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A B S T R A C T   

Background: The present study evaluates the utility of NGS analysis of circulating free DNA (cfDNA), which 
incorporates small amounts of tumor DNA (ctDNA), at diagnosis or at disease progression (PD) in NSCLC 
patients. 
Methods: Comprehensive genomic profiling on cfDNA by NGS were performed in NSCLC patients at diagnosis (if 
tissue was unavailable/insufficient) or at PD to investigate potential druggable molecular aberrations. Blood 
samples were collected as routinary diagnostic procedures, DNA was extracted, and the NextSeq 550 Illumina 
platform was used to run the Roche Avenio ctDNA Expanded Kit for molecular analyses. Gene variants were 
classified accordingly to the ESCAT score. 
Results: A total of 106 patients were included in this study; 44 % of cases were requested because of tissue 
unavailability at the diagnosis and 56 % were requested at the PD. At least one driver alteration was observed in 
62 % of cases at diagnosis. Driver druggable variants classified as ESCAT level I were detected in 34 % of pa-
tients, including ALK-EML4, ROS1-CD74, EGFR, BRAF, KRAS p.G12C, PI3KCA. In the PD group, most patients 
were EGFR-positive, progressing to a first line-therapy. Sixty-three percent of patients had at least one driver 
alteration detected in blood and 17 % of patients had a known biological mechanism of resistance allowing 
further therapeutic decisions. 
Conclusions: The present study confirms the potential of liquid biopsy to detect tumour molecular heterogeneity 
in NSCLC patients at the diagnosis and at PD, demonstrating that a significant number of druggable mutations 
and mechanisms of resistance can be detected by NGS analysis on ctDNA.  
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List of abbreviations 
NGS next-generation sequencing. 
ctDNA circulating tumour DNA. 
NSCLC non-small cell lung cancer. 
SCLC small cell lung cancer. 

Introduction 

Non Small Cell Lung Cancer (NSCLC) accounts for about the 85 % of 
all lung cancers, and counts more than 200 different actionable muta-
tions [1]. The identification of clinically actionable alterations expanded 
patients’ treatment options improving their management, survival, and 
quality of life [2]. Up to date, more than 20 targeted therapies are 
approved for NSCLC in Europe, including first or later lines of targeted 
agents for mutant EGFR, ALK, ROS1, RET, MET, BRAF, KRAS p.G12C, 
HER2 exon 20 insertion, and NTRK [3]. The most common alteration 
found in NSCLC is represented by an aberrant activation of the EGFR 
gene (up to 50 % in Asians), followed by MET (20 %), HER2 (15–30 %), 
KRAS p.G12C (13 %), ALK and BRAF (3–5 %), RET and ROS1 (1–2 %), 
NTRK (0.2 %) [1,4,5]. 

The ESCAT score is a classification developed by ESMO which de-
scribes the evidence level for genomic alterations as biomarkers for 
targeted therapies. In detail, level I corresponds to actionable alterations 
with available targeted treatments. Level II identifies molecular alter-
ations that could benefit from a specific drug, but further evaluation is 
required. Level III belongs to molecular alterations for which a drug is 
available with evidence in other tumour types. Level IV, includes mu-
tations for which there is pre-clinical evidence of activity. Finally, level 
V and level X correspond respectively to mutations to which a drug has 
given an objective response but without obvious clinical benefit, and 
molecular alterations for which there is no evidence of actionability [6]. 
The ESCAT scale implements and harmonises the information about the 
actionability of detected variants, allowing a better interpretation of 
cancer genomics, and facilitating the communication between 
professionals. 

Nowadays, the genomic profile of NSCLC obtained from tissue 
profiling remains the gold standard for guiding treatment choice in 
patients with advanced NSCLC. However, tissue biopsy presents several 
limitations, including screening failures due to limited tissue availability 
and the inability to capture intratumor spatial and temporal heteroge-
neity [7]. On the contrary, the analysis of cell-free DNA circulating in 
plasma (cfDNA), also called liquid biopsy, which contains a small frac-
tion of tumour DNA (ctDNA) allows the genomic profiling of a neoplasm 
with many advantages over tissue biopsy, being repeatable, 
non-invasive, and capable of providing information on the entire mo-
lecular profile of tumours, catching their complex molecular heteroge-
neity [8,9]. Therefore, ctDNA analysis represents an important 
alternative to define the genomic profile of the tumour, both at diagnosis 
and at the progression of the disease (PD). Nonetheless, the potential of 
advanced technologies such as Next Generation Sequencing (NGS), 
which allows a comprehensive genomic profiling of the tumour, has yet 
to be fully exploited in clinical practice. 

The present study aims to evaluate the usefulness of ctDNA analysis 
by using NGS for molecular assessment at the diagnosis or to investigate 
mechanisms of resistance at PD in patients affected by NSCLC. 

Patients and methods 

The present study collected data routinely obtained by genomic 
profiling of ctDNA of NSCLC patients at diagnosis, when tissue biopsy 
was unavailable or insufficient for molecular profiling, or at the disease 
progression. The analysis was carried out on samples collected between 
March 2021 and February 2023. All patients provided written informed 
consent in sharing and using non-identifiable personal data, according 
to the institutional policies and Ethics Committee of referring hospitals. 

Blood sampling and circulating free DNA isolation 

Six ml of blood were collected from patients in tubes containing 
EDTA, centrifuged for 10 min at 3000 rpm to obtain plasma, and stored 
at − 20 ◦C until the analysis. Samples were centrifuged for 5 min at 4000 
rpm; the extraction of circulating free DNA (cfDNA) was performed 
using the QIAmp circulating nucleic acid kit from Qiagen® (Qiagen®, 
Valencia, CA). cfDNA amounts were assessed using a Qubit fluorometer 
and Qubit dsDNA High Sensitivity Assay Kit (Invitrogen, Carlsbad, CA, 
USA). Quality of cfDNA samples was determined with the 2100 Bio-
analyzer using an Agilent High Sensitivity DNA Kit (Agilent Technolo-
gies, Santa Clara, CA, USA). 

Next-generation sequencing 

Genomic analysis was performed from 10 to 50 ng of cfDNA using the 
AVENIO ctDNA Expanded kit from Roche® according to the manufac-
turer’s instructions (Roche Diagnostics, Basilea, CHE). The panel 
covered 77 genes, including hot spots (single nucleotide variants [SNVs] 
and short indels), copy number variations (CNVs) and gene fusions. Li-
brary preparation started with an adapter ligation and 10 μl of unique 
sample adapter were added to each sample with overnight hybridization 
for 16–18 h. Libraries were cleaned up using AVENIO cleanup beads and 
enrichment of target genes was performed using streptavidin- 
conjugated magnetic beads (Dynabeads M-270 Streptavidin, Thermo-
Fisher Scientific, Waltham, MA, USA) at 47 ◦C. Target-enriched libraries 
were size-selected for an average fragment size of 300 bp. Library size 
was verified by Agilent High Sensitivity DNA Kit (Agilent Technologies, 
Santa Clara, CA, USA) on the 2100 Agilent Bioanalyzer and quantified 
using Qubit dsDNA High Sensitivity Assay Kit (Invitrogen, Carlsbad, CA, 
USA) on Qubit fluorometer. The pooled libraries were diluted to 4 nM, 
spiked with 15 % PhiX control library, and sequenced on the Illumina 
NextSeq 550 platform (Illumina, San Diego, CA) using the 300-cycle 
NextSeq 500/550 Mid Output v2 kit in paired-end mode (2 × 151 
cycles). 

Data analysis 

Alignment and gene variant calling were performed using the AVE-
NIO ctDNA analysis software (Roche Diagnostics, Basilea, CHE), with 
default parameter settings for the expanded panel. The software’s bio-
informatic algorithms and checkpoints have been optimized to enable 
accurate variant calls across all mutation classes. The AVENIO Oncology 
Analysis Software integrates a digital error suppression strategy 
combining molecular barcodes with in silico error suppression tech-
niques, allowing the detection of low frequency alleles down to 0.1 % 
with high sensitivity and specificity. The software integrates 5 leading 
oncology databases, a curated loci of interest list and a customizable 
annotation database, all integrated into the AVENIO Oncology Analysis 
Software (Data on file with Roche; [10]). Three default reports are 
automatically generated by the analysis software: a sample metrics 
report, an initial variant report (unfiltered or all variants), and a second 
variant report (Roche default filter). Sample metric report provides an 
overview of all the quality field and run metrics, including the number of 
read pairs in the lane passing Illumina filter, the percentage of all read 
bases with a quality score of at least 30, the percentage of reads aligned 
to Illumina Phix sequencing control, the mean sequencing depth and the 
mean depth of coverage with unique reads. 

The percentage of aligned reads to the human genome that is within 
the targeted region (unique depth) according to the manufacturer’s in-
structions should be >40 %. Similarly, the expected median unique 
depth across bases in the targeted region should be at least 2500 ×, 
given 50 ng input cfDNA. 

To investigate pathogenicity value, the target variants were sub-
mitted to the disease-associated databases COSMIC, VARSOME, and 
OncoKB, and only variants annotated as pathogenic or likely pathogenic 
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were taken into account. Only somatic alterations with variant allele 
fraction (VAF) ≥ 0.5 % were considered for the following analysis. In 
order to exclude potential clonal hematopoiesis variants (CHIP) the 
peripheral blood sample was stored and analyzed in case of suspected 
CHIP using a dPCR (Qiagen®, Valencia, CA). 

Actionable alterations were classified according to the ESCAT clas-
sification [11]. 

Results 

Study population 

Data from a total of 106 tests were included in this study, including 
47 (44 %) samples at the diagnosis and 59 (56 %) at PD. Table 1 reports 
the clinical characteristics of the 2 groups of patients included in the 
study. Turnaround time was 24 days; timelines between testing and 
treatment initiation were in accordance to hospital procedures. 

Sequencing performance 

On average, 52 million reads were obtained from each sample 
(range, 40 to 62 million). The mean sequencing depth across all the 
analyses was 9354, and the mean depth of coverage with unique reads 
was 3606,3. 

Gene variant detection 

In the group of patients for which cfDNA was analyzed at the diag-
nosis, the presence of at least one driver alteration in ctDNA was found 
in 62 % of cases (Fig. 1). Driver druggable variants classified as ESCAT 
level I were detected in 34 % of patients, including ALK-EML4 fusion, 
ROS1-CD74 fusion, activating EGFR mutations, BRAF p.V600E, KRAS p. 

G12C, and PI3KCA (Fig. 2). Amplification of MET alone, classified as 
ESCAT level II, was also identified at diagnosis. The median allelic fre-
quency (AF) of variants found at the diagnosis was 1 % (min 0,02 % – 
max 33,76 %). In 28 % of cases, only undruggable driver alterations 
were found. In detail, among ESCAT level IV alterations, KRAS p.G12D, 
p.G12V, BRAF p.L505H, p.G596R, FGFR2 p.I88H, and ERBB2 p. 
G778_P780 duplication were found. Among ESCAT level V mutations, 
frameshift PTEN p.N323 was found. Finally, among ESCAT level X 
mutations the RB1 p.R467G, p.R552*, and PIK3CA p.P1011S variants 
were detected (Fig. 2). The concomitant presence of a druggable driver 
variant and other driver events was found in 4 cases, including ALK- 
EML4 fusion together with MET and EGFR amplification, EGFR and MET 
amplification, ROS1-CD74 fusion in association with ROS1 non- 
synonymus variants (p.G2101A, p.G2095A, p.G2032R, p.G2026R, p. 
F2004C, p.F1998C, p.L1946V, p.L1941V), BRAF p.V600E in combina-
tion with KRAS p.A146P and IDH1 p.R132C. 

In addition, variants with potential prognostic significance and po-
tential predictive power were also detected, such as STK11 p.D194Y and 
p.Q305*, KEAP1 p.H311L and different TP53 alterations. 

Fifty-nine samples were analysed to investigate the mechanisms of 
resistance to treatment at disease progression. ctDNA analysis was 
requested after treatment with first/second-generation EGFR-TKIs in 15 
% of cases, in the 56 % after a third-generation EGFR-TKIs, in 10 % after 
an ALK-TKI treatment, in 15 % after first-line chemo-based treatments 
and after poziotinib and sotorasib therapy in 2 % of cases, respectively 
(Table 1). At least one driver alteration was detected in 63 % of patients 
of which 10 % were amenable of an approved targeted therapy (Figs. 3 
and 4). Based on the actionable effect and preclinical/clinical evidence 
to benefit from targeted therapy, 7 % of patients who progressed to 
previous standard treatments may have a potential treatment sequence 
strategy based on available clinical trials (data source: clinicaltrials.gov; 
last updated Feb. 2023) (Fig. 4 and Table 1S). Among ESCAT level II, the 
EGFR p.C797S ESCAT level II mutation was found, associated with EGFR 
exon 19 deletion in one case and with EGFR p.L858R mutation together 
with EGFR p.T790M in the other one. Instead, among ESCAT level IV 
mutations, variant ROS1 p.L2026M, ALK p.L1196Q, BRAF p.L597V, 
KRAS p.Q61H, and EGFR amplification were identified. PTEN p.N323fs 
variant was the only ESCAT level V present. Finally, among the ESCAT 
level X mutations, MAP2K1 p.Y130H, p.F53S, STK11 p.D194V, p. 
W332*, VHL p.P81S and RB1 p.E737* variants were detected (Fig. 4). In 
19 % of cases, only the primary mutation was found without any known 
mechanisms of resistance. In this regard, in the oncogene-addicted 
population, the primary mutation was confirmed in 21/42 EGFR, 2/5 
ALK-EML4, and 1/1 ROS1-CD74 of cases by liquid biopsy. In the EGFR 
mutant population treated with 1st-2nd generation TKIs, the most 
frequent mechanisms of resistance were EGFR p.T790M mutation and 
EGFR amplification. In EGFR mutant patients treated with the 3rd gen-
eration TKI osimertinib, detected mechanisms of resistance included: 
EGFR and MET amplifications, EGFR p.C797S, BRAF p.V600E, PI3KCA p. 
E542K and p.E545K, and KRAS p.Q61H (Figs. 5 and 1S). In the ALK- 
EML4 and ROS1-CD74 positive patients who progressed to ALK-TKIs, 
secondary point mutations in ALK and ROS1 were found as mecha-
nisms of resistance, respectively (Figs. 5 and 1S). A detailed description 
of the therapy administered, and the mutations detected among all the 
patients evaluated at PD is reported in Table 2S. 

Finally, a JAK2 p.V617F mutation classified as clonal haematopoiesis 
of indeterminate potential (CHIP) was detected in 7 patients with a 
median AF of 1.77 % (min 0.16 % – max 28.21 %). Fig. 2S summarizes 
the study design and the results. 

Discussion 

The present study demonstrates the utility of performing NGS anal-
ysis of cfDNA in a routine practice setting for patients affected by 
NSCLC, resulting in 34 % of patients with a druggable driver alteration 
at the diagnosis and 17 % of patients with druggable alterations when 

Table 1 
Clinical characteristics of patients.   

Diagnosis n ¼
47 

Progression of disease n ¼
59 

Age average (range), years 69 (32–89) 68 (48–90) 
Gender, n (%)   
Males 21 (45 %) 23 (39 %) 
Females 26 (55 %) 36 (61 %) 
Smoking history, n (%)   
Current 1 (2 %) 4 (7 %) 
Former 3 (6 %) 6 (10 %) 
Never 1 (2 %) 9 (15 %) 
Unknown 42 (90 %) 40 (68 %) 
Stage, n (%)   
IIIA – 1 (2 %) 
IIIB 1 (2 %) 1 (2 %) 
IV 46 (98 %) 57 (96 %) 
Tumor histology   
Adenocarcinoma 43 (91 %) 52 (88 %) 
Squamous cell carcinoma 4 (9 %) 7 (12 %) 
ECOG PS, n (%)   
0–1 5 (11 %) 20 (34 %) 
≥ 2 2 (4 %) 3 (5 %) 
Unknown 40 (85 %) 36 (61 %) 
Line of treatment, n (%)   
1 – 43 (73 %) 
2 – 7 (12 %) 
3 – 2 (3 %) 
4 – 7 (12 %) 
Therapy, n (%)   
Gefitinib/erlotinib/afatinib – 9 (15 %) 
Osimertinib – 33 (56 %) 
Alectinib/lorlatinib – 6 (10 %) 
Sotorasib – 1 (2 %) 
Poziotinib – 1 (2 %) 
Chemotherapy-based 

treatments 
– 9 (15 %)  
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progressing to previous treatments. cfDNA demonstrated its value to 
investigate and identify tumour molecular heterogeneity across 
different tumours and stages. Up to date, the request of a cfDNA test is 
recommended by national and international scientific societies for pa-
tients affected by lung, breast, prostate, colorectal cancers and chol-
angiocarcinoma, to identify predictive biomarkers of response or 
resistance to treatment [12]. The NGS has the advantage of detecting 
multiple types of mutations in different genes in a single analysis [13] 
and is becoming increasingly important as the number of biomarkers to 
be tested in NSCLC is continuously increasing [13,14]. In the present 
study, the most frequent gene alterations found in blood were the EGFR 
activating mutations, particularly the p.L858R and exon 19 deletions, in 
agreement with previous studies [15,16]. The presence of druggable 

driver variants at the diagnosis was in many cases associated with other 
undruggable variants, such as EGFR amplification or TP53 mutations, 
usually correlated with worse prognosis [17]. Considering the most 
recent biomarkers introduced as druggable [18,19], the KRAS p.G12C 
and the BRAF p.V600E mutations were found in 2 cases at diagnosis, 
respectively. Activating PIK3CA variants, for which alpelisib is approved 
[20], were found in 2.1 % at diagnosis. Interestingly, both at the diag-
nosis and at the PD, the analysis of ctDNA was able to identify fusions in 
ALK and ROS1 genes, confirming also its potential in fusion detection. 
Interestingly, in one of the cases requested for the molecular assessment 
at diagnosis, the ROS1-CD74 fusion had 8 ROS1 concomitant variants, of 
which 3 are known to be mechanisms of resistance to ALK TKIs. In detail, 
the ROS1 p.F2004C is resistant to entrectinib, crizotinib, and 

Fig. 1. Concomitant alterations in NSCLC patients at diagnosis. (A) Actionable variants detected in NSCLC patients. (B) Non-actionable variants detected in 
NSCLC patients. 

Fig. 2. ESCAT classification of driver alterations detected in NSCLC patients at diagnosis.  
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cabozantinib [21], ROS1 p.G2101A is resistant to crizotinib but sensitive 
to lorlatinib [22], and ROS1 p.G2032A is resistant to lorlatinib [23]. 
Although this is a clear example of how complex is the molecular het-
erogeneity of NSCLC, posing challenges in terms of treatment strategy, it 
also highlights the advantages of using the NGS testing on cfDNA, 
allowing to detect multiple variants, which helps us to predict the 
response to treatment [24]. Unfortunately, most of the driver alterations 

found in NSCLC are still waiting for the development of effective tar-
geted treatment and, accordingly, 62 % of cases at diagnosis, included in 
the present study, showed undruggable driver alterations, such as KRAS 
variants other than p.G12C and ERBB2 variant. 

Among patients who progressed to treatment, 17 % had at least a 
druggable driver variant. The majority of patients were treated with 
first-line osimertinib, and known mechanisms of resistance were 

Fig. 3. Concomitant alterations in NSCLC patients at disease progression. (A) Actionable variants detected in NSCLC patients. (B) Non-actionable variants detected in 
NSCLC patients. 

Fig. 4. ESCAT classification of alterations detected in NSCLC patients at disease progression.  
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detected, including amplifications of MET and EGFR, BRAF p.V600E, 
PIK3CA p.E542K and p.E545K and EGFR p.C797S [25–27], allowing 
patients treatment with a second targeted-therapy such as the EGFR/-
MET combination of osimertinib and savolitinib, or the 
trametinib-dabrafenib combination for patients with a BRAF V600E 
mutation [28]. In case of acquired resistance due to EGFR p.C797S in 
patients treated with second-line osimertinib harbouring the EGFR 
activating and the p.T790M variants, according to published studies, if 
the p.C797S and p.T790M are in trans, they seem to be sensitive to the 
combination of osimertinib with a first-generation EGFR TKIs [29,30]. 
Instead, if the 2 alterations are in cis they seem to respond to brigatinib 
with an anti-EGFR antibody [31,32] or fourth-generation EGFR TKIs 
[33]. To overcome this type of resistance to therapy, a phase 1/2 study 
of the use of a novel EGFR inhibitor (BLU-945) in combination with 
osimertinib is also under investigation (NCT04862780). In ALK-rear-
ranged tumors, mechanisms of resistance including MET amplification 
or the ALK variant p.L1196Q were found in patients treated with alec-
tinib. In these cases, a subsequent treatment with crizotinib or brigatinib 
may be effective, respectively [34,35]. Finally, a ROS1-CD74 positive 

tumor treated with lorlatinib showed a ROS1 p.L2086F resistance 
variant, which turned out to respond to cabozantinib [23]. Importantly, 
ctDNA analysis may also suggest if a patient needs a re-biopsy. These are 
the cases where the concomitant presence of RB1 loss and TP53 alter-
ations are found, suggesting a potential SCLC transformation, a known 
mechanism of resistance to treatment in NSCLC [36]. In patients in 
whom NSCLC has progressed, liquid biopsy is crucial for monitoring 
changes in the molecular profile of disease and guiding treatment 
choices, as re-biopsy is not possible in most cases. Even if the evidence of 
clinical utility of cfDNA analysis is continuously increasing, it is highly 
needed the development of robust assays or software tools able to 
differentiate ‘true’ from possibly ‘false’ positive (i.e. CHIP) or negative 
results. The analysis of ctDNA through liquid biopsy has the advantage 
of catching the intra-tumor spatial and temporal molecular heteroge-
neity, overcoming tissue biopsy limitations and allowing a maximisation 
of the concept of “tailored treatment”. 

We acknowledge that the present study has some major limitations 
including the small number of patients and the lack of comparison of 
ctDNA with tissue re-biopsy in patients at the PD [37]. However, the 

Fig. 5. Representation of resistance mechanisms identified in patients at disease progression, depending on previously administered therapy and driver alterations.  
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unavailability of tissue biopsy sufficient for molecular analysis (at 
diagnosis or at PD) led to the request, as per clinical practice, of a cfDNA 
test in our population. Moreover, a critical aspect of our study is the lack 
of information about the clinical outcomes and follow-up data of our 
patient population, which should be addressed in further studies 
enrolling a larger patient population, to better evaluate the clinical 
significance of incorporating the NGS analysis of cfDNA in clinical 
routine. 

Conclusions 

Our study confirms the ability of NGS to detect targetable alterations 
and mechanisms of resistance, guiding therapeutic choices in patients 
affected by NSCLC both at diagnosis and disease progression, also 
emphasizing the usefulness of ctDNA in monitoring the evolution of the 
molecular pattern of the tumour without the invasiveness of tissue 
biopsy. 
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