
20 May 2024

On Computing Large Temporal (Unilateral) Connected Components / Costa I.L.; Lopes R.; Marino A.; Silva
A.. - STAMPA. - 13889:(2023), pp. 282-293. (Intervento presentato al convegno 34th International
Workshop on Combinatorial Algorithms, IWOCA 2023 tenutosi a twn nel 2023) [10.1007/978-3-031-34347-
6_24].

Original Citation:

On Computing Large Temporal (Unilateral) Connected Components

Publisher:

Published version:
10.1007/978-3-031-34347-6_24

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/1333416 since: 2023-10-12T10:32:55Z

Springer Science and Business Media Deutschland GmbH

Questa è la versione Preprint (Submitted version) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:

ar
X

iv
:2

30
2.

12
06

8v
2

 [
m

at
h.

C
O

]
 2

8
Fe

b
20

23

On Computing Large Temporal (Unilateral)

Connected Components

Isnard Lopes Costa1 Raul Lopes2,3 Andrea Marino4

Ana Silva1,4

1Universidade Federal do Ceará, Brazil.

isnard.lopes@alu.ufc.br; anasilva@mat.ufc.br
2Université Paris-Dauphine, CNRS UMR7243, France.

3DIENS, École normale supérieure de Paris, CNRS, France.

raul.wayne@gmail.com
4Universitá degli Studi di Firenze, Italy.

andrea.marino@unifi.it

Abstract

A temporal (directed) graph is a graph whose edges are available only at
specific times during its lifetime, τ . Paths are sequence of adjacent edges whose
appearing times are either strictly increasing or non-strictly increasingly (i.e.,
non-decreasing) depending on the scenario. Then, the classical concept of con-
nected components and also of unilateral connected components in static graphs
naturally extends to temporal graphs. In this paper, we answer the following
fundamental questions in temporal graphs. (i) What is the complexity of de-
ciding the existence of a component of size k, parameterized by τ , by k, and by
k+ τ? We show that this question has a different answer depending on the con-
sidered definition of component and whether the temporal graph is directed or
undirected. (ii) What is the minimum running time required to check whether
a subset of vertices are pairwise reachable? A quadratic algorithm is known
but, contrary to the static case, we show that a better running time is unlikely
unless SETH fails. (iii) Is it possible to verify whether a subset of vertices is a
component in polynomial time? We show that depending on the definition of
temporal component this test is NP-complete.

1 Introduction

A (directed) temporal graph (G, λ) with lifetime τ consists of a (directed) graph G
together with a time-function λ : E(G) → 2[τ] which tells when each edge e ∈ E(G)
is available along the discrete time interval [τ]. Given i ∈ [τ], the snapshot Gi refers to
the subgraph of G containing exactly the edges available in time i. Temporal graphs,
also appearing in the literature under different names [14, 8, 32], have attracted a
lot of attention in the past decade, as many works have extended classical notions of
Graph Theory to temporal graphs (we refer the reader to the surveys [32, 36] and the
seminal paper [31]).

A crucial characteristic of temporal graphs is that a u, v-walk/path in G is valid
only if it traverses a sequence of adjacent edges e1, . . . , ek at non-decreasing times
t1 ≤ . . . ≤ tk, respectively, with ti ∈ λ(ei) for every i ∈ [k]. Similarly, one can

1

http://arxiv.org/abs/2302.12068v2

a

b

c

d

e

f

g

1, 5 1

2, 6 2

2

1, 3

1, 2

2

3

3

4

A′ = {a, b} is a closed connected set, as a and b reach
each other without using external vertices.
A = {a, b, c, d} is a maximal closed connected set, i.e.
a closed tcc.
B = {a, b, c, d, e} is a closed tucc but not a closed
tcc as, using only vertices in B, a, b, c, d reach each
other, e reaches all the vertices in B and vice versa,
except for d, which does not reach e. B is also a tcc,
as d can reach e using the external vertex f .
C = {a, b, c, d, e, f} is a tucc as B forms a closed
tucc, f is able to reach every other vertex directly or
via the external vertex g. However, C is not a tcc as
a, b, c, e cannot reach f .

Figure 1: On the left a temporal graph, where on each edge e we depict λ(e). Some
of its components according to the non-strict model are reported on the right.

consider strictly increasing sequences, i.e. with t1 < . . . < tk. The former model is
referred to as non-strict model, while the latter as strict. In both settings, we call
such sequence a temporal u, v-walk/path, and we say that u reaches v. For instance,
in Figure 1, both blue and green paths are valid in the non-strict model, but only the
green one is valid in the strict model, as the blue one traverses two edges with label
2. The red path is not valid in both models.

The non-strict model is more appropriate in situations where the time granularity
is relatively big. This is the case in a disease-spreading scenario [48], where the
spreading speed might be unclear or in “time-varying graphs”, as in in [38], where
a single snapshot corresponds to all the edges available in a time interval, e.g. the
set of all the streets available in a day. As for the strict model, it can represent the
connections of the public transportation network of a city which are available only
at precise scheduled times. All in all, there is a rich literature on both models (see
[24, 15, 42, 48, 27]), and this is why we explore both settings.

Connected Sets and Components. Given a temporal graph G = (G, λ), we
say that X ⊆ V (G) is a temporal connected set if u reaches v and v reaches u, for
every u, v ∈ X . Extending the classical notion of connected components in static
graphs, in [6] the authors define a temporal connected component (tcc for short) as
a maximal connected set of G. Such constraint can be strengthened to the existence
of such paths using only vertices of X . Formally, X is a closed temporal connected
component (closed tcc for short) if, for every u, v ∈ X , we have that u reaches v
and v reaches u through temporal paths contained in X . See Figure 1 for an example
of tcc and closed tcc.

Unilateral Connected Components. In the same fashion, also the concept
of unilateral connected components can be extended to temporal graphs. In static
graph theory, they are a well-studied relaxation of connected components which asks
for a path from u to v or vice versa, for every pair u, v in the component [2, 9]. More
formally, in a directed graph G, we say that X ⊆ V (G) is a unilateral connected
connected set if either u reaches v or v reaches u, for every u, v ∈ X . X is a unilateral
connected component if it is maximal. In this paper, we introduce the definition
of a (closed) unilateral temporal connected set/component, which can be seen as the
immediate translation of unilateral connected component to the temporal context.
Formally, X ⊆ V (G) is a temporal unilateral connected set if u reaches v or v reaches
u, for every u, v ∈ X , and it is a closed unilateral connected set if this holds using
paths contained in X . Finally, a (closed) temporal unilateral connected component
((closed) tucc for short) is a maximal (closed) temporal unilateral connected set.
See again Figure 1 for an example.

2

Problems. In this paper, we deal with four different definitions of temporal con-
nected components, depending on whether they are unilateral or not, and whether
they are closed or not. In what follows, we pose three questions, and we comment on
partial knowledge about each of them. Later on, we discuss our results, which close
almost all the gaps found in the literature. We start by asking the following.

Question 1 (Parameterized complexity). Deciding the existence of temporal com-
ponents of size at least k parameterized by (i) τ , i.e. the lifetime, (ii) k, and (iii)
k + τ .

In order to answer Question 1 for the strict model, there is a very simple parame-
terized reduction from k-clique, known to be W[1]-hard when parameterized by k [22],
to deciding the existence of connected components (both closed or not and both uni-
lateral or not) of size at least k in undirected temporal graphs. This reduction has
appeared in [12]. Given an undirected graph G, we can simply consider the temporal
graph G = (G, λ) where λ(uv) = {1} for all uv ∈ E(G) (i.e., G is equal to G itself). As
u temporally reaches v if and only if uv ∈ E(G), one can see that all those problems
are now equivalent to deciding the existence of a k-clique in G. Observe that we get
W[1]-hardness when parameterized by k or k + τ , and para-NP-completeness when
parameterized by τ , both in the undirected and the directed case.1 However, this
reduction does not work in the case of the non-strict model, leaving Question 1 open.
Indeed the reductions in [6] and in [13] for (closed) tccs, which work indistinctly
for both the strict or the non-strict models, are not parameterized reductions. We
also observe that the aforementioned reductions work on the non-strict model only
for τ ≥ 4.

Another question of interest is the following. Letting n be the number of vertices
in G and M be the number of temporal edges,2 it is known that, in order to verify
whether X ⊆ V (G) is a connected set in G, we can simply apply O(n) single source
“best” path computations (see e.g. [11, 46]), resulting in a time complexity ofO(n·M).
This is O(M2) if G has no isolated vertices, a natural assumption when dealing with
connectivity problems. As in static graphs testing connectivity can be done in linear
time [28], we ask whether the described algorithm can be improved.

Question 2 (Lower bound on checking connectivity). Given a temporal graph G and
a subset X ⊆ V (G), what is the minimum running time required to check whether X
is a (unilateral) connected set?

Finally we focus on one last question.

Question 3 (Checking maximality). Given a temporal graph G and a subset X ⊆
V (G), is it possible to verify, in polynomial time, whether X is a component, i.e. a
maximal (closed) (unilateral) connected set?

For Question 3, we first observe that the property of being a temporal (unilateral)
connected set is hereditary (forming an independence system [33], see [19] for a survey
about set systems), meaning that every subset of a (unilateral) connected set is still
a (unilateral) connected set. For instance, in Figure 1, every subset of the connected
set B = {a, b, c, d, e} is a connected set. Also, checking whether X ′ ⊆ V (G) is a
temporal (unilateral) connected set can be done in time O(n ·M), as discussed above.
We can then check whether X is a maximal such set in time O(n2 · M): it suffices

1In the directed case, it suffices to replace each edge of the input graph with two opposite directed
edges between the same endpoints.

2M =
∑

e∈E(G) |λ(e)|.

3

to test, for every v ∈ V (G) \X , whether by adding v to X we still get a temporal
(unilateral) connected set. On the other hand, closed connected (unilateral) sets are
not hereditary, because by removing vertices from the set we could destroy the paths
between other members of the set. This is the case for the closed connected set
A = {a, b, c, d} in Figure 1, since by removing d there are no temporal paths from c
to a nor b anymore. This implies that the same approach as before does not work,
i.e., we cannot check whether X is maximal by adding to X a single vertex at a time,
then checking for connectivity. For instance, the closed connected set A′ = {a, b} in
Figure 1 cannot be grown into the closed connected set A by adding one vertex at
a time, since both A′ ∪ {c} and A′ ∪ {d} are not closed connected sets. Hence, the
answer to Question 3 for closed sets does not seem easy, and until now was still open.

We remark the important practical consequences of the latter question. Indeed,
in practice, when trying to find structures of maximum size, a usual viable strategy is
modifying backtracking listing algorithms for efficient generating maximal structures
(eventually with pruning strategies) and choosing the largest structures found [23, 10].
Such algorithms typically solve the so-called extension problem, that is generating all
(or some of) the maximal solutions enlarging a partial one [30, 18, 3, 19]. Question 3
implicitly asks whether efficient generation of closed tccs or closed tuccs is likely
to exist or not.

Par. τ Par. k Par. k + τ

tcc

p-NP τ ≥ 2 (Th. 4)

W[1]-h Dir. τ ≥ 2 (Th. 6)
and Undir. (Th. 5) W[1]-h Dir. (Th. 6)

tucc
W[1]-h Dir. τ ≥ 2 (Th. 6) FPT Undir. (Th. 8)

FPT Undir. (Th. 8)

closed tcc W[1]-h Dir. τ ≥ 3 (Th. 7)
W[1]-h Dir. (Th. 7)

closed tucc
W[1]-h Dir. τ ≥ 3 (Th. 7) FPT Undir. (Th. 8)

FPT Undir. (Th. 8)

Table 1: A summary of our results for the parameterized complexity of computing
components of size at least k of a temporal graph G having lifetime τ in the non-
strict model. “W[1]-h” stands for W[1]-hardness and “pNP” stands for para-NP-
completeness. For the strict model the entries are W[1]-h in the third and fourth
columns and p-NP in the second one already for τ = 1, both for the directed and the
undirected case.

Our results. Our results concerning Question 1 are reported in Table 1 for the non-
strict model, since for the strict model all the entries would be W[1]-hard or para-NP-
complete already for τ = 1, as we argued before. In the non-strict model, we observe
instead that the situation is much more granulated. If τ = 1, then all the problems
become the corresponding traditional ones in static graphs, which are all polynomial
(see Paragraph “Related works”). As for bigger values of τ , the complexity depends
on the definition of component being considered, and whether the temporal graph is
directed or not. Table 1 considers τ > 1, reporting on negative results “τ ≥ x” for
some x meaning that the negative result starts to hold for temporal graphs of lifetime
at least x.

The second column of Table 1 addresses Question 1(i), i.e., parameterization by
τ . We prove that, for all the definitions of components being considered, the related
problem becomes immediately para-NP-complete as soon as τ increases from 1 to 2;
this is done in Theorem 4. This reduction improves upon the reduction of [6], which
holds only for τ ≥ 4.

Question 1(ii) (parameterization by k) is addressed in the third column of Table 1.
Considering first directed temporal graphs, we prove that all the problems are W[1]-
hard. In particular, deciding the existence of a tcc or tucc of size at least k is

4

W[1]-hard already for τ ≥ 2 (Theorem 6). As for the existence of closed components,
W[1]-hardness also holds as long as τ ≥ 3 (Theorem 7). Observe that, since τ is
constant in both results, these also imply the W[1]-hardness results presented in the
last column, thus answering also Question 1(iii) (parameterization by k + τ) for
directed graphs. On the other hand, if the temporal graph is undirected, then the
situation is even more granulated. Deciding the existence of a tcc of size at least k
remains W[1]-hard, but only if τ is unbounded. This is complemented by the answer
to Question 1(iii), presented in the last column of Table 1: tcc and (even) closed
tcc are FPT on undirected graphs when parameterized by k + τ (Theorem 8). We
also give FPT algorithms when parameterized by k for unilateral components, namely
tucc and closed tucc. Observe how this differs from tcc, whose corresponding
problem is W[1]-hard, meaning that unilateral and traditional components behave
very differently when parameterized by k.

In summary, Table 1 answers Question 1 for almost all the definitions of com-
ponents, both for directed and undirected temporal graphs, leaving open only the
problems of, given an undirected temporal graph, deciding the existence of a closed
tcc of size at least k when parameterized by k, and solving the same problem for
closed tcc and closed tucc in directed temporal graphs where τ = 2.

Concerning Questions 2 and 3, our results are summarized in Table 2. All these
results hold both for the strict and the non-strict models. For Question 2, we prove
that the trivial O(M2) algorithm to test whether S is a (closed) (unilateral) connected
set is best possible, unless the Strong Exponential Time Hypothesis (SETH) fails [29].
For Question 3, in the case of tcc and tucc, we have already seen that checking
whether a set X ⊆ V is a component can be done in O(n2 · M). Interestingly, for
closed tcc and closed tucc, we answer negatively (unless P=NP) to Question 3.

Check whether X ⊆ V is Check whether X ⊆ V is
a connected set a component

tcc

Θ(M2) (Th. 9)
O(n2 · M)

tucc
closed tcc

NP-c (Th. 10)
closed tucc

Table 2: Our results for Question 2 and Question 3, holding for both the strict and the
non-strict models. Recall that a component is a (inclusion-wise) maximal connected
set. The O(·) result is easy and explained in the introduction. M (resp. n) denotes
the number of temporal edges (resp. nodes) in G.

Related work. The known reductions for temporal connected components in the
literature [13, 6] which considers the non-strict setting are not parameterized and
leave open the case when τ = 2 or 3. The reductions we give here are parameterized
(Theorems 6 and 7) and Theorem 4 closes also the cases τ = 2 and 3. Furthermore,
in [13] they show a series of interesting transformations but none of them allows us
to apply known negative results for the strict model to the non-strict one.

There are many other papers about temporal connected components in the litera-
ture, including in [12], where they give an example where there can be an exponential
number of temporal connected components in the strict model. In [38], the authors
show that the problem of computing tccs is a particular case of finding cliques in
the so-called affine graph. This does not imply that the problem is NP-complete
as claimed. Further related works include recent papers on giant components and
connectivity in randomized temporal graphs [5, 16] and on networks with continuous
varying-time [1].

Other notions of temporal components in the literature include temporal out-
component (resp. in-component) in [37], ∆-component in [26], weakly connected

5

components in [37]. The latter applies if the temporal graph (G, λ) is directed and,
as in the analogue case in static directed graphs, it simply ignore directions of the
edges and consider the undirected version of the underlying graph G. In this paper
we implicitly consider also weakly temporal connected components as studying how
to compute them in directed temporal graphs is the same as studying how to compute
(closed) tccs in undirected temporal graphs.

Finally, we remark that there are many results in the literature concerning unilat-
eral components in static graphs, also with applications to community detection [34].
Even though the number of unilateral components in a graph is exponential [2], decid-
ing whether there is one of size at least k is polynomial. In [2, Theorem 3], they prove
that this corresponds to deciding whether a DAG with weights on its vertices has a
path of weight at least k, which in turn can be done in polynomial time by slightly
modifying the algorithm for longest paths [43]. Additionally, in [2, 17], the authors
propose a listing algorithm, and in [4], a characterization of unilaterally connected
graphs is presented. Further related works include [35], and [25]. There were no
results about unilateral components in temporal graphs until now.

Preliminaries. For further formal definitions, we refer to Appendix A. For ba-
sic graph theory concepts and notation, we refer to [44], and to [21, 20] for basic
background on parameterized complexity.

Structure of the Paper. In what follows, we present sketches of proofs of all
results, with the results concerning Question 1 presented in Section 2, and the ones
related to Questions 2 and 3 presented in Section 3. In Section 4, we present our
concluding remarks.

2 Parameterized Complexity Results

This section is devoted to answer Question 1 and prove the results summarized in
Table 1.

Parameterization by τ . We start by proving the result in the first column of
Table 1 about para-NP-completeness wrt the lifetime τ , which applies to all the
definitions of components. For (closed) tcc, we do a reduction from Maximum
Edge Biclique (MEBP for short), which consists in, given a bipartite graph G and
an integer k, deciding whether G has a biclique with at least k edges. It was proved to
be NP-complete in [41]. Using the same construction, we prove hardness of (closed)
tucc reducing from 2K2-free Edge Subgraph, which consists in, given a bipartite
graph G and an integer k, deciding whether G has a 2K2-free subgraph with at least
k edges. This was proved to be NP-complete in [47].

The main idea of the reductions is to generate a temporal graph G whose base
graph is the line graph L of a bipartite graph H with parts X,Y . We make active
in timestep 1 every edge of a clique in L related to vertices in X , and in timestep 2
every edge of a clique related to vertices in Y . Doing so, we ensure that any pair of
vertices of G associated with a biclique in H reach one another in G. We prove that
there exists a biclique in H with at least k edges if and only if there exists a closed
tcc in G of size at least k. The result extends to tccs, as every tcc is also a closed
tcc. For the unilateral case, we can relax the biclique to a 2K2-free graph since only
one reachability relation is needed. As a result, we get the following, whose formal
constructions and correctness are proven in Appendix C.1.

6

V V
′

un u
′
n0

u3 u
′
30

u2 u
′
20

u1 u
′
10

.
.
.

.
.
.

u vei

u v

huv

hvu

i

i

m+ i

m+ i

u
′

v
′

h
′
uv

h
′
vu

2m+ i

2m+ i

3m+ i

3m+ i

0 0

Figure 2: Construction used in the proof of Theorem 5. On the left, the two copies
of V (G) and the edges between them, active in timestep 0. On the right, the edge
ei ∈ E(G) and the associated gadget in G.

Theorem 4. For every fixed τ ≥ 2 and given a temporal graph G of lifetime τ and an
integer k, it is NP-complete to decide if G has a (closed) tcc or a (closed) tucc
of size at least k, even if the base graph of G is the line graph of a bipartite graph.

W[1]-hardness by k. We now focus on proving the W[1]-hardness results in the
second column of Table 1 concerning parameterization by k, which also imply some of
the results of the third column. The following W[1]-hardness results (Theorem 5, 7,
and 6) are parameterized reductions from k-Clique. The general objective is con-
structing a temporal graph G in a way that vertices in G are in the same component
if and only if the corresponding nodes in the original graph are adjacent. Notice
that we have to do this while: (i) ensuring that the size of the desired component is
f(k) for some computable function k (i.e., this is a parameterized reduction); and (ii)
avoiding that the closed neighborhood of a vertex forms a component, so as to not a
have a false “yes” answer to kClique. To address these tasks, we rely on different
techniques. The first reduction concerns tcc in undirected graphs and requires τ to
be unbounded, as for τ bounded we show that the problem is FPT by k + τ (Theo-
rem 8). The technique used is a parameterized evolution of the so-called semaphore
technique used in [6, 13], which in general replaces edges by labeled diamonds to
control paths of the original graph. However, while the original reduction gives labels
in order to ensure that paths longer than one are broken, the following one allows
the existence of paths longer than one. But if a temporal path from u to v exists
for uv /∈ E(G), then the construction ensures the non-existence of temporal paths
from v to u. Because of this property, the reduction does not extend to tuccs, which
we prove to be FPT when parameterized by k instead (Theorem 8). The interested
reader can skip directly to Appendix C.2 for the complete proof.

Theorem 5. Given a temporal graph G and an integer k, deciding if G has a tcc of
size at least k is W[1]-hard with parameter k.

Proof. We make a parameterized reduction from k-Clique. Let G be graph and
k ≥ 3 be an integer. We construct the temporal graph G = (G′, λ) as follows. See
Figure 2 to follow the construction. First, add to G′ every vertex in V (G) and
make V = V (G). Second, add to G′ a copy u′ of every vertex u ∈ V and define
V ′ = {u′ | u ∈ V }. Third, for every pair u, u′ with u ∈ V and u′ ∈ V ′ add the edge
uu′ to G′ and make all such edges active at timestep 0. Fourth, consider an arbitrary
ordering e1, . . . , em of the edges of G and, for each edge ei = uv, create four new
vertices {huv, hvu, h

′
uv, h

′
vu | uv ∈ E(G)}, adding edges:

7

• uhuv and vhvu, active at time i;

• u′h′
uv and v′h′

vu, active at time 2m+ i;

• hvuu and huvv, active at time m+ i; and

• h′
vuu

′ and h′
uvv

′, active at time 3m+ i.

Denote the set {huv, hvu | uv ∈ E(G)} by H , and the set {h′
uv, h

′
vu | uv ∈ E(G)} by

H ′. We now prove that G has a clique of size at least k if and only if G has a tcc of
size at least 2k. Given a clique C in G, it is easy to check that C ∪ {u ∈ V ′ | u ∈ C}
is a tcc, and because of space constraints we present the formal argument only in
Appendix C.2.

Now, let S ⊆ V (G′) be a tcc of G of size at least 2k. We want to show that either
C = {u ∈ V (G) | u ∈ S ∩V } or C′ = {u ∈ V (G) | u′ ∈ S ∩V ′} is a clique of G of size
at least k. This part of the proof combines a series of useful facts, which we cannot
include here due to space constraints. The full proof can be found Appendix C.2, and
in what follows we present a sketch of it.

First, we argue that both C and C′ are cliques in G. Then, by observing that the
only edges between V ∪H and V ′ ∪H ′ are those incident to V and V ′ at timestep 0,
we conclude that either S ⊆ V ∪H or S ⊆ V ′ ∪H ′. Since the cases are similar, we
assume the former. If |S ∩ V | ≥ k, then C contains a clique of size at least k and the
result follows. Otherwise, we define ES = {uv ∈ E(G) | {huv, hvu}∩S 6= ∅}. That is,
ES is the set of edges of G related to vertices in S ∩H . We then prove the following
claim.

Claim. Let a, b ∈ S ∩ H be associated with distinct edges g, g′ of G sharing an
endpoint v. If u and w are the other endpoints of g and g′, respectively, then u and w
are also adjacent in G. Additionally, either |S ∩ {hxy, hyx}| ≤ 1 for every xy ∈ E(G),
or |S ∩H | ≤ 2.

To finish the proof, we first recall that we are in the case |S ∩H | ≥ k+1. By our
assumption that k ≥ 3, note that the above claim gives us that |S ∩ {hxy, hyx}| ≤ 1
for every xy ∈ E(G), which in turn implies that |ES | = |S ∩ H |. Additionally,
observe that, since |S ∩ H | ≥ 4, the same claim also gives us that there must exist
w ∈ V such that e is incident to w for every e ∈ ES . Indeed, the only way that 3
distinct edges can be mutually adjacent without being all incident to a same vertex
is if they form a triangle. Supposing that 3 edges in ES form a triangle T = (a, b, c),
since |ES | ≥ 4, there exists an edge e ∈ ES \ E(T). But now, since G is a simple
graph, e is incident to at most one between a, b and c, say a. We get a contradiction
wrt the aforementioned claim as in this case e is not incident to edge bc ∈ ES .
Finally, by letting C′′ = {v1, . . . , vk} be any choice of k distinct vertices such that
{wv1, . . . , wvk} ⊆ ES , our claim gives us that vi and vj are adjacent in G, for every
i, j ∈ [k]; i.e., C′′ is a k-clique in G.

The following result concerns tcc and tucc in directed temporal graphs. It
is important to remark that for tcc and τ unbounded, we already know that the
problem is W[1]-hard because of Theorem 5 which holds for undirected graphs and
extends to directed ones. However, the following reduction applies specifically for
directed ones already for τ = 2. The technique used here is the previously mentioned
semaphore technique, made parameterized by exploiting the direction of the edges.
For the sake of space, the construction is shown only in Figure 3, which shows how
to obtain the temporal graph G in Figure 3(b) from the graph G in Figure 3(a) in
a way that, for every integer k ≥ 3, graph G has a clique of size at least k if and

8

G

X

u

v

z

(a)

G

u

huv

hvu

v

hvz

hzv

z

1
2

12

1 2

12

(b)

G
uin

uout vin

vout zin

zout

1
,3

1
,3

2

2

1
,3

1
,3

2

2

1
,3

1
,3

(c)

G

Y

u

huv hvu

v hvz hzv

z

1
,3
,5

2, 4

1
,3
,5 1, 3, 5 2, 4 1

,3
,5

(d)

Figure 3: Examples for some of our reductions. Given the graph in (a), Theorem 6
constructs the directed temporal graph in (b), Theorem 7 constructs the directed
temporal graph in (c), and, given additionally set X in (a), Theorem 10 contructs
the temporal graph G and set Y in (d).

only if G has a tcc of size at least k. The formal construction and proof are given in
Appendix C.3

Theorem 6. Given a directed temporal graph G and an integer k, deciding if G has
a tcc of size at least k is W[1]-hard with parameter k, even if G has lifetime 2. The
same holds for tucc.

The next result concerns closed tccs and tuccs. In this case, we also reduce
from k-Clique, but we cannot apply the semaphore technique as before. Indeed,
as we are dealing with closed components, nodes must be reachable using vertices
inside the components, while the semaphore technique would make them reachable
via additional nodes, which do not necessarily reach each other. For this reason, in
the following we introduce a new technique subdividing nodes, instead of edges, in
order to break paths of the original graph of length longer than one, being careful
to allow that these additional nodes reach each other. The construction is shown in
Figure 3, which shows how to construct temporal graph G in Figure 3(c), given graph
G in Figure 3(a) in a way that graph G has a clique of size k if and only if G has a
closed tcc (tucc) of size at least 2k. The formal construction and proof are given
in Appendix C.4.

Theorem 7. Given a directed temporal graph G and an integer k, deciding if G has
a closed tcc of size at least k is W[1]-hard with parameter k, even if G has lifetime
3. The same holds for closed tucc.

FPT algorithms. We now show our FPT algorithms to find (closed) tccs and
(closed) tuccs in undirected temporal graphs, as for directed temporal graphs we
have proved W[1]-hardness. In particular, we prove the following result, whose proof
is shown in Appendix C.5.

Theorem 8. Given a temporal graph G = (G, λ) on n vertices and with lifetime τ ,
and a positive integer k, there are algorithms running in time

1. O(kk·τ · n) that decides whether there is a tcc of size at least k;

2. O(2k
τ

· n) that decides whether there is a closed tcc of size at least k;

3. O(kk
2

· n) that decides whether there is a tucc of size at least k; and

4. O(2k
k

· n) that decides whether there is a closed tucc of size at least k.

9

Sketch. The reachability digraph R associated to G is a directed graph with the same
vertex set as G, and such that uv is an edge in R if and only u reaches v in G and u 6= v.
This is related to the affine graph in [38]. Observe that finding a tcc (tucc) in G of
size at least k is equivalent to finding a set S ⊆ V (G) in R of size exactly k such that
uv ∈ E(R) and (or) vu ∈ E(R) for every pair u, v ∈ V (R). As for finding a closed
tcc (closed tucc), we need to have the same property, except that all subsets of
size at least k must be tested (recall that being a closed connected (unilateral) set
is not hereditary). Therefore, if ∆ = ∆(R), then testing connectivity takes time
O(k∆ · n) (it suffices to test all subsets of size k− 1 in N(u), for all u ∈ V (R)), while
testing closed connectivity takes time O(2∆ · n) (it suffices to test all subsets of size
at least k − 1 in N(u), for all u ∈ V (R)). The proofs then consist in bounding the
value ∆ in each case.

It is important to observe that, for unilateral components, these bounds depend
only on k, while for tccs and closed tccs they depend on both k and τ . This is
consistent with the fact that we have proved that for tcc the problem is W[1]-hard
when parameterized just by k (Theorem 5).

3 Checking Connectivity and Maximality

This section is focused on Questions 2 and Question 3. The former is open for all
definitions of components for both the strict and the non-strict models. We answer
to the question providing the following conditional lower bound, which holds for both
models, where the notation Õ(·) ignores polylog factors. Due to space constraints,
its proof is shown in Appendix D. We apply the technique used for instance in [7,
40, 45] to prove lower bounds for polynomial problems, falling within the fine-grained
complexity framework.

Theorem 9. Consider a temporal graph G on M temporal edges. There is no al-
gorithm running in time Õ(M2−ǫ), for some ǫ, that decides whether G is temporally
(unilaterally) connected, unless SETH fails.

We now focus on Question 3. We prove the results in the second column of Table 2,
about the problem of deciding whether a subset of vertices Y of a temporal graph is a
component, i.e. a maximal connected set. The question is open both for the strict and
the non-strict model. We argued already in the introduction that this is polynomial
for tcc and tucc for both models. In the following we prove NP-completeness for
closed tcc and closed tucc on undirected graphs. The results extend to directed
graphs as well.

Theorem 10. Let G be a (directed) temporal graph, and Y ⊆ V (G). Deciding whether
Y is a closed tcc is NP-complete. The same holds for closed tucc.

Proof. We reduce from the problem of deciding whether a subset of vertices X of
a given a graph G is a maximal 2-club, where a 2-club is a set of vertices C such
that G[C] has diameter at most 2. This problem has been shown to be NP-complete
in [39]. Let us first focus on the strict model. In this case, given G we can build a
temporal graph G with only two snapshots, both equal to G. Observe that X is a
2-club in G if and only if X is a closed tcc in G. Indeed, because we can take only
one edge in each snapshot and τ = 2, we get that temporal paths will always have
length at most 2. This also extends to closed tucc by noting that all paths in G
can be temporally traversed in both directions.

10

In the case of the non-strict model, the situation is more complicated as in each
snapshot we can take an arbitrary number of edges resulting in paths arbitrarily long.
We show the construction for closed tcc in what follows, proving its correctness
in Appendix E. Let G be obtained from G by subdividing each edge uv of G twice,
creating vertices huv and hvu, with λ(uhuv) = λ(vhvu) = {1, 3, 5}, and λ(huvhvu) =
{2, 4}. See Figure 3 (d) for an illustration.

Given (G,X), the instance of maximal 2-club, we prove that X is a maximal 2-
club in G iff Y = X ∪ NH(X) is a closed tcc in G. For this, it suffices to prove
that, given X ′ ⊆ V (G) and defining Y ′ similarly as before w.r.t. X ′, we have that
G[X ′] has diameter at most 2 iff Y ′ is a closed temporal connected set. The proof
extends to closed tucc by proving that every closed tcc is also a closed tucc
and vice-versa.

4 Concluding remarks

In this paper, we revisit the notion of connected components in temporal graphs in-
troduced in [6] from the point of view of parameterized complexity. We then consider
unilateral connectivity in temporal graphs, and investigate all related problems, in
both the strict and the non-strict setting, as well as both for directed and undirected
temporal graphs, parameterizing by the size k of the desired component, the lifetime
τ of the considered (directed) temporal graph G, and by k+τ . We classify all possible
entries in Table 1, leaving open just the following questions.

Question 11. Given an undirected temporal graph G, and considering parameteriza-
tion by k, the size of the searched component, what is the complexity of deciding the
existence of a closed tcc?

Question 12. Given a directed temporal graph G with lifetime 2, and considering
parameterization by k, the size of the searched component, what is the complexity of
deciding the existence of a Closed tcc (tucc)?

We additionally prove a lower bound for testing connectivity, and prove that
deciding maximality of closed (unilateral) connectivity is NP-complete.

References

[1] Eleni C Akrida and Paul G Spirakis. On verifying and maintaining connectivity
of interval temporal networks. Parallel Processing Letters, 29(02):1950009, 2019.

[2] Eshrat Arjomandi. On finding all unilaterally connected components of a di-
graph. Information Processing Letters, 5(1):8–10, 1976.

[3] David Avis and Komei Fukuda. Reverse search for enumeration. Discrete applied
mathematics, 65(1-3):21–46, 1996.

[4] Jørgen Bang-Jensen and Gregory Z Gutin. Digraphs: theory, algorithms and
applications. Springer Science & Business Media, 2008.

[5] Ruben Becker, Arnaud Casteigts, Pierluigi Crescenzi, Bojana Kodric, Malte
Renken, Michael Raskin, and Viktor Zamaraev. Giant components in random
temporal graphs. CoRR, abs/2205.14888, 2022.

11

[6] Sandeep Bhadra and Afonso Ferreira. Complexity of connected components in
evolving graphs and the computation of multicast trees in dynamic networks.
In Ad-Hoc, Mobile, and Wireless Networks, Second International Conference,
ADHOC-NOW 2003 Montreal, Canada, October 8-10, 2003, Proceedings, pages
259–270, 2003.

[7] Michele Borassi, Pierluigi Crescenzi, and Michel Habib. Into the square: On the
complexity of some quadratic-time solvable problems. In ICTCS, volume 322 of
Electronic Notes in Theoretical Computer Science, pages 51–67. Elsevier, 2015.

[8] Pierre Borgnat, Eric Fleury, Jean-Loup Guillaume, Clémence Magnien, Céline
Robardet, and Antoine Scherrer. Evolving networks. In Mining Massive Data
Sets for Security, pages 198–203, 2007.

[9] Allan B Borodin and Ian Munro. Notes on efficient and optimal algorithms.
Technical report, U. of Toronto and U. of Waterloo, Canada, 1972.

[10] Coen Bron and Joep Kerbosch. Algorithm 457: finding all cliques of an undi-
rected graph. Communications of the ACM, 16(9):575–577, 1973.

[11] Marco Calamai, Pierluigi Crescenzi, and Andrea Marino. On computing the
diameter of (weighted) link streams. ACM J. Exp. Algorithmics, 27:4.3:1–4.3:28,
2022.

[12] Arnaud Casteigts. Finding structure in dynamic networks. arXiv preprint
arXiv:1807.07801, 2018.

[13] Arnaud Casteigts, Timothée Corsini, and Writika Sarkar. Simple, strict,
proper, happy: A study of reachability in temporal graphs. arXiv preprint
arXiv:2208.01720, 2022.

[14] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro.
Time-varying graphs and dynamic networks. International Journal of Parallel,
Emergent and Distributed Systems, 27(5):387–408, 2012.

[15] Arnaud Casteigts, Anne-Sophie Himmel, Hendrik Molter, and Philipp Zschoche.
Finding temporal paths under waiting time constraints. Algorithmica,
83(9):2754–2802, 2021.

[16] Arnaud Casteigts, Michael Raskin, Malte Renken, and Viktor Zamaraev. Sharp
thresholds in random simple temporal graphs. In FOCS, pages 319–326. IEEE,
2021.

[17] Grant A. Cheston. A correction to a unilaterally connected components algo-
rithm. Inf. Process. Lett., 7(2):125, 1978.

[18] Alessio Conte, Roberto Grossi, Mamadou Moustapha Kanté, Andrea Marino,
Takeaki Uno, and Kunihiro Wasa. Listing induced steiner subgraphs as a com-
pact way to discover steiner trees in graphs. In MFCS, volume 138 of LIPIcs,
pages 73:1–73:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[19] Alessio Conte, Roberto Grossi, Andrea Marino, and Luca Versari. Listing maxi-
mal subgraphs satisfying strongly accessible properties. SIAM J. Discret. Math.,
33(2):587–613, 2019.

12

[20] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel
Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized
Algorithms. Springer, 2015.

[21] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

[22] Rod G Downey and Michael R Fellows. Fixed-parameter tractability and com-
pleteness ii: On completeness for w [1]. Theoretical Computer Science, 141(1-
2):109–131, 1995.

[23] John D Eblen, Charles A Phillips, Gary L Rogers, and Michael A Langston. The
maximum clique enumeration problem: algorithms, applications, and implemen-
tations. In BMC bioinformatics, volume 13, pages 1–11. Springer, 2012.

[24] Jessica A. Enright, Kitty Meeks, and Hendrik Molter. Counting temporal paths.
CoRR, abs/2202.12055, 2022.

[25] John Frederick Fink and Linda Lesniak-Foster. Graphs for which every unilateral
orientation is traceable. Ars. Combinatoria, 9:113–118, 1980.

[26] Carlos Gómez-Calzado, Arnaud Casteigts, Alberto Lafuente, and Mikel Larrea.
A connectivity model for agreement in dynamic systems. In European Conference
on Parallel Processing, pages 333–345. Springer, 2015.

[27] Roman Haag, Hendrik Molter, Rolf Niedermeier, and Malte Renken. Feedback
edge sets in temporal graphs. Discrete Applied Mathematics, 307:65–78, 2022.

[28] John Hopcroft and Robert Tarjan. Algorithm 447: efficient algorithms for graph
manipulation. Communications of the ACM, 16(6):372–378, 1973.

[29] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal
of Computer and System Sciences, 62(2):367–375, 2001.

[30] Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, Lhouari Nourine,
and Takeaki Uno. A polynomial delay algorithm for enumerating minimal dom-
inating sets in chordal graphs. In International Workshop on Graph-Theoretic
Concepts in Computer Science, pages 138–153. Springer, 2015.

[31] David Kempe, Jon M. Kleinberg, and Amit Kumar. Connectivity and inference
problems for temporal networks. In F. Frances Yao and Eugene M. Luks, ed-
itors, Proceedings of the Thirty-Second Annual ACM Symposium on Theory of
Computing, May 21-23, 2000, Portland, OR, USA, pages 504–513. ACM, 2000.

[32] Matthieu Latapy, Tiphaine Viard, and Clémence Magnien. Stream graphs and
link streams for the modeling of interactions over time. Social Network Analysis
and Mining, 8(1):1–29, 2018.

[33] Eugene L. Lawler, Jan Karel Lenstra, and AHG Rinnooy Kan. Generating all
maximal independent sets: Np-hardness and polynomial-time algorithms. SIAM
Journal on Computing, 9(3):558–565, 1980.

[34] Vincent Levorato and Coralie Petermann. Detection of communities in directed
networks based on strongly p-connected components. In 2011 international con-
ference on computational aspects of social networks (CASoN), pages 211–216.
IEEE, 2011.

13

[35] Tamara Mchedlidze and Antonios Symvonis. Unilateral orientation of mixed
graphs. In International Conference on Current Trends in Theory and Practice
of Computer Science, pages 588–599. Springer, 2010.

[36] Othon Michail. An introduction to temporal graphs: An algorithmic perspective.
Internet Mathematics, 12(4):239–280, 2016.

[37] Vincenzo Nicosia, John Tang, Cecilia Mascolo, Mirco Musolesi, Giovanni Russo,
and Vito Latora. Graph metrics for temporal networks. In Temporal networks,
pages 15–40. Springer, 2013.

[38] Vincenzo Nicosia, John Tang, Mirco Musolesi, Giovanni Russo, Cecilia Mascolo,
and Vito Latora. Components in time-varying graphs. Chaos: An interdisci-
plinary journal of nonlinear science, 22(2):023101, 2012.

[39] Foad Mahdavi Pajouh and Balabhaskar Balasundaram. On inclusionwise max-
imal and maximum cardinality k-clubs in graphs. Discret. Optim., 9(2):84–97,
2012.

[40] Mihai Pătraşcu and Ryan Williams. On the possibility of faster sat algorithms.
In Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete
Algorithms, pages 1065–1075. SIAM, 2010.

[41] René Peeters. The maximum edge biclique problem is np-complete. Discrete
Applied Mathematics, 131(3):651–654, 2003.

[42] Maciej Rymar, Hendrik Molter, André Nichterlein, and Rolf Niedermeier. To-
wards classifying the polynomial-time solvability of temporal betweenness cen-
trality. In International Workshop on Graph-Theoretic Concepts in Computer
Science, pages 219–231. Springer, 2021.

[43] Robert Sedgewick and Kevin Wayne. Algorithms: Part I. Addison-Wesley Pro-
fessional, 2014.

[44] Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice hall
Upper Saddle River, 2001.

[45] Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences be-
tween path, matrix and triangle problems. In 2010 IEEE 51st Annual Symposium
on Foundations of Computer Science, pages 645–654. IEEE, 2010.

[46] Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, and Yanyan
Xu. Path problems in temporal graphs. Proceedings of the VLDB Endowment,
7(9):721–732, 2014.

[47] Mihalis Yannakakis. Computing the minimum fill-in is np-complete. SIAM
Journal on Algebraic Discrete Methods, 2(1):77–79, 1981.

[48] Philipp Zschoche, Till Fluschnik, Hendrik Molter, and Rolf Niedermeier. The
complexity of finding small separators in temporal graphs. Journal of Computer
and System Sciences, 107:72–92, 2020.

14

A Preliminaries and notation

Given a graph G = (V,E), directed or not, and a set X ⊆ V (G) we write G[X] for
the subgraph of G induced by X . If e is an edge of a directed or undirected graph
with endpoints u and v, we may refer to e as (u, v) and say that e is incident to u and
v. If e is an edge3 from u to v of a directed graph, we say that e has tail u, head v,
and is oriented from u to v. The degree dG(v) of a vertex v of a (directed) graph G is
the number of edges of G incident to v. We denote by ∆(G) the maximum degree of
a vertex of G. The neighborhood NG(v) of v is the set {u ∈ V (G) | (u, v) ∈ E(G)}. If
D is a digraph, he in-neighborhood N−

D (v) of v is the set {u ∈ V (D) | (u, v) ∈ E(D)},
and the out-neighborhood N+

D(v) is the set {u ∈ V (D) | (v, u) ∈ E(D)}.
An undirected graph G is said to be simple if there is at most one edge between

every pair of vertices of G (i.e., there are no parallel edges). We say that G is bipartite
if there is a partition of V (G) into two non-empty sets X and Y such that every edge
of G has one endpoint in X and the other endpoint in Y . A matching of G is a set
of edges M ⊆ E(G) such that no two edges of M share an endpoint; i.e., they all
are pairwise independent. This definition also applies to oriented edges in directed
graphs. A clique in an graph H is a subset C ⊆ V (H) such that all vertices of C are
pairwise adjacent. If H is directed, we say that C is a clique (resp. full clique) if one
of (resp.both) the two possible edges exist between u and v, for every pair u, v ∈ C,
u 6= v. A biclique in a bipartite graph H is a disjoint pair of sets A,B ⊆ V (H) such
that there is an edge from every a ∈ A to every b ∈ B. A graph is 2K2-free if it does
not contain a pair of edges uv and xy such that G[{u, v, x, y}] contains exactly the
two edges (i.e., is isomorphic to a 2K2).

A walk in a (directed) graph G is an alternating sequence W of vertices and edges
that starts and ends with a vertex, and such that for every edge (u, v) in the walk,
vertex u (resp. vertex v) is the element right before (resp. right after) edge (u, v) in
W . If the first vertex in a walk is u and the last one is v, then we say this is a walk
from u to v. A path is a (directed) graph containing exactly a walk that contains all
of its vertices and edges without repetition. A directed graph D is strongly connected
if, for every pair of vertices u, v ∈ V (D), there is a walk from u to v and a walk
from v to u in D. We say that D is weakly connected if the underlying graph of D
is connected. A strong component of D is a maximal induced subgraph of D that is
strongly connected, and a weak component of D is a maximal induced subgraph of D
that is weakly connected. For simplicity, we call a strong connected component of a
directed graph simply “connected component”.

An orientation of an undirected graph G is a digraph D obtained from G by
choosing an orientation for each edge e ∈ E(G). The undirected graph G formed by
ignoring the orientation of the edges of a digraph D is the underlying graph of D.

The line graph of an undirected graph G is the graph L with vertex set E(G)
where two vertices e, f ∈ V (L) associated with edges of G are linked by an edge if
and only if e and f share an endpoint in G.

For a undirected (static) graph G and u ∈ V (G), let δ(u) denote the set {e ∈
E(G) | u ∈ e}. For a set S ⊆ E(G), the edge-induced subgraph G[S] is a graph whose
edge set is S and vertex set consists of all endpoints of the edges in S.

Given a temporal (directed) graph G = (G, λ) and a subset S ⊆ V (G), we say
that S is temporal connected (in G) if there is a temporal u, v-path in G for every
ordered pair (u, v) ∈ S × S.

3We refer to arcs of directed graphs as edges (following the notation in [44]

15

A.1 Parameterized complexity

A parameterized problem is a language L ⊆ Σ∗ × N. For an instance I = (x, k) ∈
Σ∗ × N, k is called the parameter.

A parameterized problem L is fixed-parameter tractable (FPT) if there exists an
algorithm A, a computable function f , and a constant c such that given an instance
I = (x, k), A (called an FPT algorithm) correctly decides whether I ∈ L in time
bounded by f(k) · |I|c. For instance, the Vertex Cover problem parameterized by
the size of the solution is FPT.

A parameterized problem L is in XP if there exists an algorithm A and two
computable functions f and g such that given an instance I = (x, k), A (called an
XP algorithm) correctly decides whether I ∈ L in time bounded by f(k) · |I|g(k). For
instance, the Clique problem parameterized by the size of the solution is in XP.

Within parameterized problems, the class W[1] may be seen as the parameterized
equivalent to the class NP of classical decision problems. Without entering into details
(see [21, 20] for the formal definitions), a parameterized problem being W[1]-hard can
be seen as a strong evidence that this problem is not FPT. Clique parameterized by
the size of the solution is the canonical example of a W[1]-hard problem.

Parameterized reductions are used to transfer fixed-parameter tractability or hard-
ness between parameterized problems. Namely, a parameterized reduction is an al-
gorithm that, given an instance (x, k) of a parameterized problem L, runs in time
f(k) · |x|O(1) and outputs an instance (x′, k′) of a parameterized problem L′ such that
k′ ≤ g(k) for some computable function g and (x, k) is positive if and only if (x′, k′) is
positive. For example, if L is W[1]-hard and there is a parameterized reduction from
L to L′, then L′ is also W[1]-hard and thus unlikely to admit an FPT algorithm.

A.2 Temporal paths and components

Given a temporal (directed) graph G = (G, λ) and vertices v0, vq ∈ V (G), a temporal
v0, vq-walk in G is defined as a sequence of vertices and temporal edges, (v0, α1, v1,
· · · , αq, vq) such that, for each i ∈ [q], αi has endpoints vi−1vi and is active in a
timestep ti which is at most equal to the timestep where αi+1 is active. Sometimes
we abuse notation and write P = (v0, t1, v1, . . . , tq, vq) instead, where ti is equal to
the timestep where αi is active, for every i ∈ [q]. We then say that P starts in time
t1 and finishes in time tq. Given i, j ∈ {0, . . . , q}, we denote by viPvj the vi, vj-walk
(vi, ti+1, vi+1, . . . , tj , vj). Additionally, if no vertices of G are repeated in P , then
we say that P is a temporal v0, vq-path. It is important to mention that distinctions
between paths and walks are important for some problems, but since it is not the
case in this work, the reader should not worry about interchangeable uses of “walks”
and “paths” along the text. Given two vertices u, v ∈ V (G), we say that u reaches v
in G if there exists a temporal u, v-walk in G.

Given a temporal (directed) graph G = (G, λ) and a subset S ⊆ V (G), we say that
S is temporal connected (in G) if there is a temporal u, v-path in G for every ordered
pair (u, v) ∈ S×S. In [6], the authors define a temporal connected component (tcc for
short) as a maximal subset S ⊆ V (G) such that S is temporal connected. Similarly,
a closed temporal connected component (closed tcc for short) was defined as a
maximal subset S ⊆ V (G) for which, for every ordered pair (u, v) ∈ S × S, there is
a temporal u, v-path in G using only vertices of S. In other words, a closed tcc is
a maximal subset S ⊆ V (G) such that G[S] (the temporal subgraph induced by S)
is temporal connected. We say that S is a temporal unilaterally connected set if for
every pair u, v ∈ S there is a temporal u, v-path or a temporal v, u-path in G. If all
such paths use only vertices in S then we say that S is a closed temporal unilaterally

16

connected set. If S is maximal such set, then we say that S is a temporal unilaterally
connected component (tucc) in the first case, and a closed temporal unilaterally
connected component (closed tucc) in the second case.

The reachability digraph R(G) associated to G is a directed graph with the same
vertex set as G, and such that uv is an edge in R(G) if and only u reaches v in G,
u 6= v. This is related to the affine graph in [38]. This is a slight generalization of
the affine graph introduced in [38]. There, since they are interested only in the tcc
variants, they consider pairs that are mutually reachable from each other, ignoring
the edges uv of R(G) that are not symmetric (i.e., for which vu is not present).

B Auxiliary results

The following result is an immediate consequence of the definition of rechability graph
R(G).

Lemma 13. Given a temporal (directed) graph G = (G, λ), then the following hold:

1. C is a tcc in G if and only if C is a maximal full clique in R(G);

2. C is a tucc in G if and only if C is a maximal clique in R(G);

3. If C is a closed tcc in G, then C is a full clique in R(G); and

4. If C is a closed tucc in G, then C is a clique in R(G).

For each i ∈ [τ] and u ∈ V (G), denote by Ci(u) the set of vertices in the same
connected component of Gi as u, and by Ri(u) the set of vertices in Gi reachable
from u (i.e., v ∈ Ri(u) if and only if there is a u, v-path in Gi). Observe that, if G is
undirected, then Ci(u) = Ri(u). Note also that Rτ (u) is exactly equal to N−

R(G)(u).

For the sake of completeness, we now show that we can recursively define the set of
vertices reachable from u by a temporal path finishing at time at most i. We apply
the following lemma in the context of non-strict reachability, but also holds for strict.

Lemma 14. Let G be a (directed) temporal graph, and let Ri(u) be recursively defined
as:

Ri(u) =

{

R1(u) , if i = 1
⋃

v∈Ri−1(u)
Ri(v) , otherwise

Then Ri(u) is equal to the set of vertices reachable from u by a temporal path finishing
at time at most i.

Proof. We want to prove that v ∈ Ri(u) if and only if there exists a temporal u, v-
walk finishing in time at most i. First, let v ∈ Ri(u). If i = 1, then v ∈ R1(u)
and u reaches v in G1 by definition. So suppose i > 1. Again by definition, we
have v ∈

⋃

v′∈Ri−1(u)
Ri(v

′). Consider then w ∈ Ri−1(u) such that v ∈ Ri(w). By
induction hypothesis, there exists a temporal u,w-path P finishing in time at most
i − 1. And because w reaches v in Gi, such path can be extended to a temporal
u, v-walk finishing in time at most i.

Now, let v be such that there exists a temporal u, v-path P finishing in time at
most i. If P finishes in time at most i − 1, we are done by induction hypothesis.
Otherwise, let w ∈ V (P) be closest to v in P such that the temporal edges incident
to w in P occur in time j < i and i. Observe that wPv is contained in Gi, and hence
v ∈ Ri(w). Additionally, uPw finishes in time at most j ≤ i − 1, and by induction
hypothesis w ∈ Ri−1(u). By definition we then get v ∈ Ri(u), as we wanted to
show.

17

The following easy proposition tells us that deciding the existence of large com-
ponents (i.e. maximal connected sets) is equivalent to deciding the existence of large
connected sets.

Proposition 15. Let G be a temporal (directed) graph. Then G has a (closed) tempo-
ral (unilaterally) connected component of size at least k if and only if (closed) temporal
(unilaterally) connected set of size at least k.

C Parameterized Complexity Results: Proofs

C.1 Proof of Theorem 4

The Maximum Edge Biclique Problem (MEBP for short) consists in, given a
bipartite graph G and an integer k, deciding whether G has a biclique with at least k
edges. It was proved to be NP-complete in [41]. Problem 2K2-free Edge Subgraph
consists in, given a bipartite graph G and an integer k, deciding whether G has a
2K2-free subgraph with at least k edges. This was proved to be NP-complete in [47].

For an undirected (static) graph G and u ∈ V (G), let δ(u) denote the set {e ∈
E(G) | u ∈ e}. And for a set S ⊆ E(G), the edge-induced subgraph G[S] is a graph
whose edge set is S and vertex set consists of all endpoints of the edges in S.

As stated in the main text, we prove NP-completeness of (closed) tcc and
(closed) tucc using the same construction and reducing from the above problems.
We start by proving hardness of (closed) tcc.

Proof. Consider an instance (H, k) of MEBP, consisting of a bipartite graph H =
(X∪Y,E) and an integer k. LetX = {x1, . . . , xp} and Y = {y1, . . . , yq}. We construct
a temporal graph G = (G, λ) with lifetime 2 such that V (G) = E(H) and snapshot G1

is the graph whose connected components are precisely δ(xi) for each i ∈ {1, . . . , p},
while snapshot G2 is the graph whose connected components are precisely δ(yj) for
each j ∈ {1, . . . , q}. We consider that the components are cliques; clearly G is the
line graph of H . We claim that there exists a biclique (A,B) in H with at least k
edges if and only if there exists a closed tcc in G of size at least k. Then we prove
that every tcc is also a closed tcc, finishing this part of the proof.

Suppose first that there exists a biclique (A,B) in H with at least k edges, and let
C = E(H [A,B]). We want to show that C is a closed temporal connected set of G. Let
e = xy and e′ = x′y′ be two elements of C, with {x, x′} ⊆ X and {y, y′} ⊆ Y . If x = x′

then e, e′ ∈ δ(x) and hence are contained in the same component ofG1 (i.e., they reach
each other by a direct edge); the analogous holds in case y = y′, so suppose x 6= x′

and y 6= y′. Since (A,B) is a biclique in H , we have that {xy, xy′, x′y, x′y′} ⊆ C.
Denote xy′ by f and x′y by f ′. Now, in G we can reach f from e at timestep 1 and
e′ from f at timestep 2. Similarly, we can also reach e from e′ in G. Because f, f ′

are also in C, and since this holds for any two such edges, we get that C is a closed
temporal connected set, and by Proposition 15, we get that G has a closed tcc of
size at least k.

For the converse, suppose that G has a tcc C with |C| ≥ k. We want to show
that C forms a biclique in H with at least k edges. Let A ⊆ X contain all vertices
incident to some e ∈ C, and define B similarly with relation to Y . First we show
that (A,B) is a biclique in H . Observe that, combined with the previous paragraph,
we get that any tcc is also a closed tcc; hence the proof will follow also for both
problems. Let x ∈ A and y ∈ B. We need to show that xy is an edge of H . Note that
since x ∈ A, it must be an endpoint of some edge ex ∈ C; analogously, since y ∈ B, it
must be an endpoint of some edge ey ∈ C. Let y′ be the other endpoint of ex and let

18

x′ be the other endpoint of ey. Since H is bipartite, we have x′ ∈ A and y′ ∈ B. If
x′ = x or y′ = y we are done, so suppose otherwise. Since ex and ey are in C, there
exists a temporal ex, ey-path. Note that, by the construction of G, this means that
there exists an edge e′ ∈ δ(x) ∩ δ(y). The only possibility is e′ = xy, as we wanted.
To finish the proof just observe that |E(H [A,B])| ≥ |C| ≥ k.

For (closed) tucc, we make a reduction from 2K2-free Edge Subgraph.
This was shown to be equivalent to the Minimum Fill-in problem in co-bipartite
graphs in [47], where the authors also showed that this problem is NP-complete.
Given a bipartite H , the proof follows similarly to the first case, using exactly the
same construction for the temporal graph G.

Assume thatH contains a 2K2-free subgraphH ′ with at least k edges. Given edges
e = xy and e′ = x′y′ of H ′, since H ′ is 2K2-free either xy′ ∈ E(H ′), or x′y ∈ E(H ′),
or both. Thus in G there is a temporal path from e to e′, or a temporal path from e
to e′, or both. Since in this case we only care about unilateral components, the first
part of the proof follows. The second part also follows with similar arguments, just
noticing that an unilateral component only generates a 2K2-free subgraph in H .

In both cases, for higher values of τ is suffices to add snapshots with empty edge
sets.

C.2 Proof of Theorem 5

Proof. We make a parameterized reduction from k-Clique. Let G be graph and
k ≥ 3 be an integer. We construct the temporal graph G = (G′, λ) as follows. Fist,
add to G′ every vertex in V (G) and make V = V (G). Second, add to G′ a copy u′

of every vertex u ∈ V and define V ′ = {u′ | u ∈ V }. Third, for every pair u, u′ with
u ∈ V and u′ ∈ V ′ add the edge uu′ to G′ and make all such edges active at timestep
0. Fourth, consider an arbitrary ordering e1, . . . , em the edges of G and for each edge
ei = uv create for new vertices {huv, hvu, h

′
uv, h

′
vu | uv ∈ E(G)}, and add edges:

• uhuv and vhvu, active at time i;

• u′h′
uv and v′h′

vu, active at time 2m+ i;

• hvuu and huvv, active at time m+ i; and

• h′
vuu

′ and h′
uvv

′, active at time 3m+ i.

Denote the set {huv, hvu | uv ∈ E(G)} by H , and the set {h′
uv, h

′
vu | uv ∈ E(G)}

by H ′. We now prove that G has a clique of size at least k if and only if G has a
temporal connected set of size at least 2k. The theorem follows by Proposition 15.

First, let C ⊆ V be a clique of size at least k in G and C′ = {u′ | u ∈ C}. We show
that C∪C′ is a tcc of G. For this, let u, v ∈ C. Since λ(uhuv) = i < m+i = λ(huvv),
we get that u reaches v in G through huv. Because C is a clique in G we conclude
that C is a temporal connected set of G, and similarly the same holds for C′. Thus
it remains to show that pairs of vertices of the form u, u′ with u ∈ C and u′ ∈ C′

are also connected in G. This is true due to the choice of timestep 0 for the edges
forming the matching between V and V ′ of G.

Now, let S ⊆ V (G′) be a tcc of G of size at least 2k. We want to show that either
C = {u ∈ V (G) | u ∈ S ∩ V } or C′ = {u ∈ V (G) | u′ ∈ S ∩ V ′} is a clique of G of
size at least k. For this, we first prove a series of useful facts.

Claim 1. Let P be a temporal path in G′[V ∪H]. Then P has at most one internal
vertex of H, and hence |V (P)| ≤ 5. The same holds if P is contained in G′[V ′ ∪H ′].

19

V V
′

un u
′
n0

u3 u
′
30

u2 u
′
20

u1 u
′
10

.
.
.

.
.
.

u vei

u v

huv

hvu

i

i

m+ i

m+ i

u
′

v
′

h
′
uv

h
′
vu

2m+ i

2m+ i

3m+ i

3m+ i

0 0

Figure 4: This appears as Figure 2 in the main text. Construction used in the proof
of Theorem 5. On the left, the two copies of V (G) and the edges between them,
active in timestep 0. On the right, the edge ei ∈ E(G) and the associated gadget in
G.

Proof. It suffices to observe that every e ∈ H is incident to exactly two edges of G′,
one active at time at most m and the other one active at time at least m + 1. The
second part follows because G′[V ∪ P] is a bipartite graph.

Claim 2. C and C′ are cliques in G.

Proof. Let u, v ∈ C. Since C is a temporal connected set, there is a temporal path
from u to v. Such path must contain only edges of G′[V ∪H] since the edges between
V and V ′ are only active in timestep 0, and all other edges are active in a later time
(i.e., there is no way to leave u to u′ at time 0, then go back to v). By Claim 1 and
the fact that G′[V ∪ H] is bipartite, it follows that u and v must be adjacent. The
argument for u, v ∈ C′ is analogous by taking their copies, u′, v′ in S.

Note that if S ⊆ V ∪ V ′, then Claim 2 and the fact that |S| ≥ 2k directly imply
that either C or C′ is a clique of size at least k inG. Assume now that S∩(H∪H ′) 6= ∅.
In this case, it is not ensured that C or C′ contains a clique of size at least k, but the
following claims allow us to obtain another clique.

Claim 3. For every h ∈ H and every x′ ∈ V ′ ∪H ′, h does not reach x′. Similarly,
for every h′ ∈ H ′ and every x ∈ V ∪H, h′ does not reach x.

Proof. The only edges between V ∪H and V ′ ∪H ′ are those incident to V and V ′ at
timestep 0. Since every edge incident to h ∈ H ∪H ′ is active only at a later timestep,
the claim follows.

Claim 4. If a, b ∈ S ∩ H, then a and b are related to the same edge, or to edges
adjacent to each other. The same holds for a, b ∈ S ∩H ′.

Proof. Suppose, without loss of generality, that a reaches b. Suppose also by contra-
diction that a, b are related to distinct edges, say ei and ej, respectively. Write ei as
uv and ej as xy and assume that that {u, v} ∩ {x, y} = ∅. Because every temporal
path between a and b must alternate between V and H , as G′[V ∪H] is bipartite, and
since by Claim 1 every temporal path contains at most one internal vertex of H , we
get that the temporal a, b-path must use vertices (a, v, hvx, x, b). This gives us that
ev and vhvx must be active in timestep at most m, while hvxx and xb must be active
in timestep at least m + 1. Hence, by letting vx be equal to eℓ, we must have that
i < ℓ < j. We apply an analogous argument to a temporal b, a-path to obtain that j

20

must be smaller than i, a contradiction. A similar argument can clearly be applied
to e, f ∈ S ∩H ′, and the claim follows.

Now suppose that S ∩ H 6= ∅. By Claim 3 we get that S ⊆ V ∪ H . Since V
and H are disjoint and |S| ≥ 2k, we get that either |S ∩ V | ≥ k or |S ∩ H | ≥ k. If
the former occurs, then C contains a clique of size at least k by Claim 2. Otherwise,
denote by ES the set of edges of G related to vertices in S ∩ H (i.e. ES = {uv ∈
E(G) | {huv, hvu} ∩ S 6= ∅}). The following is the last ingredient of the proof.

Claim 5. Let a, b ∈ S ∩ H be associated with distinct edges g, g′ of G sharing an
endpoint v. If u and w are the other endpoints of g and g′, respectively, then u and w
are also adjacent in G. Additionally, either |S∩{hxy, hyx}| ≤ 1 for every xy ∈ E(G),
or |S ∩H | ≤ 2.

Proof. Suppose, without loss of generality, that a reaches b. By contradiction suppose
that u and w are not adjacent in G. This gives us that every uw-path in G′ contains
two internal vertices of H , and therefore is not a temporal path by Claim 1. Because
every subpath of a temporal path is also a temporal path, this means that there is no
temporal a, b-path passing by u and w. By construction, and since G is a simple graph
(i.e., there is only one edge with endpoints u and v, and only one with endpoints v
and w), we get from Claim 1 that, if P is a temporal a, b-path not containing both u
and w, then P is one of the following paths: P1 = (a, v, b); P2 = (a, u, a′, v, b) where
{a, a′} = {huv, hvu}; or P3 = (a, v, f ′, w, f) where {f, f ′} = {hvw, hwv}. Note that
the same argument can be applied to a temporal b, a-path, except that we arrive to
the reverses of the above paths. Note that, since all paths are strictly increasing,
we get that at least one between P2 or P3 (or their reverse) is a temporal path. But
observe that neither the subpath (a, u, a′, v) nor its reverse can ever be temporal paths
by construction, which means that neither P2 nor its reverse can be temporal paths.
A similar argument can be applied to P3, thus leading to a contradiction.

For the second part, suppose by contradiction that {hxy, hyx} ⊆ S and |S∩H | > 2.
Let a ∈ (S ∩H) \ {hxy, hyx}. By Claim 4 we can suppose, without loss of generality,
that a ∈ {hxw, hwx} for some w 6= y. Observe also that the previous paragraph tells
us that one of the temporal paths between {hxy, hyx} and a must contain (y, f, w) or
its reverse, where f ∈ {hyw, hwy}. Since such a path contains 4 edges, by letting xy
be equal to ei, yw be equal to ej and wx be equal to eℓ, we get i < j < ℓ. Thus in
this case we have that we is active in time at least m+1, which in turn gives us that
a = hxw. We can now verify that a does not reach hxy. Indeed, every a, hxy-path
starting with edge aw must contain some internal vertex h of H , in which case it
cannot be a temporal path as it starts with an edge active at time at least m + 1
(namely aw) and contains an edge active in time at most m (namely one of the edges
incident to h). A similar argument can be applied if the path starts with edge ax,
since it must be distinct from (e, x, hxy) (recall that λ(ax) = ℓ > i = λ(xhxy)).

Now, recall that we are in the case |S∩H | ≥ k+1. By our assumption that k ≥ 3,
note that Claim 5 gives us that |S ∩ {hxy, hyx}| ≤ 1 for every xy ∈ E(G), which in
turn implies that |ES | = |S ∩ H |. Additionally, observe that, since |S ∩ H | ≥ 4,
Claim 5 also gives us that there must exist w ∈ V such that e is incident to w for
every e ∈ ES . Indeed, the only way that 3 distinct edges can be mutually adjacent
without being all incident to a same vertex is if they form a triangle. Supposing
that 3 edges in ES form a triangle T = (a, b, c), since |ES | ≥ 4, there exists an edge
e ∈ ES \ E(T). But now, since G is a simple graph, e is incident to at most one
between a, b and c, say a. We get a contradiction to Claim 5 as in this case e is not
incident to edge bc ∈ ES . Finally, by letting C′′ = {v1, . . . , vk} be any choice of k

21

G

u

v

z

(a)

G

u

huv

hvu

v

hvz

hzv

z

1
2

12

1 2

12

(b)

Figure 5: Given the graph in (a), Theorem 6 constructs the directed temporal graph
in (b).

distinct vertices such that {wv1, . . . , wvk} ⊆ ES , Claim 5 gives us that vi and vj are
adjacent in G, for every i, j ∈ [k]; i.e., C′′ is a clique of size at least k in G. This
finishes the proof as the case S ∩H ′ 6= ∅ is clearly analogous.

C.3 Proof of Theorem 6

Proof. See Figure 5 to follow the construction. Let G be a graph and consider the
directed graph DG constructed as follows. First, add to DG every vertex of G. Then,
for each uv ∈ E(G), add to DG vertices huv and hvu, directed edges uhuv and vhvu,
and directed edges huvv and hvuu. Denote by H the set {huv, hvu | uv ∈ E(G)}. To
construct the directed temporal graph G we start from DG and for every uv ∈ E(G)

• make edges uhuv and vhvu active in timestep 1; and

• make edges huvv and hvuu active in timestep 2.

Assume k ≥ 3. We now prove that G has a clique of size k if and only if G has
a temporal connected set of size at least k. The theorem follows by Proposition 15.
Notice that every vertex of G is contained in V (G), and that G has lifetime 2.

If C is a clique in G, then for every u, v ∈ C, we get that u reaches v and v reaches
u in G because of the paths (u, 1, huv, 2, v) and (v, 1, hvu, 2, u). It remains to show
that if G has a temporal connected set of size at least k, then G has a clique of size
at least k. Let C′ be such a temporal connected set. We prove that C′ ⊆ V (G) and
uv ∈ E(G) for every u, v ∈ C′. First observe that G1 has only edges from V (G) to
H , and G2, from H to V (G). This implies that a temporal path must be of length
at most 2, which in turn implies that C′ ∩ V (G) must be a clique. Now suppose that
there exists huv ∈ C′ ∩H . Observe that huv has exactly one incoming edge, active in
timestep 1, and exactly one outgoing edge, active in timestep 2. Additionally, observe
that every edge outgoing from v is active in timestep 1. This means that v is the
only vertex of V (G) reachable from huv, contradicting the fact that k ≥ 3. Thus we
conclude that C′ ⊆ V (G) and the result follows.

Now, for the unilateral case, observe that every tcc is also a tucc, hence from
the above paragraph we get that if G has a clique of size at least k, then G has a
tucc of size at least k. Now, if G has a tucc of size at least k, then observe that
the same arguments as before can be applied. Indeed, if u, v ∈ C′ ∩ V (G), then it
must be that either u reaches v or v reaches u, and in any case we have uv ∈ E(G).
Additionally, we know that C′ cannot contain any vertex of H , as k ≥ 3 and v is the
only vertex reachable by huv for every huv ∈ H .

22

G
uin

uout vin

vout zin

zout

1
,3

1
,3

2

2

1
,3

1
,3

2

2

1
,3

1
,3

Figure 6: Temporal graph constructed in the Proof of Theorem 7, given the graph
given in Figure 5a.

C.4 Proof of Theorem 7

Proof. Observe Figure 6 to follow the construction. Let G be a graph and consider the
directed graph DG constructed as follows. For every u ∈ V (G), add to DG vertices
uin and uout, an edge from uin to uout, and an edge from uout to uin (notice that
each pair uin, uout induce a cycle in G). Then, for each edge uv ∈ E(G), add to DG

an edge from uout to vin and an edge from vout to uin. The directed temporal graph
G = (DG, λ) is such that λ is defined as follows.

• For every u ∈ V (G), make edges between uin and uout active in timesteps 1 and
3 in both directions; and

• For every uv ∈ E(G), make the edges from uout to vin and from vout to uin

active in timestep 2.

We now prove that G has a clique of size at least k if and only if G has a closed
temporal connected set of size at least 2k. The theorem follows by Proposition 15.
Notice that G has lifetime 3. Let C be a clique of size at least k in G, and let
C′ = {uin, uout ∈ V (G) | u ∈ C}. We prove that, for every u, v ∈ C with u 6= v, the
set {uin, uout, vin, vout} is a closed temporal connected set; note that this implies that
C′ itself is a closed temporal connected set, as desired. By construction, for every
w ∈ V (G) there are temporal paths from win to wout and the other way around,
in other words uin reaches uout, and vice-versa, and vin reaches vout and vice-versa.
Moreover, uin reaches vin in G through the path (uin, 1, uout, 2, vin). Observe that this
also implies that uout reaches vin, and by symmetry, that both vin and vout reach uin.
Finally, note that the path (uin, 1, uout, 2, vin, 3, vout) implies that both uin and uout

reach vout, and by symmetry we also get that vin and vout reach uout. This finishes
this part of the proof.

Assume now that that C′ is a closed temporal connected set of G′ of size at least
2k. Let C = {u ∈ V (G) | {uin, uout} ∩ C′ 6= ∅}. Clearly |C| ≥ k since |C′| ≥ 2k. To
show that C is a clique in G, observe that G consists of a matching at times 1 and 3,
containing only edges of the form uinuout and of the form uoutuin, together with edges
in timestep 2 that go only from O = {uout | u ∈ V (G)} to I = {uin | u ∈ V (G)}. This
implies that any temporal path in G contains at most one edge from O to I, which
are only defined if the corresponding vertices are adjacent in G. We then get that, if
u, v ∈ C with u 6= v, then it must be the case that uv ∈ E(G).

The proof for closed tucc is similar, except that, for every uv ∈ E(G), we only
need to add either uoutvin or voutuin to G.

23

C.5 Proof of Theorem 8

Proof. Let G be a temporal graph and k be a positive integer. We first prove items
1 and 2, namely, that there exist algorithms running in time:

• O(kk·τ · n) that decides whether there is a tcc of size at least k; and

• O(2k
τ

· n) that decides whether there is a closed tcc of size at least k.

Denote by F the graph obtained from the reachability digraph R(G) by removing
all edges that are not symmetric and taking the underlying graph. Lemma 13 tells us
that tcc is equivalent to finding a clique of size at least k in F , while closed tcc is
equivalent to finding a clique S of size at least k such that G[S] is connected. Observe
that if ∆(F) ≤ ∆, then the former can be solved by testing, for every u ∈ V (F)
and every S ⊆ NF (u) with |S| = k − 1, whether S ∪ {u} is a clique in F ; this takes
time O(∆k · k2 · n). Now for the latter, we need to test for the existence of such
sets of bigger sizes. This is because closed tcc’s are not closed under inclusion.
Nevertheless, since ∆(G) ≤ ∆ and testing whether G[S] is connected can be done
in time O(|S| · |E(G[S])), we can test for the existence of a closed tcc in time
O(2∆ ·∆3 · n) by searching all cliques of size at least k in N [u], for every u ∈ V (G).
We finish the proof by bounding the value of ∆.

Now, we show that ∆ ≤ (k − 1)τ , which combined with the previous paragraph
gives us the stated running time. For this, first notice that, for every i ∈ [τ], the
vertex set of any connected component C of Gi is a clique in F and a closed temporal
connected set of G. This means that we can suppose that the size of any connected
component of Gi is at most k − 1, for every i ∈ [τ], as otherwise we have a trivial
yes-instance for both problems. Now, since Ci(u) = Ri(u) when G is undirected,
apply Lemma 14 to see that |Rτ (u)| ≤ (k − 1)τ . Additionally, by definition we know
that Rτ (u) contains exactly the set of vertices reachable by u in G. Since v ∈ NF (u)
if and only if u reaches v and v reaches u, it follows that NF (u) ⊆ Rτ (u). This
finishes the proof of items 1 and 2.

Now we turn our attention to items 3 and 4, namely, algorithms running in time:

• O(kk
2

· n) that decides whether there is a tucc of size at least k; and

• O(2k
k

· n) that decides whether there is a closed tucc of size at least k.

Again by applying Lemma 13, a similar argument as the one used for items 1 and 2
can be applied directly to the reachability graph F = R(G) to say that, if ∆(F) ≤ ∆,
then tucc can be solved in time O(∆k · k2 · n), while closed tucc can be solved in
time O(2∆ ·∆3 · n). hence it remains to bound ∆.

We prove first that dG(u) ≤ k − 2 for every u ∈ V (G). This holds because, given
any pair v, w ∈ N(u), and any choice of values i ∈ λ(uv) and j ∈ λ(uw), either
we have i ≤ j, in which case (v, i, u, j, w) is a temporal path, or i > j, in which
case (w, j, u, i, v) is a temporal path. In other words, for every v, w ∈ N(u), either
v reaches w or w reaches v, which implies that NG[u] is a clique in F , for every
u ∈ V (G). Hence if dG(u) ≥ k − 1, we are in a trivial yes instance. To finish, just
observe that any temporal path forms a closed tucc, which is always contained in
a tucc. Therefore, we can suppose that any vertex reachable from u is reached by
a temporal path containing at most k − 1 edges. Because dG(v) ≤ k − 2 for every
v ∈ V (G), we get that dF (u) = |Rτ (u)| ≤ (k − 2)k−1 and the result follows.

24

6

7

8
5

4

3
2

5

1

s X C Y

Figure 7: General structure of the constructed graph in the reduction for the tempo-
ral connectivity testing problem. A black edge denotes the existence of all possible
edges. A red edge denotes the temporal edges whose existence is conditioned to the
assignment not satisfying the clause.

D Checking Connectivity: proof of Theorem 9

This section is focused on Question 2, which is open for all definitions of components
for both the strict and the non-strict models. We answer to the question providing
the conditional lower bound in Theorem 9, which holds for both models, where the
notation Õ(·) ignores poly-logarithmic factors.

We apply the technique used for instance in [7, 40, 45] to prove lower bounds
for polynomial problems, falling within the fine-grained complexity framework. We
use quasilinear Karp reduction, i.e. Karp reductions running in quasilinear time,
whose formal definition is given in [7]. In the following we will use Õ(·) to neglect
poly-logarithmic factors.

The key idea is to reduce a starting problem that is known not to be solvable in
subquadratic time to our problem using such kind of reduction. This seed problem
is the following formulation of the k-SAT∗ problem. Let φ be a CNF formula on
variables X = {x1, . . . , xn} and Y = {y1, . . . , yn}, with m clauses of size at most k.
Let X denote the set of all 2n possible truth assignments for X , and similarly let Y
denote the set of all 2n possible truth assignments for Y. In the k-SAT∗ problem,
given I = (φ,X, Y), the goal is to decide if φ is satisfiable. The main difference with
relation to the classical k-SAT problem is the size of the input, which is |I| = O(2n).

Remark 16 ([7]). k-SAT∗ with input I cannot be solved in time O(|I|2−ǫ) for some
ǫ, unless SETH fails.

By presenting a quasilinear Karp reduction from k-SAT∗, and applying Remark 16,
we obtain that, unless SETH fails, there is no subquadratic algorithm that decides if
a given temporal graph is temporal (unilaterally) connected.

In this section, it is helpful to formally define the following two problems.

Problem Temporal Connected.
Input: A temporal graph G.
Question: Is G temporal connected?

Problem Temporal Unilaterally Connected.
Input: A temporal graph G.
Question: Is G temporal unilaterally connected?

For both problems, given an instance I = (φ,X, Y) of k-SAT∗, we construct a
temporal graph G = (G, λ) such that G is not temporal (unilaterally) connected if
and only if φ has a satisfying assignment. As in the obtained temporal graph all
non-strict paths are also strict, the result holds on both models.

25

We first present a reduction from k-SAT∗ to the complement of Temporal Con-
nected. See Figure 7 to follow the construction. Also, let C = {c1, . . . , cm} be the
set of clauses in φ. Let V (G) = X ∪ C ∪ Y ∪ {s}. Add all edges from s to X and
let them be active in time 7; all edges between X and s and let them be active in
time 6; all edges between X and C, active in time 8; all edges between C and X ,
active in time 5; all edges between C and Y , active in time 3; all edges between Y
and C, active in time 2; and all edges between s and Y , active in time 1. Finally, for
each pair f ∈ X and ci ∈ C, we add edge fci, active in time 4, if and only if f does
not satisfy ci. Similarly, for each pair f ∈ Y and ci ∈ C, we add edge cif , active in
time 5, if and only if f does not satisfy ci. See Figure 8 for an example.

5

8

2

3

1

7

6

TT

TF

FT

FF

TT

TF

FT

FF

c1

c2

c3

s

Figure 8: Graph in the reduction for the temporal connectivity testing problem,
related to the formula φ = (x1 ∨ ¬x2 ∨ y1) ∧ (¬x1 ∨ ¬y1 ∨ y2) ∧ (x2 ∨ y1 ∨ ¬y2). Blue
nodes denote assignments of x1 and x2 (e.g., node TT blue denotes the assignment
x1 = True and x2 = True), while magenta nodes denote assignments of y1 and y2.
Again, black edges denote existence of all possible edges. We put them outside the
vertices in order to make the figure clean. Blue edges are active in time 4 and magenta
edges, in time 5.

We now argue that this is a quasilinear Karp reduction. The reduction is quasilin-
ear since τ = 8, |V (G)| = 2n+2n+m+1 = O(|I|), and |E(G)| = 2nm+2nm+2n+2n =
Õ(|I|), since m in Remark 16 can be assumed to be polylog(|I|) [7]. It remains to
prove correctness. Before we do that, we first argue that the reachability graph of G
always contains uv for every u and v such that either u /∈ X or v /∈ Y . For this, we
analyse all cases below:

• s reaches f for every f ∈ X ∪ Y by direct edges;

• s reaches ci for every ci ∈ C through a path (s, 1, f, 2, ci) for any f ∈ Y ;

• s is reachable by f for every f ∈ X by direct edges;

• s is reachable by every ci ∈ C through a path (ci, 5, f, 6, s) for any f ∈ X ;

26

• s is reachable by every f ∈ Y through a path (f, 2, ci, 5, f
′, 6, s) for any ci ∈ Ci

and any f ′ ∈ X ;

• Every f ∈ X reaches every ci ∈ C and is reached by it through direct edges;

• Every f ∈ X is reachable by every f ′ ∈ Y through a path (f ′, 2, ci, 5, f) for any
ci ∈ Ci;

• Every ci ∈ C reaches every f ∈ Y and is reached by it through direct edges;

• Every f ∈ X reaches every f ′ ∈ X through the path (f, 6, s, 7, f ′);

• Every ci ∈ C reaches every cj ∈ C through the path (ci, 5, f, 8, cj) for any
f ∈ X ;

• Every f ∈ Y reaches every f ′ ∈ Y through the path (f, 2, ci, 3, f
′) for any

ci ∈ C.

Now we prove that φ is satisfiable if and only if there exists fX ∈ X and fY ∈ Y
such that fX does not reach fY (i.e., G is not temporal connected). First, suppose that
φ is satisfiable and consider a satisfying assignment f of φ. Then let fX ∈ X be equal
to f restricted to {x1, . . . , xn} and fY ∈ Y be equal to f restricted to {y1, . . . , yn}.
Observe that for every ci ∈ C, either fX satisfies ci, and hence (fXci, 4) /∈ ET (G),
or fY satisfies ci, and hence (cifY , 5) /∈ ET (G). Observe also that the only possible
temporal paths between fX and fY are of the type (fX , 4, ci, 5, fY) for some ci ∈ C.
It thus follows that fX does not reach fY . Now suppose that fX does not reach fY
for some pair fX ∈ X and fY ∈ Y . This must be because for every ci ∈ C, either
(fXci, 4) /∈ ET (G), and hence fX satisfies ci, or (cifY , 5) /∈ ET (G), and hence fY
satisfies ci. Therefore fX ∪ fY is a satisfying assignment for φ.

Consider now the complement of Temporally Unilaterally Connected. We
make a similar reduction. Observe Figure 9 to follow the construction. Let V (G) =
X ∪ C ∪ Y ∪ {x, y, c}. For each z ∈ {x, y, c}, add all edges from Z to z and let them
be active in time 1, and all edges from z to Z and let them be active in time 2. Add
also all edges from x to C and from c to Y , active in time 6. Finally, add {xc, xy, cy}
active in time 7 and, for each pair f ∈ X and ci ∈ C, we add edge fci, active in
time 4, if and only if f does not satisfy ci. Similarly, for each pair f ∈ Y and ci ∈ C,
we add edge cif , active in time 5, if and only if f does not satisfy ci.

Let G = (G, λ) be the constructed temporal graph. Similarly as before, we get
τ = 7, |V (G)| = 2n+1+m+3 = O(|I|), and |E(G)| = 2n+1m+2n+1+m+3 = Õ(|I|).
It remains to prove that φ is not satisfiable if and only if G is unilaterally temporal
connected. As before, we first prove that the only missing pairs are of the type fXfY
with fX ∈ X and fY ∈ Y . Recall that we only need at least one of the edges uv or vu
for every pair u, v ∈ V (G). Below we analyse only the necessary edges. See Figure 10
to follow the proof.

• x reaches every u ∈ V (G) directly through edges. This implies edges xu in
R(G) for every u ∈ V (G);

• Every fX ∈ X reaches every z ∈ {c, y} through the path (fX , 1, x, 7, z). This
implies edges fXc and fXy in R(G);

• Every fX ∈ X reaches every ci ∈ C through the path (fX , 1, x, 6, ci). This
implies edges fXc in R(G);

• Every fX ∈ X reaches every f ′
X ∈ X , f ′

X 6= fX , through the path (fX , 1, x, 2, f ′
X);

27

2

7

7

7

1

4

6 21

5

6 21

X

x

C

c

Y

y

Figure 9: General structure of the constructed graph in the reduction for the unilateral
temporal connectivity testing problem. A black edge denotes the existence of all
possible edges. A red edge denotes the temporal edges whose existence is conditioned
to the assignment not satisfying the clause.

• c reaches every u ∈ C ∪ Y ∪ {y} directly through edges. This implies edges cu
in R(G);

• Every ci ∈ C reaches y through the path (ci, 1, c, 7, y). This implies edges ciy
in R(G);

• Every ci ∈ C reaches every fY ∈ Y through the path (ci, 1, c, 6, fY). This
implies edges cifY in R(G);

• Every ci ∈ C reaches every cj ∈ C, i 6= j, through the path (ci, 1, c, 2, cj). This
implies edges cicj in R(G);

• y reaches every fY ∈ Y directly through an edge. This implies edges yfY in
R(G);

• Every fY ∈ Y reaches every f ′
Y ∈ Y , f ′

Y 6= fY , through the path (fY , 1, y, 2, f
′
Y).

This implies edges fY f
′
Y in R(G).

The proof of correctness is analogous to the previous one. It relies on the fact
that the only possible temporal paths between the sets X and Y are of the type
(fX , 4, ci, 5, fY), for some ci ∈ C. Indeed, no path from Y to X may exist, since each
edge that leaves Y goes to y, and there are no edges from y to V (G)\Y . Additionally,
the only temporal edges leaving X that do not go directly to C are of type (fXx, 1).
If a temporal path starting with such temporal edge uses an edge at time 7, then it
cannot arrive to Y , as all edges arriving in Y have smaller timestamps. Hence such
a path must use an edge (xci, 6) for some ci ∈ C, and again we get stuck as all edges
leaving C occur before time 6. Now, since the path (fX , 4, ci, 5, fY) exists if and only
if both fX and fY do not satisfy ci, the results follows. That is, if φ is satisfiable,
then this fails for some pair, and vice-versa.

Now observe that we have made reductions from k-SAT∗ to the complements of
our problems. However, since a subquadratic algorithm that solves the complement
Π of a problem Π, also solves Π (indeed I is a positive instance of Π if and only if I
is a negative instance of Π), we get that Theorem 9 follows.

28

X

x

C

c

Y

y

Figure 10: Subgraph of R(G) shown above. An edge between two sets/vertices means
that all such edges exist in R(G). Note that more edges might exist but that this is
enough to prove that we miss only an edge between X and Y (which means all edges
between these sets).

G

X

u

v

z

(a)

G

Y

u

huv hvu

v hvz hzv

z

1
,3
,5

2, 4

1
,3
,5 1, 3, 5 2, 4 1

,3
,5

(b)

Figure 11: Construction in the proof of Theorem 10.

E Checking Maximality: proof of Theorem 10

Proof. It remains to prove that, in the non-strict model, given a (directed) temporal
graph G and a subset Y ⊆ V (G), deciding whether Y is a closed tcc (closed
tucc) is NP-complete. The strict case is already treated in the main text. As before,
we make a reduction from the problem of, given a graph G and X ⊆ V (G), deciding
whether X is a 2-club.

Observe Figure 11. We obtain G from G by subdividing each edge uv ∈ E(G)
twice, creating vertices huv and hvu, with λ(uhuv) = λ(vhvu) = {1, 3, 5}, and
λ(huvhvu) = {2, 4}. Observe that the first vertex in the subscript of hxy tells us which
between x and y is adjacent to hxy. Denote by H the set {huv, hvu | uv ∈ E(G)}.
We now prove that X is a maximal 2-club in G if and only if Y = X ∪NH(X) is a
closed tcc in G. In fact, we prove that:

1. If X ⊆ V (G) is such that G[X] has diameter at most 2, then Y = X ∪NH(X)
is a closed connected set in G; and

2. If Y ⊆ V (G) is a closed connected set, then X = Y ∩ V (G) is such that G[X]
has diameter at most 2.

We argue that indeed 1 and 2 above imply what we want, i.e., that X is a maximal
2-club in G if and only if Y = X ∪ NH(X) is a closed tcc in G. Observe that,

29

supposing that 1 and 2 hold, if X is a maximal 2-club, then Y = X ∪NH(X) must
be a closed tcc. Indeed, if Y ⊂ Y ′ and Y ′ is a closed connected set (i.e., Y is not
maximal), then by 2 we get that X ′ = Y ′ ∩ V (G) has diameter 2. Since X ′ contains
X , this contradicts the choice of X . Conversely, if Y is a closed tcc, then X must
be a maximal 2-club, as otherwise we could apply 1 to get a closed connected set
strictly containing Y .

We first prove 1. So, consider X ⊆ V (G) such that G[X] has diameter at most 2,
and define Y as above. Let u, v ∈ Y ∩V (G). If uv ∈ E(G), then (u, 1, huv, 2, hvu, 3, v)
and (v, 1, hvu, 2, huv, 3, u) witness that u reaches v and v reaches u in G[Y]. And if
uv /∈ E(G), then, since G[X] has diameter 2, let w ∈ N(u) ∩ N(v) in G. We get
the paths: (u, 1, huw, 2, hwu, 3, w, 3, hwv, 4, hvw, 5, v) and (v, 1, hvw, 2, hwv, 3, w, 3, hwu,
4, huw, 5, u). Therefore, u reaches v and v reaches u in G[Y]. Now, consider u ∈ X∩Y
and h ∈ H∩Y . Let v ∈ X be such that h ∈ N(v) (observe that v is uniquely defined).
If v = u, then there is nothing to prove, so suppose otherwise. BecauseX has diameter
at most 2, there exists a u, v-path P in G[X] of length at most 2, say (u,w, v), with
possibly w = v. Then either (u, 1, huw, 2, hwu, 3, w, 3, h) is a temporal u, h-path, in
case w = v, or (u, 1, huw, 2, hwu, 3, w, 3, hwv, 4, hvw, 5, v, 5, h) is a temporal u, h-path,
in case w 6= v. One can check that the symmetric path between h and u ensures
that also h reaches u in G[Y]. Now, let h, h′ ∈ H , and let u ∈ N(h) ∩ X and
v ∈ N(h′)∩X . One can observe that a similar argument can be applied, by possibly
starting the previous path with (h, 1, u), in case h = hux for some x not within the
u, v-path P taken in G[X].

Now, assume that Y is a closed connected set of G, and consider X = Y ∩ V (G).
We want to show that G[X] has diameter at most 2. Suppose by contradiction that u
and v are a distance 3 in G[X]. Observe that, since each h ∈ H has degree exactly 2
in G, we get that every temporal path in G is related to exactly one path in G, and
vice-versa. One can then verify that u and v cannot reach each other in G[Y] as the
traversal of any edge in G is related to the traversal of a strictly increasing path of
length 3 in G[Y]. In other words, no u, v-path in G is a valid temporal path, as the
lifetime of G is 5.

Finally, we prove that every closed unilaterally connected set is also a closed con-
nected set. Since the reverse trivially holds, we get that it is also NP-complete to
decide whether Y ⊆ V (G) is a closed tucc. So, consider Y ⊆ V (G) a closed unilat-
erally connected set, and suppose that x, y ∈ Y are such that x reaches y in G[Y]. Let
(x = x1, t1, x2, . . . , xq, tq, xq+1 = y) be a temporal x, y-path in G[Y]. By a case anal-
ysis, one can check that there exist t′1, . . . , t

′
q for which (y = xq+1, t

′
1, xq−1, . . . , x2, t

′
q,

x1 = x) is a valid temporal y, x-path.

30

	1 Introduction
	2 Parameterized Complexity Results
	3 Checking Connectivity and Maximality
	4 Concluding remarks
	A Preliminaries and notation
	A.1 Parameterized complexity
	A.2 Temporal paths and components

	B Auxiliary results
	C Parameterized Complexity Results: Proofs
	C.1 Proof of Theorem 4
	C.2 Proof of Theorem 5
	C.3 Proof of Theorem 6
	C.4 Proof of Theorem 7
	C.5 Proof of Theorem 8

	D Checking Connectivity: proof of Theorem 9
	E Checking Maximality: proof of Theorem 10

