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We analyze the evolution of hydrodynamic fluctuations for QCD matter below Tc in the chiral limit,
where the pions (the Goldstone modes) must be treated as additional non-Abelian superfluid degrees of
freedom, reflecting the broken SULð2Þ × SURð2Þ symmetry of the theory. In the presence of a finite pion
mass mπ , the hydrodynamic theory is ordinary hydrodynamics at long distances, and superfluidlike at
short distances. The presence of the superfluid degrees of freedom then gives specific contributions to the
bulk viscosity, the shear viscosity, and diffusion coefficients of the ordinary theory at long distances
which we compute. This determines, in some cases, the leading dependence of the transport parameters
of QCD on the pion mass. We analyze the predictions of this computation, as the system approaches the
Oð4Þ critical point.
DOI: 10.1103/PhysRevD.102.014042

I. INTRODUCTION

Viscous hydrodynamics, based on the conservation of
energy and momentum, is remarkably successful at describ-
ing a wide range of correlations observed in heavy ion
collisions and has become a kind of “standard model” for
heavy ion events [1,2]. Hydrodynamics is a longwavelength
effective theory which captures the underlying symmetries
of the microscopic theory. In QCD this symmetry is
approximately Uð1Þ×SULð2Þ×SURð2Þ, which below a
transition temperature is broken to Uð1Þ × SUVð2Þ when
the chiral condensate hq̄qi develops. In the chiral limit
mq → 0 this symmetry is exact and is associatedwith strictly
massless Goldstonemodes. In the chiral limit, and below the
transition temperature, these modes should be added to the
usual hydrodynamic modes associated with energy momen-
tum and charge conservation, leading to an effective theory
which is analogous to a non-Abelian superfluid [3,4].
In the presence of a finite quark mass, chiral symmetry

is no longer an exact symmetry, and at long distances
the appropriate effective theory is ordinary hydrodynamics.
Nevertheless, the quark mass is small, and one can reason-
ably ask whether the superfluid effective theory leaves any
imprint on the evolution of the system. At finite quark

mass the theory should be superfluidlike for modes with
wavelength l ∼m−1

π and should asymptote to ordinary
hydrodynamics for l ≫ m−1

π , with the superfluid modes
correcting the ordinary transport coefficients of QCD. These
corrections are determined by the dissipative parameters of
the superfluid theory. One of our goals in this paper is to
present these corrections, which (in some regimes) are the
leading contributions of the pion mass to the transport
coefficients of QCD. The physical picture is summarized
in Fig. 1.
This is a particularly current time to consider chiral

physics. Work from the lattice [5,6] provides evidence that
finite temperature QCD in the real world approximately
exhibits the scaling behavior of Oð4Þ symmetric models. It
is thus natural to think that passing close to the chiral phase
transition, the phase of the condensate will get generated as
the condensate builds. The pions emitted in this way will
have small momenta and therefore can escape the system
unscathed, possibly leaving a soft pion signal of the chiral
dynamics in the detector.
Observation of soft pions has been difficult. Fortunately,

an upgrade is underway to the ITS detector at ALICE [7]
that could provide a wider window into low pT particles,
especially pions. This can shed light on the physics driven
by the chiral phase transition. There are many interesting
scenarios to explore using soft pions, such as the Bose-
Einstein condensation of pions [8], or disoriented chiral
condensate (DCC) [9–11]. The standard observable pro-
posed to detect the soft dynamics of pions induced by the
chiral phase transition is the multiplicity ratio of charged
pions with the neutral one [10]. Another possible source of
information about the chiral phase transition can be
expected to manifest itself in the correlation functions
between charged pions [12].
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Previous work includes a model where a fluid coupled to
the chiral condensate (and the gluon condensate) was
considered [13–16] in the context of computing multiplic-
ity fluctuations near the phase transition. In the chiral
sector, the model only captured the evolution of the order
parameter, neglecting the dynamics of the SUð2Þ phase. In
the present model, we explicitly consider the dynamics of
the phase in the broken phase.
The basic non-Abelian superfluid equations of motion

were written down by D. Son many years ago [3]. These
equations were extended to include dissipation and at a
linearized level the effect of a finite quark mass [4,17].
Formal developments by Jain (building on [18–20]) have
considerably clarified the general structure of the equations
of motion [21]. After reviewing the equations in Sec. II, we
will describe the behavior of the hydrodynamic correlation
functions in Sec. III, which can be used to determine how
the transport coefficients of QCD depend on the pion mass.
Finally in Sec. IV, we discuss the expected scaling behavior
of the computed transport coefficients in the vicinity of the
critical point.

II. THE HYDRODYNAMIC EQUATIONS CLOSE
TO THE CHIRAL LIMIT

This section briefly reviews the equations of motion
discussed in [3,4,17,21,22]. Chiral symmetry breaking and
its associated effective Lagrangian are reviewed with
precision and clarity in [23,24].

A. Ideal hydrodynamics

The hydrodynamic theory is based on the conserved
charges and phases associated with broken SULð2Þ×
SURð2Þ. The invariance of the theory yields two
conserved currents with independent left and right isospin
rotations,

JμL ¼ ðJLÞμata; ð1Þ

JμR ¼ ðJRÞμata; ð2Þ

where the generators ta are proportional to the Pauli
matrices, with trace normalization tr½tatb� ¼ TFδ

ab. The
equilibrium state is characterized by the chiral condensate
Σ≡ hq̄RqLi, which transforms asΣ → gLΣg

†
R under a chiral

rotation. At each point in space and time, the local value
chiral condensate Σ≡ hq̄RqLiðxÞ is rotated relative to a
reference state Σð0Þ ¼ σðTÞI by an axial rotation, where
gL ¼ g†R ¼ ξ. The phase ξ ¼ expðiφÞ is parametrized by the
pion field1 φ ¼ φaðxÞta. Since under independent left and
right rotations Σ → gLΣg

†
R, the condensate may be written

Σ ¼ σU, whereU≡ ξ2 is the phase, i.e., the unitary matrix
that is traditionally used to parametrize the chiral
Lagrangian. For the purposes of this paper, we will take
σ to be a constant. Fluctuations of σ will be considered in
future works.
As just discussed, the system at a point x is rotated

relative to a reference state by an SULð2Þ × SURð2Þ
rotation parametrized by ½ULðxÞ; URðxÞ�. The left and right
chemical potentials are related to time derivatives of these
rotation matrices [25],

μL ≡ iuμDL
μULU

†
L ¼ iuμ∂μULU

†
L þ uμLμ; ð3Þ

μR ≡ iuμDR
μ URU

†
R ¼ iuμ∂μURU

†
R þ uμRμ; ð4Þ

where Lμ and Rμ are external left and right gauge
fields, and the flow velocity uμ is timelike normalized,
uμuμ ¼ −1. These relations are called Josephson con-
straints in the superfluid theory. The chiral condensate Σ
is given by Σ ¼ ULðσIÞU†

R, and thus the unitary matrixU is
simply U ¼ ULU

†
R. In constructing the chiral Lagrangian it

is customary to introduce the left- and right-handed
currents, Lμ ≡ iUDμU† and Rμ ≡ iU†DμU ¼ −U†LμU,
defined with the appropriate covariant derivatives,

DμU ¼ ∂μU − iLμU þ iURμ; ð5Þ

DμU† ¼ ∂μU† þ iU†Lμ − iRμU†: ð6Þ

Using these definitions, we find that the zeroth component
of the left- and right-handed currents are related to the
difference in chemical potentials,

−uμLμ ¼ iuμDμUU† ¼ μL − UμRU†; ð7Þ

−uμRμ ¼ iuμDμU†U ¼ μR −U†μLU: ð8Þ

FIG. 1. Long wavelength modes (black lines) with
l ∼ ð∇ · uÞ−1 ∼ L are described with ordinary hydrodynamics.
To model wavelengths of order l ∼ ðmπÞ−1, the effective theory
must treat the soft pion modes explicitly (green lines). These
modes can be described with a non-Abelian superfluid theory,
due to the fact that the pions are Goldstone bosons. Finally, the
microscopic degrees of freedom (purple arrows), which include
typical pions with p ∼ λ−1 ∼ πT and other hadronic states,
determine the thermodynamic and dissipative parameters of
the superfluid. The superfluid modes leave calculable imprints
on the transport parameters of the ordinary fluid.

1In chiral perturbation theory φ ¼ π=F where at leading order
F ≃ fπ .
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These are analogous to the Uð1Þ superfluid Josephson
relation, where −uμ∂μφ ¼ μ.
To quadratic order in μL, μR, and Lμ, the SULð2Þ ×

SURð2Þ invariants are μ2L þ μ2R, ðμL −UμRU†Þ2 and LμLμ.
Thus, a general action for ideal hydrodynamics close to the
chiral limit is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðpðTÞ þ LsuperfluidÞ; ð9Þ

where2

Lsuperfluid ¼
1

4TF
tr½χ0ðμ2L þ μ2RÞ�

þ 1

8TF
tr½χ1uμuνDμUDνU† − f2DμUDμU†

þ f2m2ðUM† þMU†Þ�: ð10Þ

Here we are tracing over isospin. pðTÞ is the pressure
as a function of temperature, defined through the vector
βμ, i.e., T ≡ ð−βμgμνβνÞ−1=2 with βμ ¼ 1

T u
μ. M is a fixed

matrix, which can be taken to be unity, and is responsible
for the explicit breaking of chiral symmetry. Note that m
refers to the screening mass, which is directly related to the
pole mass,3 m2

p ≡ v2m2 [4]. The coefficients χ0, χ1, f and
m are functions of the temperature. For the purposes of this
paper, ultimately we will work around a Minkowski
background, gμν ¼ ημν, and also turn the gauge fields
off, Lμ ¼ Rμ ¼ 0. Similar Lagrangians considering Uð1Þ
superfluids, and Uð1Þ vector and axial currents coupled to
gauge fields, including a discussion about anomalies, can
be found in [28,29].
The hydrodynamic equations are given by the conser-

vation of the energy momentum tensor [3],

∇μTμν ¼ 0; ð11Þ

with

Tμν ¼ 2ffiffiffiffiffiffi−gp ∂L ffiffiffiffiffiffi−gp
∂gμν

¼ εUuμuνþΔμνpUþ f2

8TF
trðDμUDνU†þDνUDμU†Þ;

ð12Þ

where Δμν ≡ ημν þ uμuν is the projector onto the local rest
frame, the redefined pressure is

pU ¼ pðTÞ þ Lsuperfluid; ð13Þ
and the redefined energy density is given by a Legendre
transform of pU,

εU ¼ εðTÞ þ
�
−1þ T

∂
∂T þ μaL

∂
∂μaL þ μaR

∂
∂μaR

�
Lsuperfluid:

ð14Þ
When determining εU, the Lagrangian should be consid-
ered a function of the independent variables T, μL, μR,
trð∂μU∂μU†Þ, and M†U þMU†, and thus the χ1 term in
the L should be written,

χ1tr½uμuνDμUDμU†� ¼ χ1tr½ðμL −UμRU†Þ2�: ð15Þ

The ideal equations of motion of the chiral degrees of
freedom read

DL
μ J

μ
L ¼ −

f2m2

8
iðUM† −MU†Þ; ð16Þ

DR
μ J

μ
R ¼ þ f2m2

8
iðM†U − U†MÞ; ð17Þ

where the left and right currents are given by

JμL ¼
δS
δLaμ

ta¼ 1

2
χ0μLuμþ

1

4
χ1ðμL−UμRU†Þuμþ1

4
f2Lμ;

ð18Þ

JμR ¼
δS

δRaμ
ta ¼ 1

2
χ0μRuμþ

1

4
χ1ðμR−U†μLUÞuμþ1

4
f2Rμ:

ð19Þ

Note that the conserved isovector current for M unity
(i.e., the real world) is given by J̃μV ¼ JμL þMJμRM

†. It is
also useful to consider JμV ≡ JμL þ UJμRU

†, the associated
chemical potential μV ≡ ðμL þ UμRU†Þ=2, and corre-
sponding axial definitions, JμA≡JμL−UJμRU

† and μA ≡
ðμL −UμRU†Þ=2, which can be interpreted as the projec-
tion of the current and chemical potentials onto the
isovector and iso-axial-vector directions as seen from the
reference state [21]. These projected currents read

2Our normalization constants here are chosen so that the vector
chemical potential is an average of the left and right chemical
potentials, while the vector current is a sum of the left and right
currents, so that μL · JL þ μR · JR ¼ μV · JV þ μA · JA. Thus, the
Oð4Þ symmetric term reads 1

4
χ0ðμ2L þ μ2RÞ ¼ 1

2
χ0ðμ2V þ μ2AÞ.

3In the finite temperature chiral perturbation theory literature
the susceptibility of the superfluid component, f2, is called the
spatial pion decay constant, f2s [26,27]. The total axial charge
susceptibility, χA ≡ χ0 þ χ1 þ f2, is called temporal pion decay
constant, f2t . The pion velocity v2 ≡ f2=χA. In the anti–de Sitter
superfluid literature, the susceptibility of the normal component,
χnrmA ≡ χ0 þ χ1, is called χ [18,28].
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JμV ¼ χ0μVuμ; ð20Þ

JμA ¼ χnrmA μAuμ þ
1

2
f2Lμ; ð21Þ

where we have defined χnrmA ≡ χ0 þ χ1. The form of the
isovector current leads us to identify χ0 as the isovector
susceptibility. The iso-axial-vector current consists of a
normal component with susceptibility χnrmA and a superfluid
component with susceptibility f2. The total iso-vector-axial
charge density, −uμJ

μ
A, is the total axial susceptibility,

χA ≡ ðχnrmA þ f2Þ, times the axial chemical potential, μA.

B. Viscous corrections, entropy production,
and noise

1. Viscous corrections and entropy production

The equations that we have considered so far are ideal.
We will be interested in computing the viscous corrections
to the energy momentum tensor due to the viscous effects
of the chiral sector. This section extends [17,21] by
including the mass terms (which are very important in
practice), and [4] by treating the theory nonlinearly, which
leads to an additional constraint.
To this end we write

Tμν ¼ Tμν
ideal þ Πμν; ð22Þ

JμL ¼ JμL;ideal þ qμL; ð23Þ

JμR ¼ JμR;ideal þ qμR; ð24Þ

and allow for a viscous correction to the Josephson
constraint,

−
1

2
uμLμ ¼ μA þ μdissA : ð25Þ

The phenomenological currents should be proportional to
the strains, and entropy production should be positive. We
may choose the Landau frame such that

uμq
μ
L ¼ uμq

μ
R ¼ uμΠμν ¼ 0: ð26Þ

Finally, we will further decompose the stress tensor into
shear and bulk strains,

Πμν ¼ πμν þ ΠΔμν; ð27Þ

where πμμ ¼ 0.
The entropy is defined by the energy density eU, pressure

pU and left and right density nL=R,

sU ¼ eU þ pU − μL · nL − μR · nR
T

; ð28Þ

where we introduced the shorthand, μL · nL ¼ tr½μLnL�=TF.
A straightforward analysis of entropy production using the
equations of motion as seen in Appendix A yields

∂μðsUuμ−μL ·q
μ
L−μR ·q

μ
RÞ

¼−Πμν∂μβν−qμL ·∂μμ̂L−qμR ·∂μμ̂R−
μdissA

T
·Θs; ð29Þ

where μ̂≡ μ=T. The superfluid expansion scalar in this
expression is

Θs ¼
�
∂μ

�
f2

2
Lμ

�
þ f2m2

4
iðUM† −MU†Þ

�
; ð30Þ

and is given by the variation of the ideal action leaving the
temperature, μV , and μA fixed

ðδSÞβ;μV ;μA ≡
Z

d4x

�
−
i
2
δUU†

�
· Θs: ð31Þ

Requiring positivity of entropy production leads in the
tensor sector to

πμν ¼ −ηð0Þσμν with η ≥ 0: ð32Þ

In the scalar sector there are two structures, leading to the
constitutive relations,

−Π ¼ ζð0Þ∇ · uþ ζð1ÞμA · Θs; ð33Þ

−μdissA ¼ ζð1ÞμA∇ · uþ ζð2ÞΘs: ð34Þ

For the quadratic form, −ðΠ∇ · uþ μdissA · ΘsÞ, to be non-
negative we must have

ζð0Þ ≥ 0; ζð2Þ ≥ 0; ζð0Þζð2Þ − ðζð1ÞÞ2μ2A ≥ 0: ð35Þ

In the vector-sector we have4

4qμV is not strictly speaking a vector. Under parity it is
transformed to qμV → U†qμVU. The quantity ξ†qμVξ is a vector
in a strict sense. The terms in Eq. (37b) are grouped according to
familiar covariant derivatives of chiral perturbation theory. In
particular, rotating μV to the reference state μξV ≡ ξ†μVξ, and
defining the vector field, vμ ≡ −iðξ†∂μξþ ξ∂μξ

†Þ, the covariant
derivative is

dμμ
ξ
V ≡ ð∂μ þ ivμÞμξV ¼ ξ†

�
∂μμV −

i
2
½Lμ; μV �

�
ξ: ð36Þ

Both μξV and dμμ
ξ
V are directed in the unbroken isovector

subgroup in the reference state, while ∂μμ
ξ
V is not [21,24].
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qαV ¼ −Tσð0ÞI Δαβð∂αμ̂L þ U∂βμ̂RU†Þ=2; ð37aÞ

¼−Tσð0ÞI Δαβ

��
∂βμ̂V −

i
2
½Lβ; μ̂V �

�
þ i
2
½Lβ; μ̂A�

�
with

σð0ÞI ≥ 0: ð37bÞ

In the pseudovector sector we have

qαA ¼ −TσAΔαβð∂αμ̂L −U∂βμ̂RU†Þ=2; ð38aÞ

¼−TσAΔαβ

��
∂βμ̂A−

i
2
½Lβ; μ̂A�

�
þ i
2
½Lβ; μ̂V �

�
with

σA ≥ 0: ð38bÞ

To summarize, the superfluid theory contains the three
transport coefficients of the normal theory, ηð0Þ, ζð0Þ, σð0ÞI . In
addition, it contains two parameters, ζð2Þ and σA, which
describe the damping of the pions, and which will be
parameterized below by axial charge diffusion coefficient
DA and the damping rate Dm. Finally, the theory contains
one additional coefficient, ζð1Þ that intrinsically couples the
normal and pion sectors. This term involves two small
parameters, the axial chemical potential μA and the viscous
correction arising from ∇ · u, and can probably be ignored
in practice.
It is notable that the two independent scalars comprising

the superfluid expansion scalar, ∂μðf2LμÞ and UM†−
MU†, must have the same dissipative coefficient, ζð2Þ.
This constraint, arising fromentropy considerations,was not
recognized in the linearized analysis of dissipation by Son
and Stephanov [4], which leads to an additional transport
coefficient in their theory.5

This consequence of entropy conservation simplifies
the interpretation of the theory. For simplicity of presen-
tation, we will set ζð1Þ, σA, and σð0ÞI to zero, and call
Γchem ≡ 1=ζð2Þ. (These constraints are all easily relaxed.)
The chemical potential of the normal components is μA,
while the chemical potential of the pion component is
μφA ≡ − 1

2
uμLμ, and the two potentials are trying to be made

equal by the microscopic dynamics. From this perspective
it is not surprising that the equations of motion can be easily
rewritten in an intuitive form,

∂μðnLuμÞ −U∂μðnRuμÞU† ¼ −ΓchemðμA − μφAÞ; ð39Þ

∂μ

�
f2

2
Lμ

�
þ f2m2

4
iðUM† −MU†Þ ¼ −ΓchemðμφA − μAÞ;

ð40Þ

which clearly shows the chemical coupling between the
pion equation of motion (40) and the normal axial
components (i.e., hard pions and other hadronic states).

2. Noise

The analysis of entropy production also determines the
thermodynamic noise in the system. Neglecting ζð1Þ for
simplicity, the mean entropy production rate can be written

∂μðsUuμ−μV ·q
μ
V −μA ·q

μ
AÞ

¼ πμνπμν
2Tηð0Þ

þ Π2

Tζð0Þ
þqμVðqVÞμ

Tσð0ÞV

þqμAðqAÞμ
TσA

þðμdissA Þ2
Tζð2Þ

: ð41Þ

In stochastic hydro, noise should be added to each
dissipative strain, i.e.,

qμA → qμA þ ξμA; ð42aÞ

μdissA → μdissA þ ξdissμA ; ð42bÞ

in addition to the familiar noises of ordinary hydrody-
namics, ξμνπ , ξΠ, and ξμV . The general theory of these
fluctuations determines the variances of the noises from
the equilibrium susceptibility matrix and the dissipative
quadratic form for entropy production [30–33]. In the
current case, these variances can be read off from the
denominators of (41), i.e.,

hξμAðxÞξνAðyÞi ¼ 2TσAΔμνδðx − yÞ; ð43aÞ

hξdissμA ðxÞξdissμA ðyÞi ¼ 2Tζð2Þδðx − yÞ; ð43bÞ

in addition to the usual variances for ξμνπ , ξΠ, and ξμV . In
writing these formulas in this simple form it was important
that we expanded μdissA in terms of the canonical conjugate
of U, as given by Θs in (31). Otherwise, the form of the
variances would also involve the equilibrium matrix of
susceptibilities.
Finally, we note that in the presence of noise, the

rearrangements of the equations of motion that lead to
(39) and (40) now give rise to a stochastic equation of
chemical balance,

∂μðnLuμÞ−U∂μðnRuμÞU†¼−ΓchemðμA−μφAÞ−ξchem;

ð44Þ

∂μ

�
f2

2
Lμ

�
þ f2m2

4
iðUM† −MU†Þ

¼ −ΓchemðμφA − μAÞ þ ξchem; ð45Þ

where the chemical noise ξchem (which enters as Γchemξ
diss
μA )

satisfies the expected chemical fluctuation-dissipation
relation,

5Specifically, we find that Son and Stephanov’s coefficients κ1
and κ2 are both given by λm ¼ ðχnrmA vÞ2ζð2Þ.
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hξchemðxÞξchemðyÞi ¼ ðΓchemÞ2hξdissμA ðxÞξdissμA ðyÞi; ð46aÞ

¼ 2TΓchemδðx − yÞ; ð46bÞ

confirming the consistency of the interpretation.

C. Linearized equations of motion

Following Son and Stephanov [4], we now parametrize
the phase as U ¼ e2iφ and linearize the equation of motion
for JμA together with the Josephson’s constraint around
global equilibrium,

∂tðχnrmA μAÞ þ∇ · ð−σA∇μA þ ξ⃗AÞ
¼ −ΓchemðμA − μφAÞ − ξchem; ð47Þ

− ∂tðf2∂tφÞ þ∇ · ðf2∇φÞ − f2m2φ

¼ −ΓchemðμφA − μAÞ þ ξchem; ð48Þ

with μφA ¼ −∂tφ. After using lower order equations of
motion, the stochastic equation for the pion field reads (see
Appendix B)

χA∂2
tφ−f2∂2

iφþf2m2φ−λA∇2∂tφþλmm2∂tφ¼ ξ; ð49Þ

where λA and λm are related to the coefficients described
above (with Γchem ≡ 1=ζð2Þ),

λA ≡ σA þ ðχnrmA vÞ2ζð2Þ; ð50Þ

λm ≡ ðχnrmA vÞ2ζð2Þ; ð51Þ

and the noise ξ satisfies the fluctuation-dissipation relation,

hξðxÞξðyÞi ¼ 2Tð−λA∇2 þ λmm2Þδðx − yÞ: ð52Þ
The equation of motion can be used to evaluate the

corresponding propagators. We will need the symmetrized
correlation function,

Gφφ
ab;symðω; qÞ≡

Z
d4x eiωt−iq·xhφaðt; xÞφbð0Þi≡ δabG

φφ
sym:

ð53Þ

The retarded response function associated with the left-
hand side of (49) is

Gφφ
R ðω; qÞ ¼ 1

χA

1

−ω2 þ ω2
q − iωΓq

; ð54Þ

ω2
q ≡ v2ðq2 þm2Þ; ð55Þ

where the pion velocity is given by v2 ¼ f2

χA
and the

attenuation is defined as

Γq≡DAq2þDmm2; whereDA≡ λA
χA

; and Dm≡λm
χA

:

ð56Þ

DA and Dm are the axial charge diffusion and damping
coefficients, respectively. Using the fluctuation-dissipation
relation, or equivalently by solving (49) with the noise, we
can obtain the symmetrized correlation function,

Gφφ
sym ¼ 1

χA

2TΓq

ð−ω2 þ ω2
qÞ2 þ ðΓqωÞ2

: ð57Þ

The propagator is sharply peaked near the poles leading
to an approximate expression,

Gφφ
sym ≃

T
2χAω

2
q
½ρðω;ωqÞ þ ρðω;−ωqÞ�; ð58Þ

where

ρ ¼ Γq

ð−ωþ ωqÞ2 þ ðΓq=2Þ2
: ð59Þ

This approximation is justified when the imaginary part of
the dispersion relation, Γq, is negligible with respect to its
real part ωq, i.e., Γq=ωq ≪ 1.

III. DEPENDENCE OF THE TRANSPORT
COEFFICIENTS OF QCD ON THE PION MASS

Here we will first use the Kubo formula to deduce the
dependence of the shear viscosity, η, bulk viscosity, ζ,
and isovector conductivity, σI , on the pion mass. The
technical step is to integrate out the pion loop (see Fig. 2)
shown below to determine the corresponding fluctuations
in the stress tensor or current.
An equivalent approach to superfluid hydrodynamic

loops is to develop a hydrokinetic equation for the soft
pions [34,35]. In this case the phase space distribution of
soft pions evolves according to a Boltzmann equation with
the normal fluid driving the distribution function out of
equilibrium. The collision kernel of Boltzmann equation is
determined by the axial charge diffusion and damping

FIG. 2. An example of a hydrodynamic pion loop in Kubo
furmulas.

GROSSI, SOLOVIEV, TEANEY, and YAN PHYS. REV. D 102, 014042 (2020)

014042-6



coefficients of the superfluid, DA and Dm, respectively. A
distinct advantage of the hydrokinetic approach is that it
can be simulated in expanding environments, capturing the
physics associated with the chiral fluctuations. We will
describe this approach in Sec. III. B after analyzing the
hydrodynamic loop.

A. Kubo formulas

The three transport coefficients of interest here are
expressed as [36]

2Tη ¼
Z

d4xh1
2
fTxyðt; xÞ; Txyð0; 0Þgi; ð60Þ

2TσI ¼
Z

d4x
1

dA
h1
2
fJ̃xV;aðt; xÞ; J̃xV;að0; 0Þgi; ð61Þ

2Tζ ¼
Z

d4xh1
2
fObulkðt; xÞ;Obulkð0; 0Þgi: ð62Þ

Here dA ¼ 3 is the dimension of the adjoint, and we are
summing over the isospin index. In determining the bulk
viscosity is very convenient to use the operator,

Obulk ≡ c2sT0
0 þ

1

3
Ti
i; ð63Þ

where c2s is a fixed parameter for the system at temperature
T. This operator has several related advantages over Tμ

μ

[37]. Specifically, it is invariant in equilibrium under small
shifts in the temperature, and therefore it is not necessary to
impose the Landau matching condition when perturbing the
system. It also behaves smoothly as the spatial momentum
k → 0, while Tμ

μ does not [38,39].
To evaluate the pion contributions to these correlations

we will need the symmetrized correlation function dis-
cussed in the previous section and more explicit expres-
sions for the operators of interest. Here we have

Txy ¼ f2∂xφa∂yφa; ð64Þ

J̃xV;a ¼ f2fabc∂xφbφc; ð65Þ

Obulk ¼
�
pφ þ

1

3
f2ð∇φaÞ2 − c2s

�
χAð∂tφaÞ2 −

∂ðβpφÞ
∂β

��
;

ð66Þ

pφ ¼ 1

2
χA½ð∂tφaÞ2 − v2ð∇φaÞ2 − v2m2φ2

a�: ð67Þ

Evaluating the Feynman graphs for the shear stress, current,
and bulk operator gives

2Tη ¼ 2Tηð0ÞðΛÞ þ 2dAf4

×
Z

Λ dq0d3q
ð2πÞ4 ðqxqyÞ2ðGφφ

symðq0; qÞÞ2; ð68Þ

2TσI¼2Tσð0ÞI ðΛÞþ2TAf4
Z

Λdq0d3q
ð2πÞ4 ðqxÞ2ðGφφ

symðq0;qÞÞ2;

ð69Þ

2Tζ¼ 2Tζð0ÞðΛÞ

þ2dA

Z
Λdq0d3q

ð2πÞ4 ðN bulkðq0;qÞÞ2ðGφφ
symðq0;qÞÞ2;

ð70Þ

where TA ¼ 2 is the trace of the adjoint. The numerator
algebra associated with the operator Obulk evaluates to

N bulk ¼
1

2

�
χA þ c2s

∂ðβχAÞ
∂β

�
ðq20 − ω2

qÞ þ
χA
3
v2q2

− c2sχA

�
q20 þ

β

2

∂ω2
q

∂β
�
: ð71Þ

For each integral we will perform the q0 integration first.
The propagators are sharply peaked near q0 ¼ �ωq, and
cross terms in ðGφφ

symÞ2 can be neglected in the integration.
Performing the q0 integral we find

η¼ ηð0ÞðΛÞþdA

Z
Λ d3q
ð2πÞ3

�∂ωq

∂qx qy
�

2
�
T
ω2
q

�
1

Γq
; ð72aÞ

σI ¼ σð0ÞI ðΛÞ þ TA

Z
d3q
ð2πÞ3

�∂ωq

∂qx
�

2
�
T
ω2
q

�
1

Γq
; ð72bÞ

ζ¼ ζð0ÞðΛÞþdA

Z
Λ d3q
ð2πÞ3

�
q
3
·
∂ωq

∂q −c2s
∂ðβωqÞ
∂β

�
2
�
T
ω2
q

�
1

Γq
:

ð72cÞ

As is briefly described in the next subsection these
expressions are familiar from kinetic theory.
These integrals depend on the two transport coefficients,

DA and Dm, the thermodynamic properties of the soft
pions, m2

p ¼ v2m2 and v2 ¼ f2=χA, as well as the speed of
sound squared, c2s , which can be determined from the
Euclidean measurements. These quantities enter in the final
results as

ṽ2 ¼ v2 −
T
2

∂v2
∂T ; ð73Þ

m̃2
p ¼ m2

p −
T
2

∂m2
p

∂T ; ð74Þ
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and via a dimensionless ratio

r ¼
ffiffiffiffiffiffiffi
Dm

DA

s
: ð75Þ

It is worthwhile to point out that in chiral perturbation
theory r ¼ ffiffiffiffiffiffiffiffi

3=4
p

[40].
Evaluating the integrals, we find the final expressions to

the corrections of the transport coefficients,

ζ ¼ ζð0Þphys þ
dATm
8πDA

��
c2s

1þ r

m̃2
p

m2
p
−
1þ 2r
1þ r

�
1

3
− c2s

ṽ2

v2

��
2

− ð4þ 2rÞ
�
1

3
− c2s

ṽ2

v2

�
2
�
; ð76aÞ

η ¼ ηð0Þphys −
dATm
120πDA

�
2r3 þ 4r2 þ 6rþ 3

ð1þ rÞ2
�
; ð76bÞ

σI ¼ ðσIÞð0Þphys þ
TAT

24πmDA

�
1þ 2r
ð1þ rÞ2

�
: ð76cÞ

Here the shear viscosity and the bulk viscosity are
renormalized quantities,

ζð0Þphys ¼ ζð0ÞðΛÞ þ dATΛ
2π2DA

�
1

3
− c2s

ṽ2

v2

�
2

; ð77aÞ

ηð0Þphys ¼ ηð0ÞðΛÞ þ dATΛ
30π2DA

: ð77bÞ

In each case, the “zero” transport coefficients
(e.g., ζð0Þ) are the parameters in the chiral limit, mq ¼ 0.
The conductivity σI is not renormalized, and its soft
pion contribution is proportional to the inverse screening
mass,m−1. This contribution diverges in the chiral limit and

is parametrically larger than ðσIÞð0Þphys. This reflects the fact
that in this limit the soft pion is a free particle which
transports isospin.
As emphasized in [4] many of the parameters in (76) can

be evaluated on the lattice [41]. Indeed all of the parameters
of the ideal superfluid hydro, such as v2, c2s ,m2

p andm2, are
amenable to a Euclidean computation, while the viscous
parameters DA and r must be extracted from data or
estimated from theoretical considerations. We will analyze
the behavior of Eq. (76) near the Oð4Þ critical point
in Sec. IV.

B. Kinetic approach

The physical content of hydrodynamic loop calculations,
such as described in the previous section, are (always)
equivalent to deriving a Boltzmann equation for the hard
sound modes in the plasma and using this Boltzmann
equation to analyze the response [34,35]. Indeed, our

results for the transport coefficients (76) are much more
transparently obtained from a hydrokinetic Boltzmann
equation for the soft pion phase-space distribution function
fπðx; qiÞ, which takes the form of a relaxation time like
approximation. We are motivated by a similar Boltzmann
equation for sound modes in normal hydrodynamics [35].
First we generalize the linear analysis of the previous

section to a flowing fluid background in Appendix B, using
the scale separation depicted in Fig. 1. The ideal terms in
the equation of motion are of order ∂2φ ∼m2φ, while flow
corrections to these terms are of order ð∂φÞð∂uÞ ∼mφ=L.
Denoting the mean free path λ, the dissipative terms in the
equation of motion are of order λ∂3φ ∼ λm3φ, while flow
corrections to these terms are of order ðλ=LÞm2 and are
ignored. We are thus working in a kinetic regime where

ðλ=LÞm2 ≪ ðm=LÞ ∼ λm3 ≪ m2: ð78Þ

With these approximations the stochastic wave equation
takes the form,

−∂μðχAGμν∂νφÞþf2m2φ−λA∇2⊥∂τφþ λmm2∂τφ¼ ξ:

ð79Þ

Here ∇μ
⊥ ≡ Δμν∂ν and ∂τ ¼ uμ∂μ are the local spatial and

temporal derivatives, and the pion field moves in an
effective metric created by the flowing fluid,

GμνðxÞ≡ −uμðxÞuνðxÞ þ v2ðxÞΔμνðxÞ; ð80Þ

where v2ðxÞ≡ f2=χA is the local pion velocity.
Appendix C shows that under the evolution of the

stochastic wave equation, the pion phase-space distribution
fπðx; qiÞ evolves according to a Boltzmann equation which
takes the form,

∂H
∂qμ

∂fπ
∂xμ −

∂H
∂xi

∂fπ
∂qi ¼ −Γq½ωqfπ − T�; ð81Þ

where the effective Hamiltonian,

Hðx; qÞ ¼ 1

2
GμνðxÞqμqν þ

1

2
v2ðxÞm2ðxÞ; ð82Þ

is a function of the four vectors x and q. Given the covariant
momenta qi, the covariant energy component q0 is found
by solving the on shell constraint, Hðx; qÞ ¼ 0, taking the
negative root q0 ¼ −hþðx; qiÞ; see (C19). The components
Gμνqν ¼ ∂H=∂qμ should be distinguished from qμ ≡ ημνqν.
The damping rate Γq and dispersion curve ωq ¼ −uμqμ are
to be evaluated in the rest frame of the fluid; see (C13). The
equilibrium distribution is simply the classical part of the
Bose-Einstein distribution function, T=ωq. We note that
the Boltzmann equation can also be written
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∂H
∂q0

�∂fπ
∂t þ∂hþ

∂qi
∂fπ
∂xi −

∂hþ
∂xi

∂fπ
∂qi

�
¼−Γq½ωqfπ −T�: ð83Þ

Once the phase space distribution is found, the pion
contribution to the stress tensor is given by the superfluid
stress in (12). Recalling that the phase space distribution
fπðx; qiÞ is the Wigner transform of the noise averaged two
point function hφðxÞφðyÞi; Appendix C 2 shows that pion
contribution to average stress tensor evaluates to

Tμν
π ¼ dA

Z
d3qi

ð2πÞ3ð∂H=∂q0Þ
�
ωq

∂ðβωqÞ
∂β uμuν

þ v2ΔμαΔνβqαqβ

�
fπðx; qiÞ: ð84Þ

Given this Boltzmann equation for the soft pion dis-
tribution and the stress tensor, familiar steps from the
relaxation time approximation lead to the shear and bulk
viscosities presented in (72) with relaxation time 1=Γq and
dispersion curve ωq. We have not derived the isospin
conductivity using the kinetic approach in this paper.

IV. DISCUSSION AND BEHAVIOR NEAR THE
CHIRAL CRITICAL POINT

In this section we will estimate our results for the
transport coefficients, Eq. (76), near theOð4Þ critical point.

A. The chiral phase transition: A brief review

First we review the expected scaling behavior of various
quantities following [42,43]. The order parameter,
σðxÞ≡ ψ̄ψðxÞ, and the inverse correlation length, mσ , have
the following scaling behavior near the critical point:

hψ̄ψi ∼ tβ; mσ ∼ tν; ð85Þ

where the reduced temperature is t ¼ jT − Tcj=Tc, and β
and ν are the usual critical exponents.6 In the vicinity of the

critical point, the static correlation function of the order
parameter behaves likeZ

d3xe−ix·qhσðxÞσð0Þi ∼ T
jqj2−η ; ð86Þ

for momentum, jqj, much larger than mσ , but smaller than
the temperature T, mσ ≪ jqj ≪ T. The critical exponent η
is small in practice, and can be related to β and ν using the
hyperscaling relation

2β ¼ νðd − 2þ ηÞ; ð87Þ

where d ¼ 3 is the spatial dimension. Finally, the order
parameter relaxation rate scales with correlation length
as [43]

Γσ ∼ ðmσÞz; ð88Þ

where z ¼ d=2 is the dynamical critical exponent. As we
will describe in the next paragraphs, Γσ is of order DAm2

σ,
and therefore we will define Γσ ≡DAm2

σ in our estimates
below. A summary of the relevant scalings can be found in
Table 1.
In the chirally broken phase close to Tc, but not so close

that fluctuations in σ are important, the Lagrangian in
Eq. (10) applies. The static pion propagator πa ¼ hψ̄ψiφa
at momentum scalem ≪ jqj ≪ mσ can be read off from the
Euclidean version of the Lagrangian,

Z
d3xe−ix·qhπaðxÞπbð0Þi ≈ δab

Thψ̄ψi2
f2

1

jqj2 : ð89Þ

In the vicinity of the phase transition, the π and σ
propagators become degenerate. Thus, the scaling of the
two propagators [Eq. (86) and Eq. (89)] must be the same
at their boundaries of applicability jqj ∼mσ, leading to a
relation between the pion decay constant f2,m2

σ, and hψ̄ψi,

f2 ∼m−η
σ hψ̄ψi2 ∼ tνðd−2Þ: ð90Þ

TABLE I. Here we list the critical scaling of relevant parameters near the chiral critical point, as discussed in [42].

Physical quantity Symbol Scaling Estimate

Order parameter hσi ¼ hψ̄ψi tβ β ≃ 0.380

Inverse correlation length mσ tν ν ≃ 0.738
Static correlation function

R
d3xe−ix·qhσðxÞσð0Þi Tjqjη−2 η ≃ 0.03

σ relaxation rate Γσ ≡DAm2
σ mz

σ z ¼ d
2

Axial susceptibility χA χ0 Const

ðpion velocityÞ2 v2 ¼ f2=χA tνðd−2Þ t0.738

ðscreening massÞ2 m2 mqtβ−ðd−2Þν mqt−0.358

ðpole massÞ2 m2
p ¼ v2m2 mqtβ mqt0.380

6We are only interested in temperatures below Tc in this study.
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Then the pion velocity near Tc scales like

v2 ¼ f2

χA
∼ tνðd−2Þ; ð91Þ

where χA ≃ χ0 is approximately constant near Tc. The
screening mass,m, can be related to the pion decay constant
f2, the condensate hψ̄ψi, and the quark mass mq via

m2 ¼ −mq
hψ̄ψi
f2

∼mqtβ−ðd−2Þν: ð92Þ

Similarly, the pole mass scales like

m2
p ¼ v2m2 ¼ −mq

hψ̄ψi
χA

∼mqtβ: ð93Þ

Close to Tc, but again not so close that σ fluctuates, the
hydrodynamic analysis applies and the pion dispersion
curve for q ≫ m reads

ωðqÞ ¼ vjqj − i
2
DAq2: ð94Þ

As we approach the phase transition, the real and imaginary
parts of the dispersion curve become the same order of
magnitude. Also, the pion and σ damping rates should
scale similarly near Tc at the boundaries of applicability
jqj ∼mσ . This reasoning yields the following estimates:

vmσ ∼DAm2
σ ∼ ðmσÞz: ð95Þ

For definiteness we will define the relaxation rate Γσ using
the axial charge diffusion coefficient Γσ ≡DAm2

σ. The
temperature scaling of DA is

DA ∼ tνðd2−2Þ ¼ t−ν=2: ð96Þ

B. The transport coefficients near Tc

Armed with these scaling relations, we can determine the
temperature and quark mass dependence of the transport
coefficients near Tc. We are assuming that we are not so
close to Tc that the σ field fluctuates strongly. The σ
fluctuations cannot be neglected when the screening mass
in (92) becomes of order mσ, which yields

m
mσ

∼ ffiffiffiffiffiffi
mq

p
tðβ−3νÞ=2; ð97Þ

and therefore the analysis breaks downwhen t ∼ ð ffiffiffiffiffiffimq
p Þ1.091.

Since the pion mass mπ ∝
ffiffiffiffiffiffimq

p is fairly massive compared
to, e.g., 2πTc, it is likely that σ fluctuations can never be
completely ignored over the temperature range relevant to
heavy ion collisions.

Nevertheless, we wish to evaluate the temperature and
quark mass dependence of the corrections to the transport
coefficients given in Eq. (76). Using the scalings described
above, first note that

m̃2
p

m2
p
¼ β

2t
β ¼ 0.380; ð98Þ

ṽ2

v2
¼ ν

2t
ν ¼ 0.737; ð99Þ

near the critical point. In addition, we make the approxi-
mation ν ≃ 2β, and note that the speed of sound remains
finite c2s ≃ c2s0 in the Oð4Þ model [44]. Thus, the bulk
viscosity in (76) reduces to

ζ¼ ζð0Þ−
dATm
8πDA

�
βc2s0
t

�
2
�
8r3þ16r2þ16rþ7

4ð1þ rÞ2
�
; ð100Þ

near the critical point. The parameter r approaches an order
one constant near the critical point [43,45], and thus our
results for ζ, η, and σI depend on an unknown constant.7

However, we have found that the r dependence of (76) and
(100) is mild, and changing r from zero to one changes the
shear and conductivity coefficients by less than 25%, and
the bulk coefficient by 60%. (In low temperature chiral
perturbation theory r ¼ ffiffiffiffiffiffiffiffi

3=4
p

; see [40]). Thus, for sim-
plicity, we will set r ¼ 0 below, and estimate a constant
factor of 2 uncertainty from this ansatz.
With these rough approximations the three transport

equations read

ζ ¼ ζð0Þphys −
21

32π

�
Tm3

DAm2

�
βc2s0
t

�
2
�
; ð101aÞ

η ¼ ηð0Þphys −
3

40π

�
Tm3

DAm2

�
; ð101bÞ

σI ¼ ðσIÞð0Þphys þ
1

12π

�
Tm

DAm2

�
: ð101cÞ

In each case, the “zero” transport coefficients [e.g., ζð0Þ]
are the coefficients in the chiral limit mq ¼ 0, and the
additional bits describe how these parameters depend
(nonanalytically) on the quark mass. The soft pion parts
can be easily understood as the pion contribution to the

7Translating the notation of the current work into the notation
of the original Refs. [43,45], we have r2 ¼ Γ=ðΓþ γ=χ0Þ where
Γ and γ are the two dissipative parameters characterizing theOð4Þ
Langevin model of [43]. These parameters scale similarly near
critical point, Γm2

σ ∼ ðγ=χÞm2
σ ∼mz

σ , and thus r is approximately
constant.
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corresponding susceptibility8 [the numerators in (101)]
divided by the damping rate, Γq ∼DAm2.
The isospin (or charge) conductivity is dominated by the

soft pion contribution, which diverges in the chiral limit
and therefore is large compared to ðσIÞð0Þphys until m ∼mσ.
This reflects the fact that on a length scale m−1, the
Goldstone bosons can transport charge freely rather than
diffusively. When m ∼mσ, the isovector conductivity
(101c) and the axial charge diffusion coefficient (96) have
the same scaling with reduced temperature,

σI ∼
Tmσ

Γσ
∼ t−ν=2 ∼ χADA; ð103Þ

as is required by the restoration of vector-axial-vector
symmetry at the critical point.
Finally, we may put in the expected scaling for Γσ, mσ,

and m=mσ to find

Δζ¼−Cζ
ffiffiffiffiffiffi
mq

p
tβ=2

�
βc2s0
t

�
2

; Δζ∝− t−1.81; ð104aÞ

Δη ¼ −Cη
ffiffiffiffiffiffi
mq

p
tβ=2; Δη ∝ − t0.19; ð104bÞ

σI ¼ CσI

tν−β=2ffiffiffiffiffiffimq
p ; σI ∝ t0.548: ð104cÞ

Thus approaching Tc from below, the pion contribution
to the bulk viscosity decreases sharply, while the shear
viscosity contribution grows mildly. The transport of soft
pions dominates the isospin conductivity, and the conduc-
tivity decreases as the damping rate of the Goldstone mode
increases near Tc.
In practice, the asymptotic behavior in (104) will be

difficult to see in the narrow window where the theory
applies. Indeed, we are only able to understand the
modifications of the transport coefficients due to pions
in the broken phase. As pointed out in (97), our results are
valid up to a scale where the fluctuations of the order
parameter σ becomes large. A natural follow-up would be
to include such fluctuations, significantly increasing the
range of applicability of the current study.
In addition to the modifying the transport coefficients

of the fluid, chiral critical fluctuations modify the
dispersion relation of soft pions, e.g., ω2

q ≃ v2q2 þm2
p

with v and mp small compared to their vacuum values.

These modifications are expected to lead to an anomalous
enhancement of pions at small momenta [42,43], which is a
phase space region ideally suited to the upcoming ITS
detector in ALICE [7]. Currently, there is some evidence
for such a soft pion enhancement—see for example Fig. 3 in
[46] andFig. 11 in [47]. In the futurewehope to use thekinetic
equations developed in Sec. III. B to quantitatively compute
these enhancements and their associated fluctuations.
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APPENDIX A: ENTROPY PRODUCTION

In this appendix, we describe the computation of the
entropy production in detail, repeating formulas as neces-
sary to keep the presentation self-contained. The entropy is

sU ¼ εU þ pU − μL · nL − μR · nR
T

: ðA1Þ

The thermodynamic relation is a consequence of the inde-
pendent variables used to describe the partition function,

dpU ¼ sUdT þ nL · dμL þ nR · dμR −
f2

8
dL2

þ f2m2

8
dðU ·M† þM ·U†Þ: ðA2Þ

The “extra” superfluid differentials at fixed T and μ
follow from the form of the action (10), and the discussion
surrounding the derivation of the stress tensor (12). Using
uμLμ ¼ −idUU†, they can be written

ðdpUÞT;μ≡−
f2

8
dL2þ i

f2m2

8
uνLν ·ðUM†−MU†Þ: ðA3Þ

Then the entropy current satisfies

∂μðsUuμÞ ¼ dsU þ sU∂u;
where we have implemented the following shorthand:

uμ∂μsU ¼ dsU; ∂u≡ ∂μuμ; ðA4Þ

and note that the differentials in (A2) can be interpreted
with an analogous notation, e.g., dT ¼ uμ∂μT. Inserting the
definition of entropy yields

8For instance, the soft pion contribution to the isospin
susceptibility is

ð χIÞsoftπ ∼
Z
p

d3p
ð2πÞ3

∂np
∂μI

����
μ¼0

∼ Tm; ð102Þ

where np ≃ T=ðωp − μIÞ. Similarly, the soft pion enthalpy (the
susceptibility associated with η) is ðeþ pÞsoftπ ∼ Tm3.
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∂μðsUuμÞ ¼
1

T
½dεU þ ðεU þ pUÞ∂u� þ 1

T
ðdpUÞT;μ

−
μL
T
½dnL þ nL∂u� − μR

T
½dnR þ nR∂u�: ðA5Þ

Now we should use the equations of motion of
energy conservation, uν∂μTμν ¼ 0, and current partial
conservation,

∂μJ
μ
L ¼ −i

f2m2

8
ðUM† −MU†Þ; ðA6aÞ

∂μJ
μ
R ¼ þi

f2m2

8
ðM†U − U†MÞ; ðA6bÞ

to evaluate the terms in square brackets of (A5). Note we
have imposed the microscopically exact PCAC relation.
From the body of the text, the stress tensor, currents, and
Josephson relation, can be written

Tμν ¼ ðεU þ pUÞuμuν þ pgμν þ f2

4
Lμ · Lν þ Πμν; ðA7aÞ

JμL ¼ nLuμ þ
f2

4
Lμ þ qμL; ðA7bÞ

JμR ¼ nRuμ þ
f2

4
Rμ þ qμR; ðA7cÞ

−
1

2
uμLμ ¼ μA þ μdissA ; ðA7dÞ

with dissipative strains Πμν, qμL, q
μ
R, and μdissA .

The left current partial conservation equation yields

−μL ·ðdnLþ ·nL∂uÞ
¼μL ·∂μq

μ
LþμL ·

�
1

4
∂μðf2LμÞþ i

f2m2

8
ðUM†−MU†Þ

�
;

≡μL ·∂μq
μ
Lþ

1

2
μL ·Θs; ðA8Þ

where we have defined the superfluid expansion scalar
discussed in the text [see (31)],

Θs ≡
�
∂μ

�
f2

2
Lμ

�
þ f2m2

4
iðUM† −MU†Þ

�
:

Similarly, the right current partial conservation equation
yields

−μR · ðdnR þ nR∂uÞ ¼ μR · ∂μq
μ
R þ μR ·

�
1

4
∂μðf2RμÞ − i

f2m2

8
ðM†U −U†MÞ

�
;

¼ μR · ∂μq
μ
R −

1

2
U†μRU · Θs: ðA9Þ

In passing to the second line we have used the definition of Rμ as Rμ ¼ −U†LμU and the definition of Lμ ¼ −i∂μUU† to
rewrite

μR · ∂μðf2RμÞ ¼ −UμRU† · ∂μðf2LμÞ: ðA10Þ

Next, we consider the timelike projection of the energy momentum tensor conservation equation, −uν∂μTμν ¼ 0,

dεU þ ðεU þ pUÞ∂u ¼ uν
1

4
∂μðf2Lμ · LνÞ þ uν∂μΠμν;

¼ 1

4
uνLν · ∂μðf2LμÞ þ 1

4
f2Lν · dLν þ

1

4
f2Lμuν · ð∂μLν − ∂νLμÞ þ uν∂μΠμν;

¼ 1

4
uνLν · ∂μðf2LμÞ þ f2

8
dL2 þ uν∂μΠμν: ðA11Þ

In passing to the last line we have used the structure
equation,

∂μLν − ∂νLμ − i½Lμ; Lν� ¼ 0; ðA12Þ
noting that

Lμ · ½Lμ; Lν� ¼ ½Lμ; Lμ� · Lν ¼ 0: ðA13Þ
Adding the superfluid pressure differentials ðdpUÞT;μ, we
find after pleasing cancellations,

½dεU þ ðεU þ pUÞ∂u� þ ðdpUÞT;μ
¼ 1

2
uνLν · Θs þ uν∂μΠμν;

¼ −ðμA þ μdissA Þ · Θs þ uν∂μΠμν; ðA14Þ

where we used the Josephson relation (A7d) in the
last step.
Combining the ingredients needed for (A5), from (A8),

(A9), and (A14), we find
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∂μðsUuμÞ¼−
μdissA

T
·Θsþ

uν
T
∂μΠμνþμL

T
·∂μq

μ
Lþ

μR
T
·∂μq

μ
R:

ðA15Þ

Integrating by parts we find finally Eq. (29) given in
the text.

APPENDIX B: LINEARIZED EQUATIONS FOR
THE PION FIELD IN AN EXPANDING

BACKGROUND

In this appendix we will derive the linearized equation
for the pion field for a fluid with temperature TðxÞ and
flow uμðxÞ, using certain hydrokinetic approximations
discussed below. The equation for the axial current is
given by

∂μJ
μ
A−

i
2
½Lμ;J

μ
A�þ

i
2
½Lμ;J

μ
V � ¼−

f2m2

4
iðUM†−MU†Þ;

ðB1Þ

and constitutive relations read

JμA ¼ χnrmA μAuμ þ
1

2
f2Lμ þ qμA þ ξμA;

−
1

2
uμLμ ¼ μA þ μdissA þ ξdissμA :

Setting the isospin current JμV to zero, writing U ¼ e2iφ

so that − 1
2
Lμ ≃ ∂μφ, the equations of motion to linear

order in μA and φ can be written

∂μðχnrmA μAuμÞþ∂μðf2∂μφÞ−f2m2φþ∂μq
μ
Aþ∂μξ

μ
A ¼ 0;

ðB2Þ

−uμ∂μφ ¼ μA þ μdissA þ ξdissμA ; ðB3Þ

where the dissipative strains are

qμA ¼ −TσAΔμν∂ν

�
μA
T

�
; ðB4aÞ

μdissA ¼ ζð2Þð−∂μðf2∂μφÞ þ f2m2φÞ: ðB4bÞ

We will work to first order in the dissipative parts
yielding

−∂μðχAGμν∂νφÞ þ f2m2φ − ∂μq
μ
A þ ∂μðχnrmA μdissA uμÞ ¼ ξ;

ðB5Þ

where

Gμν ≡ −uμuν þ v2Δμν; ðB6Þ

is the fluid metric introduced in (80), and we have
amalgamated the noises into a generic one,

ξ ¼ −∂μðχnrmA ξdissμA uμÞ þ ∂μξ
μ
A: ðB7Þ

We will neglect the space time derivatives of the back-
ground temperature and flow velocity in the dissipative
terms (which are already small), but keep the gradients in
the ideal terms. Indeed, denoting the mean free path σ

χA
∼ λ,

the typical fluid gradient ∂u ∼ 1=L, and the pion derivative
∂φ ∼mφ, the different terms in the equation of motion are
of order,

∂2φ ∼m2φ; ð∂uÞð∂φÞ ∼m
L
φ;

σ

χA
∂3φ ∼ λm3φ;

σ

χA
ð∂uÞ∂2φ ∼

λ

L
m2φ; ðB8Þ

up to an overall factor of χA. In the hydrokinetic approxi-
mation of [34,35], we have

ðλ=LÞm2 ≪ ðm=LÞ ∼ λm3 ≪ m2: ðB9Þ

We note in passing that the neglected dissipative coef-
ficient ζð1Þ gives a correction to the equation of motion of
order,

ζð1Þð∂2φÞð∂uÞ ∼ ðλ=LÞm2; ðB10Þ
which should be dropped in our approximation scheme.
With these approximations we have

−∂μq
μ
A ≃ −σA∇2⊥∂τφ; ðB11Þ

∂μðχnrmA μdissA uμÞ ≃ χnrmA ζð2Þf2ð∂3
τφ −∇2⊥∂τφþm2∂τφÞ:

ðB12Þ

Here we have defined various derivatives in the rest
frame,

∂τφ≡ uμ∂μφ; ∇μ
⊥ ≡ Δμν∂ν;

∇2⊥φ≡ Δμν∂μ∂νφ; ∂μ ¼ −uμ∂τ þ∇μ
⊥; ðB13Þ

which all commute when approximating the dissipative
currents. Next we use the lowest order equations of
motion,

∂2
τφ ¼ f2

χA
∇2⊥φ −

f2m2

χA
φ; ðB14Þ

to rewrite the triple time derivative,

∂μðχnrmA μdissA uμÞ ≃ −ðχnrmA vÞ2ζð2Þ∇2⊥∂τφ

þ ðχnrmA Þ2ζð2Þv2m2∂τφ: ðB15Þ
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With these steps, the wave equation can be written

−∂μðχAGμν∂νφÞþf2m2φ−λA∇2⊥∂τφþλmm2∂τφ¼ ξ;

ðB16Þ

where

λA ≡ ðχnrmA vÞ2ζð2Þ þ σA; ðB17Þ

λm ≡ ðχnrmA vÞ2ζð2Þ: ðB18Þ

which is the form used in the text (49) and the Appendix C;
see (C1).
Finally, let us check the form of the noise term, using

the same approximation scheme. In Fourier space, with
four vector qμ, the correlation function of the noise takes
the form,

hξðqÞξð−qÞi ≃ 2Tζð2ÞðχnrmA Þ2ðuμqμÞ2 þ 2TσAΔμνqμqν;

ðB19Þ

where we have used the noise correlators given in (43).
Next, we should recall that we are close to being on shell
where ðuμqμÞ2 ¼ v2ðΔμνqμqν þm2Þ. [This on shell rela-
tion is (B14) written in Fourier space.] Inserting the on shell
relation into (B19), and taking the Fourier transform, shows
noise correlator can be written

hξðxÞξðyÞi ≃ 2Tð−λA∇2⊥ þ λmm2Þδðx − yÞ: ðB20Þ

This completes the derivation of (49) given in the text.

APPENDIX C: HYDROKINETIC TRANSPORT
EQUATION FOR SOFT PIONS AT

ZERO ISOSPIN DENSITY

The equations of superfluid hydro describe how soft
Goldstone modes (i.e., pions) interact with the stress tensor
of the normal fluid. Since the wavelength of these modes is
short compared to the wavelengths associated the energy
momentum tensor, the evolution of the pion modes is
described by a Boltzmann equation. The stochastic super-
fluid hydrodynamic theory can be used to determine the
form of this Boltzmann equation (which looks like a
relaxation time equation), in much the same way that
the kinetic equations for sound modes can be determined
from stochastic hydrodynamics [34,35]. Our goal here is to
derive the results of Sec. III. B. Good derivations of
the Boltzmann equation from a stochastic wave equation
can be found in several places [48–50]. Here we will
follow [49].

1. Derivation of the Boltzmann equation

We will derive the transport equation in the absence
of a net isospin charge. In this case each component of
φa is independent, and the distribution function fab is
diagonal. Wewill therefore derive the transport equation for
a one component scalar field. The wave equation for the
pion fluctuations takes the form (see Appendix B for
definitions),

−∂μðχAGμν∂νφÞ þ f2m2φ − λA∇2⊥∂τφþ λmm2∂τφ ¼ ξ:

ðC1Þ

Here the parameters, Gμν, uμ, f2, m2, λA and λm depend
slowly on space and time, and the variance of the noise is
given in (B20). The gradients drive the pion distribution
weakly out of equilibrium, while the dissipation and noise
tries to reestablish local equilibrium.
Our goal is to derive the kinetic equation associated with

this stochastic wave equation by making the appropriate
quasiparticle approximations. The first two terms come
from the ideal equations of motion, while the last two terms
are viscous corrections. Space-time gradients to the ideal
equations of motion are of the same order as viscous
corrections and will be included in developing the transport
equations. However, space-time gradients to the viscous
parts of the equations of motion are smaller and will be
ignored (see Appendix B).
To streamline the discussion we introduce the following

linear operator with retarded boundary conditions:

Lxy ≡ ½−∂μðχAGμν∂νÞ þ f2m2 − λA∇2⊥∂τ

þ λmm2∂τ�δðx − yÞ: ðC2Þ

Here it is understood that the parameters [such as GμνðxÞ]
are functions of the space-time coordinates xμ ¼ ðx0; xÞ.
Below we will employ a hypercondensed notion where
repeated coordinates are integrated over, e.g.,

GRðx; yÞφðyÞ≡
Z

d4yGRðx; yÞφðyÞ: ðC3Þ

The retarded Green function satisfies

LxzGRðz; yÞ ¼ δðx − yÞ; ðC4Þ

while the advanced Green function satisfies

LyzGAðx; zÞ ¼ δðx − yÞ: ðC5Þ

The equations of motion are thus

Lxx0φðx0Þ ¼ ξðxÞ; ðC6Þ

and the two point functions satisfy
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Lxx0Lyy0 hφðx0Þφðy0Þi ¼ hξðxÞξðyÞi: ðC7Þ

The distribution function Nðx; yÞ is defined (see below
for motivation) from the symmetrized two point functions
of fields via an integral equation [49],

hφðxÞφðyÞi¼−iðGRðx;zÞNðz;yÞ−Nðx;zÞGAðz;yÞÞ: ðC8Þ

With this definition, Nðx; yÞ evolves as

iðLxzNðz; yÞ − LyzNðx; zÞÞ ¼ hξðxÞξðyÞi: ðC9Þ

Now we will make a Wigner transform, defining average
x̄ ¼ ðxþ yÞ=2 and difference s ¼ x − y coordinates. The
Wigner transform takes the form,

Z
d4se−ip·sAðx;zÞBðz;yÞ

¼Aðx̄;pÞBðx̄;pÞ

þ i
2

�∂Aðx̄;pÞ
∂x̄μ

∂Bðx̄;pÞ
∂pμ

−
∂Aðx̄;pÞ
∂pμ

∂Bðx̄;pÞ
∂x̄μ

�
þ…

ðC10Þ

The Wigner transform of the differential operator takes
the form,

Z
d4se−ip·sLxy ¼ 2χAðx̄ÞðHðx̄;pÞ− iEðx̄;pÞΓpðx̄;pÞ=2Þ:

ðC11Þ

Here the “Hamiltonian” is

Hðx; pÞ ¼ 1

2
GμνðxÞpμpν þ

1

2
v2ðxÞm2ðxÞ; ðC12Þ

where the rest frame energy is Eðx̄; pÞ≡ −uμpμ, and the
quasiparticle damping rate is Γpðx;pÞ¼DAΔμνpμpνþ
Dmm2. The retarded Green function is the inverse of Lxy,

GRðx̄; pÞ ≃
1

2χA

1

H − iEðΓp=2Þ
¼ 1

χA

1

ð−E2 þ ω2
p − iEΓpÞ

;

ðC13Þ

where ω2
p ¼ v2ðΔμνpμpν þm2Þ is the quasiparticle energy

in the rest frame.
We now will give present the motivation for the

definition of the distribution function based on (C8).
The first motivation comes by considering equilibrium.
In this case we may use full Fourier transforms and use
translational invariance hφðxÞφðyÞi≡Gsymðx − yÞ, where
the symmetrized distribution correlation function as a
function of momentum is

GsymðpÞ ¼ −iðGRðpÞ −GAðpÞÞNðpÞ: ðC14Þ

In order to satisfy the fluctuation dissipation theorem, we
must have

NðpÞ → nðEÞ þ 1

2
≃
T
E
; ðC15Þ

in equilibrium.
The next motivation comes from taking averages of the

fields. Consider the average,

h∂μφðxÞ∂νφðxÞi ≃
1

2χA

Z
d4p
ð2πÞ4 pμpνNðx; pÞ

×

�
−i

H − iEðΓp=2Þ
−

−i
Hþ iEðΓp=2Þ

�
:

ðC16Þ

The presence of the difference between the retarded
and advanced propagators means that the integration over
p0 is “pinched” whenever H approaches zero, i.e., when-
ever the particle goes on shell. Using the pinch approxi-
mation, we find

h∂μφðxÞ∂νφðxÞi≃
1

2χA

Z
d4p
ð2πÞ42πδðHÞsignðEÞpμpνNðx;pÞ:

ðC17Þ

The δ-function is satisfied at two roots p0 ¼ −h�ðx; piÞ,
and we write

2πδðHÞ ¼ 2π

j∂H=∂p0j
δðp0 þ hþðx; pÞÞ

þ 2π

j∂H=∂p0j
δðp0 þ h−ðx; pÞÞ; ðC18Þ

where ∂H=∂p0 ¼ G0νpν, and

h�ðx;piÞ¼
G0ipi

G00
� 1ffiffiffiffiffiffiffiffiffiffiffi

−G00
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
GijþG0iG0j

−G00

�
pipjþv2m2

s
:

ðC19Þ

Note that h−ðx;−pÞ ¼ −hþðx; pÞ. For future reference we
also note that E ¼ −pμuμ ¼ �ωp.
The integral in (C16) breaks up into a positive piece and

negative piece. After changing variables p → −p in the
negative piece, the integral takes the form,
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h∂μφðxÞ∂νφðxÞi

≃
1

2χA

Z
d3pi

ð2πÞ3ð∂H=∂p0Þ
pμpν½Nðx; pÞ − Nðx;−pÞ�;

ðC20Þ
where now the momentum is evaluated on the positive
mass shell,

pμ ¼ ð−hþðx; piÞ; piÞ; with
∂H
∂p0

> 0: ðC21Þ

For real fields Nðx; pÞ ¼ −Nðx;−pÞ, so

h∂μφðxÞ∂νφðxÞi ≃
1

χA

Z
d3pi

ð2πÞ3ð∂H=∂p0Þ
pμpνNðx; pÞ:

ðC22Þ
With these preliminaries we can determine the equation

of motion Nðx; pÞ on mass shell. The Wigner transform of
(C9) yields an equation of motion for Nðx; pÞ of the form,

∂ðχAHÞ
∂pμ

∂Nðx; pÞ
∂xμ −

∂ðχAHÞ
∂xμ

∂Nðx; pÞ
∂pμ

¼ −χAΓp½ENðx; pÞ − T�: ðC23Þ
As a first step towards putting the distribution on shell (with
p0 or E positive), we define fðx; pi;HÞ, which is para-
metrized by H instead of p0,

Nðx; p0; piÞ≡ fπðx; pi; χAHÞ: ðC24Þ
The equation of motion for fπðx; pi; χAHÞ, simply loses
the ∂=∂p0 term since the Poisson bracket of χAHwith itself
is zero,

∂ðχAHÞ
∂pμ

∂fπ
∂xμ −

∂ðχAHÞ
∂xi

∂fπ
∂pi

¼ −χAΓp½Efπ − T�: ðC25Þ

In evaluating equal time expressions of fields as in (C22),
we only need the distribution evaluated on shell where
H ¼ 0 and E ¼ ωp, yielding the equation of motion given
in the text (81). We also note that the velocity and force of
the soft pions is given by

∂H=∂pi

∂H=∂p0

¼ ∂hþðx; piÞ
∂pi

; ðC26Þ

−
∂H=∂xi
∂H=∂p0

¼ −
∂hþðx; piÞ

∂xi ; ðC27Þ

leading to an alternate form of the Boltzmann
equation (83).

2. Derivation of the Boltzmann stress tensor

To complete the Boltzmann picture we need to evaluate
the stress tensor. We have already discussed how to

evaluate stochastic averages such as h∂μφ∂νφi, with the
result,

χAh∂μφðxÞ∂νφðxÞi ≃
Z

d3pi

ð2πÞ3ð∂H=∂p0Þ
pμpνfπðx; piÞ:

ðC28Þ
Expanding the superfluid stress tensor given in (12) to

quadratic order in φ and μA with μV ¼ 0, and then
averaging over the stochastic fluctuations of the pion field
yields the coarse grained stress tensor,

hTμνðxÞi ¼ eðTÞuμuν þ pðTÞΔμν þ Tμν
π ; ðC29Þ

where the pion contribution is9

Tμν
π ¼ dAhðeφ þ fμ2Þuμuν þ pφΔμν þ f2ΔμαΔνβ∂αφ∂βφi:

ðC30Þ

Here the axial chemical potential is μ ¼ −uμ∂μφ, the
pressure to quadratic order is

pφ ≡ −χA
�
1

2
Gμν∂μφ∂νφþ 1

2
v2m2φ2

�
; ðC31Þ

and the energy density is

eφ ≡ −pφ þ T
∂pφ

∂T þ μ
∂pφ

∂μ : ðC32Þ

The pressure pφ is a function of T, μ, ð∂φÞ2 and φ2,
echoing the discussion surrounding (14).
Now let us evaluate Tμν

π in a kinetic approximation. The
hΔμαΔνβ∂αφ∂βφi term leads to the second term in (84). The
pressure pφ is closely related to the HamiltonianH, and we
find

hpφðxÞi ¼
Z

d3pi

ð2πÞ3ð∂H=∂p0Þ
Hðx; pÞfπðx; pÞ; ðC33aÞ

¼ 0; ðC33bÞ

since Hðx; pÞ ¼ 0 on shell. Finally, careful algebra
together with the constraint Hðx; pÞ ¼ 0 yields

heφ þ fμ2i ¼
Z

d3pi

ð2πÞ3ð∂H=∂p0Þ
ωp

∂ðβωpÞ
∂β fπðx; pÞ:

ðC34Þ

Putting together the ingredients leads to (84).

9Recall that in this appendix φ denotes one isospin component
of the pion field. We have multiplied (C30) by dA ¼ 3 to account
for the three pion states.
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