments (with a fraction of heterozy-
gous markers smaller than R2) thus increasing the total number of
detected RoHs and decreasing their cumulative size.

By setting the most conservative set of parameters (R1 ¼ 1=100
and R2 ¼ 1=100000), DIDOH3M2 detected an average of around
90 Mb for WGS (around 1000 RoHs) and 30 Mb (around 20 RoHs)
for WES data, while using more inclusive parameters (R1 ¼ 5=100
and R2 ¼ 1=1000) it detected around 800 MB of homozygous seg-
ments for WGS (around 20000 RoHs) and 450 Mb (around 1200
RoHs) for WES data.

To make a comparison with existing tools to identify RoH
from VCF data, we applied PLINK [28], BCFtools [23] and VCFtools
[10] to the WES and WGS genotype calls of the 200 aforemen-
tioned subjects from 1000 Genomes Project. To allow compre-
hensive evaluation of performance, we tested different
combinations of parameters for each of those tools (DIDOH3M2,
PLINK, BCFtools) which allow the user to tune parameter settings
(See Supplemental materials).

To estimate the true cumulative individual RoH length and size,
we created a gold standard dataset generated using the genotype
calls released by the 1KGP consortium for the afore-mentioned
200 subjects. We took as true RoH every region larger than
100 Kb and made by at least 200 consecutive homozygous single
nucleotide variants (SNVs) across around 38 million and 1.5 mil-
lion SNV genotypes called by the 1KGP consortium in WGS and
WES, respectively (Supplemental materials).

VCFtools was always characterized by substantial over-calling
while the average RoH length/number identified by DIDOH3M2

and PLINK Across different parameter settings varied below and
above the true value. BCFtools had a contrasting behavior, dis-
playing excess or lack of true RoH in its results of both WGS
and WES analyses (Supplemental Fig. 4). RoHs identified by
DIDOH3M2 had the lowest fractions of heterozygous SNVs
(Fig. 2, Panels b,d and Supplemental Fig. 3), suggesting less spuri-
ous calls. In particular, by setting R1 ¼ 2=100 (for WGS data) or
R1 ¼ 4=100 (for WES data) DIDOH3M2 outperformed the three
existing tools achieving the best trade-off between precision
and recall over true RoH in both WGS and WES (Fig. 2, Panels
a, c and Supplemental Fig. 3).

3.2. Prediction of autozygosity by RLOD

To estimate RoH probability, for each homozygous segment
identified by DIDOH3M2, we then computed a RoH LOD score
(RLOD) comparing the probability of the most likely genotype with
that of the observed genotype at each of the N homozygous SNVs
within the RoH:
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Fig. 2. Performance comparison between DIDOH3M2, PLINK, BCFtools and VCFtools on theWGS andWES data of the 200 individuals sequenced by the 1000 Genomes Project
Consortium. Panels a and c report the results of the precision-recall analysis for WGS and WES data respectively. The bar plots of panels b and d report the fraction of
heterozygous single nucleotide variants that belong to all ROHs detected by the four algorithms. The performance of the DIDOH3M2 and PLINK algorithms have been reported
for the parameter settings the gave the best results in terms of trade-off between precision and recall. For WGS data (panels a and b) DIDOH3M2 obtained the best results
with R2 ¼ 1=1000, R1 ¼ 2=100, p1 ¼ 0:1, p2 ¼ 0:1, PNorm ¼ 1, dNorm ¼ 100000, while PLINK with heterozygote allowance 1, kb threshold 200 and SNP threshold 1=1000. For WES
data (panels c and d) DIDOH3M2 obtained the best results with R2 ¼ 1=10000, R1 ¼ 4=100, p1 ¼ 0:1, p2 ¼ 0:1, PNorm ¼ 1, dNorm ¼ 100000, while PLINK with heterozygote
allowance 1, kb threshold 100 and SNP threshold 1/1000.
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RLOD ¼
XN
k¼1

log10
PrðĝiÞ
PrðgiÞ
� �

ð3Þ
where gi is the observed homozygous genotype and ĝi is the most
likely genotype at SNV i. Pr(gi) and Pr(ĝi), the probabilities of the
observed and most likely genotypes, respectively, are calculated fol-
lowing Hardy-Weinberg’s law. If A and a are the two possible alleles
of any SNV i with frequency f ðAÞ ¼ p and f ðaÞ ¼ q, and p P q, then
PrðgiÞ ¼ p2 when gi is AA and PrðgiÞ ¼ q2 when gi is aa. On the other
hand, PrðĝiÞ ¼ p2 when p > 0:66 and PrðĝiÞ ¼ 2pq when p < 0:66.
When PrðgiÞ ¼ PrðĝiÞ at all the N homozygous SNVs within the
RoH, RLOD ¼ 0. Conversely when PrðgiÞ < PrðĝiÞ at any of the N
SNVs, RLOD > 0 and both the gi likelihoods at any SNV and the
number of SNVs with PrðgiÞ < PrðĝiÞ affect RLOD. RLOD therefore
inversely reflects the cumulative frequency of the SNV alleles found
homozygous within the RoH.

To evaluate how well RLOD predicts autozygosity we created
synthetic call sets of autosomal WES biallelic SNVs in the simu-
lated offspring to consanguineous unions. We constructed 100
pedigrees with genealogy loops formed by one among the unions
between 1st, 2nd and 3rd degree cousins (1C, 2C and 3C) with a
single offspring (‘‘index offspring”) to the consanguineous parents
(Supplemental Fig. 5).
During simulations, a pair of 1KGP phased haplotypes for WES
SNVs was assigned to each of the founder subjects of the synthetic
pedigrees and let to drop along the genealogy. A founder-tracking
label was linked to the flowing alleles, so that each was inherited
by the offspring could be traced back to its founder of origin. By
checking the pairs of founder-tracking labels linked to the RoH
detected in the index offspring (Supplementary materials) we were
able to unambiguously split RoH of the subject into autozygous
(same label for both alleles) and non-autozygous (different label
for each allele) segments.

We calculated the genomic inbreeding coefficient (gF) of all the
100 simulated offsprings for each 1C, 2C and 3C genealogy loop by
FSuite [11] setting parameters as specified in Supplementary
materials.

As recognized in the literature [37,20], gF values are dispersed
around the mean across pedigrees with identical genealogy loops.
According to our simulations, for the 1C, 2C and 3C genealogy loops
gF values were distributed as follows: mean = 0.0675 and
sd = 0.0231 (1C),mean = 0.0245 and sd = 0.0126 (2C),mean = 0.0104
and sd = 0.00749 (3C), and show substantial overlap between pedi-
grees with the different genealogy loops. As a result, knowledge of
the pedigree is not particularly useful to predict the inbreeding
level of the offspring. To group together simulations with similar
inbreeding levels, we therefore calculated the median gF value
for each genealogy (0.066, 0.023 and 0.0105 for 1C, 2C and 3C,
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respectively) and created four gF ranges (from high to low inbreed-
ing levels: F1: 0.066-1; F2: 0.023-0.066; F3: 0.00105-0.023; F4: 0-
0.0105) into which we classified the simulated offsprings based on
their gF value rather than pedigree.

In published population as well as case-control RoH studies
[9,13,16,17,20–22], either minimum size threshold or linkage dis-
equilibrium (LD)-based SNP pruning is applied to avoid calling
short RoHs that are very common or that are homozygous by
chance. We took this into account when we performed
DIDOH3M2 analysis. First, in addition to the initial 100 Kb thresh-
old, we introduced two more stringent thresholds representing
the rough size limit below which RoH are likely under LD
(500 Kb) and above which they are likely autozygous (1500 Kb)
[25]. Second, we performed another DIDOH3M2 analysis on a sub-
set of the original marker map after removing SNVs with LD P 0:5
(Supplementary materials). This resulted in 6 RoH-call sets gener-
ated by applying any of the 3 size thresholds, alone or in combina-
tion with the LD cut-off (100 Kb, 500 Kb, 1500 Kb, 100 Kb + LD,
500 Kb + LD, 1500 Kb + LD). On these we then computed RLOD
using SNV allele frequencies of the 1KGP Phase 1 European popu-
lation. Subsequently we simulated WGS data following the same
steps as for WES simulations but using a marker map extended
to SNVs outside the coding or the near-coding sequences. Finally,
to measure the accuracy with which RLOD predicts autozygosity,
we calculated precision and recall for each RoH-call set as follows:

� As precision, we calculated the fraction of RoH calls by
DIDOH3M2 that have any overlap with true autozygous RoH;

� As recall, we calculated the fraction of true autozygous RoH
called by DIDOH3M2.

We then compared the capability of RLOD to identify autozygos-
ity with that of RoH size, because long RoHs are commonly consid-
ered to be truly autozygous regions. We were able to demonstrate
that RLOD largely outperforms size in discriminating between
autozygosity and non-autozygosity when applied to both WES
and WGS data, with more evident gain in performance as gF range
decreases (Fig. 3).

For any gF range, the best trade-off between precision and recall
is obtained by the combination of RLOD with the most stringent
threshold for size (1500 Kb) and LD P 0:5. InWES data, progressive
regression of the trade-off point is observed from higher to lower
gF ranges (Fig. 3a–d), while in WGS RLOD improved performance
even more markedly than in WES without apparent loss in accu-
racy in lower gF ranges (Fig. 3e–h).

DIDOH3M2 allow users to use allele frequencies (AFs) retrieved
from 1KGP or custom AFs calculated directly from genotypes in the
VCF file under analysis. Importantly, we did not notice any major
change in RLOD performance when using increasing numbers of
samples to calculate AFs from 50 samples upwards. As shown in
Supplemental Fig. 6, RLOD provided comparable accuracy in iden-
tifying autozygosity from WES as well WGS simulated data using
1KGP Phase 1 global or European AFs, as it did using custom AFs
calculated from a number of samples of 50 or more.
3.3. Prioritization of mutation-surrounding RoH by RLOD.

Most approaches for the prioritization of candidate variants for
autosomal recessive diseases rely on the size of the surrounding
RoH [37,7,30,2]. However size is not always optimal to predict
which, among many long RoH in the patient’s genome, is the one
containing the causative variant [38], because also short RoH can
happen to be autozygous and surround autosomal recessive genes
[25,15,24].
Of the few available alternative strategies that use statistical
methods and exploit haplotype frequencies [38,15], none is tai-
lored for NGS data. To compare the capability of RLOD to prioritize
the mutation-surrounding RoH (msRoH) with that of RoH size,
while performing the simulations described above we forced a
specific disease-linked locus to be inherited by the offspring as
two copies of an ancestral allele (Supplementary materials). We
then ranked RoHs of the index offspring’s WES simulations per
genealogy loop by both RLOD and size, and evaluated which of
the two measures was the most efficient in prioritizing the msRoH
as follows:

� we calculated how many times the disease-linked RoH ranked
as 1st by any of the two measures;

� we calculated how many times the disease-linked RoH rank by
one measure was higher or equal to that by the other;

We found that the msRoH ranks as 1st significantly more times
by RLOD than by size, and ranks higher or equal by RLOD than by
size both in WES andWGS (Tables 1 and 2, Fig. 4 and Supplemental
Fig. 7).

Overall, these results show that RLOD outperforms size in prior-
itizing the msRoH in a patient’s genome, proving to be useful as
part of the toolkit for prioritization of candidate variants with
recessive effect. The lower is the gF range (Fig. 4), as well as the
degree of parental consanguinity (Supplemental Fig. 7), the more
significant are these differences (Table 1 and Table 2).

To replicate the conclusions of the simulation analysis in the
WES of 15 real patients, we used data where the homozygous
disease-causing variant was found to be surrounded by RoH as
identified using DIDOH3M2. This data set included 13 unrelated
patients whose parents were closely inbred (1st/2nd cousins),
and 2 for whom parental consanguinity was not reported, all
undergoing WES for research [27,14,24] or diagnostics.

WES data were processed as in the simulations to identify
patients’ RoHs, and the ranking position by RLOD and size of the
mutation-surrounding RoH was retrieved from DIDOH3M2 results.
RLOD conferred the msRoH higher or equal rank than size in 9
out of the 15 WES (60%). The overall distance between ranking
positions by size and RLOD across the 15 WES, calculated as the
sum of the distances between the ranking positions by size and
RLOD (totaling 54), is in favor of this latter.

As shown in Fig. 5, when the ranking position by RLOD is higher
than that by size, the distance between them is larger (mean = 8.25
ranking positions) than in the opposite situation (mean = 2 ranking
positions), demonstrating that RLOD outdistances size in the
majority of cases, while in instances where the size confers the
msRoH higher rank than RLOD, the 2 measures achieve comparable
ranking positions. Notably, the higher the distance between the
ranking positions by size and RLOD, the shorter the size of the
mutation-surrounding RoH (r = �0,69) (Fig. 5).

This underscores the capability of RLOD to pick out small
msRoHs among the many regions of similar or larger size found
throughout the genome, reflecting the simulation analysis showing
that RLOD outperformed size especially for low gF ranges. RLOD
was able to outdistance size in prioritizing small msRoHs in the
WES of patients with autosomal recessive disorders, as for RoHs
surrounding disease-causing MYO15A and ATAD3A variants, both
smaller than 2 Mb [14,24].
3.4. Characterization of RoH across worldwide populations by
DIDOH3M2

To show the potentiality of our computational approach to
explore genomic patterns of homozygosity in human populations



Fig. 3. Performance comparison between RLOD and RoH size to identify true autozygosity. Results of the analysis carried out in the simulated WES/WGS of offspring to
consanguineous parents. Precision-recall plots of WES (panels a–d) and WGS (panels e–h) data are shown for the 4 different gF ranges from high (left) to low (right)
inbreeding levels: F1: 0.066–1 (a, e); F2: 0.023–0.066 (b, f); F3: 0.00105–0.023 (c, g); F4: 0–0.0105 (d, h). RLOD and ROH size performances are depicted as dotted and
continuous lines, respectively, while colors indicate different combinations of size and LD thresholds applied to the analysis.

Table 1
Statistical tests for assessing significance of disease-linked RoH ranking position in simulations for different consanguinity loops. McNemar test is used to assess significance for
how many times the disease-linked RoH ranked as 1st by RLOD rather than size. Wilcoxon test is used to assess significance for how many times the disease-linked RoH ranks by
RLOD higher or equal to that by size.

Statistical Test allC 1C 2C 3C

McNemar test 0.01172 0.8026 0.06137 0.08086
wilcoxon test 0.000005885 0.2652 0.0003025 0.00001339

Table 2
Statistical tests for assessing significance of disease-linked RoH ranking position in simulations for different gF ranges. McNemar test is used to assess significance for how many
times the disease-linked RoH ranked as 1st by RLOD rather than size. Wilcoxon test is used to assess significance for howmany times the disease-linked RoH ranks by RLOD higher
or equal to that by size.

Statistical Test allF F1 F2 F3 F4

McNemar test 0.01172 1 0.4795 0.505 0.00596
wilcoxon test 0.000005885 0.4226 0.05076 0.002154 9.08e-06
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we used DIDOH3M2 to analyze genotypes of 600 individuals from
six populations sequenced by the 1000 Genomes Project (100
YRI, Yoruba from Ibadan, Nigeria; 100 BEB, Bengali from Bangla-
desh; 100 CEU, Utah residents with Northern and Western Euro-
pean ancestry from the CEPH collection; 100 JPT, Japanese in
Tokyo, Japan; 100 CLM, Colombians from Medellin, Colombia;
100 FIN, Finnish in Finland).

We performed DIDOH3M2 analysis with p2 ¼ 0:1; p1 ¼ 0:1;
dNorm ¼ 105;R1=4/100 and R2=1/1000 and, following the model pro-
posed by [25], for each population separately we analyzed RoH
sizes as a mixture of three normal distributions representing three
distinct RoH classes: short RoHs ranging tens of Kb (class A), med-
ium RoHs ranging hundreds of Kb (class B), large RoHs ranging up
to tens of Mb (class C) (Fig. 6, Panel a). Class A reflect homozygosity
for ancient haplotypes that contribute to local LD patterns, class B
result from background relatedness owing to limited population
size while class C result from recent parental relatedness.

The mean size of each class and the boundaries between differ-
ent classes vary across the 6 populations, in particular class B and C
RoHs (Fig. 6 Panel b). For each class, we observed the smallest
mean size for YRI and the largest mean size for JPT and CLM
populations. As a further step we calculated the overall RoH length
per individual across the three classes and we studied its distribu-
tions within each population and compared the populations with
each other.

As shown in Fig. 6, Panels c–f, the total lengths of RoH (Fig. 6,
Panels f) generally increase with increasing distance from Africa
of the geographical location of the population, where an isolated
population such as the Finnish are comparable with the European
CEU population and an admixed population such as the Colombian
shows greater variability. Class A (Fig. 6, Panels f) and class B
(Fig. 6, Panels e) RoH generally follow this pattern, only with
decreasing variability in the admixed Colombian population from
class B to class A RoH. Total lengths of class C RoH (Fig. 6, Panel
d) are not characterized by the same stepwise increase. Instead,
they are higher in the Finnish and are more variable in the Colom-
bian population.

Finally, for each individual, we performed pairwise comparisons
between the total lengths of class A, class B, and class C RoHs. In
agreement with results reported by [25] (Fig. 5, Panels g–i), the
total length of class A and B RoH are highly correlated (R ¼ 0:91),
while the correlation with class C is much smaller (C-A R ¼ 0:34,



Fig. 4. Mutation-surrounding (ms) RoH prioritization by RLOD and RoH size in simulations. Results of the analysis carried out in the simulated WES (a and c) and WGS (b and
d) of offspring to consanguineous parents are shown, as a whole (all) or split into the 3 genealogical loops: 1C (first cousins), 2C (second cousins), 3C (third cousins). Panels (a
and b) reports the percentage of times the msRoH ranked as 1st among all the identified ROH by both or neither of the two measures, while panels (c and d) the percentage of
times the msRoH ranked higher, equal or lower by RLOD than size.
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C-B R ¼ 0:37), suggesting that class A and B RoHs, as expected, may
have arisen via a different process of class C.
3.5. AUDACITY tool

The DIDOH3M2 algorithm and RLOD score calculation described
and tested in previous sections have been packaged in the AUDA-
CITY software tool. AUDACITY is a collection of perl, R and fortran
codes. A schematic representation of its workflow is reported in
Fig. 1. AUDACITY takes as input the genotype data of multiple sam-
ples in VCF file format, selects all the biallelic SNVs, applies the
DIDOH3M2 algorithm, calculates the RLOD and gives as output a.
bed file containing coordinates (Chr, Start, End), the ROH length,
the number of SNPs and the RLOD score for each detected RoH.

In default setting, the AUDACITY tool calculates the RLOD of
each RoH by exploiting the allele frequencies of all the biallelic
SNVs discovered by the 1 K genome project Phase 3 dataset. In
alternative, the AUDACITY tool allows to calculate custom allele
frequency of the individuals from the input VCF file.

On a desktop computer with a 2.5 GHz cpu and 8 GB of ram, it
takes two hours to perform the analysis of a VCF file with the geno-
type calls of ten WGS experiments. AUDACITY is publicly available
athttps://sourceforge.net/projects/audacity-tool/.
4. Discussion

In this study, we created and tested a novel method, AUDACITY,
for simultaneous identification and prioritization of RoHs from
WES and WGS data. Prioritization was done by computing RLOD,
a LOD score that inversely reflects the cumulative frequency of
the homozygous alleles forming the RoH diplotype, and then by
ranking the RoHs according to their RLOD.

The idea of using allele frequencies to assess the probability of a
RoH to be autozygous was firstly postulated by Broman and Weber
[6], who proposed a sliding-window method to identify RoHs cou-

https://sourceforge.net/projects/audacity-tool/


Fig. 5. Mutation-surrounding (ms) ROH prioritization by RLOD and RoH size in real WES. The difference in msRoH ranking position by RLOD and RoH size is shown for WES
data of 15 patients in whom the homozygous disease-causing variant had been identified as part of a research project or of a diagnostic process. Colors represent different size
ranges of the msRoH.

Fig. 6. Genomic patterns of homozygosity in 6 human populations. a Gaussian kernel density estimates of the ROH size distribution in each of the 6 populations (YRI, BEB,
CEU, JPT, CLM and FIN). b Mean of each ROH class (A, B and C) and the boundaries between classes A and B and classes B and C for each of the 6 populations. Dotted lines
define the limits of class A (small) ROHs, continuous lines define the limits of class B (medium) ROH and dashed lines define the limits of class C (Large) ROH. Filled circles
represents the mean size of class A ROH, filled squares the mean size of Class B ROH and filled rhombus the mean size of Class C ROH. c–f Distribution of total ROH lengths
over all individuals in each of the 6 populations, for all three classes combined (c), for class A (d), for class B (e) and for class C (f). Data are shown as violin plots: each violin
contains a vertical black line (25–75% range) and a horizontal white line (median). g–j report the Pairwise comparison of per-Individual Total ROH Lengths across Size Classes.
A vs B (g), A vs C (h) and B vs C (i).

1964 A. Magi et al. / Computational and Structural Biotechnology Journal 18 (2020) 1956–1967



A. Magi et al. / Computational and Structural Biotechnology Journal 18 (2020) 1956–1967 1965
pling detection and inference about autozygosity. When this
method was proposed, genome-wide scans were performed with
hundreds of microsatellite markers, far fewer than the million
SNVs that can be interrogated in WES and WGS data.

We decided to uncouple the processes of RoH detection and
autozygosity prediction, first running the new HMM algorithm to
single out the regions of homozygosity, and only after applying
the RLOD calculation limited to the so-identified regions. In this
way, we avoided the computationally intensive task of doing iter-
ative RLOD calculations over million markers by overlapping win-
dows along the genome, resulting in faster computation at no
expense in performance.

By taking multi-sample VCF as input file format, DIDOH3M2

overcomes the major limitation of our former tool H3M2 [19], that
was able to deal only with the huge, and thus less manageable for
most end-users, single-sample BAM files. Indeed, VCF is by far the
most accessible NGS data format for laboratories worldwide, and
since it can be populated with genotypes of many samples, it is
suitable for DIDOH3M2 analysis of diagnostic series, case-control
cohorts as well as for population studies.

By an extensive work of performance comparison, we demon-
strated how DIDOH3M2 outperforms popular existing tools in the
accuracy to detect RoH from both WES and WGS. In particular, as
the previous H3M2, our algorithm proves to be as more accurate
than the other tools as RoH size is smaller.

While researches have long been focused on long RoHs unveil-
ing the presence of homozygous recessive alleles in patients from
consanguineous families, the increasing availability of WGS will
allow to disclose the effect of short RoH on complex disease risk
and on the demographic history of human populations [8]. In this
perspective, it is of importance to classify RoH based on the allelic
composition of their diplotype rather than on their size, because
the former has the potential to shed light on the RoH origin and
relevance with respect to genomic variables such as recombination
rate, positive selection and recessive effect of alleles modulating
human traits and diseases. RLOD proved to be able to reliably pre-
dict autozygosity from WES and WGS data, and we demonstrated
by simulation analysis and application to real WES data that this
property can be used to prioritize msRoH implicated in recessive
disorders more efficiently than size.

As noted already by other authors [25], using fixed size cut-offs
to RoH length such as 500 Kb, 1 Mb or 2 Mb [18,17,32] based on the
assumption that RoH below these thresholds are chance homozy-
gosity mainly governed by LD patterns and therefore not biologi-
cally relevant, is at risk of overlooking true autozygosity. In view
of an increasingly adoption of WGS by clinical and research labora-
tories, RLOD will be useful in prioritizing RoHs where disease-
causing variants may be not easily tackled, i.e. because non-
coding and therefore difficult to single out from the wealth of
homozygous candidate variants dispersed throughout the genome.
As an anticipation of this, RLOD was helpful in identifying a
disease-causing synonymous variant in NARS2 inside the msRoH.
As synonymous changes are usually assigned low priority in that
they are not predicted to alter the protein product, this variant
was initially discarded by our workflow for candidate variant filter-
ing. However it later emerged as of interest when we incorporated
RLOD into our variant classification algorithm, since the NARS2-
surrounding RoH was ranked 7th by RLOD instead of 12th by size,
eventually leading to diagnosis when the patient’s phenotype
resulted to match literature reports of other patients with muta-
tions in this gene [31,33,35].

As shown in our Precision-Recall plots of Fig. 3, RLOD is the
major factor to improve autozygosity prediction from both WES
and WGS data. Size and LD cut-offs play a role especially in WES
and gain relevance for lower gF ranges. Using these cut-offs is safe
in population studies where the end-point is to obtain an estimate
in terms of RoH number or length of genomic autozygosity. We
would however recommend caution especially for gene-mapping
and mutation-detection purposes, because their use may lead to
loose the msRoH for the sake of autozygosity prediction accuracy.

Since users may perform DIDOH3M2 analysis on samples of dif-
ferent sizes, we wanted to evaluate the extent to which the speci-
fication of allele frequencies calculated from smaller to larger
sample sizes could affect RLOD. The use of allele frequencies
derived from increasing sample sizes indicates that DIDOH3M2

analysis is reliable also when carried out in small cohorts or popu-
lations. This is particularly important for analyses involving sam-
ples from populations that are not referenced in large variant
databases, so that retrieving allele frequencies from such resources
may lead to dangerously alter RLOD calculation.

To evaluate the capability of DIDOH3M2 to prioritize the msRoH
in patients affected with autosomal recessive disorders, we simu-
lated patients’ genomes as offspring to 1C, 2C and 3C consan-
guineous parents. Since the well-known dispersion around the
mean of gF values across pedigrees with identical genealogy loops,
we introduced here the median gF values for each genealogy as
thresholds to separate groups of pedigrees based on the actual
genomic inbreeding rather than relying on pedigrees. Such an
expedient was instrumental to extract deeper information on
how RLOD and size perform when analyzing data of patients char-
acterized by different inbreeding levels. As shown in our simula-
tions, the RLOD outperforms size in prioritizing the msRoH for
any genealogy loop, whether it is of the 1st or of the higher ranking
position. Looking at gF ranges, conversely, the performance of the 2
approaches are substantially indistinguishable for the highest
interval (0.066-1), suggesting that RLOD does not provide valuable
advantage over size in patients with very high inbreeding levels,
irrespective of their reported consanguinity. Indeed, these individ-
uals bear multiple RoH extending up to tens of Mb which usually
receive the highest RLOD scores of the genome. In such a situation,
which is often the rule in highly consanguineous communities,
RLOD and size result to be therefore equivalent. Otherwise, our
findings clearly show that RLOD improves msRoH prioritization
for any other gF range and overall, therefore it could be success-
fully used as substitute for size in the gene-mapping process.

Medium to small RoHs are thought to contribute to complex
diseases and quantitative traits, and their role is increasingly inves-
tigated. As RLOD was capable of prioritizing msRoHs that belong to
these classes, it may prove useful in prioritizing also the multiple
loci that in a patient genome accumulate detrimental homozygous
alleles contributing to disease additively.

As for ROH analysis in 6 1KGP populations, we obtained results
consistent with previous studies based on SNP arrays [25], demon-
strating suitability of AUDACITY to enable reliable analysis of ROH
distribution across human populations. Our previous tool H3M2

[19] has been used to profile ROHs in large collections of samples
from populations known for their high inbreeding degrees [29].
We believe that AUDACITY, with improved workflow for straight-
forward processing of multiple sample VCF data, will be of greater
help to carry out such large-scale projects.

5. Conclusion

In conclusion, AUDACITY is a comprehensive approach for the
analysis of RoHs from NGS data, either WES or WGS, tailored for
applications in medical as well as population genomics. It proved
to outperform existing tools in the accuracy to detect RoHs and
RLOD, the autozygosity prediction score it incorporates, is suitable
to prioritize regions relevant for traits and diseases. Its ability to
handle data in VCF format responds to the emerging need of reli-
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able and rapid RoH characterization in ever larger WGS data sets,
that are becoming increasingly available to researchers that aim
to enlighten the effect of RoHs in conferring risk for complex dis-
eases and in shaping the genome of human populations.
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