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Abstract
Tree-based regressionmodels are a class of statisticalmodels for predicting continuous
response variables when the shape of the regression function is unknown. They nat-
urally take into account both non-linearities and interactions. However, they struggle
with linear and quasi-linear effects and assume iid data. This article proposes two new
algorithms for jointly estimating an interpretable predictive mixed-effect model with
two components: a linear part, capturing the main effects, and a non-parametric com-
ponent consisting of three trees for capturing non-linearities and interactions among
individual-level predictors, among cluster-level predictors or cross-level. The first
proposed algorithm focuses on prediction. The second one is an extension which
implements a post-selection inference strategy to provide valid inference. The perfor-
mance of the two algorithms is validated via Monte Carlo studies. An application on
INVALSI data illustrates the potentiality of the proposed approach.

Keywords Multilevel data · Interaction effects · Recursive partitioning · Regression
trunk models

Mathematics Subject Classification 62J99 · 62J05 · 62G08

1 Introduction

Mixed-effect or multilevel models (Snijders and Bosker 2012; Pinheiro and Bates
2006) are a valuable class of models able to deal with hierarchical/clustered data.
Typical hierarchical data consist of statistical units (level 1 units) nested into clus-

The authors thank the Associate Editor and the anonymous reviewers for their very useful comments that
led to this improved version of the paper.

B Anna Gottard
anna.gottard@unifi.it

1 Department of Statistics, Computer Science, Applications “G. Parenti”, Florence Center for Data
Science, University of Florence, Florence, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11634-022-00509-3&domain=pdf
http://orcid.org/0000-0002-8246-4962


432 A. Gottard et al.

ters (level 2 units). Classic examples are students clustered within schools (individual
cross-sectional data) or children’s growth evaluated at several time points (repeated
measures). Mixed-effect models consider unit clustering, including both fixed and
random effects in the model. The standard linearity assumption for the fixed effects
is too stringent in many situations, and a more flexible model specification, including
non-linear effects and interactions, might be required. Aworthwhile approach exploits
regression trees (CART) (Breiman et al. 1984) to capture non-linear fixed effects and
interactions via a piece-wise constant regression function. Several tree-based algo-
rithms have been proposed in the literature to improve CART performance in different
ways. For instance, see Loh (2002), Hothorn et al. (2006), Dusseldorp et al. (2010)
and the subsequent literature to ensemble learning.

Tree-based models typically assume iid data and therefore ignore a clustered data
structure when present. As it is well known that ignoring the clustering structure can
lead to biased inference (see, e.g. Bryk and Raudenbush 2001, for linear models),
some proposals have been suggested in the literature to adapt tree-based models to
clustered, multilevel and longitudinal data. In the framework of longitudinal data,
Segal (1992) was, up to our knowledge, the first to deal with this topic, generalizing
the CART algorithm and its loss function to the case of correlated multiple binary
responses. Zhang (1998) discussed the case ofmultiple binary response variables using
as impurity measure the generalized entropy criterion, linked to the log-likelihood of a
specific exponential family distribution. Other contributions are due to Abdolell et al.
(2002), Loh and Zheng (2013), Eo and Cho (2014), among many. Being specific for
longitudinal data, these solutions cannot be adopted when the clustered data do not
have a regular structure.

In the general framework of multilevel data, regression trees have been extended to
clustered data by Hajjem et al. (2011) and Sela and Simonoff (2012) modelling fixed
effects with a decision tree while automatically accounting for random effects with
a linear mixed model in a separate step. In particular, Hajjem et al. (2011) proposed
mixed-effect regression trees (MERT) where CART selects the tree that models the
fixed effect part, and a node-invariant linear structure is used to model the random
effects. The algorithm is implemented within the framework of the expectation-
maximization algorithm. Sela and Simonoff (2012) independently proposed a similar
solution, called Random Effects/EM trees (RE-EM tree). It is shown that random
effect regression trees are less sensitive to parametric assumptions and provide sub-
stantially improved predictive power compared to linear models with random effects
and regression trees without random effects. The literature has grown with variants
and extensions (e.g. Hajjem et al. 2014; Fu and Simonoff 2015; Hajjem et al. 2017;
Miller et al. 2017; Pellagatti et al. 2021). Other solutions, including trees and clustered
data, have been proposed in the framework of subgroups analysis. See for instance
Fokkema et al. (2018) and Seibold et al. (2019).

This paper proposes a semi-parametric mixed-effect model where trees are added to
a linear component for capturing interactions and non-linear effects. The idea of adding
a linear component to a tree is not new in the literature. While regression trees can
easily capture complex dependencies by reconstructing the entire regression function,
they need many fortuitous splits to recreate a linear or quasi-linear function (Friedman
et al. 2001). For this reason, tree-based models are said to struggle in fitting linear or
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additive dependencies. To overcome this issue, Dusseldorp andMeulman (2004) were
thefirst to propose to combine a linear part and a regression tree in a singlemodel, called
regression trunk model, that can be efficiently estimated by a Simultaneous Threshold
InteractionModellingAlgorithm (STIMA) proposed byDusseldorp et al. (2010). Here
we extend regression trunk models to the case of the mixed-effect models. Moreover,
we include multiple trees in the tree component instead of one. For the particular
application we have in mind, we consider here the case of three trees. The first tree
captures non-linear relationships and interactions among level 1 predictors. The second
tree captures non-linear relationships and interactions among level 2 predictors, while
the third is devoted to detecting cross-level interactions. This last kind of interaction is
of particular interest in multilevel analysis (see, for instance, Bauer and Curran 2005).

Following the reasoning of Efron (2020), the proposed approach lies in between a
pure predictive algorithm and a more traditional regression method, providing an easy
to interpret mixed-effect model with good predictive properties. The linear component
helps to maintain the three trees as short as possible, while the three trees act as weak
learners from the point of view of prediction. The resulting model is more easily
interpretable than a single tree or a random forest. Moreover, it has a better predictive
performance than a linear mixed-effect model. We call this class Three-tree mixed-
effect (3Trees) models.

For the estimation of 3Trees models, we propose two different algorithms. The first
algorithm relies on a backfitting-like procedure for selecting the three trees component,
and then it jointly estimates the linear and tree-based parts. It provides good predic-
tions of the response Y for new units in already observed or new clusters. Therefore,
this algorithm is useful when a study has predictive purposes only. The second algo-
rithmmodifies the first one by introducing a post-selection inference procedure, which
provides a pruning method based on hypothesis tests and valid confidence intervals
for the predicted values. Specifically, we apply a split sample procedure (Cox 1975)
on clusters. We evaluate the proposed algorithms through simulations. It turns out that
both algorithms are computationally efficient and have satisfactory performance.

The remainder of the paper is organized as follows. Section 2 describes the proposed
Three-tree mixed-effect model and its interpretation. Section 3 presents the two esti-
mating algorithms. Section 4 reports a simulation study to evaluate the performance
of the two algorithms in the case of a random intercept model. Section 5 illustrates
an application of the 3Trees model to analyze the Maths scores achieved by Italian
children at a national standardized test. The last section offers concluding remarks and
outlines directions for future work.

2 The Three-treemixed-effect model

In this section, we present themixed-effectmodel calledThree-treemixed-effect model
(3Treesmodel). For simplicity,we focus on the case of random interceptmixedmodels,
but the extension to random slopes is straightforward. See Appendix B for an example.

Suppose that Yi j is a quantitative response variable measured on unit i , i =
1, . . . , n j , belonging to cluster/group j , with j = 1 . . . , J and ntot = ∑J

j=1 n j .
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We assume that the true data generating process has the form

Yi j = x′
i jβ + z′

jγ + g(xi j , z j ) + u j + εi j (1)

where xi j is the vector of p1 individual-level predictors, β the associated main fixed
effect coefficients, including β0 as intercept, while z j is the vector of p2 cluster-level
predictors and γ the associated main fixed effect coefficients. Let p = p1 + p2. Here
g(·) is an unknown function Rp → R, ruling the non-linear fixed-effects, assumed to
not vary across clusters. The level 1 errors εi j are assumed to be iid N (0, σ 2

ε ). The
level 2 errors (random effects) u j are supposed to be iid N (0, σ 2

u ). Moreover, the
level 1 and level 2 errors are assumed to be independent. Thus, the model assumes
that responses of units belonging to the same cluster are positively correlated, with
correlation equal to

ICC = σ 2
u

σ 2
u + σ 2

ε

, (2)

although responses of units belonging to different clusters are uncorrelated. In model
(1), for each cluster j , the random quantity b j = β0 + u j is the so-called random
intercept, varying across clusters, with b j⊥⊥ b j ′ for all j �= j ′ ∈ {1, . . . , J }.

As the non-linear function g(·) is unknown, we propose a nonparametric approxi-
mation based on regression trees. In particular, considering a two-level structure, we
propose to use three trees. The first tree accounts for non-linearities at level 1, the
second tree accounts for non-linearities at level 2, and the third one accounts for non-
linearities among all predictors. The primary purpose of the third tree is to account
for cross-level interactions, namely interactions among level 1 and level 2 predictors.
We call this model the Three-tree mixed-effect (3Trees) model

Yi j = x′
i jβ + z′

jγ +
3∑

t=1

Tt (hti j ) + u j + εi j . (3)

In the 3Trees model, the function g(·) of Eq. (1) is approximated by the sum of
three regression trees, Tt (t = 1, 2, 3), each constructed over a subset of predictors.
Specifically, h1i j ⊆ xi j (level 1 predictors), h2i j ⊆ z j (level 2 predictors) and h3i j ⊆
(xi j ∪ zi j ) (level 1 and level 2 predictors).

The model is additive in its components, and the tree component stands as a region-
specific intercept. Model (3) can be written equivalently as

Yi j = x′
i jβ + z′

jγ +
3∑

t=1

Mt∑

m=1

μtmI{hti j ∈ Rtm} + u j + εi j , (4)

where Rt1, . . . , RtMt is the partition of the predictor space corresponding to the tree
Tt . From this point of view, each tree acts as a factor withMt categories. Each category
corresponds to a tree leaf, representing a region of the selected partition of the predictor
space. The region Rtm can be identified bymultiplying all the dummyvariables defined
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by the binary splits along the path from the root node to each leaf in the tree Tt .
Therefore, some classical identifiability constraints, such as sum-to-zero or corner
constraints, must be included for each of these three factors.

When the unknown regression function can be assumed to be quasi-linear (Wermuth
and Cox 1998), the number of leaf nodes Mt (t = 1, 2, 3) can be kept small. In this
situation, the proposed class of models is most convenient, providing a good balance
between performance and interpretability. The presence of three trees instead of one,
e.g. as used for iid data in STIMA (Dusseldorp et al. 2010), allows us to achieve the
same goodness of fit with trees having smaller depth. In addition, devoting the trees
to specific sets of predictors improves the ability of the algorithm to detect different
kinds of non-linear effects.

The choice of the subsets of variables h1i j h2i j and h3i j to be included in each
tree is driven by subject-matter considerations. As a general practice, we recommend
including all the potentially relevant variables and leaving it to the algorithm to select
the most pertinent. Notice that the presence of the linear component attenuates the
typical issue of the tree-based algorithms with correlated predictors.

It is worth noting that if the regression function has strong non-linearities, with
abrupt inversions in the sign of dependence, model (3) may require deep trees to
achieve good performance. One can include flexible functions in the linear part to
overcome this issue, such as polynomials or splines. In this case, the so-called linear
component captures such strong non-linearities,while the tree componentmostly picks
up the interaction effects.

The main difference of our procedure with respect to previous proposals (Hajjem
et al. 2011; Sela and Simonoff 2012), is the inclusion of the linear component x′

i jβ +
z′
jγ in the mixed-effect model (3). This inclusion allows to avoid overfitting and helps

interpretation.

3 Two estimating algorithms

We propose two iterative procedures to select the trees and estimate the model param-
eters. While previous proposals for trees with clustered data were based on a kind of
EM algorithm (see, for instance, Hajjem et al. 2011), we propose a procedure similar
to backfitting for the selection of the trees.

Recalling that we denoted the total number of sample units as ntot = ∑J
j=1 n j , let

us call X the ntot × p1 matrix of the individual-level predictors, with rows x′
i j . Let Z

be the ntot × p2 matrix of the cluster-level predictors, with rows zi j = z′
j for all the

units of the same cluster, i = 1, . . . , n j . Denote H L = (X, Z) the ntot × p matrix,
with p = p1 + p2 of all the predictors included into the linear component, H1 the
matrix ntot × h1 , h1 ≤ p1, whose columns are selected from X to be considered for
the tree T1 , H2 the matrix ntot × h2 , h2 ≤ p2, whose columns are selected from Z
to be considered for the tree T2 and H3 the matrix ntot × h3 , h3 ≤ p, whose columns
are selected from H L for T3. Finally, call y the ntot × 1 vector of the responses.

The first algorithm we are proposing, called 3Trees-Alg and whose pseudo-code
can be found in Algorithm 1, has predictive purposes. It consists of two main steps:
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Algorithm 1: 3Trees-Alg Backfitting algorithm for Three-tree linear mixed mod-
els
Input: D = {

yi j , xi j , z j
}
, i = 1, . . . , n j , j = 1, . . . , J and the derived matrices

HL , H1, H2, H3
Output: Response predictions based on the tree embedded linear mixed model (4)

1 Initialization: ŷ(0)T 1 = ŷ(0)T 2 = ŷ(0)T 3 = y/3 ; ŷ(0)L = (H ′
L HL )−1 H ′

L y ;

2 Selection step. Select model M̂ with minl MSE(l):
3 repeat
4 sub-step L:

5 Compute the vector of partial residuals for the linear component as r(l)L = y − ∑3
t=1 ŷ(l−1)

T t ;

6 Fit a linear mixed-effect model of r(l)L on HL ;

7 Predict ŷ(l)L from the fitted model using both fixed and random effects

sub-step Tree1:
8 Compute the vector of partial residuals for T1 as r(l)1 = y − ŷ(l)L − ŷ(l−1)

T 2 − ŷ(l−1)
T 3 ;

9 Fit a regression tree with the CART algorithm for r(l)1 on H1;

10 Predict ŷ(l)T 1 from the fitted tree

sub-step Tree2:
11 Compute the vector of partial residuals for T2 as r(l)2 = y − ŷ(l)L − ŷ(l)T 1 − ŷ(l−1)

T 3 ;

12 Fit a regression tree with the CART algorithm of r(l)2 on H2;

13 Predict ŷ(l)T 2 from the fitted tree

sub-step Tree3:
14 Compute the vector of partial residuals for T3 as r(l)3 = y − ŷ(l)L − ŷ(l)T 1 − ŷ(l)T 2 ;

15 Fit a regression tree with the CART algorithm of r(l)3 on H3 ;

16 Predict ŷ(l)T 3 from the fitted tree

sub-step evaluation: Compute MSE(l) = mean
(
y − ŷ(l)L − ŷ(l)T 1 − ŷ(l)T 2 − ŷ(l)T 3

)2

17 until convergence criterion is met;
18 Estimation step: Compute parameter estimates for model M̂ using the standard maximum

likelihood estimator for linear mixed-effect model of y on HL and the three factors corresponding to
the trees selected at iteration l : MSE = argmin MSE(l).

the Selection step and the Estimation step. The Selection step aims to find the best
trees conditionally on the linear component. The algorithm initialises the sum of the
three trees equal to the sample mean and the linear component at the standard least
squared estimates. This choice provides a neutral starting point that, in our experience,
facilitates algorithm convergence. Then the procedure iteratively runs the CART algo-
rithm (Breiman et al. 1984) on the partial residuals with respect to the other trees
and the mixed effect linear component. At the end of each iteration, the algorithm
computes the Mean Squared Error (MSE) based on the predictions for each tree and
the mixed-effect model. The iterative procedure stops when the convergence criterion
is met, namely, the difference between MSE in two successive iterations is below a
given threshold, or the maximum number of iterations is achieved. Notice that as the
regression function is not smooth, the algorithm can fall into a periodic loop. Hiabu
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et al. (2021), in a different framework, proved the validity of backfitting in the pres-
ence of non-smoothness. Therefore, the Selection step of 3Trees-Alg returns the trees
corresponding to the minimum MSE. For the Selection step, one has also to set the
tuning parameters of the CART algorithm, such as the maximum depth of the tree, the
minimum number of units in a leaf node and the complexity parameter CART. If this
latter parameter is set to a value different from zero, then the CART algorithm within
3Trees-Alg performs tree pruning at each iteration via cross-validation.

In the second step of the 3Trees-Alg algorithm, the Estimation step, each tree
selected in the Selection step is specified as a factor, and a mixed-effect model with the
linear component and the three new factors as in (4) is fitted via maximum likelihood.
The step returns the estimates of all the parameters μtm , with m = 1, . . . , Mt , t =
1, 2, 3, for the tree component, the vectors of coefficients for the linear components
β and γ, and the variances σ 2

u , σ
2
ε .

It is worth pointing out that the tree component is selected non-parametrically. The
CART procedure to choose the trees is greedy, and therefore it addresses the splittings
of the predictors providing the local largest decrease in MSE. This implies a lack of
order invariance in the tree component. Namely, if we permute the order of the trees
in the Selection step, the resulting selected trees can be different. The order invariance
can be guaranteed when the subsets of variables included in the trees are disjoint, i.e.
each variable can participate in the construction of only one tree, and the variables are
independent between trees. However, in multilevel settings, we are often interested
in detecting cross-level interactions, which requires defining a third tree that includes
all predictors. Thus the trees cannot be kept disjoint. In principle, one could try all
six possible orderings of trees and choose by predictive performance comparison.
However, we suggest the order dictated by the standard strategy of model building in
multilevel analysis (Snijders and Bosker 2012), namely first select level 1 predictors,
then level 2 predictors, and finally cross-level interactions.

The 3Trees-Alg algorithm, described in Algorithm 1, is implemented in a user
written R code (avalaible from the authors), using the package lme4 (Bates et al.
2015a) for the estimation of the mixedmodels and on rpart (Therneau and Atkinson
2019) for selecting the trees via the CART algorithm.

3.1 Algorithm based on post-selection inference

The proposed tree-based mixed-effect model inherits the theoretical properties of
parametric models if the model is well specified. If the selected regression function
is not assumed to be the true one but rather a good approximation of it, inference is
referred to the projection parameters (see, for instance Buja et al. 2019), where the
regression function is optimally projected into the space of the semilinear functions
in (4). The tree component identification utilizes the CART algorithm that is proved
to provide a locally optimal solution (Breiman et al. 1984).

In a context where themodel is selected using the data, as in our procedure, classical
tools for inference, such as p-values and confidence intervals, are invalid (see, for
instance Benjamini 2010; Berk et al. 2013). In particular, as confidence intervals are
computed after model selection, the classical procedures provide narrower confidence
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intervals than due at the nominal level, with an actual coverage below the nominal
one. Interesting literature on post-selection inference proposes methods mainly in the
context of ordinary least square and Lasso-type estimators for iid data. A simple post-
selection inference procedure, proper when the interest is to discover dependencies
and influential predictors in a data-driven model, is the split sampling procedure (Cox
1975). It involves the random division of the sample into two parts, one used to select
the model and one used for inference. This procedure allows deriving conditional
(post-selection) tests or confidence intervals. In addition, when required, inference
based on sample splitting followed by bootstrap provides assumption-lean, robust
confidence intervals for the projection parameters (Rinaldo et al. 2019).

To obtain adequate inference for the parameters of a 3Trees model, we propose
adopting a split sampling procedure. At this aim, we need to assume that themaximum
size of the selected model is under control. This corresponds to fixing the maximum
depth of each tree.

For multilevel data, the standard assumption of iid data applies at the cluster-level.
Therefore, sample splitting is obtained by randomly partitioning the J clusters into two
subsets, approximately of equal size. This partition induces a partition of the original
data set D into two subsets, say DS and DE . The first subset, DS , is used to select the
three trees using the Selection step of Algorithm 1. The second subset,DE , is used for
inference on model parameters using the standard linear mixed effect procedures and
software. The proposed algorithm, called 3Trees-Alg-PSI, is summarized inAlgorithm
2.

Algorithm 2: 3Trees-Alg-PSI Backfitting algorithm for the Three-tree linear
mixed models using sample splitting procedure
Input: D = {

yi j , xi j , z j
}
, i = 1, . . . , n j , j = 1, . . . , J and the derived matrices

HL , H1, H2, H3
Output: Estimates of Model (4) parameters with their asymptotic standard errors

1 Random splitting: Let [J ] := {1, . . . , J }. Randomly choose the subset [JS ] ⊂ [J ], of cardinality
≈ J

2 , and define [JE ] := [J ] \ [JS ].
2 Selection step: Select M̂ applying the sub–algorithm Selection step of Algorithm 1 to the subset of
data DS = {

yi j , xi j , z j
}
, i = 1, . . . , n j , j ∈ [JS ].

3 Estimation step: Compute parameter estimates for model M̂ using the standard maximum
likelihood estimator for mixed effect models on the subset of data DE = {

yi j , xi j , z j
}

i = 1, . . . , n j , j ∈ [JE ].

Applying 3Trees-Alg-PSI, we obtain an interpretable predictive model laying in
between exploratory and confirmatory data analysis. The confidence intervals com-
puted using 3Trees-Alg-PSI can also be used to prune a tree when the complexity
parameter in the CART sub-step is set to zero or kept very small. For this purpose,
consider the two regions Rtm and Rtm′ corresponding to the left and right terminal
leaves, produced by the same variable splitting of the tree Tt . Let μtm and μtm′ be the
corresponding coefficients in the 3Trees model as in (4). Pruning the tree corresponds
to joining Rtm and Rtm′ . Therefore, the tree can be safely pruned whenever the null
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hypothesis

H0 : μtm = μtm′ vs HA : μtm �= μtm′

cannot be rejected or, equivalently, when the confidence intervals for the two param-
eters overlap. To perform a deeper pruning, one has to check the equality of all the
coefficients involved in the pruning. The pruned 3Trees model is nested in the larger
3Trees model by imposing equality constraints on the parameters. Therefore, standard
techniques for nested model parameters, such as the Likelihood Ratio test, can be
safely utilized.

4 Simulation studies

In this section, we propose two simulation studies to evaluate the algorithms presented
in Sect. 3 for fitting 3Trees models.

The first simulation study aims at evaluating the predictive performance of Algo-
rithm 1 (3Trees-Alg). In contrast, the second one is designed to assess the inferential
accuracy in terms of confidence intervals of Algorithm 2 (3Trees-Alg-PSI).

We consider three scenarios with different data generating processes. Each sce-
nario includes two individual-level predictors, X1 and X2, having bivariate Normal
distribution, N2(0,Σ), and two cluster-level predictors, Z1 and Z2, with distribution
N2(0,Γ ). We set the following values for the covariance matrices

Σ = Γ =
(
1.0 0.4
0.4 1.0

)

The random components are u j ∼ N (0, σ 2
u ), with σ 2

u = 3, and εi j ∼ N (0, σ 2
ε ),

with σ 2
ε = 1. Those values imply a high Intraclass Correlation Coefficient (ICC =

0.75), which allows us to clearly show the relevance of using the random effects in
predicting the response. The data generating processes of the three scenarios differ in
the shape of the regression function, as described in the following.

Scenario 1: we assume the following linear model

Yi j = β0 + β1X1i j + β2X2i j + γ1Z1 j + γ2Z2 j + u j + εi j

where β0 = 5 , β1 = 1 , β2 = 0 , γ1 = 1 and γ2 = 0. In this scenario, the true model
is a linear mixed effect model.

Scenario 2: we assume a quasi-linear model that includes linear terms, threshold
non-linear terms and interaction terms, as follows

Yi j = β0 + β1X1i j + β2X2i j + γ1Z1 j + γ2Z2 j + μ1I(X1i j ≥ 0)+
+ μ2I(Z2 j < 0) + μ3I(X1i j < 0)I(Z2 j ≥ 0) + u j + εi j ,

whereβ0 = 5 , β1 = 1 , β2 = 0 , γ1 = 1 and γ2 = 0 , μ1 = 2 , μ2 = 3 andμ3 = −3.
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Scenario 3: we use the non-linear model of Hajjem et al. (2014), except that we
replace the third and fourth level 1 predictors (X3 and X4) with level 2 predictors,
denoted as Z1 and Z2.

Yi j = β0 + β1X1i j + β2X2i j + γ1Z1 j + γ2Z2 j + μ1X
2
2i j

+μ2Z1 j ln |X1i j | + u j + εi j ,

with β0 = 0 , β1 = 2 , β2 = 0 , γ1 = 4 and γ2 = 0 , μ1 = 2 , μ2 = 2.
In each scenario, some parameters of the linear part are set to zero to provide a glimpse
of the ability of the proposed methods to correctly identify predictors with no linear
effects in this small dimensional setting.

4.1 Predictive performance

For each scenario described in the previous section, we generate 500 data sets with
J = 500 clusters of n j = 100 units, for a total sample size of 50 000 units. We
randomly split each cluster into two equal parts to form the train and the test sets, each
composed of J = 500 clusters of n j = 50 units.

We compare the predictive performance of Algorithm 1 (3Trees-Alg) for fitting the
three-tree models with the following commonly usedmethods: RE-EM trees (Sela and
Simonoff 2012), regression trees (CART) (Breiman et al. 1984), and a linear mixed-
effect model with main effects only (Linear-ME) fitted with maximum likelihood. In
addition, we compare the performance of mixed effect random forest as proposed by
Hajjem et al. (2014). As a benchmark, we also report the results for a mixed-effect
model specified as the data generating model (True-ME). Notice that in Scenario 1,
the True-ME model and the Linear-ME model coincide.

We implement the 3Trees-Alg in R (RCore Team2020), using the packagesrpart
(Therneau and Atkinson 2019) for the tree component and lme4 (Bates et al. 2015b)
for the mixed-effect linear component. As tuning parameters for the tree component
we set rpart maxdepth tuning parameters at 2 for the first two scenarions, and
at 3 for the third one. The rpart complexity parameter cp is set at 0.0001. The
rpart package has also been used for CART, while lme4 has also been used to fit
linear mixed-effect models Linear-ME and True-ME. The RE-EM algorithm has been
implemented using the R package REEMtree (Sela and Simonoff 2021) with the
complexity parameter for pruning at 0.01 and the number of standard errors used in
pruning set at 1. For themixed-effect random forest, we used two different R functions.
The first function, MixRF, that we used with the default setting, is implemented in
the package MixRF (Wang et al. 2016). The second function, MERF, is implemented
in the package LongituRF (Capitaine et al. 2021). We used the default setting for
this function, but without the stochastic longitudinal component, not adequate for the
scenarios considered in this section.

In clustered data, we can distinguish two types of predicted values for the response
variable: (i) the value of the response for a statistical unit of a hypothetical (new)
cluster and (ii) the value of the response for a statistical unit belonging to a cluster
already included in the sample. The two types of prediction differ in the value assigned
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Table 1 Monte Carlo averages and standard deviations of the Mean Squared Error and Predictive Mean
Squared Error, computed with fixed effects only (MSE, PMSE), or including BLUP predictions of the
random effects (clusMSE and clusPMSE). Scenarios 1, 2 and 3 (J = 500 , n j = 50 for both the training
set and the test set, number of Monte Carlo runs: 500, except for MixRF and MERF with 250 runs)

Algorithm clusMSE MSE clusPMSE PMSE

Scenario 1

True-ME 0.980 (0.009) 3.992 (0.194) 1.020 (0.009) 3.991 (0.197)

3Trees 0.979 (0.009) 3.991 (0.194) 1.021 (0.010) 3.992 (0.197)

RE-EM 1.102 (0.033) 4.319 (0.263) 1.159 (0.035) 4.333 (0.264)

MixRF 0.307 (0.004) 3.224 (0.199) 1.085 (0.010) 3.998 (0.196)

MERF 0.238 (0.005) 2.768 (0.210) 1.106 (0.010) 3.669 (0.202)

CART 4.276 (0.205) 4.307 (0.210)

Scenario 2

True-ME 0.980 (0.009) 3.985 (0.195) 1.020 (0.009) 3.985 (0.198)

3Trees 0.981 (0.019) 3.982 (0.197) 1.022 (0.020) 3.983 (0.199)

RE-EM 1.330 (0.031) 5.113 (0.481) 1.386 (0.032) 5.115 (0.482)

Linear-ME 2.625 (0.046) 7.502 (0.314) 2.730 (0.047) 7.500 (0.314)

MixRF 0.312 (0.004) 3.367 (0.198) 1.094 (0.010) 4.156 (0.196)

MERF 0.241 (0.004) 2.744 (0.205) 1.113 (0.010) 3.656 (0.197)

CART 4.694 (0.259) 4.704 (0.262)

Scenario 3

True-ME 0.980 (0.009) 3.992 (0.194) 1.020 (0.009) 3.991 (0.197)

3Trees 6.079 (0.347) 9.156 (0.414) 6.421 (0.367) 9.262 (0.423)

3Trees (depth 6) 3.244 (1.048) 6.133 (1.057) 3.504 (1.103) 6.277 (1.078)

RE-EM 6.853 (0.416) 12.577 (0.729) 7.289 (0.433) 12.762 (0.726)

Linear-ME 13.690 (0.412) 16.931 (0.470) 14.200 (0.417) 16.931 (0.470)

MixRF 0.708 (0.029) 4.702 (0.297) 2.192 (0.087) 6.260 (0.307)

MERF 0.312 (0.011) 3.298 (0.285) 1.473 (0.048) 4.486 (0.270)

CART 11.298 (0.457) 11.551 (0.469)

to the random effect. In the first type, the random effect is set at its expectation, namely
zero, thus predicting the response with the fixed part only. On the other hand, in the
second type, the random effect is set at the BLUP prediction for the observed cluster,
thus predicting the response with the fixed part plus the BLUP prediction (Robinson
1991; Skrondal and Rabe-Hesketh 2009).

To evaluate the predictive performance of the methods under comparison, we com-
pute the Mean Squared Error on the train data and the Predictive Mean Squared Error
on the test data (new data). We denote with MSE and PMSE, respectively, the mea-
sures referred to the predictions with the fixed part only. In addition, we denote with
clusMSE and clusPMSE the measures when the prediction refers to a new unit in an
observed cluster, i.e. including the random effect.

Table 1 reports the Monte Carlo averages and standard deviations of the mean
squared errors for the methods under comparison. The predictive performance of the
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proposed 3Trees-Alg algorithm, asmeasured by clusPMSE andPMSE, is very close to
the benchmark of the correctly specified mixed-effect model (True-ME) in Scenario
1 and Scenario 2. As expected, in the highly non-linear model of Scenario 3, the
performance of 3Trees-Alg does not reach the benchmark. However, it is still better
than the other algorithms, apart from the two mixed-effect random forest algorithms.
It is worth noting that the performance of the 3Trees-Alg improves when the depth
of the trees increases. As an example, for Scenario 3, we report the performance of
3Trees-Alg with trees of depth 6. This performance is substantially improved but at
the cost of a less easy interpretation. An interesting aspect is the comparison of MSE
and PMSE, which are pretty similar for the 3Trees algorithm, suggesting that it is
never overfitting.

As expected, the error measures for predicting a unit in a new cluster (MSE and
PMSE) are higher than the corresponding measures relative to the prediction for a
unit of an observed cluster (clusMSE and clusPMSE). The magnitude is much larger
(about three times) due to the high proportion of the between-cluster variation in
the simulated data (ICC=0.75). It is worth noting that clusMSE and clusPMSE are
obtained using BLUP predictions of level 2 errors, which are crucial for obtaining an
accurate prediction for a unit of an observed cluster.

The standard deviation of the random effects σu is interesting per se and, in addition,
it plays a key role in the prediction for an observed cluster since it affects the BLUP
of the random effect. We compare the performance of the competing methods in
estimating the parameter σu by plotting the Monte Carlo distributions (except for
CART, which does not provide an estimate of σu). In Scenario 1 (Fig. 1), there are
no relevant differences, except for MERF, which seems to underestimate the random
effect variance.

On the other hand, Scenarios 2 and 3 are noteworthy, and the results are reported in
Fig. 2. In all cases, the proposed method (3Trees-Alg) yields estimates of σu similar
to the benchmark (True-ME), whereas the performance of RE-EM is not satisfactory.
Indeed, RE-EM and MixRF tend to overestimate σu , with a large bias in Scenario 3,

Fig. 1 Monte Carlo distribution
of the estimate of the parameter
for the random effects standard
deviation σu for the 3Trees and
RE-EM algorithms, compared
with the mixed-effect model
with the true (linear) regression
functions, under Scenario 1

σu
3Trees

MERF
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RE−EM

RE−True
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Fig. 2 Monte Carlo distributions of the estimate the random effects standard deviation σu for the 3Trees
and RE-EM algorithms, compared with the mixed-effect models with the true and the linear regression
functions respectively, under Scenario 2 and 3

while MERF underestimates it in Scenario 2. The 3Trees algorithm performs better
than RE-EM and Linear-ME also in estimating the level 1 standard deviation σε, as
shown by the plots of the Monte Carlo distributions reported in Appendix A (Figs. 6
and 7).

Another aspect to consider is the estimate of the parameters of the linear component,
β1 , β2 , γ1 and γ2. Notice that the proposed algorithm is not meant to recover the
true data generating process but to predict the response by selecting a quasi-linear
model closest to the true data generating process.When the tree component adequately
approximates interactions and non-linearities, the parameters of the linear part should
be close to the true ones. Table 2 reports the Monte Carlo averages and standard
deviations of such estimates for the linear component. In both Scenario 1 and 2, the
algorithm 3Trees-Alg provides estimates as good as the benchmark algorithm for null
and non-null parameters. In Scenario 3, the parameters for the main effects of the
level 1 predictors are correctly captured by the 3Trees-Alg algorithm, together with
the null coefficient of the cluster-level predictor Z2. Conversely, the coefficient of
Z1 turns out to be underestimated. This behaviour is due to the particular shape of
the non-linear component, i.e. the interaction term Z1 j ln |X1i j |, which is probably
inaccurately accounted for by the tree component. This behaviour confirms that this
scenario would probably require a deeper tree to capture such a particular non-linear
shape.

The simulation results are similar when we consider a smaller number of clusters,
and smaller clusters (J = 50 and n j = 15), with a test set for prediction evaluation
of equal size. For these simulations, we also consider the predictive performance of
a single regression trunk model for i id data (Dusseldorp et al., 2010) estimated via
the R package stima with maxsplit set to 2. Table 7 of Appendix A reports the
results for this case for the three scenarios. Simulations indicate that the behaviour of

123



444 A. Gottard et al.

Table 2 Monte Carlo averages and standard deviations of the estimates of the parameters in the linear
component in Scenarios 1, 2 and 3 (J = 500 , n j = 50 for both the training set and the test set, number of
Monte Carlo runs: 500)

Algorithm Parameters

β1 β2 γ1 γ2

Scenario 1

True values 1.000 0.000 1.000 0.000

True-ME 1.000 (0.007) 0.001 (0.007) 0.997 (0.085) 0.003 (0.088)

3Trees 1.000 (0.010) 0.001 (0.010) 0.997 (0.085) 0.003 (0.088)

Scenario 2

True values 1.000 0.000 1.000 0.000

True-ME 0.999 (0.011) 0.001 (0.007) 0.997 (0.085) 0.005 (0.137)

3Trees 0.999 (0.011) 0.001 (0.007) 0.998 (0.088) −0.008 (0.144)

Linear-ME 2.396 (0.027) 0.001 (0.011) 0.996 (0.109) −1.797 (0.114)

Scenario 3

True values 2.000 0.000 4.000 0.000

True-ME 2.000 (0.007) 0.001 (0.007) 3.997 (0.085) 0.003 (0.088)

3Trees 2.000 (0.017) 0.039 (0.578) 2.728 (0.119) 0.004 (0.113)

Linear-ME 2.001 (0.026) 0.001 (0.046) 2.727 (0.093) 0.003 (0.092)

the proposed algorithmwith respect to the benchmark is confirmed in terms of average
clusPMSE, with a slight increase in Monte Carlo variability.

Further settings are considered in Table 8 of Appendix A. Specifically, we report
simulation results for five variations of Scenario 2. In Scenario 2A, we set the pre-
dictors’ covariance at 0.75 instead of 0.4 to check the algorithm’s behaviour in the
case of highly correlated predictors. Scenario 2B considers the case of independent
predictors instead. The 3Trees-Alg algorithm seems not influenced by the correlation
between predictors, reporting similar performance in the two scenarios. Scenario 2C
considers the case of a lower value of the intraclass correlation coefficient. In this
case, the performance remains unchanged in terms of clusPMSE, but it is improved
in terms of PMSE due to the reduced impact of the random component. Finally, in
Scenarios 2D and 2E, the coefficients of the linear part increase to 5 or decrease to
0.5. Overall, the performance of the 3Trees algorithm is essentially unchanged. To
check the behaviour of the procedures with more sample sizes, Table 9 in Appendix
A presents the results of the same study as Table 2, where other eight non-significant
explanatory variables were added to Scenario 2. The procedure is still able to capture
which variables have no linear effect in this quasi-linear scenario.

4.2 Inferential accuracy

The Algorithm 3Trees-Alg-PSI (Algorithm 2 in Sect. 3.1) is devised to provide valid
confidence intervals. We run a further simulation study applying the 3Trees-Alg-PSI
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Table 3 Monte Carlo average length and Monte Carlo coverage of the 95% confidence intervals for the
parameters of the linear component and for the random effects standard deviation. (Scenario 2 J = 500,
n j = 100, number of Monte Carlo runs: 500)

Algorithms Parameters

σu β1 β2 γ1 γ2

Monte Carlo mean of the interval length

True-ME 0.215 0.030 0.019 0.333 0.524

Split-True-ME 0.304 0.043 0.027 0.472 0.743

3Trees-Alg-PSI 0.305 0.043 0.027 0.521 0.790

Monte Carlo coverage

True-ME 0.934 0.946 0.964 0.948 0.948

Split-True-ME 0.960 0.960 0.976 0.954 0.958

3Trees-Alg-PSI 0.948 0.958 0.976 0.952 0.946

Algorithm to evaluate its performance, using 500 data sets of J = 500 clusters of size
n j = 100.

For comparison, we compute the confidence intervals for the parameters of interest
using a correctly-specified mixed effect model (true model) fitted either on the entire
data set (True-ME) and on the same split sample used in the Estimation step of Algo-
rithm 3Trees-Alg-PSI, labelled Split-True-ME.We compare theMonte Carlo averages
of the interval length and the Monte Carlo actual coverage. We are reporting here the
results for Scenario 2 (Table 3), while those for Scenario 1 and 3 are in Appendix A
(Table 10).

Note that the 3Trees-Alg-PSI is directly comparable with Split-True-ME, as they
both are fitted on half of the data set. In summary, the length of the confidence intervals
obtained with the 3Trees-Alg-PSI is in line with a mixed effect model fitted on the
halved sample (Split-True-ME). Instead, the confidence intervals obtained by True-
ME are shorter since they are obtained using the whole data set. Therefore, the loss
of efficiency is attributable to the reduced sample size and not to the tree selection
procedure. Moreover, 3Trees-Alg-PSI provides confidence intervals of the expected
coverage, in line with correctly specified mixed effect models, as if the regression
function was known. The results for Scenario 1 (Table 10) are in line with those of
Scenario 2. As expected, for Scenario 3 the performances are worse. Deeper trees are
required for this data generating process complexity, as highlighted by simulations in
Table 1.

5 An illustrative example on invalsi tests in italian schools

We apply a 3Trees model to data from the Italian Invalsi test (see, e.g. Cardone et al.
2019). These data concern students who participated in the Invalsi Math tests while
attending 5th grade in 2013–2014 and then attending the 8th grade in 2016–2017. The
Invalsi data have amultilevel structure where the individual-level units are represented
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Table 4 Student and school level variables

Pupil-level variables

MATH8 Response: Test score at 8th grade (0-100)

MATH5 Test score at 5th grade (0-100)

SES Socio-economic status (standardized)

GENDER Gender (0 = male, 1 = female)

REGULAR Regular career (0 = regular, 1 = one year early, 2 = one year late)

IMM Citizenship (0 = Italian, immigrant: 1 = 1st generation, 2 = 2nd generation)

School-level variables

AREA Geographical area (0 = NE, 5 categories)

TOWN School located in the provincial capital (1 = yes, 0 = no)

CLSIZE Average number of students per class

SCSIZE Number of classes in the school

SCTYPE Type of school (0 = non-public, 1 = public)

by pupils and the cluster-level units by the schools, grouping the students. The data
set contains 409 528 pupils in 5 777 Italian schools, with an average number of tested
students per school of 70.94. Here the aim is to predict the Math achievement at
8th grade, having some clues on understanding why results differ. The student and
school-level predictors are described in Table 4.

We exploit the 3Trees model (4) with pupils as level 1 units and schools as level
2 units, where the random effect part is aimed to capture unobserved factors at the
school-level.We first use the 3Trees-Alg (Algorithm 1) to predict theMath score at the
8th grade. Table 5 compares the performance of the 3Trees model using Algorithm 1
(with tree depths set at 3) and the same algorithms considered in the simulation study.
The 3Trees-Alg has the best performance for predicting the math score of a student
in an observed school (clusPMSE) and predicting the response of a new student in a
new school (PMSE). The RE-EM provides the second-best prediction when cpmin=
0.0001, providing a tree with 55 terminal nodes. The performance when cpmin=
0.001 is worse, but the resulting tree, with 15 terminal nodes, is more interpretable.
The CART algorithm, ignoring the two-level structure of the data, performs worse
than 3Trees and Linear-ME but avoids overfitting, thanks to the pruning procedure
based on cross-validation.

The three methods accounting for clustering show a reduction of the PMSE when
using the random effects to predict the response for a new unit in an observed cluster
(clusPMSE). For the 3Treesmodel, this reduction is about 12%,which ismuch smaller
than what was observed in the simulations (Table 1) due to the lower value of the ICC
(0.13 versus 0.75).

In order to make inference on the coefficients of the predictors, we apply the
3Trees-Alg-PSI (Algorithm 2), which randomly splits the schools into two inde-
pendent sub-samples for post-selection inference. Estimating the contextual effects
of socio-economic status (SES) and mathematical background (MATH5) of pupils
belonging to the same school is relevant for inferential purposes. To this end, we add
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Table 5 Comparison of the the predictive performance for Math score in Invalsi data (clusMSE and MSE
on train data, clusPMSE and PMSE on test data)

Algorithm clusMSE MSE clusPMSE PMSE

3Trees 214.13 251.77 220.15 250.13

RE-EM (cpmin= 0.001) 219.32 259.23 225.97 258.09

RE-EM (cpmin= 0.0001) 214.30 252.64 220.67 251.35

Linear RE 220.46 259.34 226.86 257.83

CART 270.84 270.49

MATH5 < 67

MATH5 >= 23

SES >= −1.2 MATH5 >= 17

SES < −0.62

MATH5 >= 91 SES < −0.16

Node
R1.8

Node
R1.9

Node
R1.10

Node
R1.11

Node
R1.12

Node
R1.13

Node
R1.14

Node
R1.15

yes no

Fig. 3 First tree of the 3Trees model on Invalsi data using Algorithm 2

to the predictors the school averages of these two variables, named gr.M(SES) and
gr.M(MATH5). To facilitate the interpretation of the results and keep control of the
maximum size of the selected model, we set the maximum tree depth at three.

We first describe the tree component in the 3Trees model selected by 3Trees-Alg-
PSI. The algorithm represents the predictors’ partition of each tree as a factor with
Mt labels corresponding to the partition regions. The factor is then parameterized as
(Mt − 1) dummy variables for the usual identifiability constraints. The first region
plays as the reference. For simplicity, in the factor description, T stands for Tree and
R for Region. The regions selected on the student-level predictors by the first tree are
depicted in Fig. 3 and summarized as follows.

T1 R1.8 (reference): I (23 ≤ MATH5 < 67 & SES ≥ −1.21)
T1 R1.9 : I (23 ≤ MATH5 < 67 & SES < −1.21)
T1 R1.10 : I (17 ≤ MATH5 < 23)
T1 R1.11 : I (MATH5 < 17)
T1 R1.12 : I (MATH5 ≥ 91 & SES < −0.62)
T1 R1.13 : I (23 ≤ MATH5 < 67 & SES < −0.62)
T1 R1.14 : I (MATH5 ≥ 67 & − 0.62 ≤ SES < −0.16)
T1 R1.15 : I (MATH5 ≥ 67 & SES ≥ −0.16)

123



448 A. Gottard et al.

gr.M(MATH5) >= 82

SCSIZE < 3.5 gr.M(MATH5) < 54

gr.M(SES) >= −0.89 gr.M(SES) >= −0.88

Node
R2.4

Node
R2.5

Node
R2.12

Node
R2.13

Node
R2.14

Node
R2.15

yes no

Fig. 4 Second tree of the 3Trees model on Invalsi data using Algorithm 2

The second tree, on the school-level predictors, is depicted in Fig. 4 and its selected
regions are listed below.

T2 R2.4 (reference) : I (gr.M(MATH5) ≥ 82 & SCSIZE < 3.5)
T2 R2.5: I (gr.M(MATH5) ≥ 82 & SCSIZE ≥ 3.5)
T2 R2.12 : I (gr.M(MATH5) < 54 & gr.M(SES) ≥ −0.89)
T2 R2.13 : I (gr.M(MATH5) < 54 & gr.M(SES) < −0.89)
T2 R2.14 : I (54 ≤ gr.M(MATH5) < 82 & gr.M(SES) ≥ −0.88)
T2 R2.15 : I (54 ≤ gr.M(MATH5) < 82 & gr.M(SES) < −0.88)

Finally, the third tree jointly considers all predictors. The selected regions are
depicted in Fig. 5 and listed below.

T3 R2.8 (ref.): I (35 ≤ MATH5 < 77 & AREA �= South, Islands)
T3 R3.9 : I (35 ≤ MATH5 < 77 & AREA = South, Islands)
T3 R3.10: I (MATH5 ≥ 77 & AREA = South, Islands)
T3 R3.11 : I (MATH5 < 77 & AREA �= South, Islands)
T3 R3.12 : I (MATH5 < 35 & AREA = Center)
T3 R3.13 : I (MATH5 < 35 & AREA = Nord–West,Nord–East)
T3 R3.14 : I (MATH5 < 35 & AREA = South, Islands & gr.M(MATH5 < 64)
T3 R3.15 : I (MATH5 < 35 & AREA = South, Islands & gr.M(MATH5 ≥ 64)

The parameter estimates and their confidence intervals are reported in Table 6 in
the column labelled 3Trees model. As expected, theMath score at 5th grade (MATH5)
is a key predictor, with a significant main effect in the linear component, in addition
to non-linear and interaction effects captured by the first and third trees. Concerning
other student-level predictors, it is worth noting that one of the most relevant predic-
tors is the socio-economic status, confirming an enduring issue and the necessity of
additional support for children with low socio-economic status in order to overcome
social inequalities.
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Fig. 5 Third tree of the 3Trees model on Invalsi data using Algorithm 2

Regarding the school-level predictors, the coefficient of type of school (SCTYPE)
is negative. Thus, conditionally on the other predictors, students of public schools
have a lower performance.

Looking at the confidence intervals, we note that two school-level predictors,
namely the number of classes in the school (CLSIZE) and the school’s location
(TOWN), have confidence intervals crossing zero. In addition, the tree for the school-
level predictors has two regions (R2.12 and R2.13) whose confidence intervals for
the coefficients largely overlap. Similarly, in the third tree, the regions R3.10 and
R3.11. Consequently, these two trees can be pruned. Table 6 also reports the parameter
estimates obtained from a reduced model where the trees are pruned and the non-
significant predictors SCSIZE and TOWN are omitted. This reduced model has four
parameters less than the full model and is nested in it. The pruned 3Trees model is pre-
ferred based on the Likelihood Ratio test comparing the two models (statistic = 4.67,
df = 4, p-value = 0.322).

6 Conclusions

Tree-based regressionmodels are a class of predictive algorithms that are conceptually
simple and able to take into account both interactions and non-linearities. However,
they struggle with linear dependencies and assume iid data.

This paper proposes amultilevel extension of regression trunkmodelswhere the tree
component consists ofmultiple trees. In particular,we call 3Treesmodel amixed-effect
model with a linear part and three trees. The trees are aimed to take into account non-
linearities and interactions among individual-level predictors, cluster-level predictors
and cross-levels. The model can be easily extended to a larger number of trees.

The key idea behind our proposal is to develop a flexible class of models capable of
accurately approximating the true regression functionwhile preserving interpretability.
Indeed, the limitation of a standard regression tree is that, even if it is able to reconstruct
a regression function in the presence of non-linear effects and interactions, it does not
directly reveal which effect is linear and which is not, which predictor is involved in an
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Table 6 Estimates and 95% confidence intervals for the 3Trees model using Algorithm 2 and the corre-
sponding pruned tree

3Trees model Pruned 3Trees model

MATH5 0.626 ( 0.616 , 0.636 ) 0.626 ( 0.616 , 0.636 )

SES 2.129 ( 2.028 , 2.230 ) 2.130 ( 2.029 , 2.231 )

GENDER (female) − 1.434 (−1.564 ,−1.304 ) −1.434 (−1.564 ,−1.304 )

REGULAR (before) 1.648 ( 1.064 , 2.232 ) 1.652 ( 1.068 , 2.236 )

REGULAR (after) −3.554 (−4.116 ,−2.992 ) −3.554 (−4.116 ,2.991 )

IMM (1st gen) −1.215 (−1.703 ,−0.728 ) −1.216 (−1.703 ,−0.728 )

IMM (2nd gen) −1.485 (−1.796 ,−1.175 ) −1.485 (−1.795 ,−1.174 )

AREA (North-West) 0.370 (−0.351 , 1.092 ) 0.383 (−0.338 , 1.105 )

AREA (Centre) −2.070 (−2.777 ,−1.364 ) −2.037 (−2.738 ,−1.336 )

AREA (South) 7.053 ( 5.907 , 8.199 ) 7.084 ( 5.941 , 8.227 )

AREA (Islands) 8.365 ( 7.202 , 9.528 ) 8.383 ( 7.223 , 9.544 )

TOWN 0.273 (−0.292 , 0.837 )

CLSIZE 0.148 ( 0.123 , 0.172 ) 0.149 ( 0.125 , 0.173 )

SCSIZE 0.038 ( −0.075 ,0.151 )

SCTYPE (public) −1.702 (−2.804 ,−0.600 ) −1.665 (−2.645 ,−0.686 )

School Mean gr.M(SES) 1.180 ( 0.456 , 1.904 ) 1.167 ( 0.533 , 1.801 )

School Mean gr.M(MATH5) −0.302 (−0.345 ,−0.258 ) −0.302 (−0.345 ,−0.258 )

First tree, region R1.9 0.875 ( 0.524 , 1.225 ) 0.883 ( 0.532 , 1.234 )

First tree, region R1.10 5.547 ( 3.966 , 7.129 ) 5.554 ( 3.973 , 7.136 )

First tree, region R1.11 13.639 (10.669 ,16.609) 13.641 (10.671 ,16.611)

First tree, region R1.12 −3.031 (−3.689 ,−2.374 ) −3.028 (−3.685 ,−2.371 )

First tree, region R1.13 −0.529 (−0.865 ,−0.193 ) −0.527 (−0.863 ,−0.191 )

First tree, region R1.14 0.503 ( 0.166 , 0.840 ) 0.503 ( 0.166 , 0.840 )

First tree, region R1.15 1.560 ( 1.298 , 1.822 ) 1.561 ( 1.299 , 1.823 )

Second tree, region R2.5 3.086 ( 0.178 , 5.995 ) 3.170 ( 0.270 , 6.069 )

Second tree, region R2.12 −2.334 (−5.711 , 1.043 )

Second tree, region R2.13 0.698 (−3.499 , 4.896 )

Second tree, region R2.14 0.176 (−2.263 , 2.614 )

Second tree, region R2.15 0.292 (−2.741 , 3.326 )

Second tree, region R2.12 + R2.13 −1.299 (−4.505 , 1.907 )

Second tree, region R2.14 + R2.15 0.312 (−2.110 , 2.734 )

Third tree, region R3.9 −7.246 (−8.136 ,−6.356 ) −7.246 (−8.136 ,−6.356 )

Third tree, region R3.10 −12.352 (−13.312,−11.391) −12.351 (−13.312,−11.391)

Third tree, region R3.11 3.977 ( 3.727 , 3.727 ) 3.978 ( 3.728 , 4.228 )

Third tree, region R3.12 −1.102 (−1.865 ,−0.339 ) −1.103 (−1.866 ,−0.340 )
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Table 6 continued

3Trees model Pruned 3Trees model

Third tree, region R3.13 2.019 ( 0.960 , 3.077 ) 2.015 ( 0.956 , 3.073 )

Third tree, region R3.14 −2.163 (−3.288 ,−1.038 ) −2.155 (−3.279 ,−1.030 )

Constant 32.595 (28.085 ,37.106) 32.643 (28.159 ,37.128)

Level 2 (school) std deviation 6.004 ( 5.830 , 6.186 ) 6.011 ( 5.836 , 6.192 )

Level 1 (pupil) std deviation 14.752 (14.706 ,14.797) 14.752 (14.706 ,14.797)

interaction and which is not. As explained by Gottard et al. (2020), in most tree-based
algorithms, including CART and random forests, the ordering of the splitting variables
and their importance can be different from the ordering and the importance of the direct
effects on the response. The interpretation of a tree is in terms of predictive power and
not on attribution (Efron 2020) and direct effects as in traditional regression. From
this point of view, 3Trees models constitute an interesting bridge between a proper
statistical model and a machine learning algorithm.

To estimate the 3Trees model parameters, we introduce two iterative algorithms.
The first algorithm is specific for predictive purposes and showed a good predictive
performance in the simulation study and the applied study on Invalsi data. It produces
transparent and interpretable predictions. However, this algorithm does not provide
valid confidence intervals, as the shape of the regression function is learned during
the estimation process. We propose a post-selection inference procedure that provides
valid confidence intervals for the coefficients and predicted values to overcome this
limitation. This procedure is based on the splitting sample procedure, which is easy
to apply and shows good performance if the number of clusters in the data is not too
small. Notice that, in likelihood-based inference for multilevel models, the number
of clusters is crucial for estimating the level 2 variance σ 2

u , which in turn affects the
standard errors of regression coefficients, especially those related to level 2 predictors
(Elff et al. 2021). In the case of a few clusters, say less than 30 in each split sample,
the level 2 variance is appreciably underestimated. Thus the confidence intervals are
shorter than due. This issue can be addressed by REML estimation, though this comes
at the cost of losing efficiency and it prevents using LR tests for pruning.

The proposed algorithms for 3Trees models can be easily extended to allow for
predictors with random slopes (see Appendix B). Indeed, there is no need to modify
the algorithm but to specify the random component properly. It is worth noting that the
role of a random slope is to account for a large unexplained between-cluster variation
in the regression coefficient of a level 1 predictor. This scenario is less likely in a 3Trees
model due to the flexibility of the tree component, notably for what concerns cross-
level interactions. It can happen that the increase in complexity induced by random
slopesmay not be adequately rewarded in terms of predictive power. It will be up to the
researcher to decide whether to adopt a random slope or leave cross-level interactions
to be explained by the trees. In general, random slopes should be considered only for
predictors playing a key role in the research aims.
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Finally, further work is needed to apply the proposed 3Trees model and related
algorithms to high dimensional settings. When the number of predictors increases, the
proposed algorithms can be modified to deal with the high dimensionality issue. For
instance, one could replace the likelihood-based estimation procedure with the lasso-
type estimator of Groll and Tutz (2014). In addition, recently Rügamer et al. (2022)
proposed a procedure for post-selection inference for linear mixed-effect models and
additive models, implementing a multi-stage selection procedure. Further research is
needed to evaluate if their proposal can be adapted to the case of 3Trees models.
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Appendix A: Further results of theMonte Carlo study

Fig. 6 Monte Carlo distribution
of the estimate of the parameter
for the residual standard
deviation σε for the 3Trees and
RE-EM algorithms, compared
with the mixed-effect model
with the true (linear) regression
functions. Scenario 1 of Table 1
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Fig. 7 Monte Carlo distributions of the estimate the residual standard deviation σε for the 3Trees and RE-
EM algorithms, compared with the mixed-effect models with the true and the linear regression functions
respectively. Scenarios 2 and 3 of Table 1

Table 7 Monte Carlo averages and standard deviations of the Mean Squared Error and Predictive Mean
Squared Error, computed with fixed effects only (MSE, PMSE), or including BLUP predictions of the
random effects (clusMSE and clusPMSE). Scenarios 1, 2 and 3 (J = 100 , n j = 15 for both the training
set and the test set, number of Monte Carlo runs: 500)

Algorithm clusMSE MSE clusPMSE PMSE

Scenario 1

True-ME 0.932 (0.035) 3.907 (0.475) 1.067 (0.040) 3.912 (0.473)

3Trees 0.917 (0.035) 3.846 (0.499) 1.084 (0.041) 3.883 (0.497)

RE-EM 0.962 (0.045) 3.653 (0.533) 2.890 (0.151) 5.604 (0.586)

MixRF 0.316 (0.014) 3.231 (0.475) 1.180 (0.044) 4.071 (0.472)

MERF 0.247 (0.020) 2.384 (0.661) 1.191 (0.049) 3.418 (0.570)

CART 3.275 (0.372) 3.580 (0.396)

STIMA 3.565 (0.437) 3.593 (0.437)

Scenario 2

True-ME 0.931 (0.035) 3.874 (0.472) 1.068 (0.040) 3.882 (0.470)

3Trees 1.050 (0.185) 4.296 (0.913) 1.227 (0.219) 4.328 (0.926)

RE-EM 1.268 (0.065) 4.946 (0.822) 1.476 (0.081) 4.986 (0.817)

MixRF 0.347 (0.014) 4.299 (0.563) 1.267 (0.051) 5.256 (0.574)

MERF 0.253 (0.016) 2.630 (0.676) 1.214 (0.049) 3.669 (0.612)

Linear-ME 2.501 (0.116) 7.347 (0.723) 2.858 (0.134) 7.369 (0.728)

CART 4.124 (0.424) 4.259 (0.442)

STIMA 4.113 (0.466) 4.159 (0.476)
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Table 7 continued

Algorithm clusMSE MSE clusPMSE PMSE

Scenario 3

True-ME 0.931 (0.035) 3.906 (0.475) 1.069 (0.039) 3.913 (0.473)

3Trees 6.360 (0.921) 9.360 (1.062) 7.659 (0.964) 9.958 (1.045)

RE-EM 6.260 (0.819) 11.503 (1.383) 8.239 (0.951) 12.854 (1.393)

MixRF 1.326 (0.185) 6.386 (0.947) 4.450 (0.560) 9.571 (1.172)

MERF 0.595 (0.105) 4.454 (1.588) 2.909 (0.393) 6.860 (1.569)

Linear-ME 13.176 (1.278) 16.784 (1.427) 14.673 (1.206) 16.900 (1.302)

CART 9.339 (0.869) 11.243 (1.060)

STIMA 11.255 (1.158) 11.761 (1.071)

Table 8 Monte Carlo averages and standard deviations of the Mean Squared Error and Predictive Mean
Squared Error, computed with fixed effects only (MSE, PMSE), or including BLUP predictions of the
random effects (clusMSE and clusPMSE). Five variants of Scenario 2 (J = 100 , n j = 15 for both the
training set and the test set, number of Monte Carlo runs: 500)

Algorithm clusMSE MSE clusPMSE PMSE

Scenario 2A: highly correlated predictors (ρ = 0.75)

True-ME 0.931 (0.035) 3.873 (0.473) 1.069 (0.040) 3.881 (0.472)

3Trees 1.045 (0.181) 4.220 (0.820) 1.221 (0.215) 4.260 (0.822)

RE-EM 1.254 (0.072) 4.761 (0.670) 1.463 (0.088) 4.808 (0.668)

MixRF 0.336 (0.014) 4.008 (0.562) 1.242 (0.046) 4.925 (0.567)

MERF 0.246 (0.015) 2.811 (0.608) 1.208 (0.048) 3.822 (0.558)

Linear-ME 2.502 (0.119) 7.356 (0.728) 2.856 (0.134) 7.365 (0.740)

CART 4.078 (0.442) 4.222 (0.447)

STIMA 4.119 (0.470) 4.161 (0.475)

Scenario 2B: independent predictors

True-ME 0.931 (0.035) 3.874 (0.472) 1.069 (0.040) 3.882 (0.471)

3Trees 1.055 (0.189) 4.281 (0.970) 1.235 (0.225) 4.313 (0.968)

RE-EM 1.274 (0.067) 5.141 (0.958) 1.489 (0.085) 5.193 (0.948)

MixRF 0.359 (0.016) 4.146 (0.602) 1.265 (0.050) 5.097 (0.607)

MERF 0.267 (0.021) 2.214 (0.749) 1.229 (0.051) 3.298 (0.652)

Linear-ME 2.502 (0.116) 7.353 (0.743) 2.861 (0.138) 7.378 (0.736)

CART 4.176 (0.453) 4.318 (0.460)

STIMA 4.116 (0.468) 4.157 (0.475)

Scenario 2C: Intra- class Correlation = 0.20

True-ME 0.944 (0.036) 1.234 (0.061) 1.056 (0.038) 1.245 (0.058)

3Trees 1.081 (0.194) 1.469 (0.460) 1.230 (0.222) 1.503 (0.466)

RE-EM 1.286 (0.050) 2.282 (0.245) 1.484 (0.071) 2.327 (0.244)

MixRF 0.349 (0.015) 1.147 (0.186) 1.265 (0.051) 2.067 (0.200)
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Table 8 continued

Algorithm clusMSE MSE clusPMSE PMSE

MERF 0.255 (0.012) 0.436 (0.055) 1.201 (0.047) 1.363 (0.075)

Linear-ME 2.509 (0.117) 4.681 (0.277) 2.851 (0.133) 4.708 (0.277)

CART 1.909 (0.120) 2.008 (0.139)

STIMA 1.497 (0.069) 1.519 (0.070)

Scenario 2D: strong linear component (β1 = γ1 = 5)

True-ME 0.931 (0.035) 3.874 (0.472) 1.068 (0.040) 3.882 (0.470)

3Trees 1.050 (0.185) 4.296 (0.913) 1.227 (0.219) 4.328 (0.926)

RE-EM 3.358 (0.828) 22.844 (6.030) 4.147 (0.981) 23.346 (5.977)

MixRF 0.854 (0.042) 15.020 (2.152) 3.004 (0.208) 17.590 (2.251)

MERF 0.323 (0.033) 9.145 (4.413) 1.547 (0.102) 10.770 (4.240)

Linear-ME 2.501 (0.116) 7.347 (0.723) 2.858 (0.134) 7.369 (0.728)

CART 12.185 (1.100) 13.595 (1.259)

STIMA 4.113 (0.466) 4.159 (0.476)

Scenario 2E: weak linear component (β1 = γ1 = 0.5)

True-ME 0.931 (0.035) 3.874 (0.472) 1.068 (0.040) 3.882 (0.470)

3Trees 1.050 (0.185) 4.296 (0.913) 1.227 (0.219) 4.328 (0.926)

RE-EM 1.024 (0.040) 4.244 (0.614) 1.191 (0.055) 4.272 (0.614)

MixRF 0.334 (0.014) 3.915 (0.505) 1.213 (0.048) 4.813 (0.517)

MERF 0.258 (0.020) 2.258 (0.734) 1.204 (0.050) 3.313 (0.635)

Linear-ME 2.501 (0.116) 7.347 (0.723) 2.858 (0.134) 7.369 (0.728)

CART 3.892 (0.437) 3.983 (0.447)

STIMA 4.113 (0.466) 4.159 (0.476)

Table 9 Monte Carlo averages and standard deviations (in parenthesis) for the parameters of the linear
component in Scenario 2 with 8 noise predictors, J clusters and n j observations (same for both training
and test sets), 500 Monte Carlo runs

Parameter True J = 500 and n j = 50 J = 100 and n j = 15

β1 1.0 1.054 (0.038) 1.257 (0.038)

β2 0.0 0.000 (0.008) 0.003 (0.008)

β3 0.0 0.000 (0.008) −0.002 (0.008)

β4 0.0 0.000 (0.008) −0.002 (0.008)

β5 0.0 0.001 (0.008) −0.001 (0.008)

β6 0.0 0.000 (0.008) −0.001 (0.008)

β7 0.0 0.001 (0.008) 0.002 (0.008)

β8 0.0 −0.001 (0.008) 0.002 (0.008)

β9 0.0 0.000 (0.008) −0.001 (0.008)

β10 0.0 0.000 (0.008) 0.000 (0.008)

γ1 1.0 0.993 (0.107) 0.979 (0.107)

γ2 0.0 −0.321 (0.643) −0.659 (0.643)
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Table 10 Monte Carlo average length and Monte Carlo coverage of the 95% confidence intervals for the
parameters of the linear component and for the random effects standard deviation. Data generating model
of Scenario 1 and 3 (J = 500, n j = 100, number of Monte Carlo runs: 500)

Algorithms Parameters
σu β1 β2 γ1 γ2

Monte Carlo mean of the interval length

Scenario 1

True-ME 0.215 0.019 0.019 0.333 0.333

Split-True-ME 0.304 0.027 0.027 0.472 0.472

3Trees-Alg-PSI 0.304 0.034 0.033 0.472 0.472

Scenario 3

True-ME 0.215 0.019 0.019 0.333 0.333

Split-True-ME 0.304 0.027 0.027 0.472 0.472

3Trees-Alg-PSI 0.310 0.072 0.126 0.546 0.542

Monte Carlo coverage

Scenario 1

True-ME 0.938 0.962 0.964 0.946 0.948

Split-True-ME 0.964 0.962 0.976 0.956 0.942

3Trees-Alg-PSI 0.964 0.970 0.976 0.956 0.942

Scenario 3

True-ME 0.940 0.960 0.962 0.946 0.948

Split-True-ME 0.962 0.962 0.974 0.956 0.942

3Trees-Alg-PSI 0.962 0.938 0.086 0.000 0.962

Appendix B: A random slope 3Trees model for INVALSI data

We show the results of a 3Trees model with a random intercept and a random slope
on SES. The model is fitted on Invalsi data using Algorithm 2, 3Trees-Alg-PSI. The

MATH5 < 73

MATH5 >= 33

MATH5 >= 67 MATH5 >= 23

SES < −0.59

SES < −1.5 MATH5 < 81

Node
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Node
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Node
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R1.11

Node
R1.12

Node
R1.13

Node
R1.14

Node
R1.15

yes no

Fig. 8 First tree of the 3Trees model on Invalsi data using Algorithm 2 with random slope on SES
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Fig. 9 Second tree of the 3Trees model on Invalsi data using Algorithm 2 with random slope on SES
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Fig. 10 Third tree of the 3Trees model on Invalsi data using Algorithm 2 with random slope on SES

algorithm is similar to the one for random intercept, but, both in the selection and in
the estimation step, the specification of the random component in the mixed-effect
model has been modified to include a random slope. In the following, we first describe
the selected trees and then report the estimates table.

The regions selected on the student-level predictors by the first tree are depicted in
Fig. 8 and listed below. Comparing this tree with the corresponding tree in the random
intercept model (Fig. 3), we note that it involves the same predictors, namely MATH5
and SES. However, SES plays a less important role in the tree since it acts only when
MATH ≥ 73. This is an expected consequence given that in the current model the
effect of SES is modelled in a finer way by the random slope.
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T1 R1.8 (ref.): I (67 ≤ MATH5 < 73)
T1 R1.9 : I (33 ≤ MATH5 < 67)
T1 R1.10 : I (23 ≤ MATH5 < 33)
T1 R1.11 : I (MATH5 < 23)
T1 R1.12 : I (MATH5 ≥ 73 & SES < −1.50)
T1 R1.13 : I (MATH5 ≥ 73 & − 1.50 ≤ SES < −0.59)
T1 R1.14 : I (73 ≤ MATH5 < 81 & SES ≥ −0.59)
T1 R1.15 : I (MATH5 ≥ 81 & SES ≥ −0.59)

The second tree, dealing with the school-level predictors, is depicted in Fig. 9 and
its selected regions are summarized as follows.

T2 R2.5 (ref.) : I (gr.M(MATH5) ≥ 78 & gr.M(SES) < −0.093)
T2 R2.6: I (gr.M(MATH5) < 78 & gr.M(SES) ≥ −0.163)
T2 R2.8 : I (gr.M(MATH5) ≥ 78 & gr.M(SES) ≥ −0.093 &

AREA �= South, Islands)
T2 R2.9 : I (gr.M(MATH5) ≥ 78 & gr.M(SES) ≥ −0.093 &

AREA = South, Islands)
T2 R2.14 : I (gr.M(MATH5) < 54 & gr.M(SES) < −0.163)
T2 R2.15 : I (54 ≤ gr(MATH5) < 78 & gr.M(SES) < −0.163)

Finally, the third tree jointly considers all predictors. The selected regions are
depicted in Fig. 10 and described as follows.

T3 R2.8 (ref.): I (MATH5 ≥ 93 & AREA = South, Islands & SES < 0.28)
T3 R3.9 : I (MATH5 ≥ 93 & AREA = South, Islands & SES ≥ 0.28)
T3 R3.10: I (MATH5 ≥ 93 & AREA = Center)
T3 R3.11 : I (MATH5 ≥ 93 & AREA = Nord–West)
T3 R3.12 : I (MATH5 < 67 & AREA �= South, Islands)
T3 R3.13 : I (67 ≤ MATH5 < 93 & AREA �= South, Islands)
T3 R3.14 : I (73 ≤ MATH5 < 93 & AREA = South, Islands)
T3 R3.15 : I (MATH5 < 73 & AREA = South, Islands)

Estimates and confidence intervals are reported in the first column of Table 11
(3Trees model). The estimates for the pruned version are presented in the second
column (Pruned 3Trees model). According to the LR test (statistic = 4.543, df = 3,
p-value = 0.208) the pruned version is to be preferred.
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Table 11 Estimates and 95% confidence intervals for a 3Trees model with random slope on SES using
Algorithm 2 and the corresponding pruned tree

3Trees model Pruned 3Trees model

MATH5 0.609 ( 0.598 , 0.619 ) 0.609 ( 0.598 , 0.619 )

SES 2.118 ( 2.022 , 2.213 ) 2.117 ( 2.022 , 2.212 )

GENDER (female) −1.503 (−1.632 ,−1.375 ) −1.504 (−1.632 ,−1.375 )

REGULAR (before) 1.780 ( 1.200 , 2.360 ) 1.780 ( 1.200 , 2.360 )

REGULAR (after) −3.931 (−4.489 ,−3.372 ) −3.931 (−4.489 ,−3.373 )

IMM (1st gen) −1.393 (−1.884 ,−0.902 ) −1.393 (−1.884 ,−0.902 )

IMM (2nd gen) −1.641 (−1.949 ,−1.333 ) −1.640 (−1.948 ,−1.332 )

AREA (North−West) 0.258 (−0.435 , 0.951 ) 0.261 (−0.432 , 0.954 )

AREA (Centre) −1.469 (−2.160 ,−0.778 ) −1.470 (−2.157 ,−0.783 )

AREA (South) −12.410 (−13.329,−11.491) −12.380 (−13.299,−11.463)

AREA (Islands) −12.083 (−13.021,−11.495) −12.065 (−13.000,−11.130)

TOWN 0.046 (−0.509 , 0.600 )

CLSIZE 0.154 ( 0.129 , 0.178 ) 0.153 ( 0.129 , 0.178 )

SCSIZE 0.123 ( 0.016 ,0.231 ) 0.120 ( 0.013 ,0.226 )

SCTYPE (public) −2.450 (−3.498 ,−1.403 ) −2.349 (−3.387 ,−1.312 )

School Mean gr.M(SES) 1.093 ( 0.259 , 1.926 ) 1.288 ( 0.500 , 2.075 )

School Mean gr.M(MATH5) −0.210 (−0.257 ,−0.164 ) −0.206 (−0.250 ,−0.162 )

First tree, region R1.9 2.187 ( 1.797 , 2.577 ) 2.185 ( 1.796 , 2.575 )

First tree, region R1.10 5.774 ( 5.037 , 6.510 ) 5.769 ( 5.033 , 6.505 )

First tree, region R1.11 13.480 (11.971 ,14.989) 13.473 (11.964 ,14.982)

First tree, region R1.12 0.309 (−0.313 , 0.931 ) 0.303 (−0.319 , 0.925 )

First tree, region R1.13 1.436 ( 1.046 , 1.827 ) 1.433 ( 1.043 , 1.824 )

First tree, region R1.14 2.431 ( 2.131 , 2.730 ) 2.430 ( 2.131 , 2.730 )

First tree, region R1.15 3.747 ( 3.418 , 4.075 ) 3.746 ( 3.417 , 4.074 )

Second tree, region R2.5 0.325 (−2.147 , 2.798 )

Second tree, region R2.6 3.139 ( 1.373 , 4.906 ) 3.213 ( 1.456 , 4.970 )

Second tree, region R2.9 2.717 ( 0.361 , 5.073 )

Second tree, region R2.14 1.772 (−1.247 , 4.790 )

Second tree, region R2.15 2.699 ( 0.765 , 4.634 )

Second tree, region R2.5 + R2.9 1.642 (−0.457 , 3.742 )

Second tree, region R2.14 + R2.15 2.855 ( 0.929 , 4.782 )

Third tree, region R3.9 2.800 ( 2.024 , 3.575 ) 2.812 ( 2.036 , 3.587 )

Third tree, region R3.10 −1.519 (−2.193 ,−0.845 ) −1.524 (−2.199 ,−0.850 )

Third tree, region R3.11 3.275 ( 2.784 , 3.766 ) 3.274 ( 2.783 , 3.765 )

Third tree, region R3.12 −4.825 (−5.257 ,−4.394 ) −4.823 (−5.254 ,−4.391 )

Third tree, region R3.14 5.282 ( 4.714 , 5.850 ) 5.289 ( 4.721 , 5.857 )

Third tree, region R3.15 10.011 ( 9.329, 10.694 ) 10.015 ( 9.333, 10.698 )

Constant 26.834 (22.628 ,31.040 ) 26.332 (22.311 ,37.128 )
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Table 11 continued

3Trees model Pruned 3Trees model

Level 2: intercept std deviation 5.855 ( 5.683 , 6.034 ) 5.861 ( 5.689 , 6.040 )

Level 2: slope std deviation 1.103 ( 0.993 , 1.212 ) 1.103 ( 0.993 , 1.212 )

Level 2: intercept-slope correlation −0.200 (−0.281 ,−0.113 ) −0.200 (−0.279 ,−0.111 )

Level 1: intercept std deviation 14.597 (14.552 ,14.642 ) 14.597 (14.552 ,14.642 )
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